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Abstract: Aluminum-based cellular solids are promising lightweight structural materials considering
their high specific strength and vibration damping, being potential candidates for future railway
vehicles with enhanced riding comfort and low fuel consumption. The filling of these lattices with
polymer-based (i.e., polyurethane) foams may further improve the overall vibration/noise-damping
without significantly increasing their density. This study explores the dynamic (i.e., frequency
response) and acoustic properties of unfilled and polyurethane-filled aluminum cellular solids to
characterize their behavior and explore their benefits in terms of vibration and noise-damping. It is
shown that polyurethane filling can increase the vibration damping and transmission loss, especially
if the infiltration process uses flexible foams. Considering sound reflection, however, it is shown that
polyurethane filled samples (0.27–0.30 at 300 Hz) tend to display lower values of sound absorption
coefficient relatively to unfilled samples (0.75 at 600 Hz), is this attributed to a reduction in overall
porosity, tortuosity and flow resistivity. Foam-filled samples (43–44 dB at 700–1200 Hz) were shown
to be more suitable to reduce sound transmission rather than reflection than unfilled samples (21 dB
at 700 Hz). It was shown that the morphology of these cellular solids might be optimized depending
on the desired application: (i) unfilled aluminum cellular solids are appropriate to mitigate internal
noises due to their high sound absorption coefficient; and (ii) PU filled cellular solids are appropriate
to prevent exterior noises and vibration damping due to their high transmission loss in a wide range
of frequencies and vibration damping.

Keywords: cellular solids; aluminum lattices; vibration damping; noise-damping; sound absorption
coefficient; transmission loss

1. Introduction

The European Union has set severe targets to control emissions (CO2), having defined
a 60% reduction in fuel consumption-related carbon emissions by 2050 [1]. A specific
measure to this reduction is transferring 50% of road passengers to rail and waterborne
vehicles. For both users and the neighbors of their infrastructure, the attractiveness of
these transports is crucial for this transition. Indeed, the European Commission estimates
that a 2255 M€ saving could be achieved soon (2015–2035) by reducing railway noise and
vibration [2]. This noise/vibration damping could be promoted by the design of high
damping materials with structural (i.e., load-bearing) capacity to produce light vehicles
with enhanced passenger comfort and low-energy consumption.

Cellular solids are known as a promising solutions to enhance noise-damping when
their source cannot be completely eliminated. For instance, cellular solids have been stud-
ied and shown to be viable solutions to reduce sound reflection and propagation [3,4]. Thus,
they may be designed to have high sound absorption coefficient and transmission loss val-
ues relative to bulk materials [5,6]. Additionally, they have lightweight characteristics due
to their low specific density and high specific static/dynamic mechanical properties [7,8].
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Given these attractive properties, there is a current trend on exploring cellular solids in
applications that classically use bulk materials, especially in the transportation industries.

In applications in which high static loading is also required, these cellular solids have
a metallic solid phase [7]. However, it is also known that these metallic cellular solids have
lower vibration damping capacity than those with a polymer solid phase [9]. There have
been extensive developments in the design and manufacturing of hybrid configurations
using the referred composite materials [10,11]. One such approach is the foaming of
polymer-based foams within the voids of an architectured metallic lattice.

This study shows an approach to further enhance the vibration and noise-damping
capacity of open-cell non-stochastic cellular solids. Samples are impregnated with flexible
and rigid polyurethane foams, and their dynamic behavior and acoustic properties are ana-
lyzed in both unfilled and filled states. The experimental results are compared with current
materials in railway vehicles to determine if the designed cellular solids are interesting
solutions for future railway applications. Results show that sample filling has a strong
influence on the damping and acoustic behavior of these materials, enabling their tailoring
for different application, such as (i) vehicle interior noise mitigation using unfilled samples
with high sound absorption coefficient; (ii) or exterior noise/vibration insulation using PU
filled samples due to their high transmission loss and damping.

2. Materials and Methods
2.1. Cellular Lattice Design and Manufacturing

Aluminum-based cellular solids (Figure 1a) were designed in a three-dimensional
non-stochastic (9 × 9 × 8 cells—height × width × thickness = 30.18 ± 0.05 mm × 33.59 ±
0.28 mm × 33.59 ± 0.28 mm) configuration with a specific density (ρ*/ρ0) of 0.058 ± 0.005,
with periodic cells that resemble inverted (i.e., auxetic) honeycombs as we have detailed
in [7] by the periodic distribution o unitary cells with ribs/struts with 2 mm length and
0.6 mm diameter, a rib/strut −10◦ angle. Two 0.6 mm plates were also included in the top
and bottom of the samples.

