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Abstract. Due to the growth of data and widespread usage of Machine
Learning (ML) by non-experts, automation and scalability are becom-
ing key issues for ML. This paper presents an automated and scalable
framework for ML that requires minimum human input. We designed
the framework for the domain of telecommunications risk management.
This domain often requires non-ML-experts to continuously update su-
pervised learning models that are trained on huge amounts of data. Thus,
the framework uses Automated Machine Learning (AutoML), to select
and tune the ML models, and distributed ML, to deal with Big Data.
The modules included in the framework are task detection (to detect
classification or regression), data preprocessing, feature selection, model
training, and deployment. In this paper, we focus the experiments on
the model training module. We first analyze the capabilities of eight Au-
toML tools: Auto-Gluon, Auto-Keras, Auto-Sklearn, Auto-Weka, H20
AutoML, Rminer, TPOT, and TransmogrifAl. Then, to select the tool
for model training, we performed a benchmark with the only two tools
that address a distributed ML (H20 AutoML and TransmogrifAI). The
experiments used three real-world datasets from the telecommunications
domain (churn, event forecasting, and fraud detection), as provided by an
analytics company. The experiments allowed us to measure the compu-
tational effort and predictive capability of the AutoML tools. Both tools
obtained high-quality results and did not present substantial predictive
differences. Nevertheless, H20 AutoML was selected by the analytics
company for the model training module, since it was considered a more
mature technology that presented a more interesting set of features (e.g.,
integration with more platforms). After choosing H20 AutoML for the
ML training, we selected the technologies for the remaining components
of the architecture (e.g., data preprocessing and web interface).

Keywords: Automated Machine Learning - Distributed Machine Learn-
ing - Supervised Learning - Risk Management.
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1 Introduction

Nowadays, Machine Learning applications can make use of a great amount of
data, complex algorithms, and machines with great processing power to produce
effective predictions and forecasts [11]. Currently, two of the most important
features of real-world ML applications are distributed learning and AutoML.
Distributed learning is particularly useful for ML applications in the context of
Big Data or when there are hardware constraints. Distributed learning consists
of using multiple machines or processors to process parts of the ML algorithm
or parts of the data. The fact that it is possible to add new processing units
enables ML applications to surpass time and memory restrictions [29]. AutoML
intends to allow people that are not experts in ML to efficiently choose and
apply ML algorithms. AutoML is particularly relevant since there is a growing
number of non-specialists working with ML [31]. It is also important for real-
world applications that require constant updates to ML models.

In this paper, we propose a technological architecture that addresses these
two ML challenges. The architecture was adapted to the area of telecommunica-
tions risk management, which is a domain that mostly uses supervised learning
algorithms (e.g., for churn prediction). Moreover, the ML models are constantly
updated by people that are not experts in ML and may involve Big Data. Thus,
the proposed architecture delineates a set of steps to automate the typical work-
flow of a ML application that uses supervised learning. The architecture includes
modules for task detection, data preprocessing, feature selection, model training,
and deployment.

The focus of this work is the model training module of the architecture,
which was designed to use a distributed AutoML tool. In order to select the
ML tool for this module, we initially evaluated the characteristics of eight open-
source AutoML tools (Auto-Gluon, Auto-Keras, Auto-Sklearn, Auto-Weka, H20
AutoML, Rminer, TPOT, and TransmogrifAT). We then performed a benchmark
to compare the two tools that allowed a distributed execution (H20 AutoML
and TransmogrifAl). The experiments used three real-world datasets from the
domain of telecommunications. These datasets were related to churn (regression),
event forecasting (time series), and fraud detection (binary classification).

This paper consists of an extended version of our previous work [14]. The
main novelty of this extended version is the technological architecture that is
presented in Section 6. This section describes the particular technologies that
were used to implement the components of the proposed AutoML distributed
framework apart from model training. Also, this section describes the REST
API that was developed to mediate the communication between the end-users
and the proposed framework.

