
Topological Graphene plasmons in a plasmonic realization of the Su-Schrieffer-Heeger
Model

Tatiana G. Rappoport,1, 2 Yuliy V. Bludov,3 Frank H. L. Koppens,4, 5 and Nuno M. R. Peres3, 6
1Instituto de Telecomunicações, Instituto Superior Técnico,

University of Lisbon, Avenida Rovisco Pais 1, Lisboa, 1049001 Portugal
2Instituto de Física, Universidade Federal do Rio de Janeiro,
Caixa Postal 68528, 21941-972 Rio de Janeiro RJ, Brazil

3Department and Centre of Physics, and QuantaLab,
University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal

4ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of
Science and Technology, 08860 Castelldefels (Barcelona), Spain

5ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
6International Iberian Nanotechnology Laboratory (INL),

Av. Mestre José Veiga, 4715-330, Braga, Portugal
(Dated: February 23, 2021)

Graphene hybrids, made of thin insulators, graphene, and metals can support propagating acoustic
plasmons (AGPs). The metal screening modifies the dispersion relation of usual graphene plasmons
leading to slowly propagating plasmons, with record confinement of electromagnetic radiation. Here,
we show that a graphene monolayer, covered by a thin dielectric material and an array of metallic
nanorods can be used as a robust platform to emulate the Su-Schrieffer-Heeger model. We calculate
the Zak’s phase of the different plasmonic bands to characterise their topology. The system shows
bulk-edge correspondence: strongly localized interface states are generated in the domain walls
separating arrays in different topological phases. We find signatures of the nontrivial phase which can
directly be probed by far-field mid-IR radiation, hence allowing a direct experimental confirmation
of graphene topological plasmons. The robust field enhancement, highly localized nature of the
interface states, and their gate-tuned frequencies expand the capabilities of AGP-based devices.

Topology can lead to intriguing physical phenomena
and it is at the heart of modern condensed matter
physics [1–4]. It has been successfully extended to various
classical wave systems, such as photonics [5–7], acous-
tic [8] and mechanical systems [9]. It also has been
playing an increasingly important role in nanophotonon-
ics [10], offering alternative ways to design novel optical
devices [11].

In one dimension, the celebrated Su-Schrieffer-Heeger
(SSH) is probably the simplest and most representative
model with non-trivial topology [12, 13]. Originally, it
describes electrons in a one-dimensional tight-binding
model with staggered hopping amplitudes, defined as in-
tracell and intercell hoppings [12]. Depending of the ratio
between the two hopping amplitudes, the chain can have
two topologically distinct ground states. The variation of
this ratio leads to a topological phase transition between
the two phases, with the band gap closing and reopening.
If the intercell hopping is stronger than the intracell hop-
ping, the system is in a non-trivial topological phase. In
this case, the bulk-edge correspondence [14] predicts the
existence of end-states, and interface states when two lat-
tices with different topological phases are connected [15].

Photonic and plasmonic systems provide a flexible
platform for the SSH model [16–19]. The effective in-
tracell and intercell hoppings can be controlled, for ex-
ample, by tuning distances via nanofabrication. Nontriv-
ial topology in coupled plasmonic nanoparticle arrays has
been previously realized in 1D plasmonic nanoparticle ar-

rays [20–24]. These systems, similar to the Su-Schrieffer-
Heeger model, exhibit highly localized edge states at their
ends, which are robust against perturbations [25]. How-
ever, similarly to dielectric photonic crystals, it is diffi-
cult to dynamically tune the 1D plasmonic nanoparticle
arrays and control their edge and interface states. To
overcome these limitations, one possibility is the use of
highly tuneable graphene plasmons [26, 27].

Graphene Plasmon-polaritons (GP) are vertically lo-
calized electromagnetic fields (that is, surface waves) that
can be excited in both the mid-infrared (MIR) and the
Terahertz (THz) spectral ranges. They present oscil-
latory behavior at the interface between graphene and
a dielectric [28]. They can exhibit high degree of spa-
tial confinement when compared to a wavelength of the
same frequency in free space [28–34]. The configuration
of Metal-Insulator-Graphene (MIG) for GPs [28, 35–38]
involving a thin insulating layer, can hold vertically con-
fined modes with much larger momentum than normal
graphene plasmons. In this limit, the dispersion rela-
tion of the GP becomes linear and the mode is known
as acoustic graphene plasmon (AGP)[35, 37, 39]. With
this hybrid system, records in the spatial confinement of
electromagnetic radiation has been achieved [37, 40, 41].

