

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

MASTER’S THESIS

C++ CODING PRINCIPLES FOR HIGH-LEVEL
SYNTHESIS

 Author Heikki Vuopio

 Supervisor Jukka Lahti

 Second Examiner Jussi Jansson

 Technical Advisor Teemu Vikamaa

June 2021

Vuopio H. (2021) C++ CODING PRINCIPLES FOR HIGH-LEVEL SYNTHESIS.

University of Oulu, Faculty of Information Technology and Electrical Engineering, Degree

Programme in Electronics and Communications Engineering. Master’s Thesis, 63p.

ABSTRACT

High-level synthesis (HLS) raises the level of abstraction on digital integrated circuit

design from traditional register transfer level (RTL) to behavioural system description

level. This methodology offers great advantages such as increased designer productivity.

The adoption of HLS, however, has been slowed down by the RTL code mistakenly

generated with HLS which potentially results in poor quality compared to the traditional

hand-written RTL.

This thesis aims to solve this problem by finding the best programming practices for

hardware-oriented C++. A digital downconverter and decimator are designed and

implemented with Catapult HLS as a case study, where different coding practises are

experimented with, and the best ones are generalized and presented. The quality of results

of this case study is compared against a hand-written RTL design of the same intellectual

property created by other designers. A few examples are presented as well demonstrating

that small changes in the source code might have a major effect on the generated RTL.

It is found that understanding how the HLS tool analyses the source code and executes

operations in parallel greatly helps to improve the quality of results in the generated

hardware. Also, by having a clear target architecture it is a simple task to verify the

hardware in Catapult analysis views such as schedule and schematic view. By optimizing

the source code, it is possible to generate similar quality hardware compared to traditional

RTL flow. In this case, the area of the HLS design is about 19 % smaller than the RTL

design with the same throughput, slightly lower latency, and roughly the same power

consumption.

Key words: high-level synthesis, HLS, digital IC design, hardware-oriented C++, Catapult

HLS.

Vuopio H. (2021) C++ OHJELMOINTIKÄYTÄNNÖT KORKEAN TASON

SYNTEESIIN. Oulun yliopisto, tieto- ja sähkötekniikan tiedekunta, elektroniikan ja

tietoliikennetekniikan tutkinto-ohjelma. Diplomityö, 63p.

TIIVISTELMÄ

Korkean tason synteesi (HLS) nostaa digitaalisten integroitujen piirien suunnittelun

abstraktiotason perinteiseltä rekisterinsiirtotasolta (RTL) systeemikuvaustasolle. Tämä

metodologia tuo suuria etuja, kuten suunnittelijan korkeampi tuotteliaisuus. HLS:n

laajempaa käyttöönottoa on kuitenkin hidastanut erheellisesti HLS:llä generoitu RTL-

koodi, josta usein seuraa heikohko laatu käsin kirjoitettuun RTL-koodiin verrattuna.

Tämän tutkimuksen tavoite on ratkaista tämä ongelma löytämällä parhaat

ohjelmointikäytännöt korkean tason synteesiin suunnattuun C++-ohjelmointiin.

Digitaalinen alasmuunnin ja desimaattori suunnitellaan ja implementoidaan käyttäen

Catapult HLS-työkalua. Eri ohjelmointikäytäntöjä testataan ja parhaat yleistetään ja

esitellään, minkä jälkeen tulosten laatua verrataan samaan lohkoon, jonka on

ohjelmoinut eri suunnittelijat rekisterinsiirtotasolla. Tutkimus sisältää myös

koodiesimerkkejä siitä, miten pienet muutokset lähdekoodissa voivat vaikuttaa

merkittävästi lopputulokseen.

Tutkimuksessa todetaan, että synteesityökalun toiminnan ymmärtäminen on kriittistä

hyvien tulosten saavuttamisen kannalta. Suunnittelijalla tulisi olla selvä

tavoitearkkitehtuuri generoitavasta RTL-koodista, jolloin sen varmentaminen synteesin

jälkeen olisi helppoa Catapultin analyysinäkymissä. Optimoimalla lähdekoodia

generoidun RTL-koodin tulosten laatu saadaan samaksi kuin käsin kirjoitetun RTL-

koodin. Tässä tapauksessa generoidun RTL-koodin pinta-ala on 19 % pienempi kuin

käsin kirjoitetun mallin samalla siirtonopeudella. Latenssi on hieman pienempi ja

tehonkulutus samaa suuruusluokkaa.

Avainsanat: korkean tason synteesi, digitaalisuunnittelu, laitteistosuuntautunut C++,

Catapult HLS.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1 INTRODUCTION .. 8

