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Abstract: Epilepsy is a chronic disease of the central nervous system characterized by an electrical
imbalance in neurons. It is the second most prevalent neurological disease, with 50 million people
affected around the world, and 30% of all epilepsies do not respond to available treatments. Currently,
the main hypothesis about the molecular processes that trigger epileptic seizures and promote the
neurotoxic effects that lead to cell death focuses on the exacerbation of the glutamate pathway and
the massive influx of Ca2+ into neurons by different factors. However, other mechanisms have been
proposed, and most of them have also been described in other neurodegenerative diseases, such as
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or multiple sclerosis. Interestingly,
and mainly because of these common molecular links and the lack of effective treatments for these
diseases, some antiseizure drugs have been investigated to evaluate their therapeutic potential in
these pathologies. Therefore, in this review, we thoroughly investigate the common molecular
pathways between epilepsy and the major neurodegenerative diseases, examine the incidence of
epilepsy in these populations, and explore the use of current and innovative antiseizure drugs in the
treatment of refractory epilepsy and other neurodegenerative diseases.

Keywords: epilepsy; neurodegenerative diseases; Alzheimer’s disease; Parkinson’s disease; Huntington’s
disease; multiple sclerosis

Highlights

• Epilepsy is the second most prevalent neurological disease and appears in patients
with neurodegenerative diseases, thus indicating a molecular link between them;
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• There is growing evidence that relates the appearance of β-amyloid plaques, neu-
rofibrillary tangles, α-synuclein, or mutations in the huntingtin protein to increased
neuronal excitability that precedes seizures;

• Several approved drugs, such as atorvastatin, ceftriaxone, losartan, anakinra, rapamycin,
and fingolimod, have been studied in animal models for antiseizure applications;

• Commonly used antiseizure drugs, such as levetiracetam, zonisamide, and valproate,
are being investigated in other neurodegenerative diseases.

1. Introduction

Epilepsy is a chronic disease of the central nervous system (CNS) characterized by an
imbalance in neuronal electrical activity, which leads to various recurrent and unpredictable
seizures [1]. Some epileptic syndromes have been related to progressive cortical thinning
and brain volume loss, as well as to neuronal death in several brain regions [2,3]. According
to the latest Global Burden of Disease study, epilepsy is considered the second most serious
neurological disease in the world in terms of disability-adjusted life years [4]. In 2016, it was
estimated that there were 45.9 million people with all-active forms of epilepsy worldwide,
with an age-standardized mortality rate of 1.74 per 100,000 individuals [4]. Globally, it
is estimated that 2.4 million people are diagnosed with epilepsy each year. According to
the Brainstorm Consortium, epilepsy is the most heritable neurological condition [5]. In
developed countries, there are between 30 and 50 new cases per year per 100,000 people in
the general population. In contrast, in developing or underdeveloped countries, this figure
can be up to two times higher. This is due to the increased risk of endemic diseases, birth-
related injuries, variations in medical infrastructure, and the low availability of preventive
health programs [6]. A meta-analysis carried out by Fiest et al. pointed out that the lifetime
prevalence of epilepsy is 7.60 per 1000 people worldwide, encompassing epilepsies of
unknown etiology and those with generalized seizures, which have a higher prevalence [7].

Seizures are the result of bursts of abnormally excessive or synchronous neuronal
activity in the brain that can cause a wide range of symptoms. Seizures can involve a
specific brain area or network (focal-onset seizures) or a synchronic bihemispheric discharge
(generalized-onset seizures) [8]. Epilepsy classification is complex and includes different
levels, from seizure types to epilepsy syndromes, which encompass several clinical features,
such as age of onset, specific etiologies, and comorbidities [8]. According to the latest
International League Against Epilepsy (ILAE) classification, epilepsy etiologies can be
classified into structural, genetic, infectious, metabolic, immune, or unknown etiologies [8].

At the molecular level, these disorders promote the depolarization of the presynaptic
membrane, which has been described as the main cause of neuronal hyperexcitability
that triggers the abnormal electrical activity characteristic of epileptic seizures (Figure 1).
Hyperstimulation causes a conformational change in several ion channels and membrane
receptors, which leads to a massive flow of Ca2+ and/or Na+ ions into the neuron and an
outflow of K+ ions. In turn, this ionic imbalance causes the activation of different signal-
ing cascades that promote neurotoxic effects and neuronal plasticity changes, ultimately
leading to cell death [9].

Since the late 19th century, when Hughlings Jackson proposed that seizures were
due to focal neuronal firing, the cerebral cortex has been considered the predominant
anatomical source of seizures [10–12]. In recent years, the findings of histopathological,
electrophysiological, and quantitative neuroimaging studies have provided ample evidence
demonstrating that both focal- and generalized-onset seizures involve diverse interactions
between neural networks of cortical and subcortical structures [13]. Likewise, it has been
described that seizures are due not only to generalized alterations between different brain
structures but also dysfunctional neural networks dominated by excessive or hypersyn-
chronous paroxysmal activity [13]. Focal epilepsy is the most common type of epilepsy in
adults, in which the main area of seizure initiation is the temporal lobe, although foci of
origin have also been observed in the frontal, parietal, and occipital lobes (in descending
order of frequency) [14]. Likewise, the amygdala-hippocampal complex is one of the key
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anatomical circuits involved in the epileptogenic process. Hippocampal sclerosis represents
the paradigmatic histological finding and representative form of neuronal loss in temporal
lobe epilepsy [15].

Figure 1. General molecular mechanisms of the development of seizure activity in epilepsy and associated ASDs.

Because of the many types of epilepsy syndromes and their different causes, epilepto-
genic foci, and manifestations, the therapeutic approach to epilepsy is also complex and,
in many cases, ineffective [16]. At the beginning of the 20th century, the first antiepileptic
drugs appeared (e.g., phenobarbital, valproate, benzodiazepines), and it was not until the
1990s that the second-generation drugs (e.g., gabapentin, pregabalin, lamotrigine, levetirac-
etam, topiramate) emerged as new treatment options in the clinical practice [17]. Because
of that, in recent years, third-generation drugs (e.g., lacosamide, rufinamide, perampanel)
have emerged. These substances possess an enhanced controlled central activity and a
more favorable pharmacokinetic profile (Figure 1) [17]. However, these medications are
focused almost exclusively on seizure control and not on the epileptogenic mechanisms,
which is why they are currently referred to as antiseizure drugs (ASDs) [17]. Therefore, in
this review, we thoroughly investigate the common molecular pathways between epilepsy
and the major neurodegenerative diseases, examine the incidence of epilepsy in these pop-
ulations, and explore the use of current and innovative ASDs in the treatment of refractory
epilepsy and other neurodegenerative diseases.

