
A Comparison of Machine Learning Methods for
Extremely Unbalanced Industrial Quality Data

Pedro José Pereira1, Adriana Pereira2, Paulo Cortez1, and André Pilastri3

1 ALGORITMI Centre, Dep. Information Systems, University of Minho,
Guimarães, Portugal

id6927@alunos.uminho.pt, a67662@alunos.uminho.pt, pcortez@dsi.uminho.pt
2 Bosch Car Multimedia, Braga, Portugal

adriana.pereira@pt.bosch.com
3 EPMQ - IT Engineering Maturity and Quality Lab, CCG ZGDV Institute,

Guimarães, Portugal
andre.pilastri@ccg.pt

Abstract. The Industry 4.0 revolution is impacting manufacturing com-
panies, which need to adopt more data intelligence processes in order to
compete in the markets they operate. In particular, quality control is a
key manufacturing process that has been addressed by Machine Learn-
ing (ML), aiming to improve productivity (e.g., reduce costs). However,
modern industries produce a tiny portion of defective products, which
results in extremely unbalanced datasets. In this paper, we analyze re-
cent big data collected from a major automotive assembly manufacturer
and related with the quality of eight products. The eight datasets in-
clude millions of records but only a tiny percentage of failures (less than
0.07%). To handle such datasets, we perform a two-stage ML comparison
study. Firstly, we consider two products and explore four ML algorithms,
Random Forest (RF), two Automated ML (AutoML) methods and a
deep Autoencoder (AE), and three balancing training strategies, namely
None, Synthetic Minority Oversampling Technique (SMOTE) and Gaus-
sian Copula (GC). When considering both classification performance and
computational effort, interesting results were obtained by RF. Then, the
selected RF was further explored by considering all eight datasets and
five balancing methods: None, SMOTE, GC, Random Undersampling
(RU) and Tomek Links (TL). Overall, competitive results were achieved
by the combination of GC with RF.

Keywords: Anomaly Detection· Industrial Data · Random Forest.

1 Introduction

The Industry 4.0 concept is increasing the pressure of companies to adopt data
intelligence processes in order to remain competitive in the markets they oper-
ate [12]. In particular, quality control is a crucial manufacturing process that
can directly impact on productivity by reducing costs, defective products and
complaints, among others [16]. In the past, several studies have explored Ma-
chine Learning (ML) algorithms to model quality control [2, 6]. For instance, in



2 P. Pereira et al.

2016 there was a Kaggle challenge that addressed an industrial manufacturing
quality prediction by using ML approaches [9, 12,16].

Usually industrial quality ML prediction is addressed as a binary classifica-
tion task, which is often a nontrivial task for two main reasons. Firstly, there is
typically a lack of failures in modern manufacturing processes, thus the classifi-
cation task is highly unbalanced [6]. For instance, there can be more than 99%
of normal cases. Under such extreme unbalanced distribution, ML algorithms
might produce misleading results due to the usage of standard loss functions
(e.g., classification accuracy), which do not correctly measure the detection of
faulty products. Secondly, industrial quality often involves big data, due to the
volume and velocity of the produced data records, which increases the compu-
tational effort required by the ML algorithms.

In this paper, we address a relevant industrial manufacturing quality predic-
tion task from a major automotive assembly company. The goal is to reduce the
quantity of performed tests while maintaining the product quality, thus reduc-
ing inspection times and costs. The analyzed data includes millions of records
but is extremely unbalanced, containing less than 0.1% of faulty products. This
contrasts with related works, which handled a substantially higher number of fail-
ures (from 0.58% to 7%, as shown in Section 2). In particular, we handle eight
extremely unbalanced datasets by exploring different ML algorithms and bal-
ancing training methods. Using a reduced set of two products, we first compare
three supervised learning methods, Random Forest (RF) and two Automated
ML (AutoML) approaches [8], and an unsupervised deep learning AutoEncoder
(AE). Each ML is tested using three balancing strategies: no balancing (None),
Synthetic Minority Oversampling Technique (SMOTE) [3] and Gaussian Copula
(GC) [13]. Since RF provided interesting results in terms of both classification
performance and computational effort, the RF algorithm was further selected as
the base model for the remainder experiments, which considered all eight prod-
uct datasets and five balancing training strategies: None, SMOTE, GC, Random
Undersampling (RU) and Tomek Links (TL) [10].

