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Co-expression of low-risk HPV E6/E7 and
EBV LMP-1 leads to precancerous lesions
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Toshiyuki Nakasone2, Akira Arasaki2 and Takao Kinjo1*

Abstract

Background: Low-risk human papillomavirus (HPV), such as types 6 and 11, is considered non-oncogenic, but these
types have been detected in oral cancer tissue samples, suggesting their possible involvement in oral carcinogenesis.
Because double infection of high-risk HPV and Epstein-Barr virus (EBV) is known to be involved in oral carcinogenesis,
we hypothesized that low-risk HPV and EBV co-infection can transform the oral cells. To verify our hypothesis, we
evaluated the transformation activity of cell lines expressing both low-risk HPV E6/E7 and EBV LMP-1.

Methods: We transduced HPV6, 11 and 16 E6/E7 genes and EBV LMP-1 gene into primary mouse embryonic
fibroblasts. The cell lines were examined for indices of transformation activity such as proliferation, induction
of DNA damage, resistance to apoptosis, anchorage-independent growth, and tumor formation in nude mice.
To evaluate the signaling pathways involved in transformation, NF-κB and p53 activities were analyzed. We
also assessed adhesion signaling molecules associated with anchorage-independent growth such as MMP-2,
paxillin and Cat-1.

Results: Co-expression of low-risk HPV6 E6 and EBV LMP-1 showed increased cell proliferation, elevated NF-κB
activity and reduced p53 induction. Moreover, co-expression of low-risk HPV6 E6 and EBV LMP-1 induced DNA
damage, escaped from apoptosis under genotoxic condition and suppression of DNA damage response
(DDR). Co-expression of low-risk HPV11 E6/E7 and EBV LMP-1 demonstrated similar results. However, it led to
no malignant characteristics such as anchorage-independent growth, invasiveness and tumor formation in
nude mice. Compared with the cells co-expressing high-risk HPV16 E6 and EBV LMP-1 that induce
transformation, co-expression of low-risk HPV6 E6 and EBV LMP-1 was associated with low MMP-2, paxillin and
Cat-1 expression.

Conclusions: The co-expression of low-risk HPV E6/E7 and EBV LMP-1 does not induce malignant transformation, but
it allows accumulation of somatic mutations secondary to increased DNA damage and suppression of DDR. Thus,
double infection of low-risk HPV and EBV could lead to precancerous lesions.
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Background
Human papillomavirus (HPV) is an oncogenic virus that
causes uterine cervical, oral and anal cancers [1]. More
than 200 HPV types with DNA sequence variations have
been identified to date. In general, HPV has been
roughly classified as high-risk or low-risk HPV, based on
their association with malignant or benign tumors, re-
spectively [2]. High-risk HPV such as HPV16 and
HPV18 are the major oncogenic types detected in uter-
ine cervical and oral cancers, whereas low-risk HPV
such as HPV6 and HPV11 is related to benign lesions
such as genital warts and papilloma [1].
HPV-encoded E6 and E7 genes are viral oncogenes

that have a crucial role in cell transformation. In uterine
cervical cancers, E6 and E7 from high-risk HPV are inte-
grated into the genome, and their expression inactivates
and degrades tumor suppressors p53 and pRb, respect-
ively [1]. By contrast, low-risk HPV E6 and E7 gene ex-
pression only weakly inactivates p53 [3] and pRb [4].
Consequently, low-risk HPV is considered to have a
lower transformation activity.
On the other hand, low-risk HPV such as HPV6 and

HPV11 have been detected in oral cancer tissue samples,
suggesting a possible involvement in oral carcinogenesis
[5, 6]. However, it remains uncertain whether low-risk
HPV actually causes oral cancer.
Double infection of HPV and Epstein-Barr virus (EBV)

is known to be associated with oral cancer progression
[7–9]. EBV is an oncogenic virus associated with naso-
pharyngeal, gastric cancers and Burkitt lymphoma [10,
11]. LMP-1 is an EBV-encoded oncogene with the ability
to transform EBV-infected B cells [12, 13] and human
epithelial cells when co-expressed with Bcl-2 [14].
We previously reported that co-expression of high-risk

HPV16 E6 and EBV LMP-1 transforms primary mouse
embryonic fibroblasts (MEFs) [15]. Since double infec-
tion of high-risk HPV and EBV is involved in oral car-
cinogenesis, we hypothesized that low-risk HPV could
lead to changes in oral cells if the cells are co-infected
with EBV. However, whether such co-infection would
actually lead to oncogenesis is unknown. In this study,
we examined transformation activity of MEFs co-
expressing low-risk HPV6/11 E6/E7 and EBV LMP-1,
comparing with those co-expressing high-risk HPV16 E6
and EBV LMP-1. We also observed whether injecting
these MEFs into nude mice developed tumors.