2 HIGH-LEVEL SYNTHESIS .. 9

2.1 History ... 9

2.2 Research on previous HLS use .. 9

2.3 Benefits of HLS ... 10

2.3.1 Productivity ... 11

2.3.2 Bug freedom .. 11

2.3.3 Verification .. 11

2.3.4 Scalability .. 12

2.3.5 Source code readability ... 12

2.3.6 Design space exploration ... 12

2.3.7 Easy source code modifications .. 13

2.4 Challenges of HLS .. 13

2.4.1 Tool specificity .. 13

2.4.2 Quality of results ... 14

3 C++ AS CATAPULT INPUT LANGUAGE ... 16

3.1 Overview of C++ ... 16

3.2 Object oriented programming ... 16

3.3 HLS restrictions and additions to C++ .. 17

3.3.1 AC datatypes ... 18

3.3.2 ac_channel ... 21

3.3.2.1 Overview ... 21

3.3.2.2 Read and write ... 21

3.3.2.3 Non-blocking read and write ... 22

3.3.2.4 Arrays and structs .. 22

3.3.3 File structure .. 22

3.3.4 Leaf blocks and top level ... 24

3.4 Templatizing .. 25

4 CATAPULT HLS ... 28

4.1 Overview ... 28

4.2 Input languages .. 28

4.3 HLS C++ synthesis .. 29

4.4 Design flow ... 29

4.4.1 Hierarchy ... 30

4.4.2 Libraries ... 30

4.4.3 Mapping ... 30

4.4.4 Architecture ... 31

4.4.5 Resources ... 31

4.4.6 Schedule .. 31

4.4.7 RTL .. 32

4.5 Top-down / Bottom-up .. 32

4.6 CCORE .. 33

5 CODING PRINCIPLES ... 34

5.1 Loops ... 34

5.2 Conditions ... 42

5.3 IO and memory accesses ... 44

5.3.1 Pass by value ... 44

5.3.2 Pass by reference ... 44

5.3.3 Memory access .. 45

5.4 In context variable declaration .. 49

5.5 Multidimensional array access example .. 45

5.6 Summary of coding principles .. 49

6 CASE STUDY .. 51

6.1 Requirements ... 51

6.2 Catapult usage ... 52

6.3 Results ... 53

6.4 Analysis ... 57

7 DISCUSSION ... 59

8 SUMMARY .. 61

9 REFERENCES ... 62

FOREWORD

The purpose of this thesis was to find the best practises for HLS-oriented C++ programming.

The thesis work was done at Nokia Oulu from late 2020 to summer 2021.

I would like to thank Nokia SoC organization for the opportunity to do this thesis. Special

thanks to the thesis supervisor Jukka Lahti for guidance with the thesis work, Teemu Vikamaa

for technical advising, and Esa-Matti Turtinen and Richard Langridge from Siemens EDA for

the support in tool-related matters and the guidance on the research subject itself.

Finally, I want to thank my family, friends, and my girlfriend Emma for all the support

provided during the thesis work and the recent years of studying.

Oulu, June 30, 2021

Heikki Vuopio

LIST OF ABBREVIATIONS AND SYMBOLS

AC Algorithmic C

ASIC Application Specific Integrated Circuit

CDFG Control Data Flow Graph

CCORE Catapult C Optimized Reusable Entity

DCT Discrete Cosine Transform

DFE Digital Front-End

DFG Data Flow Graph

DL Downlink

DSE Design Space Exploration

DSP Digital Signal Processing

EDA Electronic Design Automation

FIFO First-In First-Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

GCC GNU Compiler Collection

GUI Graphical User Interface

HBF Half Band Filter

HEVC High-Efficiency Video Coding

HLL High-Level Language

HLS High-Level Synthesis

HLV High-Level Verification

HW Hardware

IC Integrated Circuit

II Initiation Interval

IO Input/Output

IP Intellectual Property

KPN Kahn Process Network

LSB Least Significant Bit

MatchLib Modular Approach to Circuits and Hardware Library

MSB Most Significant Bit

NCO Numerically Controlled Oscillator

OOP Object-Oriented Programming

PSD Polyphase Sub-band Decimation

QoR Quality of Results

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Level

SoC System on Chip

SW Software

TCL Tool Command Language

UL Uplink

UVM Universal Verification Methodology

VHDL Very high-speed integrated circuit Hardware Design Language

1 INTRODUCTION

High-level synthesis [1] (HLS) is a methodology that raises the abstraction level in digital

integrated circuit (IC) design. HLS tool takes the untimed or loosely timed high-level source

code, technology library, and a set of design constraints as input and outputs the clock accurate

register transfer level (RTL) model of the design that is traditionally written by hand.

The first HLS tools were introduced in the 1980s, but only in recent years, HLS has been

adopted by a wider audience due to tool development and growing design complexity in digital

IC projects [1]. The promises of HLS are great since the tool developers promise similar, or

better quality of results (QoR) with greatly decreased design and verification effort and true

code reusability across projects via technology-independent source code.

A challenge with HLS is that the synthesis tool abstracts away some details of the generated

RTL and the input source code is written in a high-level language that only describes the

behaviour of the design. Because of this, it might not be completely clear for the designer how

the tool interprets the source code and generates RTL [2]. This may lead to suboptimal quality

hardware with the designer having no clue how to improve it since the hardware-oriented

programming principles differ from traditional software ones.

In this thesis, the coding style for HLS is being experimented with to find best practices for

hardware-oriented C++ and some examples are presented. A digital front end (DFE) IP-block

describing a signal process algorithm will be implemented using Siemens EDA Catapult HLS

tool and C++ as input language. The IP-block itself has been originally designed in RTL

methodology by other designers and this design is used as a reference for evaluating the results

of HLS design.

This thesis is done at Nokia in Oulu. Active support from Siemens EDA is applied through

the entire design process to guide with both coding style and the HLS tool usage to avoid

mistakes and speed up the HLS learning curve since the writer has practically no previous

experience in designing hardware in HLS methodology. Some previous trials and studies on

HLS have been made within Nokia with reasonable results [3]. These studies have been

focusing on different areas and challenges in HLS flow, like HLS-extracted RTL’s backend

flow compatibility [3] or HLS in IP-based SoC development [4]. Each of these studies includes

a case study with comparisons between HLS and RTL designs and the QoR is reported similarly

to each other with a little variance.

Chapters 2, 3, and 4 present an introduction to HLS, C++, and Siemens EDA Catapult HLS

tool more specifically. Chapter 5 contains hardware-oriented coding principles for C++ and

best practices with examples. Chapter 6 presents a case study example exploiting these coding

practises and a comparison of results against the handwritten RTL model of the design in terms

of QoR and designer productivity. Chapters 7 and 8 contain discussion and summary to provide

conclusions and closure to the thesis.