This paper is organized as follows. The related work is presented in Section 2.
Then, Section 3 describes the industrial data, ML methods and evaluation pro-
cedure. Next, Section 4 details the obtained results. Finally, Section 5 discusses
the main conclusions and the future work.

2 Related Work

Several ML approaches have been proposed for industrial quality prediction
tasks, which tends to produce unbalanced datasets. For instance, in [2] a semi-
conductor manufacturing test was modeled as a binary classification task that
contained 7% of failures. In 2016, the “Bosch Production Line Performance”
dataset, which included only 0.58% of failures, was made publicly available via
a Kaggle competition [9]. Several studies explored this dataset by using the XG-
Boost algorithm [12,16]. However, none of the previous works explored training
data balancing techniques, such as oversampling, undersampling, SMOTE or



A Comparison of ML for Extremely Unbalanced Industrial Quality Data 3

TL [3]. More recently, Fathy et al. [6] also addressed manufacturing quality pre-
diction as binary classification task, exploring a dataset that contained 1.7% of
faults. The authors used data augmentation techniques to balance the training
data, namely SMOTE and Generative Adversarial Networks (GANs). In terms
of ML algorithms, several supervised methods were compared, including Logis-
tic Regression (LR), RF and XGBoost. While interesting results were achieved,
no undersampling technique was explored in the comparison. Moreover, only a
single dataset was used.

Regarding evaluation metrics, the related works used mostly measures based
on class labels, such as: Matthews Correlation Coefficient (MCC) [12,16]; a com-
bination of the True Positive Rate (TPR) and True Negative Rate (TNR) [2];
and F1-Score [6]. However, when class decision scores or probabilities are avail-
able, is it possible to compute the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve [7]. The AUC measure provides several
advantages over class label metrics [15]: it does not consider a single TPR to
TNR trade-off; quality values are not affected if the classification data is un-
balanced; and AUC values have an easy human interpretation (e.g., 50% is the
performance of a random classifier, while 100% corresponds to a perfect discrim-
ination). However, only one of industrial quality detection study has considered
the AUC metric [12].

In this work, we analyse a manufacturing quality prediction task from a major
automotive assembly company and that involves a tiny percentage of failure cases
(less than 0.1%) that is much smaller than what has been handled in related
works. Moreover, in contrast with [6], we handle eight different datasets and
compare a larger set of balancing methods (including GC and two undersampling
methods, RU and TL). Finally, since we handle big data, we consider both the
classification performance (using the AUC metric) and the computational effort
(in terms of time elapsed) when evaluating the ML methods, allowing to assess
if they are feasible for a real industrial environment deployment.

3 Materials and Methods

3.1 Data

This work was developed within a larger R&D project set within the Industry
4.0 concept and that aims to design an Artificial Intelligence (AI) technological
infrastructure to improve the manufacturing processes of a major automotive
assembly company. The company provided a total of 8 datasets, each related
with a distinct type of steering wheel angle sensor. Due to business privacy
issues, the products are here denoted as P01, P02, ..., P08. Each product is
assembled during the production line, either by robots, humans or a combination
of both. Then, the products are subject to two different types of tests: functional,
executed immediately after assembly, and torque, performed after the functional
tests in order to measure the amount of torque being applied to an object.

The functional tests return a numeric value that measures a particular phys-
ical property. The measurements are compared with an acceptance interval set



4 P. Pereira et al.

(composed of lower and upper bounds). In total, there are 10 functional tests,
termed here as F01, F02, ..., F10. If a given product fails any of the functional
tests, it is immediately considered as a faulty product and thus it is not evalu-
ated by the final torque testing. Otherwise, the product is subject to a sequence
of 4 torque tests, each returning also a numerical output that is compared with
an acceptance interval. If any of the torque tests fails, the global quality status
of the product is “fail”, else it is labelled as “pass” (normal product).

Table 1 summarizes the analyzed data attributes. The ML goal is to predict
the overall torque class label (y ∈ {“fail”,“pass”}) based on the functional test
values, which are used as the inputs of the ML algorithms. Our datasets only
include the more challenging records, the products that passed all individual
functional tests and have a final torque inspection value (y). A high perform-
ing ML method can potentially provide value to the company by reducing the
amount of executed torque tests, which results in energy, time and other savings
(e.g., torque instrumentation maintenance costs).