2. Epilepsy in Neurodegenerative Diseases
2.1. Epilepsy and Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia, affecting 50 million
people worldwide, and is characterized by memory loss and cognitive decline associated
with neurodegenerative processes [18]. The main hypothesis for the neurotoxicity and
synaptic dysfunction in AD focuses on the typical pathological hallmarks of the disease,
mainly intracellular neurofibrillary tangles (NFTs) of phosphorylated tau (p-tau) and
extracellular amyloid-β (Aβ) senile plaques, although many other mechanisms involved in
AD pathogenesis have been described [19].

Regarding the frequency of epilepsy in AD patients, it has been reported that indi-
viduals suffering from AD have a more than 80 times higher risk of developing seizures
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compared to individuals without AD [20]. On the other hand, patients with epilepsy have
a higher risk of developing dementia over the years [21]. For these reasons, it has been
argued that the increased incidence of seizures in AD could just be due to the fact that the
onset of AD typically occurs after the age of 65 [22]. However, the relationship between
epilepsy and AD has created much controversy. Whereas several studies have shown
a higher incidence of seizures among AD patients, many authors have highlighted that,
according to the type of monitoring used and the population studied, the prevalence of
seizures in AD may range from 3.5% to 64% [23].

The molecular relationship between the pathological mechanisms of AD and epilepsy
has been widely studied because of the evidence of common, pervasive brain glucose
hypometabolism, spatial memory and navigation deficits, damage in hippocampal neurons,
and general neurodegeneration in the temporal lobe [20]. Interestingly, senile plaques were
first described in epileptic patients more than 10 years earlier than the first report of a case
of AD [24]. In fact, the first clinical studies that evaluated the relationship between AD and
epilepsy date back to the early 1950s [25,26]. Both diseases involve neuronal damage and
also appear to have a bidirectional association [27].

The research group of Dr. Cole carried out an interesting study in the Epilepsy
Service of Massachusetts General Hospital and Harvard Medical School in Boston. They
found that patients with AD experienced subclinical seizures during sleep without clinical
manifestations. This study highlighted the hypothesis that seizures might modulate,
promote, or accelerate the pathological pace of AD [28]. Similarly, a study performed
10 years ago found that 42% of AD patients developed subclinical seizures, compared to 11%
in the control group. This epileptic activity originated mainly in the temporal lobe during
the deeper stages of sleep. Moreover, over a 5-year period, these AD patients showed
increased cognitive decline compared to AD controls without subclinical seizures [20].

Several mechanisms connecting epilepsy and AD have been described. Recent exper-
imental data suggest that neuronal hyperexcitability itself might play an important role
in promoting the neuropathological burden and cognitive decline of AD [22]. Thus, the
increase in amyloid-β (Aβ) and tau peptide levels characteristic of AD has been related to
the molecular pathways that trigger seizures (Figure 2).

2.1.1. The Role of Aβ in Epilepsy

Patients affected by hereditary AD, which is typically caused by mutations in the
amyloid precursor protein (APP), presenilin-1 (PS1), and/or presenilin-2 (PS2) genes, are
a particularly seizure-prone population, with seizures rates higher than 30% [29]. These
findings support the key role of Aβ in epileptic susceptibility (Figure 2). In addition, a
derived hypothesis describes a vicious cycle in which AD molecular alterations promote
seizures [22], which in turn may exacerbate AD pathology [29]. In AD, soluble oligomeric
Aβ, rather than Aβ plaques, has been reported to be the main cause of neuronal hyperex-
citability [22]. Thus, Aβ1-42, the most toxic form of Aβ soluble peptides, has been found
to increase neuronal excitability by selectively inhibiting K+ currents [30]. Glutamate
signaling has also been described to be altered by Aβ in AD patients. The impairment of
neuronal and glial glutamate reuptake may lead to glutamate spillover and, consequently,
excitotoxicity. Likewise, glutamate excitotoxicity is also exacerbated by the effect of Aβ

on N-methyl-D-aspartate receptor (NMDA-R) trafficking [31]. Kam et al. hypothesized
that the activation of cholinergic receptors and Ca2+ channels by Aβ might trigger early
subclinical epileptic activity preceding clinical AD [32]. Indirectly, beta-secretase 1 (BACE1),
one of the main proteins involved in the formation of Aβ, has also been related to the
promotion of epileptogenic processes (Figure 2) [22]. Several studies have described that
BACE1 cleaves the β2 and β4 subunits of the voltage-gated Na+ channel. β2 cleavage
alters the transcription and expression of the receptor on the cell surface [33]; β4 cleavage
significantly increases the intracellular levels of Na+ [34]. Both processes lead to general
neuronal hyperexcitability that ultimately conduces to the development of seizures. In
preclinical studies, Kim et al. demonstrated the physiological changes in sodium channel
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metabolism in BACE1-null mice [35]. They found that Nav1.1 protein levels and Navβ2
processing were significantly decreased in BACE1-null versus wild-type mouse brains.
Interestingly, hippocampal surface Nav1.1 levels were significantly decreased, but Nav1.2
surface levels were increased in BACE1-null mice, perhaps as a compensatory mechanism
for reduced surface Nav1.1 levels. All these results caution that therapeutic inhibition of
BACE1 activity may affect Na+ metabolism and alter neuronal membrane excitability in AD
patients [35]. Likewise, it has been described that BACE inhibitors might be involved in the
development of seizures. In that respect, it has recently been reported that BACE inhibitors
can induce hyperactivity in persons carrying a seizure-related gene family without altering
learning and memory [36].

Figure 2. Seizure activity derived from the main pathological molecular pathways of Alzheimer’s disease. The pathological
hallmarks of Alzheimer’s disease promote an increase in neuroinflammation and intracellular Ca2+ through ACh and
NMDA receptors and Na+/Ca2+ channels. This promotes an increase in neuroinflammation and neuronal hyperexcitability,
which in turn increases the neurodegeneration process (and vice versa) in a vicious cycle. NE, norepinephrine.

