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Abstract: An electric vehicle (EV) usually has two main power converters, namely one for the motor
drive system and another for the battery-charging system. Considering the similarities between
both converters, a new unified power converter for motor drive and battery charging of EVs is
propounded in this paper. By using a single unified power converter, the cost, volume, and weight
of the power electronics are reduced, thus also making possible a reduction in the final price of
the EV. Moreover, the proposed unified power converter has the capability of bidirectional power
flow. During operation in traction mode, the unified power converter controls motor driving and
regenerative braking. Additionally, during operation in battery-charging mode, with the EV plugged
into the electrical power grid, the unified power converter controls the power flow for slow or fast
battery charging (grid-to-vehicle (G2V) mode), or for discharging of the batteries (vehicle-to-grid
(V2G) mode). Specifically, this paper presents computer simulations and experimental validations
for operation in both motor-driving and slow battery-charging mode (in G2V and V2G modes). It is
demonstrated that the field-oriented control used in the traction system presents good performance
for different values of mechanical load and that the battery-charging system operates with high levels
of power quality, both in G2V and in V2G mode.

Keywords: electric vehicle; unified power converter; field-oriented control; model predictive control;
battery charging; grid-to-vehicle; vehicle-to-grid

1. Introduction

Electric vehicles (EVs) are increasingly a reality of our days; however, the widespread
introduction of EVs in the market has been constrained by several technical issues, limiting
their performance and increasing their cost. Thus, the introduction of EVs brings new
opportunities, namely their integration into the power grid as a stabilizing element, and
also contributes to improving energy efficiency and cost reduction [1–3].

The power electronics associated with the powertrain systems for EVs have increased
complexity, which raises technical and economic issues more relevant than those related
with the electric machine. In this way, the controller of the electric machine has vital impor-
tance, being an essential part in terms of performance and overall powertrain efficiency.
Conversely, the use of bidirectional power converters for battery charging allows to store
the energy produced during low-consumption hours, for later return to the power grid
during peak-consumption hours [4]. This feature can allow better power management
whenever needed, in accordance with both the power grid and the EV user. These bidi-
rectional systems can appear as an asset for the power grid. Taking into consideration the
existing opportunities, not only in the development of powertrain systems, but also in
battery-charging systems, there is a significant investment in the development of solutions
for electric mobility [5,6].
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An EV has a power converter that drives the electric machine accountable for the motor
drive. Additionally, there is a second power converter used to charge (or discharge) the
batteries. Similarities can be observed between these two power converters, which allows
foreseeing a convergence between them in a single unified power converter. When the EV
is circulating, the power converter operates bidirectionally for traction and regenerative
braking. Similarly, when the EV is immobilized and plugged into the power grid, the
power converter can also operate bidirectionally, having the function of controlling the
power flow among the power grid and the batteries, in charging or discharging mode.
Therefore, an opportunity was identified for the creation of a new topology of power
converters that integrates the powertrain system and the battery-charging system.

The US Department of Energy and NASA proposed the first unified power con-
verter [7], and in 1992, Rippel and Cocconi patented the first unified power converter [8].
Since then, several topologies have been studied and proposed [9–11]. Diversity is wide,
with split-phase electric machines [12–14], with multiphase electric machines [15–17], with
voltage-source power converters [2,18], with current-source power converters [19], and
with [20,21] or without [22,23] galvanic isolation. In this paper, the presented unified
topologies only focus on slow battery-charging mode.

In 1994, AC Propulsion Inc. patented the unified power converter topology shown
in Figure 1 [24], being used in the BWM Mini E [25]. This topology uses a single-phase
contactor and a contact to reconfigure the electric machine windings. In battery-charging
mode, the EV is plugged into the power grid with a single-phase connection. Two windings
of the electric machine are used as coupling inductors with the power grid. A single-phase
contactor exists in the system to prevent a short circuit when the contact is accidentally
closed [2]. To guarantee the operation with a unitary power factor, the dc-link voltage must
be superior than the peak value of the power grid voltage. This restriction can be overcome
by adding a dc–dc power converter between the dc-link and the batteries [2,26]. Moreover,
this topology allows for bidirectional power flow.
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Figure 1. Non-isolated, single-phase unified power converter topology based on an electric machine
without neutral point access [2].

Figure 2 presents the topology proposed by Surada et al. [27]. This topology can
be used in any type of three-phase electric machine for the powertrain system. This
topology can work in five modes of operation: (1) boost power converter, adjusting the
battery voltage to the dc-link voltage; (2) buck power converter, charging the batteries
during regenerative braking; (3) plug-in system, charging the batteries from the power
grid; (4) single-phase power converter, powering loads from the EV batteries in the case of
a power grid failure; and (5) connection to the power grid, injecting power from the EV
traction batteries to the power grid.
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Figure 2. Non-isolated, single-phase unified power converter topology based on the disconnection
of the electric machine from the power converter [27].