The paper is organized as follows. Section 2 presents the related work. In
Section 3, we detail the proposed ML architecture. Nest, Section 4 describes the
analyzed AutoML technologies and the datasets used during the experimental
tests. Then, Section 5 discusses the experimental results. Section 6 details the
technological architecture. Finally, Section 7 presents the main conclusions and
future work directions.
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2 Related Work

In a Big Data context, it is critical to create and use scalable ML algorithms
to face the common constraints of memory and time [29]. To face that concern,
classical distributed ML distributes the work among different processors, each
performing part of the algorithm. Another current ML problem concerns the
choice of ML algorithms and hyperparameters for a given task. For ML experts,
this selection of algorithms and hyperparameters may use domain knowledge or
heuristics, but it is not an easy task for non-ML-experts. AutoML was developed
to combat this relevant issue [22]. The definition of AutoML can be described as
the search for the best algorithm and hyperparameters for a given dataset with
minimum human input.

In recent years, a large number of AutoML tools was developed, such as Auto-
Gluon [3], Auto-Keras [23], Auto-Sklearn [15], Auto-Weka [24], H20 AutoML
[21], Rminer [10], TPOT [27], and TransmogrifAI [30]. Within our knowledge,
few studies directly compare AutoML tools. Most studies compare one specific
AutoML framework with state-of-the-art ML algorithms [15], do not present
experimental tests [12,35], or are related to ML automation challenges [18-20].

Recently, some studies focused on experimental comparisons of AutoML
tools. In 2019, [17] and [32] compare a set of AutoML tools using different
datasets and ML tasks. In 2020, a benchmark was conducted using publicly
available datasets from OpenML [33], comparing different types of AutoML
tools, which were grouped by their capabilities [36]. None of the mentioned com-
parison studies considered the distributed ML capability for the AutoML tools.
Furthermore, none of the studies used datasets from the domain of telecommu-
nications risk management, such as churn prediction or fraud detection.

3 Proposed Architecture

This paper is part of “Intelligent Risk Management for the Digital Age” (IR-
MDA), a R&D project developed by a leading Portuguese company in the area
of software and analytics. The purpose of the project is to develop a ML system
to assist the company telecommunications clients. Both scalability and automa-
tion are central requirements to the ML system since the company has many
clients with diverse amounts of data (large or small) and that are typically non-
ML-experts.

The ML technological architecture that is proposed by this work identifies
and automates all typical tasks of a common supervised ML application, with
minimum human input (only the dataset and the target column). Also, since
the architecture was developed to work within a cluster with several processing
nodes, the users can handle any size of datasets just by managing the number
of cluster nodes. The architecture is illustrated in Fig. 1.
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Fig. 1. The proposed automated and scalable ML architecture (adapted from [14]).
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3.1 Phases

The proposed architecture assumes two main phases (Fig. 1): a training phase
and a testing phase.

Training Phase: The training phase includes the creation of a pipeline instance
and the definition of its stages. The only human input needed by the user is the
selection of the training dataset and the identification of the target column.
Depending on the dataset columns, the each module defines a set of stages for
the pipeline. Each stage either transforms data or also creates a model based
on the training data that will be used on the test phase to transform the data.
When all stages are defined, the pipeline is fitted to the training data, creating
a pipeline model. Finally, the pipeline model is exported to a file.

Testing Phase: The execution of the testing pipeline assumes the same trans-
formations that were applied to the training data. To execute the testing pipeline
the user only needs to specify the test data and a pipeline model (and a fore-
casting horizon in the case of time series forecasting task). The last stage of the
testing pipeline is the application of the best model obtained during training,
generating the predictions. Performance metrics are also computed and presented
to the user.

3.2 Components

The proposed architecture includes five main components: task detection, data
preprocessing, feature selection, model training (with the usage of AutoML),
and pipeline deployment.

Machine Learning Task Detection: Set to detect the ML task of the pipeline
(e.g., classification, regression, time series). This detection is made by analyzing
the number of levels of the target column and the existence (or not) of a time
column.
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Data Preprocessing: Handles missing data, the encoding of categorical fea-
tures, and the standardization of numerical features. The applied transforma-
tions depend on the data type of the columns, number of levels, and number of
missing values.

Feature Selection: Deletes features from the dataset that may decrease the
predictive performance of the ML models, using filtering methods. Filtering
methods are based on individual correlations between each feature and the tar-
get, removing several features that present the lowest correlations [4].

Model Training: Automatically trains and tunes a set of ML models using a
set of constraints (e.g., time limit, memory usage). The component also identifies
the best model to be used on the test phase.