AGPs in periodic systems, e.g. involving periodic
metallic rods on graphene (separated by an insulator),
form plasmonic bands and present a wealth of different
physical effects [42]. The AGP’s lateral confinement that
originates from the metallic nanostructure mimics a plas-
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monic tight-binding model where graphene’s gating and
the distance between rods can control the effective hop-
ping, modifying the band-structure and modulating the
band gaps.

Here, we propose a novel one-dimensional topological
graphene plasmonic crystal that consists of a monolayer
graphene on top of a bulk substrate S with permittiv-
ity εS , separated from a periodic structure of silver rods
with cross-section of area W 2 = 75 × 75 nm2 by a thin
dielectric spacer, of thickness d = 3 nm and permittivity
εd (see Fig 1a). The main advantage of this structure is
that it is based on a recent experimental setup to create
graphene acoustic plasmons [37], and therefore is experi-
mentally feasible. The extra ingredient consists in using
two different separations between the rods, which can be
easily fabricated with the same techniques. Furthermore,
it avoids the use of metagates [26, 27].

As illustrated in Fig 1b, the 1D lattice unit cell con-
tains two identical silver rods separated by a distance a
and symmetrically located with respect to the center of
the unit cell. Neighboring rods from different unit cells
are separated by a distance b. The periodic structure has
a period L = a+b+2W . As a dictates the intracell effec-
tive hopping and b is linked to the intercell effective hop-
ping, it is convenient to define the ratio f = (a−b)/(a+b)
that controls the topology of our system. f = 0 ( Fig.
1a) implies the periodic structure studied previously [42]
with a single effective hopping. Positive (negative) values
of f specifies that the intracell effective hopping of our
SSH model is larger (smaller) than the intercell one, as
shown in Fig 1b.

We perform full-wave finite element frequency domain
simulations[43] and semi-analytical plane-wave expan-
sions to characterize our plasmonic SSH model (see Sup-
plemetary Materials for the details [44]). For simplicity,
graphene is simulated as a single layer with optical con-
ductivity that is given by a Drude like expression σg(ω) =
4σ0EF /(π(~γ − i~ω)) [28], where σ0 = e2/2~, EF is the
Fermi energy, γ is the relaxation rate and ω is the fre-
quency of the incident light. Since we will be considering
large graphene Fermi energies, finite temperature play no
significant effect in our results. The frequency-dependent
relative permittivities of Ag are taken from Ref. [45].

First, we analyse the eigenfrequencies and eigenmodes
of the system and distinguish their topological phases
for different values of f . We then proceed to describe
the interaction of EM radiation with our MIG structure.
We consider a p-polarized monochromatic plane-wave im-
pinging on the array of metallic rods at normal incidence.
We calculate the absorption spectra resulting from the
coupling of AGPs with far-field radiation, which can be
used to design and model experiments. In this context,
we consider different setups: a periodic system, an inter-
face of two semi-infinite arrays with different topological
phases, and edge states of a semi-infinite array interfac-
ing a perfect electric conductor (PEC) . Unless otherwise

specified, εS = εd = 1, EF = 0.6 eV and γ = 3 meV.
The dispersion of the plasmons in a periodic system