Table 1. Description of the industrial quality data attributes.

Attribute Description Range [min, max]

F01 Sensitivity [0.999, 1.001]
F02 Hysteresis [0.035, 2.500]
F03 Maximum nonlinearity (clockwise) [0.100, 1.764]
F04 Minimum nonlinearity (clockwise) [-1.778, -0.099]
F05 Maximum nonlinearity (anti-clockwise) [0.090, 1.799]
F06 Minimum nonlinearity (anti-clockwise) [-1.790, -0.090]
F07 Maximum K (clockwise) [0.000, 0.188]
F08 Minimum K (clockwise) [-0.180, 0.000]
F09 Maximum K (anti-clockwise) [0.000, 0.184]
F10 Minimum K (anti-clockwise) [-0.188, 0.000]

y If a product passes a torque test “pass” or “fail”

Nowadays, modern manufacturing lines produce high volumes of quality
products, which results in a tiny fraction of failures. Indeed, our 8 datasets are
extremely unbalanced, with the percentage of failures being below 0.1%. Table 2
presents the total number of records and percentage of failures for each product.
The data records were collected in the years of 2019 and 2020. Excepting P07,
all products have more than 100,000 records, with P06 containing almost 2 mil-
lion examples. While we handle big data, there is a clear lack of minority class
examples, with the percentage of failures ranging from 0.006% to 0.074%.

3.2 Balancing Methods

Data unbalancement can be quite harmful during the learning phase of classifi-
cation algorithms. A common practice to solve this issue is apply data balancing



A Comparison of ML for Extremely Unbalanced Industrial Quality Data 5

Table 2. Number of records and percentage of failures for each product.

Product
No. of Failures

Records (%)

P01 610,380 0.013
P02 142,100 0.049
P03 714,816 0.006
P04 287,496 0.014
P05 219,860 0.022
P06 1,823,845 0.011
P07 33,897 0.074
P08 592,124 0.015

techniques to the training data, which can be classified into two main approaches:
undersampling and oversampling. The former consists on reducing the number
of examples from the majority class, while the latter generates synthetic records
from the minority class. Previous studies in smart manufacturing only consid-
ered oversampling techniques [6], namely SMOTE and GANs. In this work, we
compare both undersampling and oversampling approaches. Given that we work
with big data (Table 2), we do not explore the GAN method, since it requires a
high computational effort during its training phase. Thus, we adopt faster bal-
ancing methods, namely two oversampling methods (SMOTE and GC) and two
undersampling techniques (RU and TL). These methods are compared with the
simpler no balancing method (None).

Concerning undersampling techniques, RU is quite easy to implement, it
consists on randomly selecting only a few examples from the majority class,
aiming to achieve balanced data. Given that our datasets have several hundred
thousands records but only a few hundreds of failures, we did not to completely
balance the data, since this would result in very small training set sizes. Instead,
for RU we selected a more reasonable 25% random selection of the majority
class records (resulting in a 75% reduction of the normal cases). As for the TL
method, it performs a more sophisticated selection of positive examples. TL are
pairs of examples from opposite classes that have high proximity, i.e., that are
more similar. Such examples are noisy and make it difficult for the classifier
to draw a borderline between classes. The TL technique tries to identify and
remove the majority class records contained in these pairs, leaving the minority
ones untouchable, aiming to create a consistent subset of data, thus, smoothing
the modelling phase [10].

In terms of oversampling, SMOTE [4] is a popular data augmentation tech-
nique for the minority class. In the past, SMOTE has obtained interesting results
for quality prediction data [6]. The synthetic data generation process starts by
randomly selecting a minority class sample s1 and searching for its k nearest
neighbours, also belonging to minority class. In this work, we assumed k = 5,
which is the default SMOTE implementation value, thus the neighbourhood



6 P. Pereira et al.

samples are s2, s3, ..., s6. Then, for each pair (s1, s2), (s1, s3), ..., (s1, s6), a syn-
thetic example is generated, considering the line segment that unites them [4].
This technique does not guarantee that generated data is realistic [6], which may
be problematic for our datasets context. Considering that a torque test is only
performed if all functional tests are within the acceptance intervals, it must be
guaranteed that the synthetic data are also set within the same intervals. There-
fore, after applying SMOTE for data augmentation, we replace values that are
outside these intervals by the interval limit (lower or upper). For instance, con-
sidering the acceptance interval [−1, 1] and a synthetic value v = 1.5 (>1), after
applying our synthetic data treatment, we get v = 1. Lastly, GC is a model based
on mathematical copula functions that converts all data columns distributions
to a standard normal, aiming to remove any bias that might be induced [13].
The GC implementation used on this work allows to define a set of restrictions
that must be fulfilled by new generated data to ensure its validity. Thus, unlike
SMOTE, it is not necessary to perform any verification after the generation of
the data. Instead, we define acceptance intervals for each column and GC guar-
antees that new data are within these intervals and valid. Both SMOTE and CG
were set to generate balanced datasets with 50% of instances for each class.