Pipeline Deployment: Manages the saving and loading of the pipelines to
and from files. This module saves the pipeline that will be used on a test set,
ensuring that the new data will pass through the same transformations as the
training data. Also, the component stores the best model obtained during the
training to make predictions, discarding all other ML models.

4 Materials and Methods

4.1 Experimental Evaluation

For the experimental evaluation, we first examined the characteristics of the
open-source AutoML tools. Then, we used the tools that could be implemented
in our architecture to perform a benchmark study. In order to be considered for
the experimental evaluation, the tools have to implement distributed ML.

4.2 AutoML Tools

We first analyzed eight recent open-source AutoML tools, to verify their com-
pliance with the project requirements.

Auto-Gluon: AutoGluon is an open-source AutoML toolkit with a focus on
Deep Learning. It is written in Python and runs on Linux operating system.
AutoGluon is divided into four main modules: tabular data, image classifica-
tion, object detection, and text classification [3]. In this article, only the tabular
prediction functionalities are being considered.

Auto-Keras: Auto-Keras is a Python library based on Keras [6] that imple-
ments AutoML methods with Deep Learning algorithms. The focus of Auto-
Keras is the automatic search for Deep Learning architectures and hyperparam-
eters, usually named Neural Architecture Search [13].
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Auto-Sklearn: Auto-Sklearn is an AutoML Python library based on Scikit-
Learn [28] that implements methods for automatic algorithm selection and hy-
perparameter tuning. Auto-Sklearn aims to free the user from the choice of an
algorithm and the tuning of its hyperparameters using Bayesian optimization,
meta-learning, and Ensemble Learning [16].

Auto-Weka: Auto-Weka is a module of WEKA, a ML tool that provides data
preprocessing functions and ML algorithms that allow users to quickly compare
ML models and create predictions using new data [34]. Auto-Weka aims to solve
the Combined Algorithm Selection and Hyperparameter Optimization (CASH)
problem, first established in [31].

H20 AutoML: H20 AutoML is one of the open-source modules of H20, a
ML analytics platform that uses in-memory data and implements a distributed
and scalable architecture [7]. H20 AutoML uses H20’s infrastructure to provide
functions to automate algorithm selection and hyperparameter optimization [21].

Rminer: Rminer is a package for the R tool, intending to facilitate the use of
Machine Learning algorithms. The focus of Rminer are the CRISP-DM phases
of Modeling and Evaluation [8,9]. In the most recent version, Rminer uses more
than 20 classification and regression algorithms. Also, since version 1.4.4, Rminer
implements AutoML functions.

TPOT: Tree-Based Pipeline Optimization Tool (TPOT) is an open-source Au-
toML written in Python. TPOT automates the phases of feature selection, fea-
ture engineering, algorithm selection, and hyperparameter tuning. It uses algo-
rithms such as Decision Trees, Random Forest, and XGBoost, most of them from
the Scikit-Learn library [25,27].

TransmogrifAI: TransmogrifAl is a tool that uses Apache Spark framework
to automate ML applications. It is written in Scala and focused on the automa-
tion of several phases of the ML workflow, such as algorithm selection, feature
selection, and feature engineering [30].

AutoML Tool Comparison: Table 1 presents the characteristics of the ana-
lyzed AutoML related to interface language, associated platforms, current ver-
sion and if it contains a Graphical User Interface and distributed ML mode.

For the experimental study, we selected H20 AutoML and TransmogrifAl, as
these were the only tools from Table 1 that meet the distributed ML requirement.
Table 2 presents the ML algorithms implemented by both tools. The last two
rows are related to the stacking ensembles implemented by H20 AutoML: all,
which combines all trained algorithms; and best, which only combines the best
algorithm per family.
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Table 1. Main characteristics of the analyzed AutoML tools (extended from [14]).

