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Tissue-engineered skin has a long history of clinical applications, yet current treatments are not capable of
completely regenerating normal, uninjured skin. Nonetheless, the field has experienced a tremendous devel-
opment in the past 10 years, encountering the summit of tissue engineering (TE) and the arising of stem cell
research. Since then, unique features of these cells such as self-renewal capacity, multi-lineage differentiation
potential, and wound healing properties have been highlighted. However, a realistic perspective of their out-
come in skin regenerative medicine applications is still absent. This review intends to discuss the directions that
adult and embryonic stem cells (ESCs) can take, strengthening the skin regeneration field. Distinctively, a critical
overview of stem cells’ differentiation potential onto skin main lineages, along with a highlight of their par-
ticipation in wound healing mechanisms, is herein provided. We aim to compile and review significant work to
allow a better understanding of the best skin TE approaches, enabling the embodiment of the materialization of a
new era in skin regeneration to come, with a conscious overview of the current limitations.

Introduction

Skin regeneration is an important area of research in
the tissue engineering (TE) field, especially for massive

skin loss cases, where current treatments are yet not capable of
inducing permanent satisfying skin regeneration [1]. To
achieve an effective healing, skin TE products must attach
well to the wound bed, be supported by new vasculature,
integrate with the surrounding host tissues, be non-
immunogenic, and be capable of self regeneration with min-
imum scar tissue, with reduced patient pain and discomfort,
and yet importantly, manufactured with a good cost–benefit
ratio [2].

Skin TE went through a difficult time early in the 20th
century, but with the commercial success that several prod-
ucts have achieved, it has entered a new area of enterprise
[3]. Skin analogues have the longest history of commerciali-
zation, and the clinical applicability of cellular skin substi-
tutes such as Apligraf� and Orcel� is significant [4].
However, among the currently commercialized ones, the
major hurdles encountered are high production costs along
with the failure of keratinocyte performance and delayed
vascularization. Angiogenesis, relying in most of the cases
upon patient’s wound bed condition, is in fact a critical as-
pect for the success of skin analogues, achieved so far in
substitutes with 0.4-mm maximum thickness [5]. Although
deficient, there has been an emergence of skin TE models

involving the generation, prior to implantation, of a micro-
vascular network that anastomose with the patient’s blood
vessels and consequently lead to a faster vascularization [6–
10]. Commercial skin models have also been considered far
from what would be suitable in terms of immunogenicity, as
those containing nonautologous adult cells can induce im-
mune rejection [11]. It is now clear that another obstacle in
the long-term function of skin equivalents is limited by the
terminal differentiation of the grafted keratinocytes due to
prolonged in vitro culture that reduces the number of highly
proliferative units (holoclones) [12]. Thus, in order to meet
the need for maintaining keratinocytes in an early differen-
tiation state, the revolutionary approach in skin TE com-
prises the use of stem cells, guarantying also an unlimited
source of biological material, crucial for large full-thickness
skin defects.

This review aims to present the rationale for the use of
stem cells in skin regeneration, showing the current draw-
backs and the different angles whereby these cells can con-
tribute with their unique features.

Stem Cells Contribution to Skin Relevant
Lineages

Distinct sources of stem cells (SCs), comprising both adult
and embryonic stem cells (ESCs), have unique intrinsic fea-
tures that might represent an effective way to meet the
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challenge of skin replacement and its current major draw-
backs as presented above. This is due to foremost charac-
teristics such as the potential to provide an unlimited source
of donor material for grafting along with the ability to switch
into any cell phenotype in vitro, such as endothelial and
epidermal. In fact, improved vascularization is required,
generally to allow faster inosculation and specifically to
promote healing of chronic skin wounds. Moreover, epi-
dermal analogues created from epidermal stem cells or stem-
derived epidermal precursors have the advantage, in relation
to fully differentiated keratinocytes in specific clinical set-
tings, of being available in a shorter time due to the cells’
higher proliferation capacity and at an earlier differentiation
stage, which is expected to contribute to a higher quality
healing and to skin regeneration rather than repair.

Overall stem cells characteristics have been extensively
reviewed [13–17]. This section aims to provide a critical and
organized perspective of the works that have been carried
out with both adult and ESCs, which justify the valuable
potential of SCs from different origins to be further explored
in skin TE purposes.

Stem cell origins

Mesenchymal stem cells (MSCs), a considerable part of
adult stem cells, integrate several mammalian tissues and are
natural key players in tissue regeneration. Although their
primary function is homeostasis maintenance, they also seem
to still express pluripotency markers, having the valuable
potential to switch into different cell types other than into
cell connective tissue lineages [18, 19] and represent a com-
patible source to allogenic transplantation due to their im-
munomodulatory and immunosuppressive features [20]. In
addition to most well-described bone marrow MSCs [21],
other relevant MSCs such as human adipose-derived stem
cells (hASCs) [22], due to their abundance, ready accessibil-
ity, and easy expansion in vitro; human amniotic fluid stem
cells (hAFSCs), which represent an intermediate stage be-
tween adult and embryonic SCs (ESCs) [23,24]; and umbilical
cord blood (UCB), with its easy accessibility [25] and primal
nature [26], are highly attractive for the skin regeneration
field. Skin also shelters dermal MSCs, which have high
proliferative capacity and the ability to differentiate into
mesodermal lineages [27]. Their plasticity has been re-
inforced by the presence of pluripotency-associated markers
[19,28].