The topology presented in Figure 3 uses the neutral point of the electric machine
to perform a connection with the power grid. The first stage of the battery-charging
system has an uncontrolled rectifier bridge, so the power flow is unidirectional. Hence,
this topology does not allow the return of power to the power grid. The positive output
terminal of the rectifier bridge is linked to the neutral point of the electric machine, and the
negative output terminal is linked to the negative terminal of the batteries. The current in
the electric machine windings is continuous; therefore, any braking system to brake the
electric machine rotor is not necessary, because there is no torque produced [28].
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Figure 3. Non-isolated, single-phase unified power converter topology based on an electric machine
with neutral point access [28].

Hegazy et al. presented in [23] a single-phase bidirectional topology, which can be
seen in Figure 4. The battery-charging and powertrain systems comprise a power converter
with eight fully controlled power semiconductors. Six semiconductors are used like in a
classic three-phase power converter topology, while the other two are introduced in series
with the semiconductors of two legs of the power converter. This power converter presents
four operation modes: (1) battery charging from a single-phase power grid; (2) single-phase
inverter, where part of the stored energy in the EV battery is returned back to the power
grid; (3) motor drive, transferring power from the dc link to the induction machine; and
(4) regenerative braking, transferring power from the electric machine to the dc link [23].



Energies 2021, 14, 3344 4 of 23
Energies 2021, 14, x FOR PEER REVIEW 4 of 24 
 

 

 
Figure 4. Non-isolated, bidirectional, single-phase unified power converter topology [23]. 

In Figure 5 is shown the integrated system proposed by Haghbin et al. [14]. This sys-
tem uses a split-phase interior permanent magnet synchronous machine (PMSM) and two 
power converters. The stator of the electric machine has six windings, where three wind-
ings are equally shifted from the others, more specifically 120 electrical degrees. The 
power of the electric machine is divided between two converters. Therefore, each one can 
provide half of the electric machine power. It is supposed that the neutral points of the 
two three-phase windings are not connected between them. In addition, if one power con-
verter fails, the electric machine can operate with half the power. When the three-phase 
windings are connected in star topology, the neutral points are used to connect with the 
power grid. In battery-charging mode, it is not necessary to brake the rotor, because the 
electric machine does not produce any torque. The charging system is non-isolated and 
bidirectional, but it does not allow fast charging [14]. 

 
Figure 5. Non-isolated, single-phase unified power converter topology based on a split-phase inte-
rior PMSM [14]. 

Figure 6 presents a unified topology based on a switched-reluctance machine (SRM) 
[9], where the power converter acts as an interleaved boost converter. Similar to the afore-
mentioned topologies, the electric machine windings are used as coupling filters with the 
power grid [9,29]. 

S5

S6

S3

S4

S1

S2

S8S7 S11S9

S12S10

vBat

iBat

L1

L2C

L

Induction 
Machine

Power 
Grid

Power 
Grid

vBat

C1 C2

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Split-Phase Interior 
Permanent Magnet
Synchronous Motor

Figure 4. Non-isolated, bidirectional, single-phase unified power converter topology [23].

In Figure 5 is shown the integrated system proposed by Haghbin et al. [14]. This
system uses a split-phase interior permanent magnet synchronous machine (PMSM) and
two power converters. The stator of the electric machine has six windings, where three
windings are equally shifted from the others, more specifically 120 electrical degrees. The
power of the electric machine is divided between two converters. Therefore, each one
can provide half of the electric machine power. It is supposed that the neutral points of
the two three-phase windings are not connected between them. In addition, if one power
converter fails, the electric machine can operate with half the power. When the three-phase
windings are connected in star topology, the neutral points are used to connect with the
power grid. In battery-charging mode, it is not necessary to brake the rotor, because the
electric machine does not produce any torque. The charging system is non-isolated and
bidirectional, but it does not allow fast charging [14].
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Figure 5. Non-isolated, single-phase unified power converter topology based on a split-phase interior
PMSM [14].

Figure 6 presents a unified topology based on a switched-reluctance machine (SRM) [9],
where the power converter acts as an interleaved boost converter. Similar to the afore-
mentioned topologies, the electric machine windings are used as coupling filters with the
power grid [9,29].
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SRM [9].