Methods
Cell lines and cell culture
Primary MEFs (CF-1) were purchased from American
Type Culture Collection and cultured in Dulbecco’s
Modified Eagle Medium (Nissui) with 10% fetal bo-
vine serum (Wako). The cells were incubated at 37 °C
in 5% CO2.

Plasmids
The genes HPV6 E6, HPV6 E7, HPV11 E6, HPV11 E7,
HPV16 E6 and HPV16 E7 were amplified by PCR containing
restriction enzyme sites. These PCR products were digested
with restriction enzymes, Bgl II and Xho I (New England
Biolab), and ligated to pMSCV-puro vector (Clontech). Plas-
mids expressing EBV LMP-1, (i.e. pMSCV-neo-LMP-1) were
prepared as previously described [15]. pNF-κB-TA-luc, pp53-
TA-luc, pβ-gal-basic (Clontech) and pcDNA3.1/Zeo (+)
(Invitrogen) were also used for assays.

Viral gene transduction via retrovirus
The procedure for retrovirus production and the construc-
tion of viral protein expressing MEFs have been described
previously [16]. Briefly, the plasmids pMSCV-puro-6E6,
pMSCV-puro-11E6, pMSCV-puro-11E7 and pMSCV-neo-
LMP-1 were transfected into packaging cell lines PT-67
(Clontech) using Lipofectamine 2000 (Thermo Fisher Scien-
tific) and incubated for 48 h. Retroviruses harboring the vari-
ous HPV and/or EBV genes were generated, and CF-1 cells
were then infected with the viruses. After retroviral infection,
the cells were selected using 3 μg/ml puromycin or 150 μg/
ml geneticin. Each viral gene expression was confirmed by
RT-PCR (Supplemental Figure S1).

RT-PCR
RNA was extracted from 1 × 106 cells using total RNA
isolation (Macherey-Nagel). One μg of total RNA was
treated with DNase I Amplification Grade (Thermo
Fisher Scientific), followed by reverse transcription using
PrimeScript II 1st strand cDNA Synthesis Kit (Takara).
Aliquots of the resulting cDNA were used as a template
in PCR with primers shown in Supplemental Table S1.

MTT (methyl thiazolyl tetrazolium) assays
The cells were seeded in 96-well plate at 1000 cells/well.
The cell numbers were counted by adding cell count re-
agent SF (Nakalai Tesque) with the reaction performed
at 37 °C for 90 min. Absorbance at 450 nm was measured
by a micro plate reader (SH-1000, Corona).

TdT-mediated dUTP-biotin nick end labeling (TUNEL)
staining
Apoptotic cells were detected by TUNEL staining under
genotoxic conditions. The cells were seeded on chamber
slides (4 well SLIDE and CHANBER sterilized, Watson)
at 5 × 104 cells/well, treated with 125 μM H2O2 and then
fixed in 4% paraformaldehyde for 30 min. After washing
with PBS, TUNEL staining was performed using in situ
Apoptosis Detection kit (Takara). The slides were
treated with ProLong Gold Antifade Mountant with
DAPI (Thermo Fisher Scientific).
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Immunocytochemistry
Similar as for TUNEL staining, the cells were seeded in
chamber slides, and fixed in 4% paraformaldehyde. The
fixed cells were treated with 0.5% TritonX-100 (Wako),
and washed in PBS. After blocking with 1% BSA (Wako),
the cells were incubated with primary antibodies (shown
in Supplemental Table S2) for 60 min followed by Alexa
Fluor 594 (Thermo Fisher Scientific) for 40 min. The
slides were treated with ProLong Gold Antifade Mount-
ant with DAPI (Thermo Fisher Scientific).

Western blotting
Total protein was extracted from 1.0 × 106 cells using SDS
buffer containing protease inhibitor cocktail (Sigma-Al-
drich). Ten μg of extracted protein was electrophoresed
on 10% SDS-PAGE and transferred to polyvinylidene
difluoride membranes (GE Health Care Life Sciences).
The protein-bonded membranes were blocked with 5%
non-fat milk or 5% BSA (Wako) for 60min. After washing
in TBS-T, the membranes were incubated with primary
antibodies (shown in Supplemental Table S3). The signals
were detected using Amersham ECL Prime (GE Health
Care Life Sciences). Signal density was calculated by Image
J software (National Institute of Health).