In terms of implementation, all code was developed using the Python pro-
gramming language. For SMOTE, RU and TL techniques, we used the imbalanced-
learn library [11], while sdv [13] was used for GC. All methods were implemented
with their default parameter values.

3.3 Machine Learning Algorithms

Product quality prediction is often modeled as a supervised learning binary
classification task, where the purpose is to know in advance if a given product
has enough quality to pass the next production step (e.g., “pass” or “fail”).
When the number of failures is low, a popular ML approach is to assume an
unsupervised Anomaly Detection (AD), which only uses normal records (thus
one-class) during the training phase. In this paper, both one-class and binary
classification strategies are compared. It should be noted that balancing methods
(such as described in Section 3.2) can only be applied to binary classification,
since they required labeled training data (with two or more classes).

Concerning the binary classification algorithms, we consider the RF algo-
rithm and two AutoML implementations, namely H2O (https://www.h2o.ai/
products/h2o-automl/)and AutoGluon (https://auto.gluon.ai/). In 2014,
the RF tree ensemble algorithm was ranked favorably when compared with hun-
dreds of classifiers for a large set of classification tasks [5]. As for the H2O and
AutoGluon tools, they provided good results in a recent AutoML benchmark
study [8]. AutoML automatically compares several algorithms with different pa-
rameter combinations, returning the best ML model for a given task. For both
AutoML tools, the best ML model is set by randomly splitting the training data
into fit (2/3) and validation (1/3) sets. Then, the AUC metric computed on
the validation set is used as the selection criterion. While automating the ML
algorithm and parameter tuning, the AutoML approach tends to require more

https://www.h2o.ai/products/h2o-automl/
https://www.h2o.ai/products/h2o-automl/
https://auto.gluon.ai/


A Comparison of ML for Extremely Unbalanced Industrial Quality Data 7

computational resources, since it requires the training of a larger number of ML
algorithms. The two AutoML tools were set used with their default configura-
tions, which assumes a a search of the best within the following ML algorithms:
H2O – Generalized Linear Model (GLM), RF, Extremely Randomized Trees
(XRT), Gradient Boosting Machine (GBM), XGBoost, Deep Learning Neural
Network (DLNN) and two Stacked Ensembles; AutoGluon – GBM, CatBoost
Boosted Trees, RF, Extra Trees, k-Nearest Neighbors (k-NN), a DLNN and a
Stacked Ensemble. All supervised ML methods (RF, H2O and AutoGluon) re-
turn a failure class probability (pi ∈ [0, 1] for the i-th example) and that is used
to compute the ROC curves [7]. When needed, class labels can be defined by
using a decision threshold K, where it is considered a failure if pi > K.

As for the one-class learning, we adopted an AE, which is a popular deep
Learning architecture for AD [17]. An AE is composed by an encoder, a bottle-
neck layer (defining the latent space) and then a decoder. The model is trained
only with normal data, aiming to generate outputs similar to the inputs. A
well trained AE reconstructs normal examples with smaller errors, tending to
produce larger reconstruction errors when faced with anomalous situations. Af-
ter some preliminary experiments, conducted using product P01, the AE was
set as fully connected feedforward deep neural network with: 4 hidden layers
(each with 8 nodes) that defines the encoder; a bottleneck layer of 4 nodes; and
a decoder component that is similar to the encoder. All nodes use the ReLu
activation function and each transforming layer is coupled with a batch normal-
ization layer. The AE is trained to minimize the reconstruction error, which was
set as the Mean Squared Error (MSE). In each training iteration (epoch), 10%
of the training data is randomly used as a validation set, allowing to monitor
the reconstruction error and perform an early stopping. The Adam optimizer
was used to adjust the AE weights, being stopped if there is no improvement
after 25 epochs (early stopping) or after a maximum of 100 epochs. After the
model is trained, we use the reconstruction error (MSEi for the i-th example)
to compute the failure probability, where the higher the error, the higher is the
anomaly class probability (pi is computed as the normalized MSEi values, such
that pi ∈ [0, 1]). Similarly to the supervised learning methods, a threshold K is
used to assign class labels.