Graphical

Interface Associated Current o Distributed
Language Platforms Version Mode
Interface
Auto-Gluon  Python - 0.0.14 - -
Auto-Keras  Python - 1.0.9 - -
Auto-Sklearn Python - 0.10.0 - -
Auto-Weka Pyg“’n WEKA 261 -
Python AAVZrSe
H20 AutoML R ’ 33013 v v
Seala Google Cloud
Apache Spark
Rminer R - 1.4.6 - -
TPOT Python - 0.11.5 - -
TransmogrifAI  Scala  Apache Spark 0.7.0 - v
Table 2. Algorithms implemented by H20 AutoML and TransmogrifAl (adapted from
[14]).
Algorithm H20 AutoML TransmogrifAl
Decision Trees v

Deep Learning

AN

Extremely Randomized Forest
Gradient-Boosted Trees (GBT) v

Gradient Boosting Machine (GBM) v -
Generalized Linear Model (GLM) v -
Linear Regression - v
Linear Support Vector Machine - v
Logistic Regression - v
Naive Bayes - v
Random Forest (RF) v v
v
XGBoost (only fully supported in Linux) )
Stacking All (SA) v -
Stacking Best (SB) v -
4.3 Data

For the benchmark study, we used three real-world datasets from the domain of
telecommunications, provided by the IRMDA project analytics company. The
datasets are related to customer churn prediction (regression), event forecasting
(univariate time series), and telecommunications fraud detection (binary classi-
fication).
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Churn Prediction: The churn dataset contains 189 rows and 21 attributes.
The attributes of each row characterize a client and the probability for canceling
the company’s analytics service (churn), as defined by the company. Table 3
describes each attribute of the churn dataset.

Table 3. Description of the attributes of the churn dataset (adapted from [14]).

Attribute Description

tenure Time passed since the beginning of the contract
streaming_quality Contractualized display resolution

ott_video If OTT video is contractualized or not
contract Duration of the contract

payment_method Contractualized method of payment
product_name Identification of the product

platform Type of connectivity present in the contract
financial _status If the payment is late or regularized
service_latency Latency of the service

dropped_frames Number of dropped frames

volume Information about volume

duration Information about duration
account_number Account identification number

service_latency category Category of the service latency attribute
dropped_frames category Category of the dropped frames attribute

volume category Category of the volume attribute

duration category Category of the duration attribute

tenure category Category of the tenure attribute
account_segment Age segment of the client

equipment Equipment used by the client
churn_probability Probability of canceling the service (€ [0,1])

Event Forecasting: The event forecasting dataset contains 1,418 rows that
correspond to records about telecommunication events of a certain type (e.g.,
phone calls). The events occurred from February to April of 2019, aggregated
on an hourly basis, ranged from 3,747 to 56,320. The only attributes are the
timestamp and the number of events in that interval, as described in Table 4.

Table 4. Description of the attributes of the event forecasting dataset (adapted from

[14).

Attribute Description

Time Timestamp (format: yyyy-mm-dd hh:mm)
datapoints Number of events
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Fraud Detection: Each row of the fraud detection dataset contains the iden-
tification of A (sender) and B (receiver), and the classification of the phone
call (“fraud” or “normal”). The dataset contains more than 1 million examples,
which correspond to one day of phone calls from one of the company clients.
The dataset attributes are described in Table 5.

Table 5. Description of the attributes of the fraud dataset (adapted from [14]).

Attribute Description

A Identification of the call sender

B Identification of the call receiver

Result Classification of the call (“fraud” or “normal”)
5 Results

5.1 Experimental Setup

The benchmark consisted of several computational experiments that used three
real-world datasets to compare the selected AutoML tools (H20 AutoML and
TransmogrifAI). The benchmark was executed on a machine with an i7-8700 Intel
processor with 6 cores. Every AutoML experiment considered a holdout split
that used 3/4 of the data as training set and 1/4 as test set. The split between
train and test sets was random for two of the datasets (churn and fraud). For
the event forecasting dataset, the division between train and test was ordered in
time (since the data is ordered in time). Every AutoML execution implemented
a 10-fold cross-validation during the training of the algorithms.

Each AutoML tool optimizes a performance metric to select the best algo-
rithms and tune the hyperparameters. We selected the Mean Absolute Error
(MAE) for the regression tasks and Area Under Curve (AUC) for the classifi-
cation data. Also, we computed additional metrics for the test data in order to
further compare the tools.

Additionally, we disabled time limits to allow the execution of all selected
ML algorithms. From the algorithms presented in Table 2, we only disabled Deep
Learning from the experiments, from H20 AutoML. First, because it required a
greater computational effort, especially for the fraud detection dataset. Second,
to achieve a more fair comparison with TransmogrifAl, since this tool does not
include Deep Learning algorithms.