In traction mode, contactor KM1 stays in state 1 (up) and contactor KM2 is closed. The
bottom semiconductors (S2, S4, S6, S8) are controlled, while the top semiconductors are kept
in freewheeling operation. In the demagnetization stage of the windings, the stored energy
is oriented to the batteries through the freewheeling diodes. The regenerative braking is
controlled by shifting the commutation backward, where the electric machine acts as a
generator [9]. In battery-charging mode, contactor KM1 is in state 2 (down) and contactor
KM2 is open. With this configuration, the power converter works as a buck-boost dc–dc
converter with power factor correction. The controlled semiconductor S5 stays turned on,
while the controlled semiconductor S6 is switched. The diode De is added to prevent a
short circuit when the controlled semiconductor S6 is active. The windings A and B are
used as coupling filters with the power grid, and winding C is used as an energy storage
element of the buck-boost dc–dc power converter [9].

This paper is summarized as follows. Section 2 describes the proposed unified power
converter topology, and the applied control algorithms are presented in Section 3. Section 4
presents the simulation results, while Section 5 shows the experimental validation. Finally,
Section 6 provides conclusions about the proposed solution.

2. Proposed Unified Power Converter

Figure 7 presents the proposed unified power converter topology, which comprises
an electric machine, two three-phase ac–dc converters, a pre-charge circuit (comprising
resistors and contactors), and a buck-boost dc–dc converter.

The proposed topology is bidirectional and non-isolated, integrating the powertrain
and battery-charging systems. The electric machine is powered by two three-phase power
converters, with the system being more reliable when compared with solutions with
a single power converter, since the total power is divided between the two converters.
Depending on the type of failure, the electric machine can operate with half the power,
which is an important characteristic of the proposed unified power converter.

In battery-charging mode, the control algorithm for this topology needs to guarantee
that the current in each winding is balanced. In this way, the current on each side of the
windings cancels the effect of the opposite side current. This ensures that the rotating
magnetic field components developed on the stator cancel themselves. Therefore, the
resultant magnetic force will be zero and the EV is kept immobilized.



Energies 2021, 14, 3344 6 of 23Energies 2021, 14, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 7. Proposed unified power converter topology. 

The proposed topology is bidirectional and non-isolated, integrating the powertrain 
and battery-charging systems. The electric machine is powered by two three-phase power 
converters, with the system being more reliable when compared with solutions with a 
single power converter, since the total power is divided between the two converters. De-
pending on the type of failure, the electric machine can operate with half the power, which 
is an important characteristic of the proposed unified power converter. 

In battery-charging mode, the control algorithm for this topology needs to guarantee 
that the current in each winding is balanced. In this way, the current on each side of the 
windings cancels the effect of the opposite side current. This ensures that the rotating 
magnetic field components developed on the stator cancel themselves. Therefore, the re-
sultant magnetic force will be zero and the EV is kept immobilized. 

In traction mode, the dc–dc power converter works as a boost converter to control 
the dc-link voltage and supplying power to the electric machine. In regenerative braking 
mode, this converter works as a buck converter. The dc-link voltage, during the charging 
of the batteries, is controlled by the three-phase power converters. 

The proposed power converter can be used for slow or fast battery-charging opera-
tions. In both cases, the power factor is near the unit and the power grid currents are si-
nusoidal. The EV batteries can be charged from the power grid (grid-to-vehicle (G2V) 
mode), or they can deliver part of the stored energy back to the power grid (vehicle-to-
grid (V2G) mode). In G2V mode, the dc–dc converter behaves as a buck converter and the 
ac–dc converter works as an active rectifier. In contrast, in V2G mode, the ac–dc converter 
operates as an inverter and the dc–dc converter as a boost converter. 

Figure 7 also shows the connection with the three-phase power grid that is used to 
carry out fast battery charging. However, the paper focuses on the slow battery-charging 
operation. In this sense, it uses a single-phase connection with the power grid. 

Table 1 shows a comparison that highlights the main characteristics of the unified 
power converters referred to in Section 1, as well as the unified power converter proposed 
in this paper. These unified power converters are compared according to the need of a 
special machine (access to winding terminals), the type of power grid connection, the ne-
cessity of hardware reconfiguration, the requirement of external inductors, and the capa-
bility of bidirectional operation (V2G mode). 

  

DPower 
Grid

KM3

KM4 Rpa

Rpb

Rpc

S1

S2

S3

S4

S5

S6

idc

BLDC Motor
Stator 1 Stator 2

vdc

L

vBat

ia1

ic1

ib1

ia2

ic2

ib2

S7

S8

S9

S10

S11

S12

S13

S14

iBat

Vab

C

Vbc Vca

Figure 7. Proposed unified power converter topology.

In traction mode, the dc–dc power converter works as a boost converter to control
the dc-link voltage and supplying power to the electric machine. In regenerative braking
mode, this converter works as a buck converter. The dc-link voltage, during the charging
of the batteries, is controlled by the three-phase power converters.