9

2 HIGH-LEVEL SYNTHESIS

High-level synthesis is a system-level abstraction methodology to generate register transfer

level code directly for targeted ASIC or FPGA technology from behavioural algorithmic source

code using a specific electronic design automation (EDA) tool. Traditionally digital IC’s are

designed on a register transfer level of abstraction using hardware design languages (HDL) such

as VHDL or Verilog. Writing RTL code, however, is time-consuming and prone to bugs. HLS

aims to solve these problems by raising the abstraction level from RTL to system-level C/C++

description of the desired algorithm, of which the RTL code can be generated with the HLS

tool by an HW designer guiding the process. [7]

2.1 History

HLS has had three generations, the first of which originates from the 1980s. The first generation

was a commercial failure due to specific input language, the lack of need for such technology,

poor quality of results, and domain specialization but it offered vital research for the following

generations. [1]

In the second generation, from the mid-1990s to early 2000s, major EDA tool vendors

offered HLS solutions that made clear progress from the first generation but failed as well due

to overmarketing, narrow applications, and various other reasons specified in [1].

The third generation began in the early 2000s. An actual breakthrough was not made but

success stories were heard. Tool vendors promised similar Quality of Results (QoR) to

handwritten RTL and although most of the papers and case studies reported poor QoR, the

designer productivity was undeniably increased significantly. The third-generation HLS tools

accept common input languages such as C to ease the adoption of the HLS tools. The vendors

identified a suitable market and therefore, HLS tools focused on data-driven DSP applications

as they are more suitable to those than complex control applications. [1]

The ever-increasing complexity of ASIC and FPGA development increases the need to raise

designer productivity. In the past years, HLS has been used and experimented with on a variety

of applications and tools have been greatly developed. There is great potential in the technology

but still, in recent years it has been reported that some synthesis tools may seem like black

boxes to designers and it might be unclear what happens in the synthesis. [2]

HLS tools have been even further developed in recent years. Today, the QoR gap is nearly

closed and HLS is being adopted by a wider variety of users. Open source MatchLib library by

NVidia is also enabling a wider variety of applications for HLS as well as encapsulating some

optimization details with preoptimized components that are commonly used in HW design [8].

2.2 Research on previous HLS use

There are various case studies about HLS being applied to different designs. They have been

analysed from different points of view for example some compare HLS design QoR against

hand-written RTL QoR and some analyse software developer’s ability to adopt hardware design

with high-level synthesis.

Reference [9] compiles 46 different case studies from 2010 to 2016 with acceptable reporting

numbers comparing QoR and designer productivity. The main conclusion is that QoR with HLS

remains marginally lower than hand-written RTL designs, but designer productivity is highly

increased, the development cycle is shorter, and the lines of code number is lower using HLS

than traditional RTL design flow. With some exceptions, of course.

10

When comparing QoR in terms of performance (depending on the application) and resource

usage of HLS and RTL designs it seems that results are very similar although RTL slightly

outperforms HLS. The big picture indeed suggests that the QoR gap between HLS and RTL

would be closing and modern HLS tools generate RTL code with similar quality as handwritten,

when used properly. [9]

Designer productivity is compared in terms of development time and lines of code. 25 case

studies reported development time. In 72 % of the cases, the development time in HLS is 50 %

or less compared to development time in RTL design. Only three of those studies report a longer

development time for HLS than RTL. All three come from the same work [10] and the reason

as they explain it is the learning of the HLS tool and necessary source code modifications to

meet the performance requirements. [9]

35 of the 46 case studies reported lines of code for both RTL and HLS. In 75 % of the

reported cases, the number is lower for HLS than RTL. In small designs the nonbehavioural

part of the source code in HLS designs becomes dominant and it favours RTL design in this

sense. In all the cases where this number was reported larger in HLS design, the total lines of

code is less than 250. According to these numbers, it seems indeed undeniably true that HLS

remarkably increases designer productivity. [9]

The development time ratio between HLS and RTL projects was plotted as a function of

absolute development time to figure out if HLS benefits are upscaling in large-scale designs.

Interestingly they found no such correlation. The ratio development time in both large and

small-scale applications remained approximately the same [9]. One could imagine that HLS

benefits from large-scale applications due to code reusability, verification effectiveness, and

scalability of code, especially when the object-oriented programming (OOP) paradigm is used.

However, the ratio of lines of code seemed to favour HLS more and more as the design size

increased [9].

The designer experience in RTL and HLS is neglected in the case study compilation [9]. In

such trials where HLS and RTL are being compared the setting commonly is that it is either

software developer or hardware designer that creates the designs compared. In the case of

experienced hardware designers, RTL design is familiar and it is easy to create high-quality

RTL, but in terms of HLS, the lack of knowledge about the input language and HLS tool might

be the limiting factor. Software developers, on the other hand, most probably have no problem

describing the algorithm in given HLL but translating that algorithm to hardware with the

synthesis tool might lead to poor results if no specific RTL architecture is targeted.

There is also a case study on the compilation paper to verify the results of the quantitative

research. In this case study, six people with moderate SW development experience and little

experience in HW design implement a DCT algorithm in HEVC encoder with both HLS and

RTL methodologies. The results suggest that HLS design flow is easier to adopt than traditional

RTL flow. This point of view is not too interesting for this thesis though, because the aim is to

produce production-ready RTL with the highest possible QoR with increased design

productivity. [9]

2.3 Benefits of HLS

When adopted, HLS would augment traditional RTL design flow, so pros and cons should be

in reference between these two methodologies. More specifically in this thesis, the target is to

produce production-ready high-quality RTL code for ASIC technology with increased

productivity. The benefits will be mostly discussed from this point of view and not for example

HLS vs RTL adoptability for newcomers in HW design.

11

2.3.1 Productivity

HLS promises to increase designer productivity [10]. This is one of the biggest and most

remarkable factors in HLS adoption as modern digital IC projects take large teams and up to

several years of development time before a commercial product is ready.