However, the nature of MSCs is not fully clear; these cells
are closely associated with perivascular niches [29] and co-
express many markers in common with pericytes in the
microvasculature and adventitial fibroblast-like cells that
surround the larger blood vessels [30,31,32], even though it
remains possible that some MSCs originate in other cell
subsets [33]. Furthermore, the dual origin of MSCs in a single
tissue is suggested by the pericytes’ capacity to differentiate
into cells of mesenchymal origin, alongside with other MSCs
of a nonpericytic origin [31]. In line with this, several studies
revealed that human dermal fibroblasts, (hDFb) are difficult
to distinguish from dermal MSCs, due to hDFb unexpected
plasticity and immunoregulatory features [34,35]. Further-
more, it was recently reported that hDFb can generate, from
a single cell (muse cell), others that form characteristic cell
clusters expressing a set of markers related with pluripotency,

raising the possibility to explore this feature benefiting from
hDFb incapacity to form teratomas in vivo. Hence, despite
the attempts that have been outlined for clarification [36], the
limit to distinguish human dermal MSCs from hDFb ability
is vague. For skin regeneration, the most important aspect
relies on taking advantage of the classical features of fibro-
blasts and exploring the newly described qualities to achieve
an improved skin model.

Besides the previously referenced skin MSCs, skin tissue
also contains the skin resident naı̈ve cells, representing a
valuable cell source for skin TE. Their main niches include
the apex of rete ridges [37] and the bulge of hair follicles [38]
in the epidermis, and also the papillary dermis in the dermal
compartment [39]. Epidermal stem cells (EpSCs) have a
strong capacity for self-renewal and originate rapidly pro-
liferating daughter cells—transient amplifying cells (TA)—
that undergo several cell divisions before differentiating [40].
Despite the effort undertaken to characterize EpSCs and to
assemble techniques that would allow better population
purification [41–44], specific markers of EpSCs are still
questionable. While b1-integrin [42], the hemidesmosomal
a6-integrin [44], and LGR5/LGR6 [45,46] are possible
markers for stem cells in the hair follicle niche, early keratin
markers such as K19, K14, and K15 are also shared with TA
[47,48], though the distinct behavior of EpSCs and TA in
vitro and in vivo have led to further define the retention of
DNA label in vivo, and the in vitro clonal growth, as part of
EpSCs’ characterization criteria [49]. Within the dermis, hair-
follicle sheath stem cells [50] and skin-derived precursors
(SKPs) [51] have been recognized. While hair-follicle dermal
sheath cells can be explored in a therapeutic context as an
accessible option for improving the healing outcome of
dermal or full skin equivalents, yet maintaining their role in
the regeneration of hair follicles [52], SKPs, by sharing many
characteristics with embryonic neural crest stem cells—in-
cluding neural crest-like differentiation potential, in vitro
and in vivo [39]—might be explored to promote the regen-
eration of skin nervous appendages. Nevertheless, optimi-
zation of protocols for human SKP isolation and
differentiation into potentially clinically useful cell subtypes
remains a challenging prerequisite to reach clinical transla-
tion [53].

ESCs are naturally the favorite candidates for regenerative
medicine and TE due to their immortality, self-renewal ad
infinitum, and highly versatile ability to differentiate into
components of all embryonic germ layers (Fig. 1) [54], which
might promote the use of these cells over adult stem cells.
However, accurate and well-established differentiation
techniques will be essential to the use of ESC-derived cells in
future applications, namely in epidermis replacement [9,55–
61] and for improving vascularization [61–66]. Further ex-
pectations rely on the development of efficient protocols to
obtain melanocytes and promote regeneration of skin ap-
pendages, which would undoubtedly improve the overall
functionality of skin substitutes [67].

Stem cells epidermal commitment potential

The commitment and differentiation of stem cells into epi-
dermal/epithelial cells involve complex signaling pathways
and multiple stimuli that occur naturally in an adequate mi-
croenvironment, but which have not been fully understood.
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Nevertheless, an effort to disclose this phenomenon has been
explored in vitro [55,56,58–60,68–74] using distinct strategies,
mostly focusing on MSC and ESC differentiation.

MSCs. In specific case of MSC differentiation toward
keratinocytes, new methods has been explored for several
stem cells such as bone marrow mesenchymal stem cells
(BM-MSCs) [69,72], umbilical cord blood stem cells
(UCBSCs) [68,71], and hASCs [73] and are mainly based on
cytokine cocktails [56, 60, 68–70], as well as on keratinocyte
paracrine signaling [69,71,72,75] (Table 1).