These designs were manufactured by an additive manufacturing assisted investment
casting process, already detailed by the authors in [12] where the samples are manufactured
by: (i) 3D-printing a PLA sacrificial model by FFF; (ii) production of gypsum model by the
dipping of the sacrificial model, curing the plaster and heat-treating the ceramic to harden
it and eliminate the PLA model; (iii) vacuum casting an A356 alloy to obtain the metal
sample.

The final shape of the cast and heat-treated (T6) samples may be visualized in Figure 1b.
Overall, this process yields fine and detailed ribs/struts with a high-quality microstructure
(globular 73 ± 39 µm α-Al grains, modified/refined eutectic Si and absence of significant
defects) with good fabrication repeatability and anisotropic behavior [13]. This implies that
fabrication-related variations in the tested samples (e.g., dimensional and microstructural
changes) do not significantly affect the results of this study.
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2.2. Polyurethane Filling

Polymer-based foams are frequently related to noise-damping, having been success-
fully employed to mitigate this kind of solicitations in many applications [14–16]. Consider-
ing this, the metallic cellular solids (Figure 1) were infiltrated with polyurethane (PU) foams
to determine if this is beneficial for the overall noise mitigation of the designed composites.
Given that the mechanical properties of PU are related to its chemical composition and
density, the samples were infiltrated with rigid and flexible foams.

The reagents to manufacture the PU foams (Plastiform foams) were weighted and
mixed in a beaker according to the proportions described in Table 1. After a homogenized
mixture is achieved, the reagents were cast into a vessel holding a sample (Figure 2a). It
may be observed by the progression in Figure 2b–e that the foaming process can penetrate
the cellular structure of the sample. The remaining PU foams in the exterior of the sample
were removed by a combination of cutting and polishing with SiC paper.

Table 1. Proportion of polyurethane foam reagents.

Foam Isocyanate/Polyol Ratio Manufacturer

Rigid 1:1 Cronodur Foam 100
Flexible 1:2 Cronodur Foam Flex
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Additionally, the properties of the produced foams may be observed in Table 2.
Recurring to this table, it is observed that both flexible and rigid foams are characterized
by an open-cell configuration with small changes in their apparent density that was
determined by the classic Archimedes approach.

2.3. Vibration Testing

The vibration tests to the samples were performed in accordance with the protocol that
was developed by the authors in [7] to characterize the dynamic properties of cellular solids.
Samples were fixed to a shaker (LDS V201, Brüel & Kjær, Nærum, Denmark) and load cell
(221B02, PCB Piezotronics, Depew, NY, USA) through a tapered hole in their bottom, and
their response was measured by a triaxial accelerometer (356A14, PCB Piezotronics, Depew,
NY, USA) glued to the top of the sample. Shaker excitation and accelerometer/load cell
responses were processed by an LMS Scadas mobile spectrum analyzer (Siemens, Munich,
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Germany) in a 1000 to 6000 Hz range. This allowed the plotting of the sample frequency
response function (FRF) and the estimation of this damping ratio (ξ) by the half-power
bandwidth method [17]. A total of five samples were analyzed for each tested configuration
(i.e., unfilled, rigid and flexible fillings).

Table 2. General characteristics of the manufactured foams.

Foam Flexible Rigid

Optical microscopy
(10×)
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2.4. Acoustic Testing of the Samples

A custom-built impedance tube (Figure 3) was placed inside an anechoic chamber and
used to measure the sound absorption coefficient and the transmission loss of the unfilled
and foam-filled samples. Due to the geometric characteristics, the tube was designed to be
operated in frequencies between 100 Hz and 2000 Hz. Given that the size of the samples
(height × width × length = 30.18 ± 0.09 mm × 33.59 ± 0.28 mm × 33.59 ± 0.28 mm) is
significantly smaller than the tube diameter (100 mm), a corkboard was cut to accommodate
the samples during the tests and make an airtight seal (Figure 3). Previously to the tests, a
calibration procedure was performed with the corkboard without the sample to determine
the absorption and transmission of the board itself. The equipment software can use this
calibration to normalize the final tests and estimate the properties of the sample. A total of
five samples were tested for each type (i.e., sound absorption and transmission) of the test.
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Figure 3. Detail of impedance tube and sample assembly for sound absorption testing.