HLS takes hardware design to a higher level of abstraction allowing the designer to focus on

the behavioural model of the desired hardware. Writing higher-level code simply means less

code is needed to describe an algorithm which again means the code can be written faster. Of

course, writing the code is not the whole process but a big part of it. Higher-level code is usually

more intuitive and therefore, faster to write and easier to understand.

HLS abstracts away some details from the designer like finite state machine creation and

interface handshaking. These details in RTL design must be written to the source code in each

place they are desired, basically leading to code duplication. HLS fully automates some of these

features, and if not, the designer still has the power to make modifications in the synthesis tool

to control the generated RTL code. This is arguably easier and more intuitive and thus

increasing productivity.

2.3.2 Bug freedom

As HLS design flow hides some details from the designer and less source code is required to

implement the desired functionality the source code is less prone to bugs. As long as the source

code compiles and does not conflict with the HLS-friendly coding style, the tool is supposed to

generate bugless RTL with identical functionality to the source code.

Algorithmic bugs in the source code functionality are also easier to identify and fix in HLL

than RTL. Code reusability allowed by HLS and OOP ensures that bugs are not duplicated in

the code. Reusing a buggy class multiple times in the design exposes the bugs more effectively

and they only need to be fixed once, unlike in duplicated code. [10]

2.3.3 Verification

Verification in traditional RTL flow can take the majority of the time before the product is

ready for publishing for the market. Complex digital IC has so much functionality it may take

thousands of test cases to reach near 100 % RTL coverage and functional coverage.

In traditional RTL design flow verification is commonly done with simulations. In large

RTL designs, this can be very slow as running a single test case can take from minutes to hours

depending on the design and test case complexity. Long regression runs might take up to weeks

to finish. RTL simulation can only be started when a functional version of the design is

completed.

HLS allows the testbench to be created in the same HLL as the design is originally written

in. For example, C++ simulations run over a hundred times faster than RTL simulations [10]

exposing bugs much faster. The behavioural model of the design can be verified when the

source code is written, and no RTL is needed for this. Therefore, the verification process can

be started earlier, and the bugs can be fixed faster. Once the RTL is generated, high coverage

test cases can be copied to the UVM test environment and run for RTL to quickly achieve high

RTL coverage. This way, shorter regressions can be run for RTL and individual UVM test cases

can be created to fill the coverage gaps.

12

HLS tools have built-in verification tools, such as Siemens EDA Catapult’s SCverify.

SCverify is a hardware designer smoke test environment that automatically creates a testbench

and verifies the equivalence of the outputs of C++ source code and generated RTL simulations.

There are still some structures in the source code that SCverify has trouble with and traditional

RTL simulations are needed to verify the correct functioning of such structures, but there is

usually a workaround to verify the functionality of such structures in SCverify as well.

2.3.4 Scalability

Using OOP in HLS design allows flexible code reusability. Using templatized classes allows

modules of similar functionality to be reused with different kinds of interfaces or data types,

for example.

Small structures commonly used in RTL architecture like different buffers can be written

once and used everywhere. Larger entities like whole IP can also be simply rescaled for

different applications. All of this reduces code duplication and increases productivity as

designers can focus on creating new instead of modifying old code.

HLS tool also allows easy adjustability of clock frequency and target technology. The same

source code can be used when adjusting clock frequency and the HLS tool optimizes the data

paths so that the maximum amount of operations is fit into each clock cycle with given

constraints. The pieces of timing information in Catapult are only estimates though since the

HLS tool has no information about the gate-level structure that is eventually done with RTL

synthesis tools such as Design Compiler.

HLS source code is technology-independent [10]. This enables real IP reusability over

projects using different technology libraries. Technology retargeting from ASIC to FPGA and

vice versa though might require some changes to the source code as the available resources are

different.

2.3.5 Source code readability

Easy code readability should always be a goal when writing it. By its low-level nature, RTL

code is difficult to read for any other than an experienced HW designer. RTL must be very

descriptive and detailed for the compiler and RTL synthesis tool to understand it and create the

desired HW.

High-level code is much more intuitive and readable by its nature. Very common

programming languages like C++ also help other than HW designers to understand and

comment on the functionality of the design. Files describing the same functionality in HLL as

RTL are commonly smaller making them easier to read and understand large entities in them.

Even though HLS coding style might sometimes even conflict with common coding in SW

development, source code readability is also one of the big advantages HLS has to offer.

2.3.6 Design space exploration

DSE or architectural exploration is one of the big advantages in HLS compared to traditional

RTL. Whereas in RTL design flow usually the algorithm is defined first, then the desired

architecture what is needed in the hardware and finally after having a specific target architecture

it is being committed to and the actual RTL-coding work can start. At this point, it should be

relatively clear what the outcome should look like. In HLS, as the source code itself is high-

level code describing the algorithm and the RTL outcome is defined by that and the tool

13

directives, making changes to the architecture can be done in the late phases of the design flow.

Making minor changes to the source code or fine-tuning the tool directives to explore different

architectural options and finding the optimal one for the application is called design space

exploration or architectural exploration.

Loop handling is one of the features in HLS to exploit parallelism in the C-code. Naturally,

C++ does not support parallelism, but the code is executed sequentially which means that lines

of code are executed one after another. This applies to loop iterations as well, meaning that a

loop iteration is not started before the previous one is finished. In HW this is not always desired

as it leads to poor data throughput in the generated RTL. HLS tools allow loops to be unrolled

or pipelined. Unrolling a loop means that the loop iterations are executed in parallel, and it can

be done for the entire loop or partially [11]. Pipelining a loop means that the next loop iteration

is started before the previous one is finished [11]. Loop handling is just one example of design

space exploration.

Not all configurations of directives result in optimal RTL. Given a specific set of area and

timing requirements, there might be more than one optimal architecture but for sure there are

many suboptimal ones. If an architecture has the lowest area possible for a specific latency

requirement, it is called Pareto-optimal [12]. Finding the Pareto-optimal architectures can be a

complex task especially when targeting an FPGA technology having a specific set of resources

available.