Luciferase reporter assays
One day before analysis, the cells were seeded on a 96-
well plate at 1.0 × 105 cells/well. The cells were trans-
fected with pNF-κB-TA-luc or pp53-TA-luc (100 ng),
pcDNA3.1/ Zeo (+) (100 ng) and pβ-gal-basic (50 ng)
using Lipofectamine 2000 (Thermo Fisher Scientific) for
24 h. Cell lysates were assayed using a reporter assay sys-
tem (Promega), and luciferase activity was measured by
a Glomax 96 microplate luminometer (Promega). The
lysates were incubated at 48 °C for 60 min, and assayed
using the Galacto-Light Plus β-Galactosidase Reporter
Gene Assay System (Applied Biosystem). Relative activ-
ities were calculated using β-galactosidase activity as an
internal control.

Soft agar colony formation assays
A 0.75% base agar containing DMEM, FBS, penicillin
and streptomycin was added to 6-well plates. Subse-
quently, top agar (0.36% agar, DMEM, FBS, penicillin
and streptomycin) containing 2.0 × 105 cells was added
onto the base agar. The cells were cultured for 4 weeks.

Cell invasion assays
A total of 1.0 × 105 cells were cultured with low serum
medium (DMEM containing 0.5% BSA, 2 mM CaCl2 and
2mM MgCl2) at 37 °C for 6 h and seeded onto a poly-
carbonate membrane. Invasive cells were detected by a
CytoSelec 24-Well Cell Invasion Assay Basement Mem-
brane, Colorimetric Format (Cell Biolabs).

Comet assays
A total of 1.0 × 105 cells were mixed with molten LMA-
garose and 50 μl was placed on CometSlide (Trevigen).
The slides were incubated with lysis solution (Trevigen)
at 4 °C for overnight. Electrophoresis was performed at
100 V for 40 min. The electrophoresed slides were
stained with SYBR® Green for 30 min in the dark. Comet
length was measured using Image J (NIH).

Animal experiments
Animal experiments were done in accordance with the
guidelines for animal treatment, housing, and euthanasia
of the Animal Experiment Committee of the University
of the Ryukyus. The protocol of animal experiments was
approved by the Animal Experiment Committee of the
University of the Ryukyus (reference number: 5730).
Four week-old female BALB/cScl-nu/nu nude mice
(Japan SLC, Inc.) were purchased. At 5 weeks of age,
they were injected subcutaneously with 1.0 × 105 cells.
The mice were euthanized 12 weeks after injection with
sodium pentobarbital, and tissue samples were collected
for molecular and histological analysis.

Histopathological analysis
Tumor samples from the nude mice were fixed in 10%
phosphate-buffered formalin and embedded in paraffin.
The samples were sectioned in 3 μm-thickness and
dewaxed with xylene. The sections were examined with
conventional hematoxylin and eosin staining. For immu-
nohistochemistry, the sections were heated with 10mM
citrate buffer (pH 6.8) in an electric pot. After antigen
retrieval, the sections were treated with 0.3% H2O2, and
incubated with 1% BSA for 60 min. The sections were
then incubated with primary antibodies (shown in Sup-
plemental Table S2) for 60 min followed by HRP-labeled
secondary antibody (Nichirei). The signals were visual-
ized using diaminobenzidine (Nichirei).

Statistical analysis
Data were analyzed by non-repeated measures ANOVA
followed by Bonferroni’s multiple comparison test. A p-
value of < 0.05 was considered as statistically significant.

Results
Co-expression of low-risk HPV6 E6 and EBV LMP-1
increased cell proliferation via NF-κB activation and
reduced p53 induction
To evaluate the transformation activity by low-risk
HPV6 E6 and EBV LMP-1 co-expression, we firstly ex-
amined cell proliferation rates using MTT assay. The
cells expressing any of the viral proteins grew signifi-
cantly faster than mock cells (††p < 0.01) (Fig. 1A). In
particular, the cells co-expressing both HPV6 E6 + EBV
LMP-1 (6E6 + LMP-1) and HPV16 E6 + EBV LMP-1
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Fig. 1 (See legend on next page.)