BM-MSCs were proven to give rise to epithelial-like cells,
forming cobblestone pattern colonies and expressing both
cytokeratin 18/19—when cultured with a growth factors
cocktail that includes epidermal growth factor (EGF), kera-
tinocyte growth factor (KGF), hepatocyte growth factor
(HGF)—and insulin growth factor 2 (IGF-2) [72]. A higher
expression of epithelial markers on the cells of clusters in the
inner zone was observed, suggesting that most probably
only these cells suffer differentiation due to the synergistic
action of the growth factors and the stronger paracrine sig-
naling, as described in other works [76,77]. Epidermal-
like cells, expressing the early keratinocyte markers p63,
cytokeratin 19, and b1-integrin and the late marker pan-
cytokeratin were also generated from BM-MSCs [69]. In this
work, cells seeded at higher densities demonstrated a more
pronounced expression of those markers, implying that cell–
cell contact, as expected, must be also considered as an im-
portant parameter to differentiate BM-MSCs into epidermal
lineage cells. Although both studies [69,72] employed
growth factors within the same concentration range, the role
of each of these in epithelial and epidermal differentiation is
yet undefined. Moreover, an analysis of stem cell markers,
still lacking, would provide further information regarding
differentiation efficiency of each strategy.

Findings with UCBSCs have underlined the potential of
paracrine adult cell signaling and its effects on directing stem
cell phenotype [71]. In this particular study, UCBSCs were
co-cultured with adult keratinocytes on fibrin glue gel with
encapsulated fibroblasts in vitro, and differentiation of
UCBSCs into epidermal cells was detected. In addition, these
results demonstrate that using this methodology the re-
quired initial number of both primary and stem cells is
lower, as a mixture of both cell types was used, which might
serve as a starting material for isolation and expansion of
cells for transplantation in patients with large skin defects. A
more recent work [68] also using hUCB as biological source
of stem cells, investigated the use of a specific medium
composed of a mixture of a basal medium and another that is
normally used to expand keratinocytes, called the saigonese
culture [68], to lead those cells into the epidermal lineage.
After 7 days of culture, p63 and keratin1/10 positive cells
were detected, meeting the postulated multipotential of
UCBSCs. Nonetheless, issues such as isolation techniques
employed, which result in low yields of the UCBSCs, and
percentage of differentiated cells might be among the main
concerns in the perspective of the clinical application of these
cells.

A single in vitro study with hASCs showed that under the
effect of all-trans retinoic acid (ATRA), cytokeratin 18 posi-
tive cells are generated, indicating hASCs’ epithelial differ-
entiation potential [73]. However, ATRA reduces cell
viability in a concentration-dependent manner, and without
the expression of typical keratinocytes markers, it is still in-
sufficient to consider those cells for skin TE purposes.

All of these in vitro strategies have shown signal stem cells
to change their gene expression patterns and transdiffer-
entiate into epidermal/epithelial-like cells. However, in vitro
assays to demonstrate this stratification capacity, as well as

FIG. 1. KCL-002 human
embryonic stem cell (hESC)
cell line stained for plur-
ipotency markers SSEA-4 (A),
Sox2 (B), Oct4 (C), and TRA-
160 and hoechst (D) by im-
munocytochemistry.
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functional in vivo studies, are still lacking in most of the
studies. Moreover, apart from a recent work that demon-
strates that human umbilical cord lining epithelial cells are
capable of generating a fully stratified epithelium [78], it is
still necessary to verify whether the hMSC-derived cells have
the same behavior as resident epidermal stem cells, notably
in terms of multipotency and engagement in terminal dif-
ferentiated/cornified cells to potentiate clinical application of
stem cells in epidermal reconstruction.

ESCs. The possibility of human embryonic stem cells
hESCs to differentiate towards the epidermal lineage has also
been explored using distinctive strategies. Within embryoid
bodies (EBs) or nodules produced in immunosuppressed
mice [74,79,80], hESCs were able to differentiate along epi-
dermal lineage, yet had a low proliferative capacity. More-
over, this technique lacks in terms of differentiation accuracy;
being based in spontaneous differentiation, other lineages
are naturally present, which is limiting for regenerative
medicine applications.

A strategy based on the recapitulation of ectodermal de-
velopment in vitro was proposed by Aberdam et al.
[9,58,59,75,81]. Bone morphogenetic protein 4 (BMP4) effect
along with the contribution of mesenchymal inducers (PA6
stromal cells) on ESC cultures was explored to generate cy-
tokeratin 18/14 positive cells. The authors suggested this

approach following the rationale of a coordinated develop-
ment of the ectodermal and mesodermal layers during
morphogenesis, leading the support and directing a number
of biological functions including cell proliferation, migration,
and differentiation by the reciprocal signaling of these two
mutually dependent tissues [82]. This is consistent with the
generation of keratinocytes from mouse ESCs seeded on
matrix derived from human fibroblasts and exposed to
BMP4 at different days of culture [83]. Knowing that epi-
dermal and neural precursors are derived from the same
neuroectodermal precursor [84], there was the need to clarify
the successive development from ESCs to an ectodermal
phase and the subsequent switching to epidermal precursors.
For that, it was highlighted that the ectodermal commitment
occurs through the activation of transcription factor DNp63,
which seemed to play a dual role in early steps of epidermal
precursor formation after BMP4 administration, acting as an
epidermal inducer and an inhibitor of neural precursor for-
mation [85]. In addition, DNp63 was demonstrated to be able
to directly activate K14 promoter [86]. The importance of
BMP4 in hESCs’ differentiation pattern toward epidermal
lineage, by blocking neural differentiation via Smad pathway
[87] was also confirmed by obtaining a fairly pure kerati-
nocyte population using retinoic acid along with BMP4, both
in EBs and 2-dimensional hESC cultures (Fig. 2) [56]. The