All ML algorithms were implemented using the Python programming lan-
guage. For H2O and AutoGluon, we used the h2o and autogluon libraries, both
of them with default parameter values that includes an execution time limit of
1 hour. The RF assumes the scikit-learn [14] implementation, which uses a
default of 100 trees. Finally, AE was implemented using tensorflow [1].

3.4 Evaluation

To evaluate methods, we use the AUC measure of the ROC curve [7]. The ROC
represents the discrimination performance of a binary classifier when considering
all possible K threshold values, plotting one minus the specificity (x-axis) versus

the sensitivity (y-axis). The AUC is computed as
∫ 1

0
ROC dK. We also stored

the computational effort, measured in terms of the time elapsed for training (in



8 P. Pereira et al.

s) and predicting one example (in ms). Furthermore, to produce more robust
results, for each product we apply five runs of a holdout training and test split,
using 67% of the data records (random stratified selection) for training and the
remaining 33% examples for testing. The data balancing techniques are applied
only to the training data, thus, both validation and test subsets are kept unbal-
anced. We particularly note that validation sets are only used by the AutoML
and AE algorithms. For the AutoML, it is used to set the leaderboard, which
contains the best set of models and their hyperparameters. As for the AE, the
validation set is used by the early stopping procedure and it only includes normal
examples (one-class). All created subsets of data, either by splits or balancing
techniques, were stored locally in order to ensure all models were evaluated us-
ing the same datasets (e.g., same test sets). All evaluation measures (AUC and
computational effort) are aggregated by considering the average of the five runs.

4 Results

The experiments were executed in an Intel Xeon 1.70GHz server. When using
oversampling, the amount of records almost duplicates, which increases the ex-
ecution time. Since five runs are applied for each dataset, it is computationally
costly to apply all balancing techniques and ML algorithms to all products. Thus,
we conducted an initial comparison study by considering two datasets (P01 and
P02) and both SMOTE and GC oversampling techniques, aiming to select a
reasonable performing ML algorithm for the remainder comparison scenarios.

Table 3 presents the average results for the first comparison study. For prod-
uct P01, all models achieved a poor performance, with most AUC values being
close to 50% (random classifier). In particular, AutoGluon performed worst on
both synthetic data generators, H2O only had a slight AUC improvement when
using SMOTE and AE obtained the second worst AUC value. As for the RF, it
achieved the highest AUC value on P01 data when using the GC oversampling
technique. Regarding P02 data, the AUC results are considerably better for all
ML algorithms. Specifically, AutoGluon achieved the best AUC value (83.52%),
followed by H2O (82.70%) and RF (81.51%), all using GC as the balancing
data technique. AE presented the worst predictive performance on product P02
(65.72%). Overall, when considering both products, RF and AutoGluon obtained
similar predictive performances. However, the RF training is much faster than
AutoGluon (around ten/sixty times faster). For this reason, we selected RF for
the remainder quality prediction experiments.

Table 4 presents the second quality prediction comparison results, which uses
RF as the base ML model and explores five different balancing methods over all 8
datasets. An analysis to the table shows that GC is clearly the best data balanc-
ing technique, achieving the highest AUC values for 6 of the analyzed 8 products
(P01, P02, P03, P04, P05 and P06). On the remainder datasets (P07 and P08),
RF obtained the best predictive performance when using RU and SMOTE tech-
niques, respectively. The last five rows of Table 4 show the average performance
of each approach when considering all eight products. The average results also



A Comparison of ML for Extremely Unbalanced Industrial Quality Data 9

Table 3. First quality prediction comparison results (bold denotes best average AUC).