Uehara et al. BMC Cancer          (2021) 21:688 Page 4 of 13



(16E6 + LMP-1) showed significantly higher proliferation
rates regardless of whether the E6 was from high-risk or
low-risk HPV (*p < 0.05, **p < 0.01). HPV6 E7 + EBV
LMP-1 (6E7 + LMP-1) also demonstrated elevated prolif-
eration compared with mock cells, as seen in Supple-
mental Figure S2A.
It has been reported that EBV LMP-1 activates nu-

clear factor-kappa B (NF-κB) pathways [17], while
HPV E6 and E7 suppress or degrade p53 and pRb
[1]. To examine the relationship in the cells express-
ing low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1)
between high proliferative activity and NF-κB activ-
ity, NF-κB-related proteins and its transactivation ac-
tivity were measured by Western blotting and
luciferase reporter assay, respectively. On Western
blotting analyses, low-risk HPV6 E6 + EBV LMP-1
(6E6 + LMP-1) showed phosphorylation of IκB, pro-
cessing of p105 to p50, and high RelB expression
(Fig. 1B) correlated with high pIκB/IκB ratio but
comparable p105/p50 one to mock cells (Fig. 1C, D).
On reporter assay for NF-κB, low-risk HPV6 E6 +
EBV LMP-1 (6E6 + LMP-1) had higher activity than
cells expressing only HPV6 E6 (6E6) (*p < 0.05) (Fig.
1E). As EBV LMP-1 suppresses transcription of p53
[18], we performed a reporter assay to examine p53
induction in each cell line. The cells co-expressing
low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) re-
duced p53 induction significantly more than those
expressing HPV6 E6 alone (6E6) (Fig. 1F). However,
both NF-κB activation and p53 suppression of low-
risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) were
lower than those resulting from high-risk HPV16 +
EBV LMP-1 (16E6 + LMP-1) (Fig. 1E, F). Experiments
with HPV11 E6/E7 + EBV LMP-1 (11E6 + LMP-1 and
11E7 + LMP-1) yielded similar findings, as seen in
Supplemental Figure. S2B-E.

Co-expression of low-risk HPV6 E6 and EBV LMP-1
induced DNA damage, escape from apoptosis and
suppression of DNA damage response (DDR) under
genotoxic condition
Generally, it is thought that DNA damage occurs in can-
cer cells by hyperproliferation associated with oncogene
signaling. DNA damage activates DNA damage response
(DDR) pathway, which transmits signals to various cellu-
lar machineries including apoptosis. Therefore, apoptosis
is suppressed by derangement of both the apoptotic ma-
chinery and DDR [19, 20]. To analyze DNA damage, we
performed immunofluorescent staining of γ-H2AX.
MEFs expressing viral protein(s) had a higher percentage
of γ-H2AX-positive cells than mock cells (Fig. 2A, B and
Supplemental Figure S3A, B). In particular, the cells ex-
pressing low-risk HPV6/11 E6/E7 + EBV LMP-1 (6E6 +
LMP-1, 6E7 + LMP-1, 11E6 + LMP-1 and 11E7 + LMP-1)
induced greater DNA damage than the cells expressing
low-risk HPV6/11 E6 or E7 alone (6E6, 6E7, 11E6 and
11E7) (Fig. 2A, B and Supplemental Figure S3A, B). A
comet assay also showed that low-risk HPV6 E6 + EBV
LMP-1 (6E6 + LMP-1) induced longer comet tails than
mock cells and increased the comet positivity rate (Fig.
2C, D and Table 1). We performed TUNEL staining
under genotoxic conditions to examine resistance to
apoptosis. Low-risk HPV6/11 E6/7 + EBV LMP-1 (6E6 +
LMP-1, 6E7 + LMP-1, 11E6 + LMP-1 and 11E7 + LMP-1)
had a lower percentage of TUNEL-positive cells than
MEFs expressing a single viral protein (6E6, 6E7, 11E6
and 11E7) (Fig. 2E, F and Supplemental Figure S3C, D),
despite of increased DNA damage (Fig. 2A-D and Sup-
plemental Figure S3A, B). We also assessed DDR by
Western blotting. Under normal conditions, the ATR-
Chk1 pathway was induced among all the cell lines
tested including original CF-1 and mock cells, but
ATM-Chk2 proteins were not expressed (Fig. 2G and