The proposed power converter can be used for slow or fast battery-charging operations.
In both cases, the power factor is near the unit and the power grid currents are sinusoidal.
The EV batteries can be charged from the power grid (grid-to-vehicle (G2V) mode), or they
can deliver part of the stored energy back to the power grid (vehicle-to-grid (V2G) mode).
In G2V mode, the dc–dc converter behaves as a buck converter and the ac–dc converter
works as an active rectifier. In contrast, in V2G mode, the ac–dc converter operates as an
inverter and the dc–dc converter as a boost converter.

Figure 7 also shows the connection with the three-phase power grid that is used to
carry out fast battery charging. However, the paper focuses on the slow battery-charging
operation. In this sense, it uses a single-phase connection with the power grid.

Table 1 shows a comparison that highlights the main characteristics of the unified
power converters referred to in Section 1, as well as the unified power converter proposed
in this paper. These unified power converters are compared according to the need of a
special machine (access to winding terminals), the type of power grid connection, the
necessity of hardware reconfiguration, the requirement of external inductors, and the
capability of bidirectional operation (V2G mode).

Table 1. Comparison of the analyzed unified power converters for motor drive and slow battery
charging for an EV.

Reference Special
Machine

Power Grid
Connection

Hardware
Reconfigura-

tion

External
Inductors

Bidirectional
Operation

[9] No 1-ph No No No
[14] Yes 1-ph No No Yes
[23] No 1-ph No Yes Yes
[24] No 1-ph Yes No Yes
[27] No 1-ph Yes Yes Yes
[28] Yes 1-ph No No No

Proposed Yes 1-ph/3-ph No No Yes

3. Control Algorithms for the Unified Power Converter

This section presents the control algorithms for the proposed unified power converter.
The presented control algorithms for battery-charging mode only refer to slow battery
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charging, being in V2G and G2V modes. V2G mode allows devolving some part of the
energy stored in the batteries to the power grid, while G2V mode is used when the EV
needs to be charged. The dc–dc power converter is not presented in this work.

3.1. Operation in Traction Mode

With the aim of controlling the proposed unified power converter in traction mode,
field-oriented control (FOC) was chosen. FOC has the advantages of low distortion and
torque ripple, and it allows operation with a fixed switching frequency. FOC decomposes
the stator currents of the electric machine into the dq rotational reference frame. The
direct component (d) allows the adjustment of the stator flux value, while the quadrature
component (q) adjusts the torque value. The components are independently controlled,
consequently allowing control of the electric machine as a separately excited direct current
motor [30,31]. For a permanent magnet synchronous machine, the maximum torque is
obtained when the reference Idref is zero [32].

Figure 8 presents the typical block diagram of FOC. In the presented control, velocity
is used as a reference variable, which can be used to implement the cruise control function.
However, for controlling the electric machine in powertrain systems, torque control is more
usual, where the reference torque is obtained from the throttle pedal position of the EV [31].
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Figure 8. Block diagram of field-oriented control (FOC).

To implement FOC, it is essential to have knowledge of the stator winding currents
and the rotor position of the electric machine. When it is not possible to incorporate a rotor
position sensor in the electric machine, the rotor position can be obtained from estimation
methods. This control is denominated as sensorless FOC [33–36]. Figure 9 presents the
conversion stages and axes system used in FOC.
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The three electric machine currents (ia, ib, and ic) are converted into a two-dimensional
stationary coordinate system through the Clarke transform. The two obtained components
(iα and iβ) are 90◦ phase-shifted. If the system is balanced, only two currents can be used
as input, since the sum of the three currents is zero. Afterward, the Park transform uses
the two signals obtained from the Clarke transform and converts them to a rotational
system. The output signals (id and iq), as mentioned above, are used to control the values of
stator torque and flux. The inverse Park transform converts the signals back to a stationary
system, where the signals vα and vβ are obtained. These signals are used as inputs for a
space vector modulation (SVM) block.

3.2. Operation in Battery-Charging Mode

A synchronization algorithm, in battery-charging mode, is necessary between the
power grid voltage and the power converter. This process is important for the implemen-
tation of power quality control strategies [38], since the connection of nonlinear loads to
the power grid creates imbalances and harmonic distortion in the currents and voltages of
the power grid. The most used algorithm to achieve the referred synchronization is the
phase-locked loop (PLL). This algorithm consists of a feedback control system that presents
as a final result a sinusoidal signal in phase with the power grid voltage [39,40].

Karimi-Ghartemani et al. proposed an enhanced phase-locked loop (EPLL), whose
block diagram is presented in Figure 10 [41,42] and used in this paper. The EPLL does not
only guarantee phase synchronization of the signal but also calculates the amplitude of the
fundamental component of the power grid voltage [42].
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Cortes et al. proposed a finite control set model predictive control (FCS-MPC) that
is referred to as direct power control based on model predictive control (DPC-MPC) to
control three-phase ac–dc power converters [44].