with a single rod per unit cell of length L/2 presents
several plasmonic bands [42]. If the same system is rep-
resented by a unit cell of length L with two evenly located
rods (f = 0), the dispersion can be depicted in a Bril-
louin zone k = [0, 2π/L] which has half of the size of the
original one. As a result of the band folding, the disper-
sions cross each other at k = π/L, which is a point of
degeneracy. When calculating the plasmonic band struc-
ture, from the analogy with a simple one-dimensional
tight-binding SSH model, we should expect a splitting
of the original bands for f 6= 0 exactly at degenerate
points of the band folding (that is, at k = π/L), with
the size of the new gap being proportional to |f |. This
can be observed in our band structure and loss function
calculations: figure 1c shows a density plot of the loss
function calculated with the plane-waves expansion with
a superimposed band-structure for f = 1/15. Each of the
two original lowest bands for f = 0 have one degenerate
point at k = π/L, which leads to a band folding induced
band gap, splitting the original bands in two. The yel-
low rectangle in Fig. 1c highlights one of these band
splittings, which is very small, because of the value of f ,
but illustrates nevertheless the effect of the band fold-
ing. The new Bragg gaps for f 6= 0 are always located
at k = ±π/L. Fig. 1d presents the same data but for
f = 2/3 and one can see that the band folding induced
gap increases for large values of f and there are four
well separated bands labeled from 1 to 4. As expected,
the band gap varies linearly with |f | for small values of
f (see the supplementary material [44]), and the band
structures for ±f are exactly the same, although they
correspond to different topological phases.
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FIG. 1. (a)-(b) Illustration of the one dimensional array of
rods with two rods per unit cell and f = 0 and f = 2/3 re-
spectively. (c)-(d) Plasmonic band structure (dotted line) and
loss function superimposed with the band structure (dotted
lines), calculated for f=1/15 (c) and f=2/3 (d). The yellow
rectangle in (c) highlights the band splitting at k = π/L that
occurs exactly at the degenerate point in the band folding for
f = 0. The numbers in panel (d) label the different bands

The 1D array has chiral symmetry, as the unit cell
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consists of two interconnected sublattices (one for each
rod) that can be interchanged without modifying the
system properties. One-dimensional periodical systems
with chiral symmetry can be characterized by a topo-
logical invariant known as Zak phase [46]. If the unit
cell has an inversion symmetry, the Zak phase is quan-
tized as π (non-trivial) or 0 (trivial). To evaluate the
Berry phase for electromagnetic waves in the absence of
magneto-electric coupling, either the electric or magnetic
fields can be considered in the calculation of the Berry
connection ~Λn,~k [47]. We adopted the electric field in our
calculations, where the permittivity tensor is isotropic
and given by ε̂(~r) = ε(~r). After considering these sim-
plifications, the Berry connection for an isolated band is
given by [16, 48]:

~ΛE
n,~k

= i

∫
u.c

d~rε(~r) ~E∗
n,~k

(~r) · ∇~k ~En,~k(~r), (1)

where ~En,~k(~r) is the periodic-in-cell part of the normal-
ized Bloch electric field eigenfunction of a state on the
nth band with wave-vector wavevector ~k.

The periodic structure has periodicity in x̂ and the sys-
tem is a one-dimensional plasmonic lattice. In this situa-
tion, the Zak phase [46] is defined as θn =

∫ π/L
−π/L dkΛn,k.

The integral of the Berry connection over the BZ −π/L ≤
k < π/L can be approximated as a summation of the con-
tributions of small segments. If the BZ is divided into N
segments where kN+1 = k1, e−iθn(ki) ≈ 1 − iθn(ki) =
1 − iΛn,kδk. As we are dealing with plasmons confined
in the region between the metallic rods and the graphene
sheet, without loss of generality, we can calculate the Zak
phase at a fixed height z0 located in the spacer with ho-
mogenous permittivity εS . The Zak phase of this segment
θn(ki) for a band n is given by

e−iθn(ki) =

∫
u.c

dx~En,~ki(x, z0) ~En,~ki+1
(x, z0), (2)

where θn can be calculated in a gauge-invariant for-
malism as θn = −Im[log(

∏N
i=1 e

−iθn(ki))] [49].
Alternatively, θn can be obtained by inspecting the

parity of the field profiles. If the symmetries of the
eigenmode at k = 0 and k = ±π/L are the same (dif-
ferent), the Zak phase of this band is quantized as 0 (π).
Following this procedure, we illustrate the differences in
the parity of the field profiles for band 2, highlighted in
green in Fig 1d. Figure 2a, b presents the field profile
Exn,k(x, z0) k = 0 and k = π/L respectively. z0 is lo-
cated in the middle of the spacer, between graphene and
the rods. The phase of the eigenmode is fixed in such a
way that ~En,k=0(x, z0) is real. For k = 0 (Fig. 2a) the
field profiles for f = ±2/3 are both even with respect to
the inversion center of the unit cell, located at x = 0. On
the other hand, for k = π (Fig. 2b) the profile is even for
f = −2/3 and odd for f = 2/3. When comparing Fig.
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FIG. 2. The periodic part of the longitudinal component of
the electric field Ex