Table 1. Epidermal Commitment of Different Sources of Stem Cells

Tissue
source

Cell
type

Stem cell
plasticity Strategy Obtained Cells Epidermal features References

Bone
marrow

MSCs Multipotent Growth factors cocktail:
EGF, KGF, HGF and
IGF-2

Epithelial-like cells Cobblestone pattern
clusters
Cytokeratin 18/19

[72]

Growth factors cocktail:
EGF, insulin, FGF,
retinoic acid and
CaCl2

Epidermal-like cells p63, cytokeratin 19,
b1-integrin,
pancytokeratin

[69]

Umbilical
cord
blood

MSCs Multipotent Co-culture with adult
keratinocytes in fibrin
glue gel

Keratin in all cells of
layered cultured
epidermis

Keratin-positive cells [71]

Mixture of primary
culture medium and
keratinocyte serum-
free medium

keratinocytes p63 and Keratin1-10 [68]

Adipose
tissue

MSCs Multipotent ATRA in culture
medium

Epithelial-like cells Cytokeratin 18 [73]

Embryo hESCs Pluripotent Nodules in scid mice keratinocytes p63, basonuclin, keratin
14 and involucrin

[74]

Embryoid bodies/
nodules in scid mice

keratinocytes p63, basonuclin, keratin
14, 5 and involucrin

[80]

BMP4 and PA6 stromal
cells

Keratinocyte precursors Cytokeratin 18/14 [9, 58, 59, 75, 81]

Retinoic acid and BMP4
(in both embryoid
bodies and 2D
culture)

Keratinocytes Cytokeratin 14
pluristratified
epidermis formation

[56, 60]

Ascorbic acid and BMP4 Keratinocytes pluristratified epidermis
in vitro and grafting
in vivo

[57]

Summary of the strategies employed to induce stem cells differentiation indicating the strategies employed and the main characteristics of
the obtained cells.

ATRA, all-trans retinoic acid; BMP4, bone morphogenetic protein 4; EGF, epidermal growth factor; FGF, fibroblast growth factor; hESCs,
human embryonic stem cells; HGF, hepatocyte growth factor; IGF, insulin growth factor; KGF, keratinocyte growth factor; MSCs,
mesenchymal stem cells.
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synergistic relation of the factors used softened the dilemma
of neural versus epithelial specification among ectodermal
precursors, giving rise to K14 positive cells. Moreover, the
functional similarity of the generated keratinocytes to pri-
mary epithelium was demonstrated by showing that the
obtained cells respond to microenvironment in a similar
manner to adult keratinocytes [60]. Although some consis-
tency has been demonstrated with the proposed strategies
to obtain ESC-derived keratinocytes regarding comparable
features with adult keratinocytes, at a protein level of ex-
pression and functionality, the reconstruction of a stratified
epidermis is still lacking, with the exception of a study that
used ascorbic acid and BMP4 for 40 days [57]. The authors
claimed to mimic the long-term succession of biological
steps that lead to epidermis formation during organogen-
esis generating functional basal keratinocytes with the
ability to form a stratified epithelium that resembles normal
human epidermis both in vitro and following grafting.

Co-cultures of stem cells with adult cells, by taking ad-
vantage of the signal cues provided by these, are another
promising approach to drive stem cell fate into a specific
desired phenotype. Mouse ESCs directly co-cultured with
mice keratinocytes were directed into the epidermal path-
way as they were shown to express epidermal related
markers, such as keratin 14 and k19, among others [88].
Despite the high potential of these studies, as the signaling
provided by adult cells might be the key for phenotype
switching, additional refinement of this methodology is
required. Furthermore, transposing this approach to human
cells together with functional tests, along with proteomics
analysis, urges further exploration of the whole success of
the strategy.

In what concerns epidermal fate irrespective of the SCs
origin, there is still a long way to be explored in order to
generate significant knowledge regarding the differentia-
tion mechanisms involved. Moreover, the need to decrease
the differentiation time-span to envision the clinical appli-
cation of stem-derived epidermal/epithelial cells is still a
reality.

Endothelial differentiation advances

Like for any other vascularized tissue, endothelial and
endothelial progenitor cells also play a major role in skin
regeneration, as they are responsible for the vascularization
of the newly formed tissue. Together with pericytes, they
ensure a stable and organized vascular network that supplies
the whole tissue [89].

Despite the different approaches that have been employed
to drive both adult and ESCs towards the endothelial lineage
(see Table 2), no standardized protocols exist for generating
stem cell–derived vascular cells [90]. The administration, in
variable concentrations, of the most studied angiogenic cy-
tokine, vascular endothelial growth factor (VEGF), [61,63–
65,91–97] has been the most used route. However, distinct
approaches such as co-cultures with other cells [98,99], SC
exposure to mechanical stimulation [63,95–97], and other
microenvironmental cues [100–103] also represent alternative
attempts to accomplish this purpose.