The potential causative role of Aβ in the development of neuroinflammation and, in
turn, the generation of seizures has also been described (Figure 2). Neuroinflammation
is characterized by the induction of an immune reaction in the CNS as a response to a
pathological process and has been detected in both epilepsy and AD [37]. Inflammation
in the CNS is mediated mostly by microglia, astrocytes, and oligodendrocytes [38]. The
glial activation by Aβ leads to the release of numerous proinflammatory cytokines (i.e.,
TNF-α, IL-6, or IL-1β), giving rise to the appearance of generalized neuroinflammation.
This process, in turn, promotes neurotoxic effects, which ultimately lead to the appearance
of neuronal hyperexcitability, in turn increasing the neurodegeneration process in a vicious
cycle [22]. Likewise, proinflammatory cytokines, such as IL-1β, have been described to
increase neuronal hyperexcitability by enhancing glutamate release by astrocytes and
reducing its reuptake [39] or by upregulating NMDA-Rs, which increases the intracellular
Ca2+ influx [40]. Moreover, in vivo and in vitro studies have provided evidence for a
bidirectional relationship between exacerbated inflammation and seizures; both events
feed back into each other in a vicious circle [39].
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2.1.2. The Role of Tau in Epilepsy

Animal models have been very useful in understanding the role of tau in the gener-
ation of seizures (Figure 2). A preclinical model of transgenic APP/knock-out tau mice
suggested that tau protein is a necessary mediator of the epileptogenic effects of Aβ [41].
In this study, transgenic mice exhibited less frequent and less severe seizures than wild-
type mice. Tau protein has also been shown to promote marked neuronal excitotoxicity
by increasing extracellular glutamate and NMDA-R dysfunction [42]. Likewise, tau has
also been related to abnormal neuronal migration in the hippocampus, which is closely
involved in epilepsy development [43].

In 2011, a postmortem study in patients with chronic epilepsy revealed that almost
70% of the analyzed brains exhibited mild or moderate AD tau pathology [44]. Tau burden
was significantly related to progressive cognitive decline, with focal epilepsy being more
often associated with higher tau burden in patients with chronic epilepsy than in patients
with idiopathic or genetic generalized epilepsy [44]. Likewise, a study in three different
animal models of epileptogenesis found a decrease in phosphatase 2A activity, the enzyme
responsible for phosphorylation/dephosphorylation within cells, which led to an increase
in p-tau in the epileptogenic brain regions [45].

2.1.3. The Role of Allopregnanolone in AD and Epilepsy

Allopregnanolone is a naturally occurring neurosteroid derived from the hormone
progesterone. Accumulating evidence points toward a molecular relation between allo-
pregnanolone and AD development [46]. Several authors have reported reduced plasma
and brain levels of allopregnanolone in the prefrontal cortex of AD patients [46]. Curiously,
Luchetti et al. reported increased levels of the mRNA levels of the enzyme aldoketoreduc-
tase C2, which leads to the synthesis of allopregnanolone in the brains of the early AD
neuropathological stage [47]. It has been hypothesized that this increase is a compensatory
mechanism of the prefrontal cortex to raise the levels of allopregnanolone, but further stud-
ies would be necessary to fully understand this event. Declining allopregnanolone levels, as
well as other neurosteroids, have been suggested to lead to reduced neuroprotection. This
could indeed be one of the bases for increased apoptosis and neuronal cell loss, which may
therefore contribute to neurodegenerative processes and hyperexcitability, which finally
lead to the appearance of seizures. Likewise, it has been also described that the reduced
levels of allopregnanolone may chronically activate the astrocytes and microglia [46]. This
activated microglia around the plaques, have been promote the production of neurotoxic
cytokines, chemokines, and reactive oxygen and nitrogen species, which also contribute to
the increase in neuronal excitability and finally seizures.

2.2. Epilepsy and Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive
loss of dopaminergic nerve endings in the substantia nigra and striatum, which leads to
motor and coordination symptoms but also to cognitive decline, depression, and anxi-
ety [48]. PD is the second most prevalent neurodegenerative disease and the most common
motor disorder [49]. The origin of PD is not yet clear, but it has been hypothesized that
it may involve mutations in specific genes and environmental causes [48]. PD patients
exhibit a reduced dopaminergic activity and alterations in the structure of α-synuclein, a
presynaptic protein that seems to play an important role in the development of PD [50].
Dopaminergic neurons can become damaged as a result of the toxicity of oligomeric forms
of α-synuclein, endoplasmic reticulum (ER) stress, autophagy processes, dysfunction of
calcium homeostasis, and changes in the function and structure of mitochondria [51]. α-
synuclein is also the main component of Lewy bodies, which are closely related to PD
dementia and have been found in the locus coeruleus of more than 50% of PD patients [52].
The misfolding and aggregation of α-synuclein commonly appear in the development of
sporadic PD. Some authors have reported that these aggregates might be able to propagate
transsynaptically from cell to cell, from the enteric nervous system or olfactory bulb all the
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way to the cerebral cortex, although the transsynaptic movement of α-synuclein has not
been conclusively demonstrated in these type of neurons [53].

Although typical symptoms involve tremor, rigidity, or bradykinesia, prototypic PD
and other forms of Parkinsonism can also show epileptic seizures and status epilepticus [54].
According to the Brainstorm Consortium, there is no genetic correlation between PD and
epilepsy [5]. Existing observational studies of the incidence of epileptic seizures in PD
patients are based on cross-sectional data, small and heterogeneous study populations, or
data that were not adjusted for confounding factors. However, Feddersen et al. reported
that 2.6% of PD patients develop epilepsy [54]. This value is very similar to that reported by
Bodenmann et al. 20 years ago, showing a prevalence of 2.4% [55]. A retrospective cohort
study with a nested case-control analysis recently conducted by Gruntz et al. revealed
that, among 23,086 patients with incident PD and 92,343 PD-free individuals, 898 patients
were identified with incident epileptic seizures [56]. The number of people who suffered
from epileptic seizures in the PD patients’ cohort was twice as large as that in the PD-free
cohort, being 266.7/100,000 and 112.4/100,000 person-years, respectively. In addition, the
adjusted odds ratio (OR) of epileptic seizures was 1.68 in PD patients compared with PD-
free individuals. Likewise, PD patients with more than one seizure-provoking comorbidity
were at the highest risk of epileptic seizures compared with PD-free individuals with no
seizure-provoking comorbidities. This study clearly suggests that incident PD is associated
with an increased risk of incident epileptic seizures [56]. However, this study did not reveal
whether these findings were due to differences at the molecular level, concomitant drugs
taken by the study’s patients, or the degree of causality. Thus, further studies are needed
to clarify these issues.

Regarding the available treatments, it is important to highlight that many drugs for
PD possess antiepileptic properties, such as L-DOPA or apomorphine, which could alter
the real values of the cross-sectional prevalence between both diseases [57,58].

