Gold nanorods as radiosensitizer agents on PC3 cells

Soares, Sílvia^{1, 2,3,4,5}

Guerreiro, S.G.^{5,6,7}, Sales, M.G.F.^{1,4,8}, Correa-Duarte, M.^{9,10} and Fernandes, R.^{5,11,12}

¹BioMark-CEB/ISEP, Polytechnic of Porto, Porto, Portugal

²Institute of Biomedical Sciences Abel Salazar – University of Porto, Porto, Portugal

³Faculty of chemistry, University of Vigo, Vigo, Spain

⁴CEB, Centre of Biological Engineering of Minho University, Braga, Portugal

⁵Institute for Research and Innovation in Health (i3S), Porto, Portugal

⁶Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal

⁷Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal

⁸Biomark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

⁹CINBIO, University of Vigo, 36310 Vigo, Spain

¹⁰Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Spain

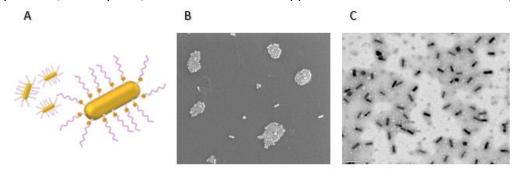
¹¹InnOMICA, Porto Research, Technology & Innovation Center (PORTIC), Porto, Portugal

¹²School of Health, Polytechnic of Porto, Porto, Portugal

Silvia 27 01@hotmail.com

Abstract

Different structures of gold nanoparticles (AuNPs) are being extensively used in Radiotherapy (RT) because gold increased the sensitivity to radiation due to its high atomic number that can absorb high-energy gamma rays or X-rays and emit photoelectrons, Auger electrons, Compton electrons, and fluorescence photons.¹ Gold nanorods (AuNP_r) are gold nanoparticles with a rod shape, used to enhance the effect of ionizing radiation.²


After synthesized, the effect of the $AuNP_r$ on radiosensitization using megavoltage energies RT was evaluated for in PC3 prostate cancer cell line (PCa). Cells were incubated with different concentrations of $AuNP_r$ (0-1.0 mM) during 24h, then subjected to irradiation of 2,5 Gy per fraction, for 3 days, using a PRIMUS linear accelerator with 6 MV photon beam. After RT treatments, cell viability was analysed using PrestoBlue assay (*Invitrogen*TM), cell migration was explored doing the *in vitro* wound healing assay, and colonies assay was evaluated by microscopy.

In this work, we found that the AuNP_r displays a radiosensitization effect and it is dose dependent in PC3 cell line. These results are supported by decrease of viability and number of colonies produced.

REFERENCES

[1] Sun, Q.; Wu, J.; Jin, L.; Hong, L.; Wang, F.; Mao, Z.; Wu, M., Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. Journal of Materials Chemistry B 2020, 8 (32), 7253-7263.

[2] Ma, N.; Wu, F.-G.; Jiang, Y.-W.; Jia, H.; Wang, H.-Y.; Li, Y.-H.; Liu, P.; Ning, G.; Chen, Z., Shape Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods. ACS Applied Materials & Interfaces 2017, 9.

Figure 1: Scheme of AuNP_r with PEG, Scanning electron microscope (SEM, 200000x) and Transmission electron microscopy (TEM, 150000x) images.