Product ML method
Balancing

AUC
Train Prediction

Technique Time (s) Time (ms)

P01

AutoGluon
None 57.81 2028 0.022
GC 54.98 2197 0.069
SMOTE 50.90 2137 0.016

H2O
None 56.60 2988 0.007
GC 53.00 3224 0.070
SMOTE 56.75 3215 0.010

RF
None 51.15 45 0.008
GC 59.23 226 0.017
SMOTE 50.98 242 0.012

AE None 53.72 78 0.036

P02

AutoGluon
None 83.32 1931 0.047
GC 83.52 1930 0.084
SMOTE 82.51 1922 0.033

H2O
None 78.85 3210 0.021
GC 82.70 3226 0.085
SMOTE 80.82 3219 0.039

RF
None 78.62 5 0.007
GC 81.51 32 0.016
SMOTE 79.41 34 0.009

AE None 65.72 27 0.034

favor the GC oversampling technique, which produces a positive impact on the
AUC values, presenting a difference of 7.19 and 10.08 percentage points when
compared with the RU (second best overall balancing method) and no balancing
methods (None, the worst overall approach). In terms of the final quality predic-
tion quality, the obtained AUC GC RF results reflect the difficulty of modeling
extremely unbalanced datasets. For some products, a very good discrimination
was achieved (e.g., 82% for P02 and P07, 73% for P04), but there are products
that obtained a much lower AUC values (e.g., 50% for P08, 59% for P01). On av-
erage, the GC RF class discrimination performance is reasonable (around 67%).
Regarding the training times, and as expected, both oversampling techniques
(GC and SMOTE) require a larger computational effort. Nevertheless, the ob-
tained GC RF models can still be achieved within a reasonable computational
effort. In effect, it requires around 18 minutes of training effort for the largest
dataset, which originally contains 1,8 million records (before the application of
the GC method). As for the inference times, the GC RF predictions require
0.017 ms, which means that a trained model can be used to produce real-time
industrial product quality predictions.



10 P. Pereira et al.

Table 4. Second quality prediction comparison results (bold denotes best average
AUC).

Product
Balancing

AUC
Train Prediction

Technique Time (s) Time (ms)

P01

None 51.15 44.79 0.008
GC 59.23 226.19 0.017
SMOTE 50.98 242.24 0.012
RU 53.08 9.91 0.009
TL 50.35 45.73 0.008

P02

None 78.62 5.06 0.007
GC 81.51 31.73 0.016
SMOTE 79.41 34.08 0.009
RU 81.22 1.25 0.007
TL 78.18 5.24 0.007

P03

None 53.13 43.08 0.007
GC 62.18 278.16 0.018
SMOTE 53.82 341.49 0.010
RU 54.57 8.78 0.007
TL 52.47 43.57 0.008

P04

None 50.25 7.48 0.006
GC 73.07 66.96 0.014
SMOTE 59.45 96.52 0.008
RU 53.63 1.97 0.008
TL 51.01 7.65 0.006

P05

None 51.11 9.38 0.006
GC 68.53 69.69 0.016
SMOTE 55.63 87.34 0.009
RU 57.97 1.99 0.006
TL 53.00 9.31 0.006

P06

None 51.66 339.33 0.011
GC 61.87 1104.61 0.029
SMOTE 53.84 1164.85 0.014
RU 54.85 52.74 0.011
TL 51.51 354.12 0.011

P07

None 72.60 0.82 0.006
GC 81.85 5.92 0.012
SMOTE 76.53 6.02 0.008
RU 82.18 0.27 0.006
TL 72.59 0.87 0.006

P08

None 49.43 40.22 0.008
GC 50.21 248.32 0.018
SMOTE 51.31 225.06 0.011
RU 50.37 9.64 0.009
TL 49.41 43.78 0.009

Average

None 57.24 61.27 0.008
GC 67.31 253.95 0.017
SMOTE 60.12 274.70 0.010
RU 60.98 10.82 0.008
TL 57.32 63.78 0.008



A Comparison of ML for Extremely Unbalanced Industrial Quality Data 11

The obtained results were shown to the manufacturing company experts, who
considered them very positive. In particular, the experts highlighted the GC RF
discrimination results that were obtained for three of the analysed products (P02,
P04 and P07). Moreover, they confirmed that required computational effort is
adequate for a real industrial deployment of the ML models.

5 Conclusions

The Industry 4.0 revolution is transforming manufacturing companies, which are
increasingly adopting data intelligence processes in order to remain competitive
in the market. In the last years, several works used Machine Learning (ML) to en-
hance product quality control, which is a key manufacturing element. Currently,
modern manufacturing companies tend to have a high quality production, which
results in a tiny percentage of failures, thus originating extremely unbalanced
data that is challenging for common ML algorithms.