The following equation gives the dynamic model of the three-phase ac–dc power
converter [44]:

vs(t) = vR(t) + vL(t) + vin(t) = Rs is(t) + Ls
dis(t)

dt
+ vin(t) , (1)

where vR(t) is the voltage drop in the internal resistance of the inductor, vs(t) is the power
grid voltage, vL(t) is the inductor voltage, vin(t) is the voltage generated by the converter,
is(t) is the grid current, Rs is the internal resistance of the inductor, and Ls is the inductance
value of the inductor. By isolating the derivative part of Equation (1), the following equation
is obtained:

dis(t)
dt

=
1
Ls

[vs(t)− Rs is(t)− vin(t)] . (2)
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The dynamic model can be discretized by approximating the derivative as the differ-
ence over a sampling period (Ts) [44]:

dis(t)
dt

=
is(k + 1)− is(k)

Ts
. (3)

Therefore, the estimated grid current is described for the sampling period by [44]:

is[k + 1] =
(

1 − Rs Ts

Ls

)
is[k] +

Ts

Ls
[vs[k]− vin[k]] . (4)

With the use of a sampling frequency with a high value compared to the frequency of
the voltages and currents, it can be assumed that the voltage at the instant [k + 1] is similar
to the voltage at the instant [k], according to [44]:

vs[k + 1] ≈ vs[k] . (5)

The current value is obtained by adding a step to Equation (4), where the following
equation is obtained [44]:

is[k + 2] =
(

1 − Rs Ts

Ls

)
is[k + 1] +

Ts

Ls
[vs[k + 1]− vin[k + 1]] . (6)

When the EV is plugged into a single-phase power grid, the cost function commonly
used in [45,46] is applied, which consists of minimizing the grid current error, which is
designated by:

g =
∣∣∣is_re f − is[k + 2]

∣∣∣ . (7)

Pinto et al. propound a single-phase bidirectional battery charger for EVs. Figure 11
presents the block diagram used to obtain the reference current in G2V mode [47].
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Figure 11. Block diagram of the reference current calculation in G2V slow battery-charging mode (based on [47]).

In V2G operating mode, part of the energy stored in the batteries is delivered back to
the power grid. In this sense, the reference power (Pref) assumes negative values. Figure 12
shows the block diagram for obtaining the reference current in V2G operating mode [47].
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The block diagram in Figure 13 presents the proposed slow battery-charging strategy
for the unified power converter. In slow battery-charging mode, only two legs of the
proposed unified power converter are used.
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4. Simulation Results

The motor drive and battery-charging system simulation results are presented in this
section. As mentioned before, FOC for traction mode and MPC for battery-charging mode
were chosen.

The simulations allow understanding the implemented model, and they anticipated
the challenges that can occur in the experimental validation. The presented simulations
were performed using PSIM software.

4.1. Operation in Traction Mode

Figure 14 presents the block diagram of the implemented FOC with SVM. As previ-
ously mentioned, the reference variable for the implemented control is the torque that the
electric machine must produce. In EVs, the reference torque is obtained from the position
of the throttle pedal. With this electric machine, the reference torque from the throttle pedal
varies between 0 and 50 Nm (nominal torque of the electric machine).
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Figure 14. Block diagram of the implemented field-oriented control (FOC).

The parameters of the brushless dc (BLDC) electric machine used in the simulation
are presented in Table 2.

Table 2. BLDC electric machine simulation parameters.

Parameter Value

Stator resistance—R 117.8 mΩ
Stator self-inductance—L 421.3 µH

Stator mutual inductance—M 168.5 µH
Peak line-to-line back emf constant—Vpk/krpm 72.7 Vpk/krpm
Rms line-to-line back emf constant—Vrms/krpm 52.5 Vpk/krpm

Number of poles—P 8
Moment of inertia—J 4 × 10−3 kgm2

Shaft time constant—B 0.8 s

Here are presented different simulation results with different values of a mechanical
load coupled in the rotor shaft in traction mode. Up to 0.5 s, a load of 50 Nm was defined;
between 0.5 and 1.0 s, a load of 30 Nm was defined; between 1.0 and 1.5 s, a load of 10 nm
was defined; and between 1.5 and 2.0 s, a 40 nm load was defined.

In Figure 15 are presented the reference torque (Tref) and the torque produced by the
electric machine (T) for the abovementioned values of mechanical load.
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Figure 15. Simulation results of the reference torque and the torque produced by the electric machine
for different mechanical loads.