According to the scheme in Figure 4, a random sound signal (100–2000 Hz) is generated
by a microflown preamplifier through a loudspeaker and travels in the form of a plane
wave inside the tube. The referred wave travels along the tube and ends up hitting the
sample as an incident wave (Figure 4). In the sound absorption and acoustic impedance
tests, the incident plane wave that is reflected (i.e., reflected wave) is measured by the
probe that is placed facing the sample.
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The normal sound absorption coefficient (α—Equation (1)) was calculated by monitor-
ing the frequency-dependent reflection coefficient (R(ω)—Equation (2)) on a fixed position
(x) [18]. This reflection coefficient is determined by the measurement of the acoustic
impedance (Z(ω)) during the test, according to Equation (3), where P is the captures sound
pressure level and u the particle velocity [19]:

α(ω) = 1− |R(ω)|2 (1)

R(ω) = e
2iωx

c
Z(x, ω)− ρc
Z(x, ω) + ρc

(2)

Z =
P
u

(3)

The reflection coefficient may be influenced by the ambient condition, i.e., it is depen-
dent on the air density (ρ) and speed of sound (C) according to Equations (4) and (5) [20].
These variables are themselves dependent on ambient variables, such as temperature (T,
27 ± 2 ◦C) and atmospheric pressure (P, 45 ± 3 kPa):

ρ = 1.29
(

P
101.325

)(
273.15

273.15 + T

)
(4)

C = 20.047
√

273.15 + T (5)

The transmission loss (TL) of the samples was determined using a variation of the
previous process. An additional tube length was added to determine the Sound pressure
level after the sample, and an additional measurement was performed using the same
probe (Figure 5). Transmission loss may be calculated using Equation (6) and the measured
transmitted (Zt) and incident (Zi) acoustic impedances [21]. The values of incident acoustic
impedance (Zi) were measured recurring to the same method used for the sound absorption
coefficient (Equation (3)). As for the transmitted acoustic impedance (Zt) was determined
in a similar approach, but by changing the probe to the other side of the sample (Figure 6)
to measure the transmitted wave:

TL (ω) = 10 log
(

Zt(ω)

Zi(ω)

)
(6)

The usual process for the determination of the sound absorption coefficient and trans-
mission loss usually includes using two distinct microphones to monitor the differential
between sound pressures in different tube locations. These methods are described in the
standards ISO 10,534 and ASTM E2611. In this study, a single probe was used for both
methods. The probe that was used in this study is part of a novel trend that uses a sensor
that can monitor not only the instant values of pressure but also the particle velocity. This
way, using only one probe, it is possible to calculate the acoustic impedance. This approach
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has been proved valid, and its results are highly correlated with those obtained using the
classic standards [22–25].
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3. Results and Discussion

Figure 7 shows the frequency response functions (FRF) from the vibration testing. It
is evidenced that the inclusion of a polymeric foam filling has a significant impact on the
damping of the cellular solids, lowering the acceleration peaks in sample eigenfrequencies.
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Using the half-power method, it was possible to calculate the damping ratio for each
tested sample (Figure 8). It may be concluded that a flexible filling generates more damping
capacity than when a rigid filling is used. Polyurethane foams in flexible configurations
are known to have higher damping values than in rigid configurations.
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While the filling of the sample has proven to be beneficial to increase the structural
vibration damping capacity, they also have the objective of increasing the acoustic damping,
i.e., they should promote an overall noise reduction and increase riding comfort.

It is known that the main source of noise is the resultant from the exterior of the
train cabin (Figure 9a). The damping of exterior noise would greatly benefit the riding
comfort of the occupants. The damping of these exterior sources may be correlated with the
transmission loss in the material that is used to build the vehicle. Thus, from a designer’s
point of view, such panels should have high values of transmission loss on a wide range
of frequencies. However, it is impossible to completely block the noise transmission, and,
consequently, there is a part that is conducted to the interior of the cabin. This noise adds up
to the noise that is generated in the interior of the cabin (Figure 9b), either by its functional
equipment (e.g., air conditioning, automated doors, etc.) or passenger interaction. Thus, the
material that is used to build the car body should also display a high absorption coefficient
(α) to damp the referred noises.
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Considering the ability of the material to damp the reflected acoustic noise inside
the cabin, Figure 10 shows the average resultant frequency-dependent sound absorption
coefficient of unfilled and foam-filled samples. According to Equations (1) and (3), the
results in Figure 11 are dependent on the values of acoustic impedance, i.e., the opposition
that the system imposes on the propagation of acoustic waves.
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The results (Figure 9) show that unfilled samples display a very pronounced absorp-
tion peak near 600 Hz. However, when polyurethane foams are used to fill the cellular core,
this peak is shifted to a lower frequency (300 Hz). More important, even though polymer
foams are commonly associated as a solution to enhance noise-damping capacity [26,27],
the experimental results show a reduction in the absorption peaks.