2.2.1. The Role of α-Synuclein in Epilepsy

The role of α-synuclein in the pathophysiological mechanisms that trigger PD and
epileptogenic events is closely related to mitochondrial dysfunction (Figure 3A) [51,59,60].
As described above, the accumulation of misfolded α-synuclein leads to the formation
of Lewy bodies in susceptible neurons, located mainly in the basal ganglia. Likewise,
abnormal α-synuclein has also been described to affect the structure of mitochondria at
different levels [51]: (i) alterations in voltage-dependent anion channels located in the
mitochondrial membrane, which are involved in calcium transport between the endo-
plasmatic reticulum and the mitochondria, resulting in a massive entrance of Ca2+ and,
consequently, organellar hyperexcitability that provokes mitochondrial dysfunction; (ii) dis-
ruption of protein import through the outer mitochondrial membrane by binding to the
TOM22 receptor, which results in a decrease in the activity of complex I, depolarization of
mitochondria, dysregulation of Ca2+ homeostasis, and overproduction of reactive oxygen
species (ROS); (iii) direct inhibition of complexes I and V of the electron transport chain of
mitochondria; (iv) mitochondrial depolarization, whose consequence is the accumulation
of the serine/threonine kinase PINK1 in the mitochondrial outer membrane, which in
turn initiates the removal of damaged mitochondria by autophagy; and (v) inhibition of
mitochondrial sirtuin 3, an enzyme that plays a key role in the prevention of oxidative
stress and the maintenance of mitochondrial function and whose inhibition contributes to
impaired mitochondrial biogenesis and dynamics [51,60].

Both mitochondrial dysfunction and Lewy bodies are the triggers for a vicious circle
in which there is an increase in ROS levels and oxidative stress, peroxidation of membrane
lipids that enhances membrane disruption, activation of glia, and the release of proinflam-
matory cytokines, leading to an increase in neuroinflammation, neurodegeneration, and,
ultimately, neuronal hyperexcitability (Figure 3A) [53].
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Figure 3. Related molecular pathways between Parkinson’s disease and epilepsy. (A) Neuronal excitability via mitochon-
drial dysfunction derived from the accumulation of abnormal α-synuclein. Abnormal α-synuclein promotes membrane
depolarization, massive influx of intracellular Ca2+, and oxidative stress through the induction of mitochondrial dysfunction
and Lewy bodies’ formation. This promotes an increase in neuroinflammation and neuronal hyperexcitability, which in
turn increases the neurodegeneration process (and vice versa) in a vicious cycle. (B) Proepileptic/antiepileptic properties
of dopamine conditioned by its binding to the D1/D2 family of receptors. Binding of dopamine to D1R promotes an
increase in cAMP, which leads to the activation of NMDA-Rs and blockage of GLUT1, thus promoting a massive influx
of intracellular Ca2+ and a reduction in glutamate reuptake. This gives rise to an increase in neuroinflammation and
neuronal hyperexcitability, which in turn increases the neurodegeneration process (and vice versa) in a vicious cycle. Binding
of dopamine to D2R inhibits the production of cAMP, thus promoting the opposite effect of that of D1R activation. NE,
norepinephrine; ROS, reactive oxygen species.
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2.2.2. The Role of Dopamine and Norepinephrine in Epilepsy

As mentioned above, dopamine has been described to possess antiepileptic activity.
However, this effect is conditioned by the family of receptors it binds to [53]. There are
two families of dopamine receptors: the D1 family, which comprises D1 and D5 dopamine
receptors, and the D2 family, which comprises D2, D3, and D4 receptors. When dopamine
binds to both subtypes, the effect is opposite [53]: the activation of D1-like receptors
enhances the activation of adenyl cyclase, which produces an increase in cAMP and thus
leads to the activation of NMDA-Rs and blockage of GLUT1. All this results in an increase in
glutamate, intracellular Ca2+, oxidative stress, and proinflammatory cytokines, stimulating
neuronal hyperexcitability and leading to seizures (Figure 3B) [61]. With regard to that, a
study performed in the 90s already showed that the activation of D1 receptors in patients
with refractory epilepsy promoted the development of epileptic activity by increasing
cortical excitability, whereas D2 receptor agonists exhibited the opposite effect [62].

Postmortem brain analysis of well-established PD patients showed a widespread
reduction in the levels of the neurotransmitters norepinephrine, acetylcholine, and sero-
tonin, with norepinephrine being the most affected [63]. The neuronal network of the locus
coeruleus was the most affected, as most of the norepinephrine neuronal circuit lies there.
Interestingly, most of the Lewy bodies’ accumulation also appears in this brain region [53].
This reduction might be associated not only with PD-related depression but also with the
appearance of epileptic activity since norepinephrine modulates neuronal excitability [64].
In preclinical studies, animals with lesions of the noradrenergic system are more vulnerable
to hippocampal kindling and seizures [65]. However, whether these statements also apply
to humans is not completely clear, so more studies are needed to confirm this hypothesis.

2.2.3. The Role of Allopregnanolone in PD and Epilepsy

There are some studies that have analyzed alterations of neurosteroid levels in PD
patients. Bixo et al. found 20 years ago increased levels of allopregnanolone in the sub-
stantia nigra and caudate nucleus of control subjects, indicating that synthesis of this
neurosteroid takes place in the dopaminergic system [66]. By contrast, in PD patients, di
Michele et al. reported reduced levels of allopregnanolone in the cerebrospinal fluid, thus
suggesting a molecular link for progesterone metabolites in this disease [67]. Moreover, the
mRNA expression of two enzymes that synthesize allopregnanolone, 5α- reductase type 1
(SRD5A1) and aldoketoreductase C3 (AKR1C3), was found to be significantly reduced
in peripheral blood mononuclear cells of PD patients [46]. This suggests a generalized
defect in the enzymatic machinery that regulates the metabolism of progesterone. Likewise,
SRD5A1 was downregulated in the substantia nigra, which, interestingly, was mirrored
by upregulation of AKR1C2 in the caudate nucleus, suggesting involvement of allopreg-
nanolone in the neurodegenerative process [46]. All these facts would be related to the
reduction in neuroprotection and the increase in neuronal excitability, which finally lead to
seizure development. However, further studies in large cohorts of patients are needed to
validate all these findings.

2.3. Epilepsy and Huntington’s Disease

Huntington’s disease (HD) is a rare, autosomal-dominant neurodegenerative disease
that involves motor dysfunction, incoordination, chorea and dystonia, behavioral difficul-
ties, and cognitive decline [68]. Just as in PD, the caudoputamen and basal ganglia are the
most affected areas in HD. HD is triggered by a mutation in the huntingtin (HTT) gene,
which leads to the overproduction of misfolded huntingtin protein (mHtt) [69]. In exon 1
of chromosome 4, the mutated gene exhibits a pathogenic genomic expansion of the CAG
trinucleotide repeat. In general, the greater the number of CAG repeats, the earlier the
onset of HD [70].