For the churn dataset, the performance of the AutoML tools was measured
with two scenarios. The first scenario (1) considered all the attributes of the
dataset as input features for the ML algorithms. The second scenario (2) only
uses a subset of the attributed as input features, derived from a previous feature
selection phase. For TransmogrifAl the intention was to test the automatic fea-
ture selection characteristic. For H20 AutoML, the features of scenario 2 were
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the most relevant features identified by the best performing algorithm of scenario
1.

For event forecasting, we transformed the dataset, creating time lags as in-
puts for a regression task. The dataset could not be used as a univariate time
series, since neither H20 AutoML nor TransmogrifAl implement native time
series algorithms (e.g., ARIMA, Holt-Winters). We created three scenarios with
different combinations of time lags: 1 — with time lags ¢t — 1, ¢t — 24, and ¢ — 25,
where ¢ is the current time (corresponding to the previous hour, day, and hour
before that day); 2 — with all the time lags from the last 24 hours (from ¢ — 1 to
t — 24); and 3 — with the time lags t — 12, ¢t — 24, t — 36, and ¢ — 48.

For the fraud detection dataset, we designed three training scenarios. Since
the fraud detection dataset only has around 0.01% of illegitimate calls, we used
the Synthetic Minority Oversampling Technique (SMOTE) technique [5] to bal-
ance the two classes in two of the scenarios. Scenario 1 used a simple under-
sampling that considered all “fraud” records and a random selection (with re-
placement) of “normal” cases. Scenarios 2 and 3 used SMOTE to generate extra
fraud examples (100% and 200%, respectively). For each training scenario, we
also considered three test scenarios of unseen data with different class balancing
(with “normal” /“fraud” ratio): A — 50%/50%, thus balanced; B — 75%/25%; and
C - 80%/20%.

5.2 Discussion

A summary of the results is presented in Table 65 showingthe-average—values

Table 6. Summary of the experimental results, best values in bold (adapted from [14]).

Number of AutoML Tool Mean, Execution Used Mean Test

Dataset scenarios Time (mm:ss) Metric Metric

. H20 AutoML 00:27 MAE 0.119

Churn Prediction 2y oarif Al 03:40 MAE  0.160
Event F . 3 H20 AutoML 02:25 MAE 2467
vent Forecasting TransmogrifAl 04:41 MAE 2765

. H20 AutoML 07:11 AUC 0.973

Fraud Detection 9 TransmogrifAl 01:46 AUC 0.963

The experimental results show that both AutoML tools require a small exe-
cution time to select the best ML model, with the highest mean execution time
being slightly higher than 7 minutes. The low training time can be justified with
the usage of distributed ML, datasets with small number of rows or columns, and
the removal of Deep Learning algorithms. However, if the benchmark included
datasets with more examples or attributes, an addition of machines or cores to
the cluster would maintain the execution time low.
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The metrics obtained during the predictions show that H20 AutoML ob-
tained the best average results for all three datasets. In particular, H20 Au-
toML was better on three of the five regression scenarios and in seven of the
nine classification scenarios. TransmogrifAl obtained the best predictive results
in two regression scenarios and two classification scenarios. Although the Au-
toML tools present minor predictive differences, the results of all scenarios can
be considered of high quality.

After analyzing the results, the risk management software and analytics com-
pany decided to select H20 AutoML for the model training module of the ar-
chitecture. This choice was supported by two main reasons. First, H20 AutoML
obtained better predictive results for most of the scenarios. Second, the analytics
company considered H20 AutoML a “more mature” technology. This classifica-
tion was due to the fact that H20 AutoML is available in more programming
languages than TransmogrifAl (as shown in Table 1), it can be integrated with
more platforms and it provides an easy to use Graphical User Interface.

6 Technological Architecture

After the comparative ML experiments, the analytics company selected the H20
AutoML tool for the model training component. The remaining technological
modules were then designed in cooperation with the company. Since one of the
prerequisites of the architecture is that it is distributed, we tried to identify tech-
nologies with distributed capabilities. Given that H20 can be integrated with
Apache Spark (using the Sparkling Water module) and that Spark provides
functions for data processing, we relied on Spark’s Application Programming
Interface (API) functions to implement the remaining components of the archi-
tecture. The updated architecture, with references to the technologies used, is
illustrated in Fig. 2.