(See figure on previous page.)
Fig. 1 Cell proliferation, NF-κB activity and p53 induction. A Cell proliferation was compared among MEFs expressing viral proteins. The cells co-
expressing low- or high-risk HPV E6 + EBV LMP-1 (6E6 + LMP-1 and 16E6 + LMP-1) grew faster than those expressing single viral protein and mock
cells. Asterisk symbol indicates significant increase in cell number compared with cells expressing HPV E6 alone (*p < 0.05, **p < 0.01). Dagger
symbol indicates a significant increase in cell number compared with mock cells (††p < 0.01). B Low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1)
showed phosphorylation of IκB, processing of p105 to p50, and high RelB expression which were comparable to those seen in high-risk HPV16
E6 and EBV LMP-1 (16E6 + LMP-1). C and D) Relative pIκB/IκB (C) and p50/p105 (D) ratios of each clone were determined by densitometry. The
ratios in mock cells were set to 1.0. Although high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) showed increased ratios of both pIκB/IκB and p50/
p105, low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) had a high pIκB/IκB ratio but a p105/p50 ratio comparable to mock cells. E A luciferase assay
for NF-κB activity indicated that low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) had higher activity than cells expressing HPV6 E6 alone (6E6).
However, high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) showed more than eight-fold increase in activity over low-risk HPV6 E6 + EBV LMP-1
(6E6 + LMP-1). Asterisk and dagger symbols indicate a significant increase of NF-κB activation compared with cells expressing HPV E6 alone (*p <
0.05, **p < 0.01) and mock cells (†p < 0.05, ††p < 0.01), respectively. F Induction levels of p53 of each clone were compared through a luciferase
assay. p53 expression decreased more in low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) than those expressing HPV6 E6 alone (6E6). However, p53
suppression in low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) was lower than that in high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1). Asterisk and
dagger symbols indicate a significant decrease of p53 activation compared with cells expressing HPV E6/E7 alone (*p < 0.05) and mock cells
(†p < 0.05, ††p < 0.01), respectively
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Fig. 2 (See legend on next page.)
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Supplemental Figure S3E). Under genotoxic conditions,
mock cells and the cells expressing a single viral protein
induced ATM, ATR, Chk1, and Chk2. However, these
DDR proteins were suppressed in cells expressing low-
risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) suggesting
inhibition of DDR (Fig. 2G). Taken together, low-risk
HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) caused greater
DNA damage and suppression of DDR, leading to muta-
genesis identical to that seen with high-risk HPV16 E6 +
EBV LMP-1 (16E6 + LMP-1).

No malignant phenotype was seen in the cells co-
expressing low-risk HPV6 E6 and EBV LMP-1
To assess the malignant features associated with low-
risk HPV6 E6 and EBV LMP-1 co-expression, we per-
formed soft agar colony formation and cell invasion as-
says. In the former, high-risk HPV16 E6 + EBV LMP-1
(16E6 + LMP-1) cells formed abundant colonies of vari-
ous sizes in the agar medium, but low-risk HPV6 E6 +
EBV LMP-1 (6E6 + LMP-1) cells formed no colony
(Fig. 3A, B). In cell invasion assay, high-risk HPV16
E6 + EBV LMP-1 (16E6 + LMP-1) cells displayed higher
invasive capacity than other clones, while low-risk
HPV6/11 E6/E7 + EBV LMP-1 (6E6 + LMP-1, 6E7 +
LMP-1, 11E6 + LMP-1 and 11E7 + LMP-1) exhibited
only slightly more invasion than mock cells, a result
comparable to that with clones expressing only one of
the viral proteins (Fig. 3C, D and Supplemental Figure
S4A, B). To assess the tumor formation in vivo, we

injected the cell lines under the skin of 5 week-old nude
mice and observed them for 2 months. Although all the
mice injected with high-risk HPV16 E6 + EBV LMP-1
(16E6 + LMP-1) cells developed tumors, no tumor was
found in mice injected with low-risk HPV6 E6 + EBV
LMP-1 (6E6 + LMP-1) cells, low-risk HPV11 E6/E7 +
EBV LMP-1 (11E6 + LMP-1 and 11E7 + LMP-1) cells or
mock cells (Table 2 and Supplemental Table S4).