DSE is commonly done manually, but research on automatic DSE and the analysis of the

results have been made to find the Pareto-optimal results in HLS designs [13]. Targeting ASIC

technology, the Pareto-optimal solutions are quite straightforward to find but that is not the case

in FPGA [14].

2.3.7 Easy source code modifications

Since the source code is written in a higher level of abstraction in HLS, it allows the designer

to make changes to the source code to try different architectural options in the resulted RTL.

This is game-changing as in traditional RTL design flow the designer must specify the details

of the target architecture before writing the RTL code. Once the architecture is decided and

agreed upon the designer must commit to it even if they found out later that there could be a

better solution. Writing RTL code targeting specific architecture, change of plan could mean

that all the work that has been done was useless. Changing the architecture in the late phase

could affect neighbouring IP and other designers as well. HLS allows making changes and

experimenting with different architectures even in late phases due to high-level code flexibility

and code reusability [10].

2.4 Challenges of HLS

Despite the great promises, there are a couple of main challenges that have slowed down the

adoption of HLS.

2.4.1 Tool specificity

By this day there are over twenty high-level synthesis tools, both academic and industrial, most

of which use different input language from each other [9]. The most common input language is

C or its subset.

14

Most high-level languages are natively not designed for hardware description and thus poor

for that purpose. The challenges of C-like languages as an HLS tool input language have been

discussed in [15], but most of the problems described in the paper have been solved by the day.

The paper covers twelve different subsets of C used in HLS for different tools and discusses

the strengths and weaknesses of each one from the point of view of hardware description. Even

though the paper claims that the main reason for C-like languages to be used in HLS is its

familiarity, C/SystemC/C++ has become an industry-standard in HLS.

Having such a high number of HLS tools can be confusing for the users. Before getting to

design anything, they must commit to a specific tool and possibly learn a new programming

language or at least relearn how to write it as HLS sets specific restrictions to most common

HLLs.

The common problems in generating hardware from HLL code are known: specifying

parallel algorithms, specifying timing, and having proper data types for hardware. As each of

the tools solves these problems their way it seems unclear for the designer how the tools work.

For example, there are multiple different arbitrary-precision data type libraries for C used by

different HLS tools. Which one is the best? Which one should be used?

Comparison between different tools is also difficult. As they use different input languages it

is difficult to directly compare the tools’ different properties such as synthesis run-times or

“Which tool generates the highest quality hardware?”. Committing to a specific product,

adopting, and learning it is a relatively big risk to potential customers.

The lack of unified methodology for HLS limits both hardware designers' desire and

capability and the tool developers’ ability to create the highest quality tools. Only with

standardized methods can designers learn to create consistently high-quality hardware and the

tool developers could focus on the designers' needs instead of creating another tool that no one

but the developers themselves can efficiently use [2]. Surely, sometimes it depends on the

application which tool and input language are the optimal ones, but not twenty languages are

needed. A lot of research has been made on the topic during the past forty years and agreeing

upon some standards could greatly speed up both tool development and adoption for wider use.

2.4.2 Quality of results

The main challenge slowing down the adoption of HLS is that the quality of results (QoR) has

tended to stay significantly lower compared to handwritten RTL. Significantly doesn’t need to

be very much in this context since the companies producing ASICs are usually willing to invest

a lot of time and money to achieve the optimal results in the area, timing, and power

consumption, and anything less than that is not acceptable. However, the QoR gap between

HLS generated and handwritten RTL-code has been closing in recent years as the HLS tools

have been further developed.

Poor QoR of HLS generated hardware is often related to designers trying to blindly translate

software algorithms into hardware. HLLs, like C, are often sequential by nature, and the optimal

hardware usually exploits high parallelism. The designer must aim to the optimal RTL

architecture in the source code writing phase or the outcome RTL will not be optimal. This

must be considered to avoid poor results or even failure in the resulted RTL. Having clear target

architecture and an idea of how to describe it in HLL can result in comparable QoR with HLS

and handwritten RTL [16].

HLS tools often also fail to capture the programmer’s intention, leading to poor QoR. This

is a matter of the designer and the tool interpreting the source code differently. Describing

algorithms on a system-level C/C++ can be relatively simple, but when targeting ASIC or

15

FPGA the designer must have an idea of what kind of resources are available and how does the

HLS tool uses them.

16

3 C++ AS CATAPULT INPUT LANGUAGE

C++ is one of the possible input languages for HLS. More specifically for Catapult HLS tool

that will be used in the case study in chapter 6. This chapter introduces C++ as the input

language for Catapult HLS tool. The elements of this chapter will be used in the code examples

in chapter 5 as well.

3.1 Overview of C++

C++ is a multi-function programming language. C++ is an extension of C as it adds classes and

object-oriented paradigm into C. C++ is compiled, strongly typed unsafe language. C++

requires the programmer to know what he or she is doing but allows a lot of control while doing

that. [17]

C++ was created by Bjarne Stroustrup. It was published in 1985 with The C++

Programming Language book [18] as Stroustrup's reference to the language. In 1998 C++ was

standardized as C++ ISO/IEC 14882:1998, informally known as C++98. In 2011, C++11 was

released, and this standard is also used in the case study [19].

C++ does not have a concept of time. Traditionally C++ programs target standard CPUs

assuming there is an operating system allowing system calls and all operations are executed

sequentially. Native C++ data types such as int and char have fixed sizes of 8, 16, 32, etc.

making them not ideal for HLS as in hardware design it is desired to optimize the resource

usage.

3.2 Object-oriented programming

C++ supports object-oriented programming (OOP) paradigm. OOP means that the data is

processed in the code as objects. All objects are instances of classes that have certain attributes

or member variables and methods or member functions [20].