The endothelial differentiation of hESCs has been pre-
dominantly achieved by spontaneous differentiation of EBs
grown for 10 to 13 days, which closely recapitulate that of
early in vivo embryogenesis [61,65,66]. Differentiated cells
are then sorted for VE-cadherin/PECAM and cultured in
VEGF-containing medium [61] or, alternatively, directly
cultured in methylcellulose in a medium cocktail including
ascorbic acid and insulin/transferring/selenium [66]. hESCs
in monolayer were also led toward the endothelial pheno-
type after subculture in collagen 4 substrate and supple-
mentation with VEGF [65]. More recently, a novel method
without cell-sorting technique that consists of culturing the
generated EBs using a differentiation medium with VEGF,
BMP4, stem cell factor, interleukin 3 (IL), and IL6 was re-
ported [64]. The obtained cells were capable of supporting
subculture at least up to 10 passages without phenotypical
depression, and more importantly, effective engraftment in
vivo.

Like for the differentiation of ESCs into the epidermal
lineage, some works that intended to shed some light on the
signaling mechanisms that mediate development of early
hemato-endothelial progenitors during human develop-
ment have also demonstrated its usefulness as promising
approaches to explore the endothelial differentiation of
ESCs [98, 99]. Those studies have generated hESC-derived
cells with hematopoietic [98] and endothelial potential
[98,99] by co-culturing hESCs in inactivated BM stromal
cells, though after selecting the generated CD34 + [99] and
CD34brightCD31 + Flk1 + [98] subpopulations.

Despite the discussions and attempts to clarify the po-
tential of ESCs and the mechanisms involved in endothelial
differentiation [62,90], the understanding of the role of se-
creted and cell-bound factors associated with stromal cells
used to promote that switch is still in an early stage. Further
investigation and advances regarding the hESC culture
might also be relevant to progress toward the control of
lineage-specific and in particular endothelial differentiation.

As mentioned above, the differentiation of adult SCs,
namely BM-MSCs, UC-MSCs, hASCs, and hAFSCs, has
been predominantly relying on the use of culture cocktails
with distinct growth factors, but commonly including
VEGF [63,92,95–97]. The variability of the results obtained,
naturally arising from the numerous factors involved,

FIG. 2. Keratinocyte precursors derived from KCL-002
hESC cell line, co-expressing keratin 18 and keratin 14, after
treatment with retinoic acid and bone morphogenetic protein
4for 25 days in culture.

CONTRIBUTION OF STEM CELLS TO SKIN REGENERATION 5

http://online.liebertpub.com/action/showImage?doi=10.1089/scd.2011.0539&iName=master.img-001.jpg&w=237&h=178


nonetheless represents the difficulty in achieving relevant
results as well as the long way still to go to establish reliable
and clinically acceptable methods for obtaining endothelial
cells from adult SCs. In fact, the concentration of VEGF,
ranging from 5 to 100 ng/mL [104], constitutes a major draw-
back of these approaches and an impairment for scaling up.

Local environment, namely extracellular matrix (ECM)-
originated biochemical and mechanical signals, is known to
directly influence MSC differentiation [101,100,102]. Me-

chanical stress [63,95,96] in particular was proven to promote
the endothelial differentiation of adult SCs, as well as the
culture of stromal vascular fraction from adipose tissue in
methylcellulose [105]. The importance of the synergistic ef-
fect of shear and growth factors/culture medium such as
VEGF, endothelial cell growth supplement, and endothelial
growth media-2 in inducing the expression of some endo-
thelial markers was demonstrated. While the acquired phe-
notype varied among the tested sources, also differently

Table 2. Outline of the Stem Cells’ Differentiation Into Endothelial Lineage Showing

the Central Strategies Used and Highlighting the Characteristics of the Derived Cells

Tissue source Cell type Stem cell plasticity Strategy Endothelial features References

Embryo hESCs Pluripotent Embryoid bodies, sorting with
VE cadherin/PECAM and
VEGF culture

PECAM-1, CD34,
VE-cadherin,Tie-2, Flk-1
Cord formation in matrigel
In vivo vessel formation

[61]

Embryoid bodies and culture in
methylcellulose, plus medium
containing ascorbic acid,
insulin/transferring/selenium

PECAM-1, Flk-1, VE-cadherin
In vivo vessel formation

[66]

Subculture in collagen 4
substrate, supplemented with
VEGF

CD34, 20VCAM1, PECAM-1,
VE-cadherin
In vivo vessel formation

[65]

Coculture with murine S17
stromal cells

PECAM-1,vWF, DiI-Ac-LDL
uptake

[98]

Spheres plus differentiation
medium with VEGF, BMP4,
stem cell factor,IL3 and IL6

vWF, CD34, VE-cadherin,
VEGF-receptor 1/2/3
Dil-AcLDL uptake
Cord formation in matrigel

[64]

Bone marrow MSCs Multipotent Growth factors cocktail, mainly
VEGF

Flk-1, VE-cadherin, vWF,
DiI-Ac-LDL uptake
Cord formation in matrigel

[63]