In Figure 16 are presented the control signals for different values of the mechanical
load obtained from the control system, namely the q-axis reference current and produced
current (Iq_ref and Iq, respectively). The value of Iq_ref corresponds to the reference torque
value multiplied by a constant. It should be noted that a null reference current was set for
the d-axis, where the maximum available torque is obtained with the minimum amplitude
of stator current.
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Figure 16. Simulation results of the q-axis currents Iq_ref and Iq for different mechanical loads.

By analyzing the waveforms presented in Figure 16, it can be concluded that the value
of Iq, as expected, is proportional to the torque produced by the electric machine.

Figure 17 shows the evaluation of the electric machine speed (n) for different mechani-
cal load values applied to the rotor shaft, where a fast response of the control system to the
torque variation required by the mechanical load can be seen. The ripple of the rotation
speed in the steady state is practically null. For instance, for a rotation speed of 2720 rpm,
the maximum ripple is 15 rpm. For the same condition, the torque has a maximum ripple
of 6 nm when the mechanical load required is 50 nm.
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Figure 17. Simulation results of the electric machine speed for different mechanical loads.

Figure 18 presents the voltage (va) and current (ia) in phase a of the electric ma-
chine stator winding for the mechanical load values mentioned above. As can be seen in
Figures 16–18, the speed of the electric machine is proportional to the stator voltage value,
while the torque is directly proportional to the currents absorbed by the electric machine.
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Figure 18. Simulation results of the stator winding current and voltage, in phase a, applied to the
electric machine for different mechanical loads.



Energies 2021, 14, 3344 13 of 23

Figure 19 shows the detail of the waveforms of the currents and voltages, in each phase,
absorbed by the electric machine when it has a mechanical load of 50 nm. The absorbed
currents have an RMS value of 84 A, and the voltages have an RMS value of 102 V.
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Figure 19. Simulation results of stator voltages and currents in the electric machine for a 50 Nm
mechanical load.

In Figure 20 are presented the reference modulation signal (ta_ref) and the current (ia)
in phase a when the electric machine operates with a nominal mechanical load. A low-pass
filter with a 1 kHz resonant frequency is applied for the reference signal.
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Figure 20. Modulation signal (ta_ref) and current (ia) in phase a when operating with a nominal mechanical load.

By analyzing the phase shift between ta_ref and ia, it is concluded that the current has a
phase delay of 40◦ relative to the reference signal when the electric machine operates with
a nominal mechanical load. This phase shift occurs due to the intrinsically resistant torque
of the system and electric machine inductance.

4.2. Operation in Battery-Charging Mode

The battery-charging mode is performed for slow battery charging. In both situations
(G2V and V2G modes), the power factor is near the unity and the grid current is sinusoidal.

In slow battery-charging mode, only two legs of the three-phase power converter are
used because it is used a single-phase connection with the power grid. An extra inductor
is added in series with the power grid because it is observed that the inductance value of
the electric machine windings is low. Table 3 presents the simulation parameters used in
G2V mode.
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Table 3. Battery-charging simulation parameters in G2V mode.

Parameter Value

Single-phase power grid voltage 230 V
Power grid frequency 50 Hz

dc-Link capacitor 5 mF
Charging power 1.5 kW

Sampling frequency 40 kHz

To ensure the power quality from the power grid perspective, a synchronization pro-
cess between the power grid and the power converter is required. In this sense, Figure 21a
shows the PLL results for a single-phase voltage (va) with a harmonic distortion similar to
that of the power grid voltage. The voltage has a total harmonic distortion (THD) of 4.7%.
The PLL algorithm was implemented in C language, with a sampling frequency of 40 kHz.
The PLL synchronizes with the power grid voltage after some cycles. Figure 21b shows the
evolution of the angle ωt. Figure 22 shows a detail of the synchronism (between the power
grid and the PLL) during two cycles of the power grid voltage.
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Figure 21. Simulation results of the PLL: (a) power grid voltage and PLL output; (b) angle output.
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Figure 22. Simulation results of the synchronism detail between the power grid voltage and the
PLL output.

G2V slow battery-charging mode is started after synchronism with the power grid
is obtained. Figure 23 shows the dc-link voltage regulation to 350 V. A pre-charge was
performed until the dc-link voltage (vdc) reached 290 V, which occurs at approximately
2 s. After this time, the control algorithm comes into operation and a load of 1.5 kW is
connected. The dc-link voltage in the steady state has a ripple of around 0.9%.



Energies 2021, 14, 3344 15 of 23

Energies 2021, 14, x FOR PEER REVIEW 15 of 24 
 

 

(a) 

 

(b)

Figure 21. Simulation results of the PLL: (a) power grid voltage and PLL output; (b) angle output. 

 
Figure 22. Simulation results of the synchronism detail between the power grid voltage and the PLL 
output. 