Early-onset HD (also called juvenile HD) is very rare (less than 10% of cases), asso-
ciates preferentially with paternal transmission, and presents a severe and rapid disease
progression [53,71]. In this cohort of patients, particularly in childhood-onset HD, epilep-
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tic phenomena are common, whereas, in adult-onset HD, they rarely occur [53,71]. The
most common seizure types in HD patients that have been documented are generalized
tonic-clonic and myoclonic seizures, suggesting that cortical and limbic structures are
involved [53]. There is not much information available regarding the incidence of epilepsy
in HD. A study performed by Cloud et al. in juvenile HD patients showed that seizures
were present in 38% of subjects [72]. Generalized tonic-clonic seizures were the most
common seizure type, followed by tonic seizures, myoclonic seizures, and staring spells.
Furthermore, they found that seizure risk increases with younger age at HD onset. Con-
versely, Spila et al. studied the frequency of epileptic seizures in adult-onset HD patients
and reported that the prevalence of epilepsy in patients with adult-onset HD was similar
to that in the general population [73]. However, the retrospective nature of these studies
limited their ability to obtain conclusive results. Future prospective studies with more
patients enrolled are therefore needed to validate all these findings.

2.3.1. The Role of mHtt in Epilepsy

Although the HTT gene mutation was described by Gusella et al. in 1983 [74], the
role of mHtt in the onset and progression of HD is not yet well known. In epilepsy, mHtt
has been described to contribute to neuronal hyperexcitability by different mechanisms
(Figure 4A,B) [53]. mHtt possesses a dual action on glial cells. On the one hand, it activates
microglia, which leads to a massive secretion of proinflammatory cytokines, an increase in
neuroinflammation, neurodegeneration, and, finally, neuronal hyperexcitability [75]. On
the other hand, it impairs glutamate uptake by damaging the GLUT1 transporters of the
membrane of astrocytes. This results in an increase in glutamate in the synaptic space,
which causes the excitotoxic cascade typical of this neurotransmitter [75]. Likewise, mHtt
has been reported to promote transcriptional dysregulation of essential genes, such as the
gene for brain-derived neurotrophic factor (BDNF), which leads to neuronal hyperexcitabil-
ity through the enhancement of glutamatergic responses and the inhibition of GABAergic
responses [76]. Emerging evidence also suggests that mHtt alters mitochondrial function,
which triggers defective Ca2+ homeostasis, aberrant ROS production, an alteration in
mitochondrial protein import, an increase in mitochondrial fragmentation, and, finally, a
decrease in ATP production [75]. As in PD, these mitochondrial alterations give rise to
several cascades of excitotoxic molecules that cause seizure activity in epilepsy.

2.3.2. The Role of BDNF in Epilepsy

In HD, reduced levels of BDNF and impaired function of receptors with high affinity
to this protein (TrkB) have been reported [76,77]. These alterations have been related to
reduced neuronal gene transcription of both BDNF and TrkB caused mainly by mHtt [53].
However, the role of BDNF in epilepsy is highly complex. Although some authors have
mentioned the protective effects of BDNF against excitotoxicity produced during seizures,
BDNF’s contribution appears to be mostly proepileptic [53]. Studies performed in the 90s
already reported that a significant increase in BDNF decreases the responses of GABAer-
gic neurons and increases the levels of interstitial glutamate, thereby directly promoting
neuronal hyperexcitability (Figure 4A) [78,79]. By contrast, other studies suggest that
sustained levels of BDNF could promote antiepileptic effects via the NPY peptide, which
has been shown to possess clear antiepileptic activity [80]. Interestingly, NPY/somatostatin
interneurons are increased in HD patients, thus suggesting the existence of compensatory
mechanisms before the cerebral cortex becomes hyperexcitable in these patients [53]. Fur-
thermore, hippocampal BDNF expression has been shown to have potential positive effects
on cognitive performance in post-status epilepticus rat models [81]. Likewise, it has been
reported that BDNF has a protective role in neurodegeneration through its antiapoptosis
and antioxidant effects and suppression of autophagy [82]. These results raise the possi-
bility of a molecular target for the treatment of epileptogenesis, although it is unknown
whether the cognitive effects are derived directly from BDNF signaling or are secondary to
the suppression of critical activity. On the other hand, epileptogenic models in which BDNF
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signaling has been tested are mostly based on epilepsies of structural origin, and whether
these signaling pathways are shared in different etiologies remains a matter of debate.

Figure 4. Related molecular pathways between Huntington’s disease and epilepsy. (A) General mechanisms by which mHtt
leads to the development of seizures. (B) Neuronal excitability via mitochondrial dysfunction derived from the damage
promoted by mHtt. mHtt promotes membrane depolarization, massive influx of intracellular Ca2+, and oxidative stress
through the induction of mitochondrial dysfunction and microglia activation and the inhibition of astrocyte GLUT1Rs,
BDNF, and GABAergic neurons. All this promotes an increase in neuroinflammation and neuronal hyperexcitability, which
in turn increases the neurodegeneration process (and vice versa) in a vicious cycle.
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2.4. Epilepsy and Multiple Sclerosis

Multiple sclerosis (MS) is a heterogeneous and complex autoimmune disease of the
CNS characterized by demyelinating processes and axonal damage. It affects more than
2 million people around the world and is considered the most prevalent chronic inflamma-
tory disease of the CNS [83]. Although MS is not categorized as a purely neurodegenerative
disease, its typical pathological processes lead to prolonged and irreversible destruction of
neural tissue [84–86].

Although the causes of its pathogenesis are not entirely clear, it is known that MS
development is associated with a combination of genetic and environmental factors. Inter-
estingly, genetic data suggest that the pathogenesis of MS shares important features with a
variety of non-CNS autoimmune diseases [83,87]. Moreover, the existence of an increased
intestinal permeability has also been highlighted as a potential cause of MS. This alteration
would allow the uncontrolled passage of substances into the blood (e.g., viruses, bacteria,
toxins), which could cause an abnormal response of the immune system [88].