Culture in ECM secreted by
microvascular endothelial cells

PECAM [106]

3D- structure of fibrinogen with
PEG derivatives

High number of angiogenic
genes, including VEGF-A and
CD31

[102]

Umbilical cord MSCs Multipotent Growth factors cocktail, mainly
VEGF

Flk-1, VE-cadherin, vWF,
DiI-Ac-LDL uptake
Cord formation in matrigel

[92]

VEGF, EGF, and hydrocortisone lk-1, Flt-1, VE-Cadherin, vWF,
VCAM-1, Tie-1 and Tie-2,
DiI-Ac-LDL uptake
Cord formation in matrigel

[97]

Adipose tissue MSCs Multipotent ECGS medium together with
exposure to physiological
shear force

PECAM-1,vWF, DiI-Ac-LDL
uptake
Cord formation in matrigel
In vivo validation

[95]

N-(6-aminohexyl)-5-chloro-1-
naphthalenesulfonamide
Different concentrations of
VEGF and bFGF

vWF, VE-Cadherin, cord
formation in matrigel

[94]

SVF Multipotent CD34 + /CD13 + spontaneous
differentiation in
methylcellulose cultures

CD31, vWF, cord formation in
matrigel, in vivo validation

[105]

Amniotic-fluid MSCs Multipotent EGM-2, shear force, hypoxia PECAM-1,vWF, DiI-Ac-LDL
Cord formation in matrigel

[96]

bFGF, basic fibroblast growth factor; BMP4, bone morphogenetic protein 4; DiI-Ac-LDL, DiI acetylated low-density lipoprotein; ECGS,
endothelial cell growth supplement; ECM, extracellular matrix; EGF, epidermal growth factor; EGM-2, endothelial growth media-2;
hESCs, human embryonic stem cells; IL3, interleukin 3; IL6, interleukin 6; MSCs, mesenchymal stem cells; PECAM, anti-human CD31;
PEG, polyethylene glycol; SVF, stromal vascular fraction; VCAM1, vascular cell adhesion protein 1; VE, vascular endothelial; VEGF,
vascular endothelial growth factor; vWF, von Willebrand factor.
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stimulated, a common feature was the nonhomogeneous
character of each one of the obtained populations regarding
the expression of endothelial-related markers. Furthermore,
the expression of important markers, such as endothelial
nitric oxide synthases, or von Willebrand factor, was either
not assessed [63] or absent [95], which might significantly
compromise the in vivo performance and functionality of
SC-derived endothelial-like cells.

Additionally, the effect of differentiation signals provided
by ECM produced by endothelial cells as well of MSC al-
teration of these signals over MSC endothelial differentiation
was evidenced by Lozito et al. [106]. It was also demon-
strated that the BM-derived MSCs cultured in the ECM
produced by macrovascular endothelial cells, eliminated by
cell lysis, differentiate into endothelial cells supposedly by
the action of some factors provided by the matrix, including
VEGF, platelet derived growth factor (PDGF), and fibroblast
growth factor (FGF) as previously identified [103], showing
evidence of a feedback system in which MSCs are able to
alter the very matrix signals acting upon them, releasing EC-
differentiation factors from the matrix. Furthermore, the
influence of the combination of growth factors, cocktail
administration, and 3D polymer scaffold environment has
also been highlighted in cell differentiation, namely in the
formation of a 3D vessel-like network in vivo [100].

Overall, the endothelial-generated cells (see Table 2) de-
picted an endothelial phenotype in vitro, as proved by the
typical markers; however, in vivo functionality assessment
has only been demonstrated for some of the differentiation
strategies [61,64,65,95,100,102,105]. A significant explanation
for this might be the low yield of cells; as most strategies do
not accomplish the full population differentiation, selection
methodologies have been used to achieve homogeneous
cultures, consequently with lower numbers. Improved cul-
ture methodologies are needed to overcome this issue and
to allow the validation of the results by proving the vascu-
lar performance and integration of the differentiated cells
in vivo.

Stem Cells Impact in Would Healing

Wound healing in postnatal human skin is one of the most
complex biological processes. It involves a highly coordi-
nated interplay among cells, soluble factors, and extracellular
matrix, aiming at an effective wound closure [107]. The
purpose of skin wound healing comprehends skin restora-
tion and reestablishment of its tensile strength and natural
barrier function [108]. Dysfunctional healing leads quite
frequently to lifelong disability, having significant conse-
quences and economic impact.

Wound healing repair versus regeneration

The distinction between repair and regeneration is crucial
to understanding desirable wound healing progression, as
elucidated in Fig. 3. Wound repair commonly refers to the
physiological adaptation of an organ after injury, in an effort
to reestablish continuity without considering the functional
replacement of damaged tissue, whereas accurate tissue re-
generation comprehends replacement of damaged tissue as
an exact copy, in which both morphology and functionality
are completely restored [109].

In adult skin, wound-healing responses can be physio-
logical or regenerative, respectively leading to wound repair
and wound regeneration. Although the understanding of
how fetal skin shifts from a regenerative response in utero to
a reparative response postnatally is still in its infancy [107], it
might be the key for defining how adult skin healing may be
redirected to the regenerative pathway instead of the wound
repair–scar formation pathway.