It is known that the sound propagation in porous media, such as cellular solids, may be
described by (i) rigid or (ii) poroelastic structures [28]. The first is applicable in rigid porous
media and, in this case, is associated with the acoustic propagation within the designed
cellular solid. This propagation may be described by the Johnson–Champoux–Allard–
Lafarge (JCAL) model [29,30]. The referred model states that the characteristic acoustic
impedance of the system (Zc(ω)—Equation (7)) is dependent on the visco-inertial [31]
effects by changes in dynamic density (ρ(ω)) and visco-thermal effects by variations in the
dynamic Bulk modulus (K(ω)) [32]:

Zc(ω) =
√

ρ(ω)K(ω) (7)



Metals 2021, 11, 725 9 of 20

The angular frequency (ω) dependent dynamic density (ρ(ω)) is known to be in-
fluenced in four variables: sample porosity (Φ), airflow resistivity (σ), high-frequency
limit tortuosity (α∞) and the viscous characteristic length (Λ). These are correlated by
Equation (8), in which the constants ρ0 and η are, respectively, the air density and dynamic
viscosity [3,17]:

ρ(ω) =
α∞ρ0

Φ

[
1 +

σΦ
jωα∞ρ0

√
1 + j

4α∞2ηρ0ω

σ2Λ2Φ2

]
(8)

To compensate for these effects, the JCAL model corrects the characteristic acoustic
impedance (Equation (8)) with a dynamic bulk modulus (K(ω)—Equation (9)). Where
the thermal effects are dependent on two variables: the thermal characteristic length (Λ′)
and the static thermal permeability (k′0). Equation (8) also includes the contribution of
constants, such as the specific heat (γ), atmospheric pressure (P0), heat capacity (Cp) and
thermal conductivity (k) [32,33]:

K(ω) =
γP0/Φ

γ− (γ− 1)
[

1− j Φk
k′0Cpρ0ω

√
1 + j 4k′0Cpρ0ω

kΛ′
2

Φ2

]−1 (9)

Equation (8) is related to the visco-inertial effects on acoustic propagation. How-
ever, the heat exchange and thermal dissipation (Equation (9)) by acoustic excitation in
rigid open-cell porous media must also be considered to correctly estimate the acoustic
propagation [4,31,34].

While in unfilled samples (Figure 12a), the visco-inertial propagation of the acoustic
waves is performed through the rather open aluminum matrix and the thermal interaction
is suggested to be residual due to the low values of the superficial area in which the visco-
thermal dissipation occurs. This may not be true in foam-filled samples (Figure 12b). In
these samples, the superficial area in the foams is much more significant, and so is the
visco-thermal dissipation in their boundary layer.
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Using the relation in Equations (7)–(9) and a graphical tool made available by the
Matelys Research Lab (Vaulx-en-Velin, France) [34], a sensibility analysis was performed
on each variable to determine their influence and variations in the shape of a typical
frequency-dependent sound absorption coefficient plot (Figures 13–16). This analysis is
used to suggest the transformations in the acoustic impedance and, consequently, sound
absorption in the unfilled and flexible/rigid foam-filled samples.

Sample porosity (Φ—Figure 13a) is defined as the ratio of the fluid volume that
occupies the interior of a cellular solid [35], and it is, fundamentally, the fraction of the
material that is not solid (i.e., Φ = 1 − ρ∗/ρ0). According to Figure 13a, it may be observed
that as the value of porosity is decreased, so does the sound absorption coefficient. This
effect has already been known to occur in other porous media [15,36,37]. This is justified by
the closing effect on the cells of the porous media and the difficult absorption during the
visco- inertial and thermal process during the propagation [38]. It is worth mentioning that,
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for the acoustic propagation purpose, only the open-cell porosity is taken into consideration.
In fact, this is the case with the adopted foams. It is suggested that during the filling process,
the porosity is decreased, and, thus, there is a relative reduction in the sound absorption
coefficient.
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According to Darcy’s law (Equation (10)), the decrease in porosity may increase the

static air flow resistivity (σ) for a given pressure gradient (
→
∇P) and fluid velocity (

→
v ) [39].