"""" 3 WATER

Training Phase

R ) Data Preprocessing ‘ Train
— | Tran |— [ENCEGE Hande | Encoding Y oo NEERN\ o R
Data data Detection Selection (AutoML)

v

| |
IPipeIme Deployment

Testing Phase

’ Test | Data Preprocessing ﬁain ) -
) = m ]
‘ data = algorithms - g S] —— | Predicted
h Features (AutnML) e
SEES s ooy

Fig. 2. The technological automated and scalable ML architecture (adapted from [14]).
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6.1 Components

This subsection describes the current implementation of each module of the ar-
chitecture. The updated technological architecture changed some of the modules
initally described in Section 3. These changes were related to feedback received
from the analytics company or due to technological restrictions.

Machine Learning Task Detection: Currently set to detect if the ML pipeline
should be considered a binary classification, multi-class classification, pure re-
gression, or a univariate time series task since these are the typical telecommu-
nications risk management ML tasks used by the company.

The detection of the ML task can be overridden by the user. This is due to
the fact that it could be useful to consider an ML task different than the one
suggested by the module. For example, the end-user might want to consider a
regression task, although the target column of the dataset only has a few number
of levels, which could be automatically considered a multi-class classification. If
the user specifies an ML task before running the pipeline, this component is
skipped.

The type of supervised tasks handled will be expanded according to feedback
provided by the software company clients and the AutoML tools capabilities.
Interesting future possibilities of tasks to be addressed are multivariate time
series, ordinal classification, or multi-target regression.

Data Preprocessing: Currently, the preprocessing transformations (e.g., deal-
ing with missing data, the encoding of categorical features, standardization of nu-
merical features) are done using Apache Spark’s functions for extracting, trans-
forming and selecting features [1].

To deal with missing data in numerical columns we use the Imputer function
from Spark. This function replaces the unknown values of a column with its mean
value. For categorical columns, we replace the unknown fields with a predefined
tag (e.g., “Unknown”). The encoding of categorical features is done by default
using Spark’s one-hot Encoding function. If the categorical column has a high
cardinality (a vast number of levels), instead of the one-hot encoding we apply
the String Indexer function. This function replaces the values of the column by
numerical indices. The standardization of numerical features uses the Standard
Scaler function from Spark. This function normalizes the column to have mean
zero and standard deviation one.

Feature Selection: Currently, the feature selection module uses the Chi-Squared
feature selection function from Apache Spark. This method decides what features
to keep based on Chi-Squared statistical test. Depending on the dataset and the
ML task, we filter a fixed number of features or a percentage of features with
the most correlation.

Additionally, we added the possibility for the user (usually a domain expert)
to influence this step. Thus, the user can specify beforehand the features that
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will be used as inputs by the model training module. Such features cannot be
removed by the feature selection step, although other features can be added to
the ones that the user selected. If no features were chosen by the user, this com-
ponent works without restrictions. Also by request of the company, we created
an auxiliary pipeline that performs a simple feature filtering, outputting a list
of the most relevant features for a particular supervised learning dataset but
without fitting an ML model (e.g., usage of the simple correlation statistic).

Model Training: Currently, this module uses one of two AutoML approaches
we implemented, depending on the ML task that is being considered. For clas-
sification (binary or multi-class) and regression tasks, we use H20 AutoML to
automatically find and tune the best model. Since none of the AutoML tools
we analyzed support native univariate time series forecasting algorithms, we
implemented our own AutoML for the time series task.

In order to create the AutoML for time series, we used the algorithms imple-
mented by the GitHub repository scalaTS! as a base. The repository includes a
set of time series algorithms, such as autoregressive integrated moving average
(ARIMA), autoregressive moving average (ARMA), autoregression (AR), and
moving average (MA). Also, the package includes hyperparameter optimization
capabilities, with the algorithms Auto ARIMA, Auto ARMA, Auto AR, and
Auto MA, which pick the best parameters for each algorithm. The repository is
built on top of Apache Spark using the distributed DataFrames objects, allowing
distributed training and forecasting.