G2V slow battery-charging mode is started after synchronism with the power grid is 
obtained. Figure 23 shows the dc-link voltage regulation to 350 V. A pre-charge was per-
formed until the dc-link voltage (vdc) reached 290 V, which occurs at approximately 2 s. 
After this time, the control algorithm comes into operation and a load of 1.5 kW is con-
nected. The dc-link voltage in the steady state has a ripple of around 0.9%. 

 
Figure 23. Simulation results of the dc-link voltage in G2V slow battery-charging mode. 

Figure 24 presents the simulation results of the absorbed current (ia), the reference 
current (ia_ref), and the power grid voltage (va) during G2V operation. As it is possible to 
verify, the current in the power grid is sinusoidal and in phase with the voltage. During 
the pre-charge process, the absorbed current has the typical characteristics of the current 
consumed by a single-phase bridge rectifier with a capacitive filter. This happens because 

Time (s)

0

200

-400

Vo
lta

ge
(V

)

va

0.1 0.2 0.3 0.4 0.5

ω
t(

ra
d)

400

-200

2π

0

π

PLL

Time (s)

0

200

-400

Vo
lta

ge
(V

)

va

0.460 0.500

400

-200

PLL

0.465 0.470 0.475 0.480 0.485 0.490 0.495

Figure 23. Simulation results of the dc-link voltage in G2V slow battery-charging mode.

Figure 24 presents the simulation results of the absorbed current (ia), the reference
current (ia_ref), and the power grid voltage (va) during G2V operation. As it is possible to
verify, the current in the power grid is sinusoidal and in phase with the voltage. During
the pre-charge process, the absorbed current has the typical characteristics of the current
consumed by a single-phase bridge rectifier with a capacitive filter. This happens because
the ac–dc converter is not active during the pre-charge process, acting as a passive diode
rectifier. After this process (t > 2 s), the control system is activated, and the absorbed current
is sinusoidal and in phase with the power grid voltage. In the steady state, the current
absorbed from the power grid has an RMS value of 7.4 A and a THD of 16%.
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Figure 24. Simulation results of the current, reference current, and power grid voltage in G2V slow battery-charging mode.

The following simulation results were obtained in V2G operating mode. Figure 25
presents the reference current (ia_ref), the current supplied to the power grid by the EV
battery (ia), and the power grid voltage (va). The current supplied to the power grid has an
RMS value of 6.7 A and a THD of 18%.
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Figure 25. Simulation results of the power grid voltage, current, and reference current in V2G mode.

5. Experimental Validation

In this section, the experimental validation of the propounded unified power converter
is presented. As mentioned before, the presented results refer only to the ac–dc power
converter. In traction mode, a test bench was used to apply different mechanical loads
to the electric machine. The test bench allows the coupling of different types of electric
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machines to an electromagnetic brake. It is possible to adjust the applied torque between 0
and 47 Nm. To ensure that the obtained results were as accurate as possible, the test bench
was calibrated according to the procedure described in [48]. In battery-charging mode,
resistors were used as a load, instead of batteries. Transformers were also used to test the
system with galvanic isolation and with low voltage values.

The laboratorial prototype of the proposed unified power converter is presented in
Figure 26. The experimental results presented in this section were obtained using the
Yokogawa DL708E oscilloscope.
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Figure 26. Experimental setup of the developed laboratorial prototype of the proposed unified power converter.

5.1. Operation in Traction Mode

In this subsection, experimental results obtained for the operation of the electric
machine with different coupled mechanical loads are presented. Due to the limits of the
test bench, the maximum mechanical load was limited to 45 nm. Figure 27 shows the
reference signals (ta_ref, tb_ref, and tc_ref) applied to the three legs of the power converter
when a mechanical load of 9 Nm is applied to the electric machine. To present the signals,
a 500 Hz resonance frequency digital low-pass filter was applied. The cut-off frequency
was selected from the settings of each oscilloscope channel. For this mechanical load, the
electric machine has a rotation speed of 500 rpm.
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Figure 28 presents the three-phase voltages (va, vb, and vc) and currents (ia, ib, and ic)
supplied to the electric machine with a mechanical load of 9 Nm in the steady state. The
three-phase voltages and currents have an RMS value of 27 V and 12.2 A, respectively.
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Figure 29 shows the reference signal applied to phase a (ta_ref) of the power converter
and the current in the same phase (ia) when the electric machine operates with a mechanical
load of 9 Nm. By analyzing both waveforms, it can be seen that the phase shift between
them is practically null.
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Figure 30 shows the reference signals (ta_ref, tb_ref, and tc_ref) applied to the three legs of
the power converter when a mechanical load of 45 Nm is applied to the electric machine.
For this mechanical load, the electric machine has a rotation speed of 310 rpm.