In this paper, we analyze millions of records related with eight products as-
sembled by a major automotive company. Only a tiny fraction (less than 0.07%)
correspond to failures. To handle such extremely unbalanced data, we compared
four ML algorithms and five balancing techniques. Overall, the best results were
achieved by a Gaussian Copula (GC) oversampling technique when adopting a
supervised Random Forest (RF) base learner. In particular, a very good class
discrimination was achieved for three of the eight analyzed products. Moreover,
the GC RF combination requires a computational effort (in terms of training
and prediction times) that is feasible for the analyzed domain (e.g., it requires
around 18 minutes to process 3.6 million records).

In future work, we intend to explore more datasets by testing the proposed
GC RF model over a larger range of products. Also, we plan to deploy the ML
algorithms and balancing methods in a real industrial setting, which would allow
us to monitor the capability of the ML models through time and assess if they
can provide productivity gains (e.g., by reducing the number of torque tests).

Acknowledgments

This work is supported by: European Structural and Investment Funds in the
FEDER component, through the Operational Competitiveness and Internation-
alization Programme (COMPETE 2020) [Project n 39479; Funding Reference:
POCI-01-0247-FEDER-39479].

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,



12 P. Pereira et al.

Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/

2. Adam, A., Chew, L.C., Shapiai, M.I., Lee, W.J., Ibrahim, Z., Khalid, M.: A hybrid
artificial neural network-naive bayes for solving imbalanced dataset problems in
semiconductor manufacturing test process. In: HIS. pp. 133–138. IEEE (2011)

3. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. SIGKDD Explor. 6(1), 20–
29 (2004). https://doi.org/10.1145/1007730.1007735

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

5. Delgado, M.F., Cernadas, E., Barro, S., Amorim, D.G.: Do we need hundreds of
classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1),
3133–3181 (2014), http://dl.acm.org/citation.cfm?id=2697065

6. Fathy, Y., Jaber, M., Brintrup, A.: Learning with imbalanced data in smart man-
ufacturing: A comparative analysis. IEEE Access 9, 2734–2757 (2021)

7. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27,
861–874 (2006)

8. Ferreira, L., Pilastri, A., Martins, C.M., Pires, P.M., Cortez, P.: A Comparison of
AutoML Tools for Machine Learning, Deep Learning and XGBoost. In: Int. Joint
Conference on Neural Networks, IJCNN 2021, July. IEEE (2021)

9. Kaggle: Bosch production line performance. https://www.kaggle.com/c/bosch-
production-line-performance, accessed: 2021-04-27

10. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided
selection. In: ICML. pp. 179–186. Morgan Kaufmann (1997)

11. Lemâıtre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: A python toolbox to
tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research 18(17), 1–5 (2017), http://jmlr.org/papers/v18/16-365

12. Mangal, A., Kumar, N.: Using big data to enhance the bosch production line per-
formance: A kaggle challenge. In: IEEE BigData. pp. 2029–2035. IEEE Computer
Society (2016)

13. Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault. In: 2016
IEEE International Conference on Data Science and Advanced Analytics, DSAA
2016, Montreal, QC, Canada, October 17-19, 2016. pp. 399–410. IEEE (2016).
https://doi.org/10.1109/DSAA.2016.49

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

15. Pereira, P.J., Cortez, P., Mendes, R.: Multi-objective grammatical evolution of
decision trees for mobile marketing user conversion prediction. Expert Syst. Appl.
168, 114287 (2021). https://doi.org/10.1016/j.eswa.2020.114287

16. Zhang, D., Xu, B., Wood, J.: Predict failures in production lines: A two-stage
approach with clustering and supervised learning. In: IEEE BigData. pp. 2070–
2074. IEEE Computer Society (2016)

17. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. pp. 665–
674. ACM (2017). https://doi.org/10.1145/3097983.3098052

https://www.tensorflow.org/
https://doi.org/10.1145/1007730.1007735
http://dl.acm.org/citation.cfm?id=2697065
http://jmlr.org/papers/v18/16-365
https://doi.org/10.1109/DSAA.2016.49
https://doi.org/10.1016/j.eswa.2020.114287
https://doi.org/10.1145/3097983.3098052

	 A Comparison of Machine Learning Methods for Extremely Unbalanced Industrial Quality Data 