MS lesions can appear throughout the CNS and are most easily recognized in the
white matter as focal areas of demyelination, inflammation, and glial reaction. Tissue
damage in MS results from a complex and dynamic interplay between the immune system,
glia (myelin-making oligodendrocytes and their precursors, microglia, and astrocytes),
and neurons. The cells involved in autoimmune inflammatory damage in MS are mainly
lymphocytes (T and B lymphocytes), macrophages, and microglia. In MS patients, the
blood-brain barrier (BBB) is damaged, allowing autoreactive T lymphocytes to pass. Inside
the brain, these T cells destroy the myelin sheaths, and surrounding inflammation is
facilitated by other immune cells and soluble elements, such as cytokines and antibodies
(Figure 5) [88].

Figure 5. Seizure activity derived from the main pathological molecular pathways of multiple sclerosis. Autoimmune
responses promote demyelination and axonal injury, which in turn trigger the activation of microglia, oligodendrocytes,
and macrophages, thus initiating neuroinflammation and neurodegeneration. All this increases neuronal hyperexcitability,
which in turn increases the neurodegeneration process (and vice versa) in a vicious cycle.

The clinical manifestations of MS are very heterogeneous. It typically presents as a
sensory and/or motor disorder, optic neuritis, fatigue, trigeminal neuralgia, or vertigo [89].
As with PD, the Brainstorm Consortium reported that there is no genetic correlation
between MS and epilepsy [5]. However, seizures can appear in MS patients [90]. Given
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the anatomical variability of demyelinating lesions, a wide variety of seizure types has
been observed in MS patients [91]. A retrospective study carried out on 310 patients with
MS reported that 3.2% suffer from epilepsy. In these patients, seizures were the first MS
symptom, and the most frequent seizure type was partial secondary generalized seizures.
Furthermore, these patients were younger and had an earlier onset of MS symptoms
compared to the group without epilepsy, and all showed cortical lesions [92].

Although the molecular link between epilepsy and MS has not been fully clarified,
some hypotheses have been put forward. The autoimmune hyperactivity that causes the
demyelinating process leads to the activation of both astrocytes and microglia, as well
as the initiation of the apoptosis process of oligodendrocytes [93]. All these mechanisms
cause a massive release of proinflammatory cytokines and a general increase in CNS
inflammation. In turn, this promotes the neurodegeneration process and stimulates the
demyelinating process, causing a vicious cycle of destruction of neural tissue. These
pathophysiological alterations contribute to increased neuronal hyperexcitability, the main
cause of the development of seizures (Figure 5) [94]. Likewise, direct axonal damage caused
by antibodies, T lymphocytes, proinflammatory cytokines, macrophages, etc., also directly
contributes to an imbalance in the electrical activity of neurons. This alteration affects the
membrane potential oscillations in neurons, leading to their hyperexcitability and, finally,
seizures (Figure 5) [94].

The Role of Allopregnanolone in MS and Epilepsy

Some studies have reported that allopregnanolone may target common pathological
pathways in MS and epilepsy [95]. Regarding MS, it has been reported that an impaired
neurosteroid synthesis in multiple sclerosis [96]. In this sense, Noorbakhsh et al. showed
that the administration of allopregnanolone in mice with autoimmune demyelination
ameliorated the neurobehavioral deficits and improved the neuropathology and neuroin-
flammation [97]. The same authors showed that levels of several neurosteroids, including
allopregnanolone, were suppressed in the white matter of patients with MS [96]. Regarding
epilepsy, Meletti et al. identified allopregnanolone as a positive modulator of inhibitory
currents mediated by GABA-A receptors in epilepsy. Similarly, Lévesque et al. showed
an effect of allopregnanolone in modulating ictogenesis and the occurrence of hyperex-
citatory neuronal activity. Furthermore, they also demonstrated that allopregnanolone
treatment delayed the onset of spontaneous seizures in animal models of mesial temporal
lobe epilepsy [98].

3. Current Standards for Epilepsy Treatment and Refractory Epilepsy

The first ASDs were discovered serendipitously in the late 19th century. Years later, the
use of animal models allowed the development of different molecules and their derivatives,
and currently, a wide variety of drugs are available to prevent the occurrence of seizures in
patients with epilepsy.

According to their main mechanism of action, ASDs can be classified into four broad
categories: (i) modulation of voltage-gated ion channels, (ii) enhancement of GABA-
mediated inhibitory neurotransmission, (iii) attenuation of glutamate-mediated excitatory
neurotransmission, and (iv) modulation of neurotransmitter release via presynaptic action.
Some ASDs have combined mechanisms of action, and in some cases, they are not fully
understood (Table 1) [99,100]. Despite this wide variety of treatments, one-third of all
epilepsy patients have epileptic seizures that are refractory to treatment [101]. At the
moment, clinical trials in epilepsy focus mainly on the development of molecules that
can prevent seizures in patients with drug-resistant epilepsy. Regulatory agencies have
recently approved cenobamate, the first drug with a specific indication for refractory
epilepsy, which has been shown to reduce seizure frequency in randomized, double-blind
clinical trials [102]. This drug represented a turning point and has shed light on the
development of new molecules that can contribute to the control of seizures in patients
with refractory epilepsy.
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Table 1. Main mechanisms of action of currently used ASDs.

Molecular Target Antiseizure Drugs Proposed Mechanisms of Action

Voltage-gated ion channels

Na+ channels

Phenytoin, fosphenytoin,
carbamazepine, oxcarbazepine,
eslicarbazepine acetate, lamotrigine,
lacosamide, cenobamate *, rufinamide,
topiramate, zonisamide

Enhancement of the rapid/slow
inactivation of Na+ channels,
inhibiting the propagation of
action potentials

Ca2+ channels Ethosuximide Inhibits hyperexcitability by
regulating Ca2+ currents

K+ channels Retigabine (ezogabine)
Generates a subthreshold K+

current that stabilizes the
membrane potential

GABA-mediated inhibition

Phenobarbital, primidone,
benzodiazepines, stiripentol *,
topiramate, felbamate, cenobamate,
retigabine (ezogabine), tiagabine,
vigabatrin, acetazolamide, topiramate,
zonisamide, lacosamide *

Increased synaptic inhibition and
reduced glutamate activity

Synaptic release machinery
SV2A Levetiracetam, brivaracetam Inhibition of excitatory

neurotransmitter release

α2δ subunit of voltage-gated
Ca2+ channels Gabapentin, pregabalin Inhibition of excitatory

neurotransmitter release

AMPA receptor Perampanel
Inhibits the extracellular Ca2+

concentration and
neuronal excitability

Mixed/unknown
Valproate, felbamate, cenobamate,
topiramate, zonisamide, rufinamide,
adrenocorticotrophin, cannabidiol

Adapted from Sills and Rogawski (2020). * possible mechanism of action, not yet firmly established.