Observing Figure 13b, it is suggested that this can lower the sound absorption coefficient,
being this fact also reported in other studies [40]:

σ = −
→
∇P

Φ
→
v

(10)

The high-frequency limit of the tortuosity (α∞) is related to the geometrical disorder
of the porous media in which the acoustic propagation occurs [29] and may assume values
between 1 and 3 [41]. The lower limit is generally characteristic of parallel streamlines,
while the upper limit is used in extremely disordered systems (e.g., for typical polyurethane
foam, α∞ = 1.29 [34]). It is considered that the tortuosity is increased when the samples
are infiltrated by foam. Observing Figure 14a, it is suggested that the sound absorption
peak may be moved to a lower frequency. This hypothesis may be supported by studies on
other porous media [37,42].

Metals 2021, 11, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 14. Influence of visco-inertial parameters in the sound absorption coefficient of porous me-
dia (JCAL model): (a) 𝛼 —high-frequency limit of the tortuosity; and (b) Λ—viscous characteris-
tic length. 

The viscous characteristic length (Λ) describes the viscous effects of the flow [29]. A 
general description may be observed in Equation (11) [43], where this variable is defined 
as the relation between the pore volume (V) and superficial area (A) in a given fluid ve-
locity (v). It may be understood that this relation is highly dependent on the porosity (Ф) 
and tortuosity (𝛼 ) (Equation (12), where 𝑘  is the static viscous permeability [43]). Due 
to the suggested reduction in porosity and elevation in tortuosity, it is proposed that the 
filing of the samples with foam increases the values of viscous characteristic length (Λ). 
Observing Figure 14b, it may be observed that this may contribute to the increase in sound 
absorption coefficient: 

𝛬 = 2 𝑣  𝑑𝑉𝑣  𝑑𝐴   (11) 

𝛬 = 8𝛼 𝑘Ф  (12) 

A similar analysis may be performed to determine the variations in the thermal char-
acteristic length (Λ′) that accounts for the thermal dissipation in the periodic unit cell [5]. 
Given that this variable is also predominantly affected by the ratio of pore volume and 
superficial area (Equation (11)) [44] and recurring to Figure 15a, it may be observed that 
as the value of this variable increases, there may be an elevation in the sound absorption 
coefficient. 

 
Figure 15. Influence of visco-thermal parameters in the sound absorption coefficient of porous me-
dia (JCAL model): (a) Λ′—thermal characteristic length; and (b) k′0—static thermal permeability. 

The frequency-dependent dynamic thermal permeability (𝑘 𝜔 ) may be calculated 
using Equation (13), being dependent on the differentials of pressure and time (𝜕𝑃/𝜕𝑡), 
porosity (Ф), air thermal conductivity (k) and excess of the temperature inside the cellular 

Figure 14. Influence of visco-inertial parameters in the sound absorption coefficient of porous media
(JCAL model): (a) α∞—high-frequency limit of the tortuosity; and (b) Λ—viscous characteristic
length.

The viscous characteristic length (Λ) describes the viscous effects of the flow [29]. A
general description may be observed in Equation (11) [43], where this variable is defined as
the relation between the pore volume (V) and superficial area (A) in a given fluid velocity
(v). It may be understood that this relation is highly dependent on the porosity (Φ) and
tortuosity (α∞) (Equation (12), where k0 is the static viscous permeability [43]). Due to the
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suggested reduction in porosity and elevation in tortuosity, it is proposed that the filing of
the samples with foam increases the values of viscous characteristic length (Λ). Observing
Figure 14b, it may be observed that this may contribute to the increase in sound absorption
coefficient:

Λ = 2

∫
V v2 dV∫
A v2 dA

(11)

Λ =

√
8α∞k0

Φ
(12)

A similar analysis may be performed to determine the variations in the thermal
characteristic length (Λ′) that accounts for the thermal dissipation in the periodic unit
cell [5]. Given that this variable is also predominantly affected by the ratio of pore volume
and superficial area (Equation (11)) [44] and recurring to Figure 15a, it may be observed that
as the value of this variable increases, there may be an elevation in the sound absorption
coefficient.
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The frequency-dependent dynamic thermal permeability (k′(ω)) may be calculated
using Equation (13), being dependent on the differentials of pressure and time (∂P/∂t),
porosity (Φ), air thermal conductivity (k) and excess of the temperature inside the cellular
solid (τ) [40,42]. The static thermal permeability (k′0) relates thermal effects between the
rigid frame and the fluid at low frequencies actuating in the boundary layer, according to
Equation (13) [45]. Given its dependence on the sample porosity, it is suggested that the
foam infiltration process can decrease the value of the static thermal permeability. Thus,
according to Figure 15b, it is expected a lowering in sound absorption and peak frequency:

k′(ω) = Φτ
∂P
∂t

(13)

k′0 = lim
ω→0

k′(ω) (14)