One example of a class could be a vehicle: it has traveller capacity and speed as member

variables and turn right, turn left, accelerate, and decelerate as member functions. Classes work

as type definitions in the programming language so now it is possible to instantiate multiple

different vehicles with different member variables. To further specify that the vehicle is a truck,

a class truck is created which has all the attributes and methods that the vehicle does, but they

don’t need to be rewritten as OOP offers a feature called inheritance. Class truck inherits from

the class vehicle and it can have some truck-specific attributes, like storage capacity for

example. Another class could be a wheel. A Wheel has a diameter as a member variable and

roll as a member function. A truck instantiates four wheels as member variables, optimally with

the same diameter. The concept of objects inside objects is called object composition in OOP.

A bicycle class would inherit from the vehicle, it would have its member variables and functions

and it would instantiate two wheels, etc.

Encapsulation means that both member functions and variables are declared as private or

public whether the programmer wants them to be visible outside the class or not. A common

practice in SW coding is that member functions are public and member variables are private. If

the programmer wants to change the value of member variables from the outside, he or she has

to declare a member function that changes the value of the variable for example set_x()-function

to change the value of x.

In OOP, all classes must have a constructor as a member function. Constructor is called

when a new instance/object of the class is instantiated. A constructor can be default or

17

parameterized. Default constructor sets default values to member variables and with

parameterized constructor programmer can set member variables when instantiating the object.

Figure 1 presents an example class example_c. In line 1 there is the declaration of the

example_c class. Suffix _c is fully optional, and it is just a good practice telling the designer

that example_c is a class and not for example an object. Everything between the wave brackets

in lines 1 and 20 is the contents of the class.

Lines 2 and 5 define member visibility outside of the class. Anything declared private can

only be accessed from inside the class. The default visibility is private so line 2 is optional but

for clarity in this example case, it is written. Common practice is that member variables are

declared private and there are specific member functions for accessing those variables.

This class has two attributes, integer type variables var1 and var2. They are declared private.

In the constructor starting from line 6, the attributes are initialized to zeros. The class has

set_var1()-method to assign var1 to a specific value that it takes as an argument and get_var1()-

method to extract the value of var1 to the outside of the class. var2-attribute cannot be accessed

at all from the outside of this class. This is not very practical and in an actual class like this,

there would probably be a similar accessing method for var2 as there is for var1. The print()-

method prints out the values of the attributes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class example_c{

 private:

 int var1;

 int var2;

 public:

 example_c(){

 var1=0;

 var2=0;

 }

 void set_var1(int value1){

 var1 = value1;

 }

 int get_var1(){

 return var1;

 }

 void print(){

 std::cout << "var1 = " << var1 << std::endl;

 std::cout << "var2 = " << var2 << std::endl;

 }

};

Figure 1. Example class declaration in C++.

3.3 HLS restrictions and additions to C++

OOP suits HLS well since modules in IP design can be similar but have minor differences.

Think for example two FIR-filters with a different number of coefficients. OOP in HLS enables

the designer not to repeat written code but to reuse it. This makes the design more readable and

enables easier bug fixing. Siemens EDA Catapult, which is used in the case study as the

18

synthesis tool, advises the designer to create the designs in class-based OOP rather than

traditional function-based code.

Since HLS generates RTL from the C-code that is eventually synthesized to actual hardware,

some of the C++ constructs are prohibited in HLS design due to the limited resources in HW.

Such constructs are for example dynamic memory allocation, function pointers, and recursive

functions [21]. Also, good programming practises in HLS differ a little bit from the common

SW practises. In Catapult HLS, all the member variables and functions are declared private

except the class constructor and the interface function that must have #pragma hls_design

interface before it, if used as module interface [11]. If there is no such pragma, the function will

be synthesized as logic within the higher level in the hierarchy.

The constructor in the HLS design is interpreted as a hardware reset [22]. Therefore, there

must be only one constructor in an HLS targeted class. All the member variables must be reset

in the constructor body if that is desired in the hardware reset. In C++11 it is also possible to

initialize a member variable in the variable declaration.

The interface function is treated as a clocked process in HLS design. Interface function has

the modules inputs, outputs, and possible controls as parameters, and the module functionality

is described in the interface function body. Function calls to classes member functions must

occur inside the interface function. Therefore, everything else but the constructor and interface

function should be declared private; there is always a chance of user error. [22]

3.3.1 AC datatypes

AC (Algorithmic C) data types is an open-source C++ library that includes bit accurate data

types for C++ [23]. Native C++ data types, such as int, float, and char, have fixed bit widths.

They can be used for HLS design but usually, it would result in poor QoR as in quite rare cases

optimal hardware only uses these bit-widths. For this reason, specific arbitrary-precision data

types have been developed for HLS. These bit accurate datatypes ensure that enough bits are

allocated for every step of the design for maintaining the desired data accuracy and scale

without having any unnecessary bits. Table 1 summarizes the AC datatypes used in the

examples and case study in chapter 6.

Table 1. Bit accurate data types used in C++ HLS design in Catapult

Type Description

ac_int<W,S> Bit accurate integer signed or unsigned

variable.

ac_fixed<W,I,S,Q,O> Fixed point variable with specified overflow

mode, quantization mode, and decimal point

location.

ac_complex<T> Complex type variable with specified

numeric type T as real and imaginary part.

Data type ac_int is a fixed-point integer with a bit-width of template parameter W. S is a

boolean type template parameter representing signedness. Value true means that the variable is

signed resulting in two’s complement representation in hardware. [11]

Data type ac_fixed extends the use of ac_int to be able to represent fractional values.