In order to select the best algorithm for a time series task, we run each Auto
algorithm with the training data and select the one that performs best on the
validation data by using a rolling window validation [26].

Pipeline Deployment: Currently, the pipeline management module uses an
Apache Spark API related to ML pipelines [2]. To create a Spark ML pipeline
it is necessary to detail a list of stages and then fit the pipeline to the training
data. After fitting the pipeline to the training data, the Spark API allows the
export of the pipeline to the disk. This process is applied during the training
phase of the architecture.

To apply a pipeline to test data it is necessary to load the model from a
file. Then, using the transform function, it is possible to apply the pipeline to
previously unseen data. This process is applied during the test phase of the
architecture, generating a set of predictions.

6.2 API

In order to facilitate the execution of the architecture, we also created a REST
API to mediate the communication between the end-users and the pipelines. The

! https://github.com/liao-iu/scalaTS/
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development of the API resulted in two main endpoints: one to run the train
pipeline and the other to run the test pipeline.

Since the execution of each request consists of one Apache Spark job (using
H20O’s capabilities through the Sparkling Water module), the API works as an
intermediary between the end-user and the execution of the code inside Spark.
This way, the API server receives the client’s requests and uses the parameters of
the body of the request to initiate a Spark job inside the server (using the spark-
submit command). After the execution of the application that was submitted
to Spark, the server receives the output of the job (e.g., metrics of training,
predictions). The server formats the response to the appropriate format (e.g.,
XML, JSON) and sends the response to the client interface. Fig. 3 depicts this
process.

Client Server Apache Spark
Send Submit
request Spark job
. Retrieve .
Submit request Run job
parameters
Return Spark job
response output
Show response — Format response — Select output

Fig. 3. Adopted scheme for handing of requests and responses.

We highlight that the current version of the overall architecture, which re-
ceived positive feedback from the Portuguese software company of the IRMDA
project, is expected to be incrementally improved in future research. In partic-
ular, we intend to evolve and test the non AutoML components by using more
real-world datasets and feedback from the analytics company clients.

7 Conclusions

This paper proposes a ML framework to automate the typical workflow of su-
pervised ML applications without the need for human input. The framework
includes the modules of task detection, data preprocessing, feature selection,
model training, and pipeline deployment. The framework was developed within
project IRMDA, a R&D project developed by a leading Portuguese software and
analytics company that provides services for the domain of telecommunications
risk management. The company clients work with datasets of variable sizes (large
or small) and are mostly non-ML-experts. Thus, the proposed framework uses
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distributed ML to add computational scalability to the process and AutoML to
automate the search for the best algorithm and hyperparameters.

In order to assess the most appropriate AutoML tools for this model train-
ing module, we initially conducted a benchmark experiment. First, we analyzed
the features of eight open-source AutoML tools (Auto-Gluon, Auto-Keras, Auto-
Sklearn, Auto-Weka, H20 AutoML, Rminer, TPOT, and TransmogrifAI). Then,
we selected the tools that allowed a distributed execution for the experiments
(H20 AutoML and TransmogrifAI). The benchmark study used three real-world
datasets provided by the software company from the domain of telecommunica-
tions risk management. The proposed framework was positively evaluated by the
analytics company, which selected H20 AutoML as the best tool for the model
training module.

After the selection of H20 AutoML for the model training module, we de-
veloped the technological architecture. We selected technologies with distributed
capabilities for the remaining modules of the initially proposed framework. Most
of the remaining modules were implemented using Apache Spark’s API functions.
Then, we describe the current implementation of each module of the architec-
ture. Finally, we describe the REST API that was created to facilitate the com-
munication between the end-users (the company clients) and the implemented
pipelines.

In future work, we intend to use more telecommunications datasets to provide
additional benchmarks for the model training module. Moreover, new AutoML
tools can be considered, as long as they provide distributed capabilities. Besides,
we intend to add more ML tasks to the framework, such as ordinal classification,
multi-target regression, or multivariate time series. For the remaining modules,
we expect to conduct similar studies to evaluate the most appropriate tech-
nologies to use (e.g., for handling missing data, for choosing the best features).
Finally, even though the framework was developed specifically for the telecom-
munications risk management domain, we intend to study the applicability of
the framework to other areas.
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