If, during the acoustic propagation, the structure can no longer be considered rigid,
for instance, in the case of the polyurethane foams that are used to infiltrate the samples,
the formulation must be corrected [43]. According to the poroelastic Biot’s theory [46,47],
the surface impedance (Z) may be calculated using Equations (15) and (16) [48]:

Z = −j
Zs

1Z f
2 µ2 − Zs

2Z f
1 µ1

D
(15)

where

D = (1−Φ + Φµ2)
[

Zs
1 −

(
1−ΦZ f

1 µ1

)]
tan(δ2d)

+(1−Φ + Φµ1)
[

Z f
2 µ2(1−Φ)− Zs

2

]
tan(δ2d)

(16)
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The referred theory considers that the propagation by compression waves is due
to three separate waves: fast (P1) and slower (P2) compression waves and a shear wave
(S) [48]. Considering these facts, the surface impedance (Z) may be divided into four
possible impedance combinations according to Equations (17) and (18). These combinations
are related to the fast (1) and slow (2) waves on the solid (s) and fluid (f ) parts: Z f

1 , Z f
2 , Zs

1
and Zs

2 [49]:

Z f
i =

δi(P + Qµi)

Φω
, i = {1; 2} (17)

Zs
i =

δi(P + Qµi)

ω
, i = {1; 2} (18)

Overall, the constants that need to be determined to perform the calculations in
Equations (15)–(18) may be calculated using Equations (19)–(22) [48]:

µi =
Pδ2

i −ωρ11

ω2ρ12 −Qδ2
i

, i = {1; 2} (19)

δ1 =

√
ω2

2(PR−Q2)

[
Pρ22 + Rρ11 − 2Qρ12 −

√
∆
]

(20)

δ2 =

√
ω2

2(PR−Q2)

[
Pρ22 + Rρ11 − 2Qρ12 +

√
∆
]

(21)

where
∆ = (Pρ22 + Rρ11 − 2Qρ12)− 4

(
PR−Q2

)(
ρ11ρ22 − ρ12

2
)

(22)

The equivalent mass densities (ρ11, ρ22 and ρ12) in the system may be determined
by Equations (23)–(25) [50]. The latter can relate the poroelastic influence in the initially
rigid approach described early by using the dynamic density (ρ—Equation (8)) that is
determined in the JCAL model. It may be highlighted that the equivalent mass densities
are also influenced by the foam and air densities, respectively, ρs and ρ0.

ρ11 = Φ2ρ−Φρ0 + ρs (23)

ρ22 = Φ2ρ (24)

ρ12 = Φρ0 −Φ2ρ (25)

The remaining parameters that need to be used in the solving of Equations (23)–(25)
are known as Biot coefficients (P, Q and R) and may be determined by Equation (26) to
(28) [28]. Parameters themselves are influenced by the sample porosity (Φ), the shear
modulus (G), the variable KB (Equation (29)) and the Poisson’s ratio (ν) [28]. Equation (30)
is a variable related to the JCAL model by the inclusion of the dynamic bulk modulus
(K) through Equation (9). The Young’s modulus (E) of the sample itself may be directly
correlated using the relation between elastic constants from the three-dimensional classic
elasticity theory (Equation (31)) [51]:

P =
4G
3

+ KB + Ke

[
(1−Φ)2

Φ

]
(26)

Q = Ke(1−Φ) (27)

R = ΦKe (28)

KB =
2G(ν + 1)
3(1 + 2ν)

(29)

Ke = ΦK (30)
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E = 2G(1 + ν) (31)

Considering that the Poisson’s ratio of the foams are approximately constant, Figure 16
was plotted to determine the influence of Young’s modulus (E) and density (ρs) in the
sound absorption coefficient of a generic cellular solid. In Figure 16a, it is suggested that
lower values of elastic modulus are useful to increase sound absorption. However, as
the value of this constant increases, the plots tend to approximate the JCAL model (black
plot—Figure 16). In fact, since as the sample becomes stiffer, it should approximate the
JCAL model that considers the solid portion of the foam as rigid. The same behavior is
observed in situations where the density is increased, according to Figure 16b.
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generic porous media: (a) E—elastic modulus and (b) ρ—density.