n,~k
(x, z0) for band 2, highlighted in Figure

1d for k = 0 (a) and k = π/L (b) where z0 is located in the
middle of the spacer 2.0 nm above graphene and −L/2 ≤ x ≤
L/2. The dashed curves show the profiles for f = −2/3 while
the profiles of the solid curves are calculated for f = 2/3.
(c) Energy spectrum of a composite system consisting of two
connected finite arrays of 20 unit cells each with f = ±2/3
respectively, sandwiched by PECs. The mid-gap states are
located in gaps after an odd number of bands.

2a and b it is clear that for f < 0 (f > 0) the symmetries
of the eigenmodes for k = 0 (a) and k = π/L(b) are the
same (opposite) so that θn = 0(π), which corresponds to
the value obtained by the Zak phase calculation following
equation 2.

Lets us now address the physical consequences and ex-
perimental signatures of the Zak phase in the graphene
plasmonic crystal. To obtain a clear signature of the
topology, one route is the observation of interface states
for different values of f . Figure 2c shows the energy spec-
trum for a single finite system consisting of two neigh-
bouring arrays of 20 unit cells each with f = ±2/3 re-
spectively. The system is sandwiched by perfect elec-
tric conductors (PECs). As discussed previously, systems
with the same |f | have the same spectrum. Consequently,
both arrays have the same band-structure and the spec-
trum of the four lowest bands for the composite system
is similar to the unfolded version of the band structure
of Fig 1d. However, there is a clear presence of mid-
gap states inside the Bragg gaps. If two semi-infinite
systems with different topological phases form an inter-
face, the existence of a topological interface state in a
given band gap is consistent with the bulk-edge corre-
spondence. Thus, the mid-gap states of Figure 2c are
associated to the different Zak phases of each individual
array with f = ±2/3, corroborating the previous anal-
ysis for periodic systems. The original bands for f = 0
are split in two for f 6= 0 but they do not cross any other
band, independent of the value of f . Because of the con-
servation of topological numbers in band theory, the sum
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of the Zak phases of each pair of these bands is always
the same, regardless of the sign of f , although each indi-
vidual band can change its phase when inverting the sign
of f and the Bragg gap goes to zero. This results in the
absence of mid-gap states in gaps located after an even
number of bands (see Fig 2c).

To explore the experimental signatures of the Zak
phase, we consider the coupling of the plasmonic crys-
tal with far-field radiation. In this case, we have a p-
polarized monochromatic plane-wave impinging on the
array of metallic rods at normal incidence. Let us first
consider the periodic system and see if the splitting of
the bands with different values of f can be observed in
far-field experiments. At normal incidence, TM modes
couple with states with kx ∼ 0. Because of this, far-field
experiments cannot directly obtain the linear dependence
of the gap with f , as the gap opening associated to the
SSH model occurs at k = π/L. Still, it is possible to
capture: 1) the existence of an extra band for f 6= 0, and
2) the band separation at kx = 0 for increasing values
of |f |. The first bands that can be seen in the far-field
experiments with normal incidence, are bands 3 and 4,
highlighted in Fig 1 c. This is illustrated in figure 3a:
the absorption spectra for f = 0 has a single peak at
this range of frequencies. For f 6= 0, the band is split in
bands 3 and 4 and produces two peaks in the absorption
spectra, where their position is dictated by the frequency
of the bandstructure at k = 0. The peak separation is
not directly related to the band gap but, instead, to the
values of the band structure for k = 0.