However, all these drugs have been demonstrated to be effective agents in reducing
the occurrence of seizures. An important distinction must be made between ictogenesis and
epileptogenesis, which represent different physiopathological processes, and therefore their
therapeutic targets should be different. Ictogenesis describes the processes of transition
from the interictal state to a seizure, whereas epileptogenesis is the process by which a
certain group or neuronal circuit becomes hyperexcitable, being able to spontaneously gen-
erate epileptic seizures. Advances in the knowledge of the genetics and pathophysiology
of some specific diseases associated with epilepsy have led to the development of specific
treatments for some syndromes, such as everolimus in tuberous sclerosis complex [103]
or lysosomal enzyme replacement in neuronal ceroid lipofuscinosis [104]. Nonetheless,
and particularly in adult-onset epilepsy, there are still many types of epilepsy and epileptic
syndromes of which the specific etiopathogenesis is unknown, and therefore there are
currently no specific therapeutic agents for those groups of patients. Interestingly, the
potential bidirectional association of epilepsy and neurodegenerative processes opens the
door to the development of new molecular targets that could potentially allow modifying
the course of epilepsy.

Although some ASDs have been shown to have potential antiepileptogenic properties
in animal models, such effects have not been confirmed in larger clinical studies [105].
In addition, a potential antiepileptogenic effect of several approved drugs, including
atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, anakinra, rapamycin, and
fingolimod, has been described in animal models [106–112]. Although the repositioning
of these drugs could represent an attractive alternative in some specific etiologies, these
results have not been confirmed by clinical trials [113]. This effect could be explained by the
fact that most experimental studies on epileptogenesis have been strongly influenced by the
kindling model, and the evidence supporting the existence of kindling in humans is con-
troversial [114]. Most of these studies are based on post-traumatic or post-stroke epilepsy,
which represents the archetype of epileptogenesis secondary to identifiable acquired brain
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injury. It is likely that the wide variety of etiologies, as well as the probably different
mechanisms of epileptogenesis in other epilepsy syndromes, might have contributed to the
difficulties in translating preclinical studies into clinical trials [113].

4. Antiseizure Drugs in Neurodegenerative Diseases

Because of the molecular links between epilepsy and other neurodegenerative diseases,
various studies have been carried out to evaluate the therapeutic potential of anticonvulsant
drugs in these pathologies and the therapeutic approach to epilepsy as a comorbidity. The
wide variety of anticonvulsant drugs and their different mechanisms of action have posi-
tioned this group of drugs as very interesting candidates for those pathologies of the central
nervous system with an uncertain origin or an inefficient available treatment. However,
the potential neuroprotective role of these drugs in these pathologies remains unknown.

4.1. ASDs in Alzheimer’s Disease

In AD, some authors have tried to elucidate the pharmacological potential of ASDs
in the pathological development of AD. For example, the research group of Dr. Mucke
evaluated the effect of chronic treatment of levetiracetam (LEV) in the hAPP mice model,
which has abnormally high amounts of human Aβ and displays abnormal neuronal net-
work activity and epileptic seizures [115]. The authors found that LEV treatment was
able not only to reduce abnormal spiking behavior and epileptiform discharges but also
to suppress neuronal network dysfunction and reverse synaptic and cognitive deficits of
these mice. Furthermore, several clinical trials aim to evaluate the effect of LEV in AD
patients. For instance, a research group of the Johns Hopkins University Medical School
conducted a Phase II trial to evaluate the effect of LEV on memory function in amnestic
mild cognitive impairment (MCI) patients (NCT01044758). LEV was reported to reduce
abnormal hyperactivity in the hippocampal dentate gyrus and CA3 regions, to boost abnor-
mal hypoactivation in the entorhinal cortex, and to improve performance on the scanning
memory task [116]. Similarly, other clinical trials are being conducted to evaluate LEV for
the treatment of hyperexcitability and seizure activity in AD (NCT03875638, NCT03461861,
NCT01554683) or to examine the effect of LEV on neuropsychiatric symptoms related to
epilepsy (NCT04004702) [117]. In addition, a prospective, randomized, three-arm parallel-
group, case-control study of AD patients taking LEV, phenobarbital, or lamotrigine showed
that there were no significant differences in efficacy among these three ASDs, but LEV
caused fewer adverse events than the other ASDs and was associated with improved cogni-
tive performance and benign neuropsychological side effects [118]. Similarly, researchers of
the Harvard Medical School carried out a feasibility study in which they evaluated the neu-
rophysiological and cognitive effects of acute administration of LEV in patients with mild
AD. They found that LEV positively alters the lower and higher frequency bands in the
patients’ electroencephalogram, which represents the brain’s oscillatory connectivity. This
suggests a beneficial effect of LEV for patients with AD [119]. Therefore, LEV is considered
a cognitively safe ASD for AD patients. However, larger longitudinal studies, and studies
with healthy age-matched controls, are needed to determine whether the effects of LEV are
unique to AD as compared to normal aging and whether longer-term administration is
associated with a beneficial clinical effect.

4.2. ASDs for Parkinson’s Disease

Dopamine agonists and levodopa for dopamine replacement are the current thera-
peutic approach for the treatment of PD. However, the effectiveness of these substances
gradually diminishes, leading to an unstoppable progression of neurodegeneration. Be-
cause of that, many efforts have been made to find new or existing compounds that can be
effective in PD. Some ASDs have been studied in this respect, and especially zonisamide
(ZNS) has shown interesting results.

Several mechanisms have been proposed by which ZNS performs its beneficial
effects: (i) inhibition of monoamine oxidase B, which reduces the dopamine-induced
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ROS production by the MAO-B pathway, thus contributing to nigrostriatal degenera-
tion [120,121]; (ii) blocking of T-type calcium channels, resulting in an improvement in
PD symptoms [122,123]; (iii) modulation of the levodopa-dopamine metabolism in the
striatum by enhancing the dopamine synthesis and increasing the extracellular dopamine
concentration [124]; (iv) downregulation of the expression of adenosine A2A and en-
docannabinoid CB1 receptors, which improves levodopa-induced dyskinesia [125]; and
(v) neuroprotection, through the modulation of dopamine turnover, synaptic transmis-
sion, and gene expression and the induction of neurotrophic factors or the inhibition of
neuroinflammation, oxidative stress, and apoptosis [126].