Figure 17 shows the combination of parameter variations that were analyzed accord-
ing to what occurs in the samples when foams are introduced in the voids of the initial
metallic lattice. In Figure 17a, it may be observed that the rigid interaction during the
acoustic progressions that is predicted by the JCAL model implies a reduction of the sound
absorption coefficient peak. Additionally, there is also a lowering of the sound absorp-
tion peak frequency. According to Figure 17b, a small increase in the sound absorption
coefficient is also expected due to the poroelastic influence.
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Overall, these predictions can describe the variation of the experimental results
(Figure 17): (i) the reduction of the peak and its change in frequency that is observed
when the foam is inserted are justified by the variations in JCAL parameters described
in Figure 17a; (ii) the small variation between the samples with flexible and rigid foam
samples is due to the change in poroelastic properties shown in Figure 17b.

Figure 18 shows the experimental results concerning the transmission loss (TL) of
the manufactured samples. It is shown that the filling of the samples with foam was
able to successfully increase the transmission loss, i.e., reduce the propagation of acoustic
noise by its damping. More important, it may be observed that there are frequencies (e.g.,
100–150 Hz and ≈400 Hz) that the unfilled samples cannot damp the noise.
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The transmissibility (T) of a cellular solid (i.e., porous media) may be described by
Equation (32), in which L is the sample width, Υ(ω) and k(ω) are angular frequency-
dependent variables [52]:

T(ω) =
2Y(ω)

2Y(ω)coth(k(ω)L) +
[
1 + Y(ω)2

]
sinh(k(ω)L)

(32)

Such constants may be determined by Equations (33) and (34), using the dynamic com-
pressibility β(ω), dynamic tortuosity α(ω), fluid density (ρ f ) and compressibility modulus
of the fluid (Ka) [52]:

Y(ω) = Φ

√
β(ω)

α(ω)
(33)

k(ω) = ω

√
ρ f α(ω)β(ω)

Ka
(34)

It may be observed that the referred variables are described by Equations (35) and
(36) and that they may be determined using the sample porosity (Φ), the high-frequency
limit of the tortuosity (α∞), viscous static permeability (k0), fluid viscosity (η) and Prandtl
number (Pr) [29,52]:

α(ω) = α∞

(
1 +

ηΦ
jωα∞ρ f k0

)
(35)

β(ω) = γ +
(γ− 1)ρ f k0Pr

ηΦjω
(36)

According to Table 3 and Equations (32)–(36) and given that the impregnation of
the samples with foam reduces the porosity (Φ), there is an increase in the values of
tortuosity (i.e., α(ω) and (α∞). Additionally, there is an increase in the value of dynamic
compressibility (β(ω)).

Table 3. Proportion of polyurethane foam reagents (note: ↑—increase; ↓—decrease).

Variable Φ α∞ α(ω) β(ω) Y(ω) k(ω) T(ω)

Change ↓ ↑ ↑ ↑ ↓ ↑ ↓
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This elevation in the values of dynamic compressibility reduces the variable Υ(ω)
while increasing k(ω). Thus, according to Equation (32), the foam-filled samples are
expected to have lower values of transmissibility (T). According to Equation (37) [6], it is
also expected that they have an enhanced ability to damp the propagation of acoustic noise
and, thus, display higher values of transmission loss (TL) [53]. This is corroborated by the
experimental presented in Figure 18:

TL = 10 log
(

1
T

)
(37)

Comparing the experimental results for both unfiled and foam-filled samples, it may
be concluded that: (i) unfilled samples are better for sound absorption, especially in certain
frequency ranges (Figure 10); and (ii) foam-filled samples, particularly with flexible foams,
have more damping capacity and higher values of transmission loss for the tested frequency
range (Figure 15).

4. Comparison with Other Materials

Having analyzed the acoustic properties of the designed cellular solids, it is interesting
to compare their sound absorption and transmission loss with solutions currently available
for use and reported in other studies. Relatively to the sound absorption coefficient (α),
the developed cellular solids are compared with other aluminum foams [54–56] with
approximate specific densities in Figure 19. Given that unfilled samples showed the most
promising results, only this type of sample was chosen for comparison.
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Figure 19. Sound absorption coefficient comparison: designed cellular solids vs. other Al foams.