Anchorage-independent growth was suppressed in the
cells co-expressing low-risk HPV6 E6 and EBV LMP-1
through downregulation of adhesion signaling
Despite the mutagenetic effects of low-risk HPV6 E6 +
EBV LMP-1 (6E6 + LMP-1) cells and low-risk HPV11
E6/E7 + EBV LMP-1 (11E6 + LMP-1 and 11E7 + LMP-1),
they were unable to induce transformation (Table 2 and
Supplemental Table S4). The most significant difference
between low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1)
and high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1)
cells was invasiveness and anchorage-independent
growth. To examine more precisely, we compared the
expression level of matrix metalloproteinase-2 (MMP-2),
which plays crucial role in cancer invasion. Although
high-risk HPV16 E6 alone (16E6) or with EBV LMP-1
(16E6 + LMP-1) was associated with increased MMP-2
expression, low-risk HPV6 E6 (6E6) did not induce
MMP-2 expression. Conversely, it suppressed the effect
of LMP-1 on MMP-2 induction, which was seen in low-
risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) (Fig. 4A, B).
Anchorage-independent growth is an important neoplas-
tic trait associated with adhesion signaling. It has been
reported that control of focal adhesion proteins such as
paxillin is important for cancer metastasis, which de-
pends on cellular migration and cell-matrix adhesion
[21]. Cool-associated tyrosine-phosphorylated protein-1
(Cat-1) has a crucial role in anchorage-independent
growth by interacting with paxillin, which then activates
Akt signaling in uterine cervical carcinoma cells [22].
We compared adhesion molecule signaling between low-

(See figure on previous page.)
Fig. 2 DNA damage, DNA damage response (DDR) and apoptosis. A γ-H2AX immunofluorescent staining showed that MEFs expressing viral protein(s)
had a higher percentage of γ-H2AX-positive cells than mock cells. However, low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) induced higher rates of DNA
damage than cells expressing HPV6 E6 alone (6E6). Arrows indicate γ-H2AX positive cells. B The rates of γ-H2AX positive cells were calculated and
compared among the clones. Both low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) and high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) showed
significantly increased γ-H2AX signals compared with the cells expressing a single viral protein. Asterisk symbol indicates significantly increased rate of
γ-H2AX signal (**p < 0.01). C A comet assay showed that viral protein expressing cells induced more comet signals than mock cells. More comet
signals and longer comet tails were observed in the cells expressing HPV6 E6 + EBV LMP-1 (6E6 + LMP-1). D Comet tail length of each cell line was
measured using ImageJ software. Comet tail lengths of viral protein expressing cell lines were longer than those of mock cells (††p < 0.01), but there
was no significant difference between low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) and high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1). E Low-risk
HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) showed less TUNEL signals than mock cells and single low-risk HPV6 E6 (6E6) expressing cells under genotoxic
conditions. Arrows indicate TUNEL-positive cells. F TUNEL staining rates of each cell line under genotoxic conditions were measured and compared.
Asterisk symbol indicates a significant increase in TUNEL-positive cells as detected by immunofluorescent staining (*p < 0.05). G Under normal
conditions, the ATR-ChK1 pathway was induced across all cell lines. However, ATM-ChK2 proteins were not expressed. Under genotoxic conditions,
low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) and high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) showed suppression in both the ATR-ChK1 and ATM-
ChK2 pathways. FBS: fetal bovine serum

Table 1 Comet assay

Comet length (μm ± SD) Positive rate (%)

mock 116.5 ± 40.9 17%

LMP-1 167.8 ± 45.3 26%

6E6 181.0 ± 51.9 37%

6E6 + LMP-1 190.2 ± 38.5 38%

16E6 159.9 ± 28.7 35%

16E6 + LMP-1 190.4 ± 29.5 41%
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risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) and high-
risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) using im-
munocytochemistry and Western blotting. Although
some of the viral proteins demonstrated increased levels
of paxillin, low-risk HPV6 E6 + EBV LMP-1 (6E6 +

LMP-1) displayed comparable level of mock cells (Fig.
4C, D). Elevated Cat-1 expression was only seen in cells
with high-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1)
(Fig. 4E, F). We confirmed similar cytoplasmic expres-
sion of MMP-2, paxillin and Cat-1 in the tumors arising
in the nude mice injected with high-risk HPV16 E6 +
EBV LMP-1 (16E6 + LMP-1) (Supplemental Figure S5).
High-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) in-
duced greater Akt signaling, whereas low-risk HPV6
E6 + EBV LMP-1 (6E6 + LMP-1) showed low Akt activity
(Fig. 4G). These results suggest that co-infection with a
low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) is