Stem cells action

Stem cells, besides their plasticity and self-renewal capa-
bility, are known to enhance wound healing and reduce in-
flammation [110]. Although the extent of stem cell
involvement in cutaneous wound healing is complex and not
fully understood, these cells play a significant role in pro-
moting wound vascularization, reducing wound contraction,
attenuating scar formation, and inducing keratinization, and
thus in better skin healing [111]. In fact, resident stem cells
from epidermis and dermis are thought to promote re-
epithelialization, vascularization, and extracellular matrix
remodeling through paracrine communication with resident,
inflammatory, or antigen presenting cells and by transdif-
ferentiation [112,113]. A strong example of this is the inner-
most role of EpSCs, not only in reepithialization [114], but
also in the differentiation along adnexal lines [115], thus
providing a superior source of multipotent stem cells to
bioengineer sebaceous glands, along with formation of hair
follicles [116,117].

Paracrine signaling and interactions. Paracrine interactions
designate neighboring cellular communications. Stem cells
are able to interact with their microenvironment, releasing
multiple wound healing factors that present several advan-
tages when compared with administered factors [118]. Ad-
ditionally, MSC paracrine signaling regulates the local

FIG. 3. Schematic overview of wound healing, focused on
the major events that distinguish repair and regeneration.
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cellular responses to injury [119]. During cutaneous healing,
recruited and resident stem cells are sensitive to the dis-
ruption of this microenvironment and thus respond accord-
ingly. Although the mechanism and the signaling pathways
responsible for MSC homing to wounded and uninjured skin
are not fully understood, they probably involve the complex
interplay of adhesion molecules, cytokines, extracellular
matrix proteases, and tissue inhibitors of matrix metallo-
proteinase, forming a sophisticated signaling cascade [120].

There is increasing evidence [110,121–123] that leads to the
conclusion that MSC signaling is the main mechanism re-
sponsible for enhancing wound regeneration. It is thought
that extensive skin injury, after the local stem cells response
[124], promotes the early trafficking to the wounded region
of a unique subclass of cells from bone marrow. These are
the circulating bone marrow–derived cells, which include
fibrocytes [125,126] that originate the myofibroblast popu-
lation, essential to the wound closure [127]. Injected BM-
derived MSCs also release IGF-1, EGF, and KGF that
promote the proliferation of keratinocytes [110], and proan-
giogenic cytokines such as VEGF-a and angiopoietin (Ang)-1,
which trigger an angiogenic response by local cells [123].
hASCs transplanted into a full-thickness skin defect have
also been shown to enhance vascular density through para-
crine mechanisms, along with an autocrine loop functioning,
since, as suggested by the authors, local ASCs are likely to
produce angiogenic factors that act on themselves or neigh-
boring ASCs to reestablish vascularization at the wound site
[128]. Interestingly, MSC-conditioned medium (MSC-CM),
not only from bone marrow, but also from hASCs, appears to
accelerate epithelialization, in a similar manner to what was
observed when MSCs were transplanted [121,122]. BM-MSC-
CM has also been implicated in the enhancement of wound
neovascularization, by exerting potent chemoattractive and
mitogenic effects that lead to increasing numbers of positive
cells for CD34, C-kit, or Flk-1, thus suggesting recruitment of
endothelial and endothelial progenitor cells into the wound
[129].

The understanding of the effect of paracrine signaling on
individual cell types, envisioning to disclosure the com-
plexity in wound site interactions, has been addressed
with in vitro studies. Meeting conclusions from in vivo data,
BM-MSC-CM was shown to act as a chemoattractant for
macrophages and endothelial cells. [119] Also, it has been
demonstrated that BM-MSCs and BM-MSC-CM are effective
chemoattractants for keratinocytes and dermal fibroblasts,
proving its importance in the recruitment of these two types
of resident cells [130] Furthermore, MSC-CM stimulates their
proliferation, along with endothelial cells, through secreted
mitogenic factors [121,130,131].

Transdifferentiation. MSCs have the ability to differentiate
into cell types other than mesenchymal cell lineages
[69,72,132], including into tissue-specific cells, as a response
to cues provided by the specific niche of different organs
[39,118,133]. This transdifferentiation phenomenon has been
observed in skin wound regeneration in which MSCs gave
rise to critical skin-related cell lineages such as epidermal,
endothelial, and pericytic [69,72 128,132,134–136]. This was
particularly detected when GFP transgenic mice BM-MSCs
and hASCs seeded in silk-fibroin-chitosan scaffolds were
respectively injected and transplanted into full-thickness
mice skin wounds [128]. Moreover, labeled UCBSCs applied

locally at the wound margin of cutaneous mice wounds were
not only found to accelerate the speed of wound healing but
also to transdifferentiate into keratinocytes, identified in the
newly formed epidermis [69,71,72,136]. Yet, another study
shows that BM naturally contributes to a significant per-
centage of dermal fibroblasts in the skin, mainly associated
with hair follicles, but rarely to the newly formed epidermis
[113].