Other publications use unfilled low-density aluminum foams, and it is observed that
their damping peak occurs at higher frequencies than the tested flexible foam sample.
However, this agrees with the experimental result on unfilled samples. Recurring to
Figure 19, it may be observed that the damping peak of unfilled samples has high sound
absorption relative to other published solutions. Additionally, the peak is wider, suggesting
that this absorption is distributed along a wider frequency range. Therefore, unfilled
samples are suggested to be a good solution for application in which sound absorption is
required.

In terms of transmission loss (TL), Figure 20 compares the experimental results with
other published works on other materials that are commonly used in train cabin fabrica-
tion [57]. Given that unfilled samples show low values of transmission loss, only flexible
foam-filled samples were used for comparison purposes. According to these results, it may
be observed that the designed composites show an overall higher transmission loss than
the other current materials.
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fabrication.

While the developed cellular solids are suggested to enhance the transmission loss
relatively to current solutions, Figure 21 compares the experimental data with recently
published solutions for noise-damping in railway vehicles [58].
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Figure 21. Transmission loss comparison: designed cellular solids vs. other suggested solutions for
noise-damping.

From these results, it may be observed that using bitumen or soundpaint (water-based
paint for noise-damping) coatings increases the values of transmission loss, especially
in low frequencies. Butyl rubber layers display similar behavior to those shown by the
cellular solids filled with foams. Thus, coatings seem an interesting solution to increase
transmission loss. Due to this fact, it is suggested that the coupling of bitumen/sound
paint coating with the manufactured cellular solids may be interesting to enhance the
low-frequency transmission loss in future studies.

5. Conclusions

This study details the vibration, and acoustic properties of unfilled and PU impreg-
nated open-cell non-stochastic cellular solids. According to the results, the following
conclusions were established:
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(i) Experimental vibration tests show that sample filling with polyurethane foams
can successfully increase the damping capacity (i.e., damping ratio). Samples filled with
flexible foam show higher values of damping ratio;

(ii) Acoustic tests using an impedance tube show that filling the samples with foam
is beneficial to decrease noise propagation (i.e., increase transmission loss). However,
unfilled samples display higher sound absorption values in a wider range of frequencies
than foam-filled samples. This is mainly attributed to the lowering in porosity, increase in
tortuosity and flow resistivity in the foam-filled cellular solids;

(iii) Comparing the acoustic properties of the designed cellular solids with current
aluminum foams and materials that are used in train vehicle fabrication, they are suggested
to be a promising solution to be used in this particular field. Recent approaches in sound
dampening coatings may also be found beneficial for such a purpose. It is suggested that
a future combination between the presented cellular solids and such coating may be a
promising route to further decrease noise in railway applications;
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Abbreviations

Variable Description
A Area (m2)
C Speed of sound (m/s)
Cp Heat capacity (J/K)
E Young’s modulus (Pa)
G Shear modulus (Pa)
K Compressibility modulus (Pa)
K Dynamic bulk modulus (Pa)
k Thermal conductivity (W/(m·K))
k0 Viscous static permeability (m2)
k′0 Static thermal permeability (m2)
P Pressure (Pa)

T
Temperature (◦C)
Transmissibility (dB)

TL Transmission loss (dB)
u Particle velocity (m/s)
V Volume (m3)
v Fluid velocity (m/s)
x Measurement position (m)
Z Acoustic impedance (Pa·s/m)
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Zc Characteristic impedance (Pa·s/m)
Zi Incident acoustic impedance (Pa·s/m)
Zt Transmitted acoustic impedance (Pa·s/m)

α
Sound absorption coefficient (—)
Dynamic tortuosity (—)

α∞ High-frequency limit tortuosity (—)
β Dynamic compressibility (Pa−1)
γ Specific heat (J/(kg·◦C))
ξ Damping ratio (—)
η Dynamic viscosity (Pa·s)
Λ Viscous characteristic length (m)
Λ′ Thermal characteristic length (m)
µ Fluid viscosity (N·s/m2)
ρ Air density (kg/m3)
ρ Dynamic density (kg/m3)
ρ* Apparent density (kg/m3)
ρ0 Bulk density (kg/m3)
ρf Fluid density (kg/m3)
σ Airflow resistivity (N·s/m4)
τ Temperature inside cellular solid (◦C)
ν Poisson’s ratio (—)
Φ Porosity (—)
ω Angular frequency (rad/s)
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