Figure 31 presents the three-phase voltages (va, vb, and vc) and currents (ia, ib, and ic)
supplied to the electric machine with a mechanical load of 45 nm in the steady state. The
three-phase voltages and currents have an RMS value of 18 V and 38.7 A, respectively.

Figure 32 shows the reference signal applied to phase a (ta_ref) of the power converter
and the current in the same phase (ia) when the electric machine works with a mechanical
load of 45 nm. By analyzing the obtained waveforms, it is verified that there is a 13◦ phase
shift between them.
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Due to the limits of the test bench, the tests were performed with a maximum torque
of 45 Nm. As expected, with the increase in the applied mechanical load, the nominal
current also increased and the current distortion reduced.

5.2. Operation in Battery-Charging Mode

This subsection shows the experimental validation of the slow battery-charging system.
The tests were carried out for a single-phase voltage with an RMS value of 50 V. This voltage
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is obtained from an 11 kVA single-phase transformer (230–50 V). The transformer is used
to decrease the RMS voltage of the power grid, and additionally, it allows operating with
isolation from the power grid.

As mentioned before, a control algorithm that detects the phase of the power grid
voltage is required. Thus, the first results presented in this subsection are related to the
PLL. Figure 33 shows the power grid voltage (va), the PLL output signal, and the evolution
of the angle ωt. Figure 33a presents the synchronization process with the power grid; it
was possible to verify that it takes about four cycles. This synchronization does not need to
be faster, because this process occurs in parallel with others. In Figure 33b, is possible to
see that the PLL is in phase with the power grid voltage and its waveform is sinusoidal,
even with some distortion existing in the power grid voltage.
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When the EV is plugged into the power grid, it is possible that the dc-link capacitors
are discharged. Therefore, a pre-charge of the dc-link voltage is essential. Figure 34 shows
the dc-link voltage (vdc) during the pre-charge process and the power converter start
operation. At time t0, the dc-link pre-charge is started until the voltage reaches 10 V (time
t1). From this time instant, the control algorithm is started.
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Figure 35 presents the grid current (ia), the respective reference (ia_ref), and the dc-link
voltage (vdc), in the steady state, in G2V mode. The presented results were obtained for
a 100 V dc-link reference voltage. The current absorbed from the power grid follows the
reference current but still has some harmonic content. The characteristics and harmonic
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spectrum of the grid current in G2V mode when performing slow battery charging are
presented in Figure 36. The current has a THD of 5.68% and an RMS value of 4.5 A.
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Figure 37 shows the power grid voltage (va), current (ia), and reference current (ia_ref),
in the steady state, in V2G mode. The results were obtained with 100 V of dc-link voltage.
It can be observed that the current supplied to the power grid follows the reference current.
In this operation mode, the reference current is in opposite phase with the power grid
voltage. The characteristics and harmonic spectrum of the supplied current in V2G mode
are presented in Figure 38. The current has a THD of 6.43% and an RMS value of 1.96 A.
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This paper proposes a unified power converter for electric vehicles (EVs). The unifi-
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6. Conclusions

This paper proposes a unified power converter for electric vehicles (EVs). The unifica-
tion is possible because the operation in motor drive mode and the operation in battery-
charging mode do not occur simultaneously. Thus, the proposed unified power converter
can be controlled to execute distinct functionalities, permitting the operation as motor
drive, regenerative braking, and slow or fast battery charging. In traction mode, the unified
power converter operates with bidirectional power flow to support motor driving and
regenerative braking. Similarly, when the EV is stopped and connected to the electrical
power grid, the unified power converter can also operate in bidirectional mode, having
the function of controlling the power flow between the EV batteries and the power grid, in
grid-to-vehicle (G2V) or in vehicle-to-grid (V2G) mode.

Regarding the operation modes, specifically, this paper presents computer simulations
and experimental validations obtained for three operation modes: motor drive and slow
battery charging in G2V and V2G modes. However, in the future, the proposed unified
power converter will be validated with other operation modes under computer simulations
and experimental validations.

In terms of control algorithms, during the motor drive operation, field-oriented control
(FOC) is used, and during the slow battery-charging operation, model predictive control
(MPC) is used. Results of the traction mode with FOC are presented for different values
of mechanical load, showing fast response of the reference torque variation and good
performance, with or without mechanical load. The results were obtained with a maximum
mechanical load of 45 Nm.

In slow battery-charging mode, two different types of operation were presented: in
G2V mode, the EV batteries are charged with sinusoidal grid currents, in phase with the
power grid voltages; in V2G mode, the power grid receives part of the stored energy from
the EV batteries, also with sinusoidal grid currents, but in phase opposition with the power
grid voltages. In both cases, it is demonstrated that the unified power converter operates
with high levels of power quality.
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