To analyse the interface states, we begin by consider-
ing a finite plasmonic lattice with f = −2/3 with PEC
( perfect electric conductor) boundary conditions. This
system presents exactly the same far-field response of the
periodic lattice (see Fig. 3). We can now compare it with
the response for the interface considered in Figure 2c, in-
volving two joined arrays with f = ±2/3. In this case,
the interface state between different topological phases of
the two chain leads to an extra absorption peak located
between the two original peaks of the infinite system,
seen in Fig. 3b. Figure 3c shows the field enhancement
at the interface state at this particular frequency. The
dashed squares indicate the position of the metallic rods
and the interface between the two different lattices is lo-
cated at x = 0. One can see that in the vicinity of the
domain wall separating the two lattices, the field is en-
hanced in the whole space, including the region above
the rods. Figure 3d exhibits the profile of | ~E(~r)|/| ~E0|,
at z0, located in the spacer between graphene and the
rods, where ~E0 is the electrical field. In this case, the
field enhancement is of the order of 120-140, which is of
the order of the field enhancement of the main absorp-
tion peaks [42]. The electric field profile in Fig. 3c has
a maxima that is strongly localized in the region of the
interface between the two arrays. This differs from the
extended electric field profile normally seen in the inter-
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FIG. 3. (a) Absorption spectra for a periodic array and dif-
ferent values of f = (a− b)/(a+ b). (b) Absorption spectra of
a finite plasmonic crystal with f = −2/3 PEC boundary con-
ditions (dashed lines) and the interface containing two con-
nected arrays of 6 unit cells each, with f = ±2/3 (solid line).
(c) Electric field distribution Ey(~r)/E0 for the region of the
interface consisting of two connected arrays with f = ±2/3.
The dashed squares denote the position of the metallic rods.
(d) Electric field enhancement | ~E(~r)|/E0 in the spacer be-
tween graphene and the rods. x = 0 specifies the interface
between the two arrays with f = ±2/3.

face of photonic crystals with different Zak phases, where
the interface state has a width of several unit cells [50].

The topological nature of this peak can be further con-
firmed by comparing the absorption peaks of interfaces
between two arrays withf = f1 andf = f2 where |f1| 6=
|f2|. In this case, one can produce interfaces between
systems in the same topological phase (sgn(f1)=sgn(f2).
However, only interfaces between systems with sgn(f1)6=
sgn(f2) produce interface states (see S. M). Although the
topological nature of the bands cannot be easily tuned in-
situ, it is still possible to use a gate to modify the optical
conductivity in graphene. This leads to a change in the
size of the band widths and gaps and the exact frequency
of the edge state. The flexibility to modify the frequency
of the interface state can be useful for technological ap-
plications.

We can now consider a vacancy or a void in the unit-cell
neighboring one of the PECs. This is obtained by remov-
ing the two silver rods belonging to the last unit cell of
the right, as illustrated in Fig. 4b and c. In this case, the
calculation of the eigenfrequencies of the finite system do
not produce in-gap states that are related to the topol-
ogy. Still, when analysing the interaction with far-field
radiation, different responses emerge, depending on the
Zak phase of the plasmonic band. For positive values of
f , there is an extra peak in the absorption spectra (Fig.
4a) which is related to an interface state and electric field
enhancement of the electric field at the vacancy (Fig. 4b).
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However, for negative fs, the absorption spectra is very
similar to the periodic array and no interface states are
observed. Instead, a resonator is formed between the last
rod of the structure and the PEC. Depending on the size
D of the resonator, its eigenfrequency can be located in-
side the gap (f > 0) or in the plasmonic band f < 0),
which explains the absorption spectra.

Although we cannot connect this response to topology,
it can still be used in situations where one needs to pro-
duce a field confinement in the absence of the metallic
rod, such as in sensing applications.

30 35 40
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0.4
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FIG. 4. (a) Absorption spectra for a plasmonic crystal with
f = ±1/2 with one vacancy interfacing a perfect electric con-
ductor. Electric field distribution Ey(~r)/E0 for lattices with
(b) f = 1/2 and (c) f = −1/2 with one vacancy interfacing
a perfect electric conductor. The dashed squares denote the
position of the metallic rods.

Conclusions We proposed a simple structure to sim-
ulate the Su-Schrieffer-Heeger Model for plasmons in
graphene, which avoids the use of meta-gating . Our
setup is based on Metal-Insulator-Graphene systems that
host acoustic graphene plasmons. Periodic arrays of
metallic rods with two rods per unit cell generate plas-
monic bands with topological properties that can be
tuned by the distances between the rods. Interface states
with strong field enhancement can be created at the in-
terface between two arrays with different topologies. The
frequency of the localized state can be easily tuned by
gating graphene, which opens new avenues in plasmonic
applications where light needs to be confined to a pre-
cise location in space or where a tunable narrow band
absorption is needed.
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