Fig. 3 Anchorage-independent growth and invasion. A High-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) formed many colonies on DMEM with agar,
whereas low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) was unable to form any colonies. B The number of colonies formed on DMEM with agar was
counted and compared among clones. High-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) formed about 40 colonies of various sizes, but low-risk HPV6
E6 + EBV LMP-1 (6E6 + LMP-1) demonstrated no colony formation. C High-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) displayed higher invasive capacity
than other clones, whereas low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) exhibited only slightly more invasion than mock cells. D The invasive capacity
of each clone was quantified in relation to the level of mock cells set to 1.0. High-risk HPV16 E6 + EBV LMP-1 (16E6 + LMP-1) showed a two-fold higher
invasive capacity than mock cells. However, low-risk HPV6 E6 + EBV LMP-1 (6E6 + LMP-1) demonstrated a slightly increased invasive capacity compared
with the single viral protein expressing clones

Table 2 Tumors in nude mice

Tumors in nude mice

mock 0/15

6E6 + LMP-1 0/15

16E6 + LMP-1 6/6
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Fig. 4 (See legend on next page.)
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incapable of causing invasion and anchorage-
independent growth because such an expression would
not affect adhesion signaling by MMP-2, paxillin, and
Cat-1 in the same way that high-risk HPV16 E6 and
EBV LMP-1 co-expression does.
Collectively, these data indicate that low-risk HPV and

EBV co-infections cannot induce malignant transformation
because they do not disrupt cell adhesion signaling, but on
the other hand, they do induce preneoplastic lesions that
have substantial DNA damage and suppressed DDR.

Discussion
Our study demonstrated that co-expression of low-risk
HPV6/11 E6/E7 and EBV LMP-1 (HPV6 E6 + LMP-1,
HPV6 E7 + LMP-1, HPV11 E6 + LMP-1 and HPV11
E7 + LMP-1) led to increased cell proliferation, elevated
NF-κB activity, and reduced induction of p53. These co-
expressing clones also induced DNA damage, which did
not evoke apoptosis and DDR, implying that the accu-
mulated DNA damage triggers mutation. However, in
contrast to finding with high-risk HPV16 E6 + EBV
LMP-1 (16E6 + LMP-1), low-risk HPV6 E6 + EBV LMP-
1 (6E6 + LMP-1) did not induce anchorage-independent
growth, invasiveness and tumor formation in nude mice.
These findings suggest that a co-infection with a low-
risk HPV and EBV increases mutagenicity but does not
cause malignant transformation.
Compared with high-risk HPV E6 and E7, low-risk

HPV genes had little effect on p53 and pRb, eliciting
weak degradation of those tumor suppressor genes [1].
This may explain why low-risk HPVs evoke neither
immortalization nor transformation.
In previous reports, we demonstrated that dual expres-

sion of high-risk HPV16 E6 and EBV LMP-1 in primary
MEFs induced transformation, whereas either viral protein
alone did not [15]. In addition, transformation of cells co-
expressing high-risk HPV16 E6 and EBV LMP-1 is associ-
ated with suppression of DDR and increased NF-κB activ-
ity [15]. In a study on LMP-1 expressing B-lymphoma
line, DDR was blocked by suppression of the DNA dam-
age sensor, ATM and its downstream protein Chk2 [23].
LMP-1 is also known to induce immortalization of pri-
mary human lymphocytes by suppression of apoptosis
through NF-κB activation [24]. In addition, LMP-1 has

been reported to induce transformation of immortalized
human keratinocytes and confer invasion capacity through
suppression of E-cadherin expression [25, 26].
In the present study, low-risk HPV6/11 E6/E7 + EBV

LMP-1 (6E6 + LMP-1, 11E6 + LMP-1 and 11E7 + LMP-
1) activated the NF-κB pathway and suppressed p53
transcriptional activity, an effect not seen in cells ex-
pressing low-risk HPV6/11 E6 or E7 alone (6E6, 11E6
and 11E7). It has been reported that LMP-1 activates
NF-κB and suppresses transcription of p53, leading to
genome instability and inhibition of apoptosis [18, 27].
However, we found that low-risk HPV6 E6 and EBV
LMP-1 co-expression was unable to cause transform-
ation. These findings indicate that increased NF-κB ac-
tivity and suppression of DDR, while leading to
mutagenesis, are insufficient for low-risk HPV to induce
carcinogenesis.
One striking difference between co-expression of EBV