Template parameters W and S work just like in ac_int defining variables total bit-width and

signedness. The parameter I defines the number of integer bits specifying the radix point

19

location. Q and O are optional parameters defining quantization and overflow modes. The sign

bit is counted as one of the integer bits in ac_fixed. [11]

Data type ac_complex declares a complex number variable with both real and imaginary

parts of type T given as a template parameter. ac_complex doubles the bit width of T as it stores

two values for real and imaginary parts of a complex number. [11]

Example ac_int variable declarations can be seen in figure 2 rows 1 and 2. Now x, declared

in row 1 can have values that can be represented with unsigned 3-bit variable, from 0 to 7.

Template parameter S is false so all the bits represent the absolute value, but negative values

cannot be represented. The declaration of y is identical to the x declaration except for the

template parameter S being true in this case. The MSB of y represents signedness with ‘1’ being

negative and ‘0’ positive. Variable y can have values between -4 and 3.

Rows 3, 4, and 5 in figure 2 show example declarations of ac_fixed variables. Variable x2 is

identical to variable x. Having 3 bits total, 3 integer bits and false as S, x2 can represent the

same values as x. In row 4 z is declared as a two-bit variable with one integer and a sign bit.

This means that the only integer bit represents signedness and the other bit of the two represents

absolute value. The LSB is on the right side of the radix point, so this variable can have values

of -1, -½, 0, and ½. Quantization mode is defined as AC_TRN meaning truncate. If this variable

is assigned with higher precision than it can handle, the LSBs are simply clipped away.

Overflow mode is defined as AC_WRAP meaning wrap-around. If this variable is assigned with

a greater value than it can represent, the MSBs are clipped away as well. These quantization

and overflow modes are the default ones so they could have been just left away in this variable

and the same functionality is in x2 and all the ac_int variables.

Row 5 in figure 2 declares another ac_fixed variable n. This one has non-default AC_RND

as quantization mode and AC_SAT as overflow mode. AC_RND is a rounding mode that rounds

up if one bit right of LSB is high. AC_SAT is a saturation mode that assigns the variable with

the highest absolute value it can have if the variable is assigned with a value that is out of

bounds. There are more rounding and saturation modes but using these in HLS code will lead

to rounding and saturation logic in resulting hardware so they should be used carefully.

Row 6 shows ac_complex type declaration. The element type of ac_complex is now a five-

bit unsigned integer making c a 10-bit complex number with 5-bit real and 5-bit imaginary

parts.

1

2

3

4

5

6

ac_int<3,false> x;

ac_int<3,true> y;

ac_fixed<3,3,false> x2;

ac_fixed<2,1,true, AC_TRN, AC_WRAP> z;

ac_fixed<3,2,false, AC_RND, AC_SAT> n;

ac_complex<ac_int<5,false> > c;

Figure 2. Example declarations of bit accurate variables.

AC datatypes also offer a bunch of different functions as well as overloaded arithmetic

operators with them since hardware designer typically wants to perform some specific

operations to the bit accurate data types that might not be so typical in software design.

Bit select operation is typical in hardware design. It allows individual bit selection from any

of the AC datatypes with square brackets ([]). Bit selections allow getting bit from AC datatypes

or assigning specific bit with a value of ‘1’ or ‘0’. Bit selection can only be used for single bits

and longer bit queue selections there are other functions.

20

In figure 3 row 1 variable k is declared and initialized with a decimal value of ten. The bit-

level representation of the value is shown in the commented section of the row. In rows 2 and

3 two boolean type variables are declared and initialized with a value using the bit select

operator from k. b0 is assigned with the LSB of k being ‘0’ in this case and b1 is assigned with

the MSB of k being ‘1’ in this case. The designer must be careful not to select a bit out of the

variable bounds as it will trigger an error in the compilation or crash the C++ simulation.

Shift operation is also very common in hardware design. Shifting bits left or right can usually

be thought of as multiplying or dividing by a factor of two in decimal representation. Shifting

a bit over the MSB or LSB of the variable, however, has different functionality compared to

multiplying and dividing. Shifted-out bits get removed and empty bits get padded with zeros,

or ones in negative numbers MSB.

In figure 3 row 4 a new variable k1 is declared and initialized with a value of k shifted right

by one bit. The commented section of the row shows the bit representation of the k1 value. The

zero in parenthesis is the original LSB of k that is shifted out and removed. The MSB is padded

with a zero. The decimal value equals five so the original value was divided by two.

In row 5 there is a left shift operation to the same k variable and the value is assigned to a

new 5-bit variable k2. Since there is one more bit available intuition would say that all the bits

are shifted left, LSB is padded with zero and the resulting decimal value would be twenty. This

is not what happens. Shift operation always returns the same number of bits that is in the original

shifted variable. On the right side of the equals-to operator k gets shifted left, the MSB is

removed and LSB is padded with a zero. After that, this 4-bit value is assigned to a 5-bit variable

and the MSB is padded with zeros. The result is shown in the commented section of the row

and the decimal value equals four, which is far from the original value of ten multiplied by two.

Row 6 shows the correct way to maintain all bits when performing the same operation. The

return value of the left shift is cast to a specific type, in this case being the same type the value

is eventually assigned to. Now the MSB doesn’t get removed and the resulting decimal value

equals twenty, the original value multiplied by two.

In the bit selection section, it was said that there are functions for extracting or inserting bit

queues in AC datatypes. These functions are slc() and set_slc() methods. slc()-method takes

slice width as a template parameter and an LSB bit as a function parameter and returns specified

slice width bit queue starting from the specified LSB of the target variable. set_slc()-method

takes LSB and AC datatype variable as parameters and inserts given variable to target variable

starting from specified LSB. Line 7 shows an example of slc() and line 8 shows an example of

the set_slc()-method.

ac_complex datatype has real() and imag() to insert or extract real and imaginary parts from

the complex datatype. The return value will be the same as the one defined for the ac_complex

variable. Lines from 9 to 11 show an example of ac_complex declaration and separate value

assignments for real and imaginary parts.