Despite all those indications, it is still controversial whe-
ther MSCs significantly contribute to wound healing via
transdifferentiation [132,137]; this uncertainty might be ex-
plained by the requisite of a suitable microenvironment that
not only promotes specific transdifferentiation, but also
sustains the viability of the transplanted cells, promoting the
formation of whole biologically functional tissue. Another
explanation for stem cell plasticity resides in the cell fusion
phenomenon. [138,139] Unlike what frequently occurred ex
vivo [140], there is evidence that fusion might not be the
primary mechanism [141], and transdifferentiation is be-
lieved to be the predominant event in vivo [110]. None-
theless, the phenomenon of cell fusion occurrence, versus
direct differentiation, in stem cell therapy is not fully un-
derstood and the debate persists.

Clinical Trials and Stem Cells Contribution
to Wound Healing

Several in vivo studies [142–145] have highlighted the
potential of stem cells to treat skin wounds by accelerating
wound healing where other methods failed before, making
the statement as a strong therapeutic alternative and raising
advances towards clinical trials. This data collection moti-
vated the arising of MSC-based therapies for treating skin
tissue wounds, which is reflected by the 90 clinical trials
currently listed in the United States National Institutes of
Health registry [120]. Despite this enormous number of
clinical trials currently ongoing, only a set of studies that
represent the potential of distinct adult stem cell sources on
the treatment of several range of skin wounds categories will
be herein discussed.

Recent studies have reinforced the significant impact of
BM-MSCs [146,147] in nonhealing wounds, as described in
subsequent sections, showing their active contribution to
wound closure, reepithelialization (by differentiating into
keratinocytes), neovascularization, and appendages regen-
eration [110].

A major advance in the treatment of a chronic nonhealing
wound (diabetic ulcer) has been made [148] using the pa-
tient’s BM-MSCs in combination with autologous skin fibro-
blasts on biodegradable collagen membrane (Coladerm�).
Wounds showed a steady overall decrease in size and an in-
creased dermal vascularization and thickening of the wound
bed along the treatment. Furthermore, a clinical trial with a
BM-MSC CD90 enriched population was also undertaken in
diabetic patients with critical limb ischemia [147]. Cells were
administered intramuscularly or intra-arterially, leading to
revascularization of the affected limb and local perfusion
enhancement, demonstrating once more the relevant role of
these cells in critical wound regeneration.

On another perspective, the potential of the EpSCs iso-
lated from hair follicle to improve wound healing in full-
thickness burn patients is also being explored in clinical trials
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following different approaches. In one strategy, hair follicles
were implanted in the commercial available dermal substi-
tute IntegraTM [149] with a novel technique of micrografting
that resulted in complete reepithelialization and a hair-
bearing scalp without the need for a split-thickness skin
graft. Another approach, in phase II clinical studies, uses
fully differentiated autologous epidermal equivalent derived
from keratinocytes/ EpSCs of the outer root sheath of
plucked anagenic hair follicles to demonstrate the effective-
ness of this split-thickness skin autograft in promoting
healing and complete closure of recalcitrant vascular leg ul-
cers [150].

Other clinical trials currently underway make use of other
sources of stem cells, such as autologous lipoaspirate [151]
and umbilical cord [152], to obtain MSCs respectively to
treat diabetic ulcers and diabetic foot condition, reflecting the
rapid emergent technology that desperately needs to move
forward to meet patient needs in skin regeneration.

Concluding Remarks and Perspectives

Stem cells function as the human body’s building blocks
that have to make ‘‘choices.’’ Numerous studies have begun to
disclose their inner unlimited capacities, and unlike what was
previously thought, they can be driven toward transdiffer-
entiation and give rise to unexpected relevant cell lineages.
Furthermore, stem cells have unique features that translate
into the release of important growth factors that play decisive
roles in therapeutic regenerative medicine approaches

Specifically in skin regeneration, the use of stem cells can
contribute in an active way to revolutionize and overcome
some of the limitations of the current approaches. Different
methods have been designed and made progress in this field
(eg, in the healing of chronic wounds). Stem cells, as part of
skin TE constructs, interact with the resident cells providing
the cues for the regeneration of a functional tissue, instead of
fibrotic scar tissue. The strategies are limitless but can con-
template distinct concerns like in vitro differentiation or
in vivo paracrine signaling control in different skin wound
models. Either way, communication with the resident cell or
even by autocrine signaling seems to be a common feature
that triggers the whole therapeutic potential and takes ad-
vantage of the irreplaceable plasticity of stem cells. Thus, cell-
signaling cascades seem to be the key for transplanted stem
cells to efficiently engraft and subsequently to differentiate.

Beyond all the excitement in the stem cell field, technical
and scientific obstacles should not be ignored, and the
awareness that there are issues still to be addressed is ex-
tremely important when moving to clinical applications. In
skin regeneration itself, stem cell therapeutic potential is a
work in progress, where details of stem cell biology should
always be present, and where the potential of off-the-shelf
stem cell-based tissue engineered products is only just be-
ginning to be realized. The great outcome of innovative stem
cell-based models is opening a new era of skin regeneration,
where achieving functional skin is the main concern, in-
cluding the building of yet lacking appendages, such as
nerves, sweat glands, and blood supply.
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