LMP-1 with E6 or E7 from low- versus high-risk HPV was
the effects on anchorage-independent growth. Scaffold pro-
teins such as paxillin play an important role in regulating cell
migration. Paxillin links the cell membrane to the actin cyto-
skeleton, and recruits tyrosine kinases such as FAK and Src
[21]. Tong and Howley reported that paxillin interacts with
high-risk HPV E6 to cause transformation, but these effects
are not seen with low-risk HPV E6 [28]. Another scaffold
protein, Cat-1 interacts with paxillin and promotes
anchorage-independent growth by Akt activation in HeLa
cells [22]. Our data showed that low-risk HPV6 E6+ EBV
LMP-1 (6E6 + LMP-1) induced less expression of paxillin
and Cat-1 than high-risk HPV16 E6+ EBV LMP-1 (16E6 +
LMP-1). Probably, the insufficient anchorage-independent
growth with low-risk HPV6 E6+ EBV LMP-1 (6E6 + LMP-
1) may be explained by downregulation of cell signaling via
paxillin and Cat-1. MMP-2 is associated with metastasis of
oral squamous cell carcinoma cells [29]. Zhu et al. reported
that HPV16 E6 and E7 proteins upregulate MMP-2 and
MMP-9, and promote cell migration of cervical cancer cells
[30]. Similar to high-risk HPV E6 and E7, EBV LMP-1 pro-
tein isolated from nasopharyngeal carcinoma also induces
MMPs [31]. As with our other findings, MMP-2 expression
with low-risk HPV6 E6 + EBV LMP-1 (6E6 +LMP-1) was
lower than with high-risk HPV16 E6+ EBV LMP-1 (16E6 +
LMP-1). Because MMPs are induced via the NF-κB pathway

(See figure on previous page.)
Fig. 4 Expression of adhesion molecules. A and BMMP-2 expression was evaluated by immunofluorescent staining (A) and the rate of MMP-2 positive clones
was displayed (B). Clones only expressing high-risk HPV16 E6 or EBV LMP-1 (LMP-1, 16E6 and 16E6+ LMP-1) showed increased MMP-2 expression compared
with low-risk HPV6 E6+ EBV LMP-1 (6E6+ LMP-1). C and D Immunofluorescent staining of paxillin (C) and the relative rate of paxillin-positive clones (D) were
analyzed. Some of the viral protein expressing clones demonstrated increased levels of paxillin, but low-risk HPV6 E6+ EBV LMP-1 (6E6 + LMP-1) displayed
comparable levels with mock cells. E and F Cat-1 immunofluorescent staining (E) and the relative rate of Cat-1 positive clones were evaluated (F). Elevated Cat-
1 expression was only seen in high-risk HPV16 E6+ EBV LMP-1 (16E6+ LMP-1). Low-risk HPV6 E6+ EBV LMP-1 (6E6 + LMP-1) expressed low levels of Cat-1 that
are comparable to those of mock cells. G Expression of adhesion molecules was compared among clones. High-risk HPV16 E6+ EBV LMP-1 (16E6+ LMP-1)
demonstrated an overall increase in the expression of adhesion molecules and higher Akt expression, whereas low-risk HPV6 E6+ EBV LMP-1 (6E6+ LMP-1)
showed low expression and activity
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[32, 33], our data suggest that differences in NF-κB activity
in low- versus high-risk HPV co-infection with EBV are asso-
ciated with differences in anchorage-independent growth.
As summarized in Table 3, our findings with regard to

the ability of HPV to affect various factors involved
oncogenesis indicate that low-risk HPV proteins alone
cause little effect but that low-risk HPV E6 or E7 along
with EBV LMP-1 leads to significant mutagenesis with-
out malignant transformation seen with high-risk
HPV16 E6 + EBV LMP-1 (16E6 + LMP-1). Several inves-
tigators have reported that malignant tumors can de-
velop from benign low-risk HPV associated lesions by
smoking or irradiation [34–36]. Because low-risk HPV
E6/E7 + EBV LMP-1 (6E6 + LMP-1, 6E7 + LMP-1,
11E6 + LMP-1 and 11E7 + LMP-1) induces more muta-
genesis than infection with low-risk HPV E6/E7 alone
(6E6, 6E7, 11E6 and 11E7), co-infection of low-risk HPV
and EBV may therefore induce precancerous lesions that
could be more easily transformed if they are subse-
quently subjected to further mutagenic effects.

Conclusions
In summary, our research demonstrated that the co-
expression of low-risk HPV6/11 E6/E7 and EBV LMP-1
does not induce malignant transformation, but it allows
accumulation of somatic mutations secondary to in-
creased DNA damage and suppression of DDR. Thus,
double infection of low-risk HPV and EBV could lead to
precancerous lesions.
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