Many clinical trials have been carried out to explore the effectiveness of ZNS for the
treatment of PD at different disease stages. In the early stages of the disease, an open-label
clinical trial suggested that a single administration of ZNS improved motor and sleep
dysfunction [127]. For advanced stages, several studies have evaluated the potential of
ZNS as adjunctive therapy for motor fluctuations. Phase II and Phase III clinical trials
demonstrated that ZNS improved motor functions and the wearing-off phenomenon
without worsening dyskinesia in patients with advanced PD [128,129]. In the late stages of
PD, only an open-label Phase II study was carried out. The obtained results showed that
300 mg/day of ZNS reduced the appearance of PD symptoms, especially those derived
from the wearing-off phenomenon. The authors speculated that the long-lasting activation
of dopamine synthesis by ZNS ameliorates PD symptoms, in particular the wearing-off
phenomenon [130]. Nevertheless, the number of participants in this study was too low
(n = 10) to draw definite conclusions, and further studies would be needed to validate all
these findings. Currently, two clinical trials with ZNS are being developed to evaluate the
role of ZNS in advanced PD (NCT04182399) and to examine the tolerability and efficacy of
ZNS for dyskinesia in PD (NCT03034538). Preliminary results are not yet known.

4.3. ASDs for Huntington’s Disease

Since the symptomatology of HD is highly varied (chorea, dyskinesia, myoclonus,
akathisia, bruxism, depression, cognitive and communication disorders, and memory
deficits, among others), many drugs widely used in other pathologies have been explored
in HD [131]. For example, ASDs have been the main candidates for treating myoclonus
episodes. Myoclonus refers to sudden muscle contractions; they are brief and involun-
tary contractions similar to the spams and jerks of epileptic seizures but not related to
epilepsy. In HD, myoclonus can be observed predominantly in juvenile forms but also
in later-onset forms. Interestingly, in juvenile forms, non-epileptic myoclonus can coexist
with epilepsy [131]. The use of valproate, alone or in combination with clonazepam, is
recommended in these HD cases [131]. LEV is also recommended as a therapeutic alter-
native to valproate for the same indication. Likewise, the combination of valproate and
olanzapine has been reported to help relieve agitation and aggression associated with
HD [132]. When myoclonus has a cortical origin not associated with epileptic seizures,
piracetam is authorized to be prescribed [132].

4.4. ASDs for Multiple Sclerosis

Patients with MS commonly suffer from neuropathic pain, which greatly affects their
quality of life and which has a pooled prevalence of 63% [133]. ASDs are widely used to
treat neuropathic pain in these patients. Antiepileptic drugs currently used for neuropathic
pain are carbamazepine, oxcarbazepine, gabapentin, lacosamide, lamotrigine, clonazepam,
levetiracetam, phenytoin, pregabalin, topiramate, and valproate. Nevertheless, the licensed
status for this indication can vary in different countries [134]. In general, the hypothesis of
the mechanism of action by which ASDs reduce neuropathic pain is based on their ability to
reduce high-frequency neuronal firing. Three standard explanations have been described:
(i) the inhibition of enhanced gamma-aminobutyric acid (GABA) (e.g., clonazepam or
valproate), (ii) a stabilizing effect on neuronal cell membranes, possibly by modulating
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ion channels (e.g., gabapentin or lamotrigine), and (iii) the inhibition of NMDA receptor
sites [134].

LEV has been shown to be effective not only in reducing neuropathic pain in MS
patients but also in decreasing phasic spasticity. Hawker and colleagues performed a
retrospective medical record review of patients attending the Multiple Sclerosis Program
at the University of Texas. Their findings revealed that the Penn Spasm score (a measure
of phasic spasticity) was decreased for all patients following treatment with LEV, and
some patients also reported improvements in neuropathic pain [135]. Despite these promis-
ing results, large, well-controlled trials are needed to confirm these findings. Likewise,
valproate has also been studied in a mice model of MS to evaluate its effectiveness in a
variety of symptoms. The findings showed that valproate restored T-cell homeostasis and
ameliorated the pathogenesis of these mice. However, further human studies should be
performed to confirm these results [136].

Regarding clinical trials, completed studies have also evaluated the protective role of ox-
carbazepine (NCT02104661) [137], lamotrigine (NCT00257855) [138], and LEV (NCT00423527)
in MS patients. However, no consistent results have yet been obtained from these investi-
gations. More studies with a larger sample size are needed to validate the evidence found
so far.

5. Conclusions

Epilepsy affects approximately 50 million people worldwide. Developing countries
are the most affected due to birth-related injuries, variations in medical infrastructure, and
the low availability of preventive health programs. The massive entrance of Ca2+ into
neurons is the main mechanism involved in the neuronal hyperexcitability that precedes
seizures. However, many other mechanisms have been proposed to be associated with
the development of seizures and epileptogenesis, and many of them are linked to those of
major neurodegenerative diseases.

In AD, the role of Aβ peptides and p-tau in the development of neuroinflamma-
tion and neurodegeneration, as well as in the modulation of NMDA-Rs, AChRs, and ion
channels, has been well described. All these alterations ultimately lead to the appear-
ance of seizures. Similarly, the appearance of abnormal α-synuclein and mHtt in PD and
HD, respectively, leads to mitochondrial damage that greatly affects the ionic balance in
the neuron’s membrane. Likewise, an increase in oxidative stress, intracellular Ca2+, or
proinflammatory cytokines also appears, contributing to aberrant neuronal hyperexcitabil-
ity. In both PD and MS, a genetic correlation between them and epilepsy has not been
found. However, many studies highlighted the appearance of seizures in these patients.
In PD, a dual effect of dopamine related to seizure development has been shown. The
activation of the D2 family of receptors triggers a protective pathway against seizure de-
velopment, whereas the D1 family appears to activate a proepileptic pathway. In MS, the
typical demyelination and axonal damage promoted by the autoimmune response also
lead to an increased microglia response, elevated neurodegeneration, and, finally, increased
neuronal excitability.

All these findings highlight the molecular cross-linking between epilepsy and major
neurodegenerative diseases. The management of these alterations could open a promising
window not only for epilepsy itself but also for epileptic comorbidities in other neurological
diseases. Although many ASDs are available nowadays, a significant proportion of patients
still have drug-resistant epilepsy. Because of that, several approved drugs have been
studied in animal models for antiseizure applications, such as atorvastatin, ceftriaxone,
losartan, anakinra, rapamycin, and fingolimod. Nevertheless, their potential use should
be confirmed by clinical trials. Likewise, some commonly used ASDs, such as LEV, ZNS,
and valproate, are being investigated in other neurodegenerative diseases, mainly because
of the previously described molecular links and the lack of effective treatments for these
diseases. Several clinical trials are being developed in this respect, but further studies are
still needed to implement these therapies in clinical practice.
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