1

2

3

4

5

6

7

8

9

ac_int<4,false> k = 10; // 4'b1010

bool b0 = k[0]; // LSB of k

bool b1 = k[3]; // MSB of k

ac_int<4,false> k1 = k >> 1; // 4'b0101(0)

ac_int<5,false> k2 = k << 1; // 5'b00100

k2 = ac_int<5,false>(k << 1); // 5'b10100

ac_int<2,false> m = k.slc<2>(1); // 2'b01

k2.set_slc(0,m); // 5'b10101

ac_complex<ac_int<4,false> > comp;

21

10

11

comp.real() = 7; // 4'b0111

comp.imag() = 15; // 4'b1111

Figure 3. Examples of bit-level operations for AC datatypes.

There is also a helper function for AC type array initialization or un-initialization. Init_array

function takes a constant or “don’t care” value as a template parameter and the base address of

the array and the number of elements in the array to be initialized as function arguments. For

example, the constant value could be AC_VAL_0 meaning that the elements of the array will be

assigned to zero. Un-initializing an array can be done by giving the function a “don’t care”

template parameter AC_VAL_DC. The reason why one would do this is to prevent the

generation of initialization logic of array elements stored in large memories that have limited

access bandwidth. After doing this in the constructor, the designer must be careful not to read

from the un-initialized memory element before writing there as it may lead to unexpected and

undesired behaviour. [11]

3.3.2 ac_channel

3.3.2.1 Overview

ac_channel is a special channel data type used in interconnections between leaf blocks. It is

essentially a C++ FIFO that is infinite in C++ simulation, but the depth must be defined in

Catapult directives to get the correct FIFO size also in synthesized hardware. FIFO depth 0

removes the FIFO replacing it with only wires. The modelling paradigm used in Catapult HLS

to model concurrent HW processes in sequential C++ is called Kahn Process Network (KPN)

[24] and ac_channels are used as infinite FIFOs between processes. ac_channel can only be

used in point-to-point connections. If the same data needs to be routed for more than one block

an additional routing block, multiple ac_channels in the driving end of the FIFO or merging the

receiving blocks is required. ac_channel is a template class that takes the data type of the

channel as a template parameter. [11]

3.3.2.2 Read and write

ac_channels are declared in top-level as private member variables. They are referenced in the

interface functions of the leaf blocks to store the data outside of blocks in the channel variables

in top-level. ac_channel has member functions write() and read() for sending and receiving data

from the channel. Channel accesses are bandwidth limited so the functions can only be accessed

once in a single clock cycle per channel. This must be considered in the coding and kept in

mind if the main function is going to be pipelined or not. If this rule is violated and there are

multiple channel accesses within a single clock cycle, Catapult will trigger an error claiming

that the design couldn’t be scheduled even with unlimited resources.

Using a read()-function on an empty channel will trigger an assertion and crash C++

simulation and therefore it should be used with the available()-function to make sure that does

not happen if the data availability is unknown. available()-function should be inside #ifndef

__SYNTHESIS__ condition that has the ac_channel member function since in Catapult

synthesis, read()-function transforms into a blocking read that stalls until data is available in

the channel. available() member function takes an integer number as an argument and returns

true if there is an equal or greater amount of data in the FIFO than the specified integer is. In

22

RTL synthesis available() synthesizes always true optimizing away and leaving only the

blocking channel read.

3.3.2.3 Non-blocking read and write

If there are multiple ac_channel inputs for a block and the data availability for each channel is

unknown or the block must do something even if there were no input data, a non-blocking read

can be used. Whereas the normal read() function stall until data is available in the channel and

returns the read value from the channel, nb_read() returns boolean value true if a value was

read from the channel and false if the channel was empty. Normal read() doesn’t take any

arguments but nb_read() takes the variable that the value is read to if there is some. This

variable must be the same type as specified for the ac_channel. nb_read() from an empty

channel does not trigger assertion nor crash the C++ simulation.

Non-blocking write is a more rarely needed feature of the channel. As a non-blocking read,

it takes the value to be written to the channel as an argument and returns boolean true or false,

if the write was successful or not. In C++ simulation the return value will always be true since

the channel FIFO is infinite. In RTL where the FIFO depth is defined, the return value might

be false as well. To verify the correct functionality of the C++ source code, manual false must

be inserted to the “return value”.

SCverify co-simulation and equivalence checking might cause data mismatch errors if the

design is using non-blocking reads and/or writes. Manual verification of the data correctness or

other verification method is needed in this case. Therefore, the use of non-blocking reads and

writes should be avoided in the source code if possible, but in some cases, they might be useful

and required features.

3.3.2.4 Arrays and structs

Often it is required to send large amounts of data through an interface or there might be some

control signals for individual samples travelling through the entire pipeline with the data. An

intuitive way of programming this could be to create an array of ac_channel, each containing

its type of data that travels in parallel to keep data in alignment. This is not an optimal way

since each ac_channel synthesizes an interface handshaking logic and a FIFO if the depth is not

defined to 0. A general rule is that an ac_channel array should not be used for point-to-point

connections.

A better way to solve the problem is to create a C++ struct that contains all the data that is

known to be tied together and travel in parallel. ac_channel can take a struct as a data type and

the amount bits in the struct is directly the sum of bits in the AC data types that the struct

contains. This way, all the data gets sent through the same ac_channel, and only one FIFO or

set of wires and handshaking logic is generated, saving area and complexity.

3.3.3 File structure

In traditional C++ programming, it is common that header file includes forward declarations of

classes and functions and other data shared by multiple different source files. That practice can

be used in HLS as well, but it is also possible to declare a class per header file and all the

information that is needed by that class. This is just a matter of designer preference. In this

thesis and the following examples, the latter one will be used.

23

Figure 4 presents an example header file content. This is a very simple example of a class

that only writes the data from the input port to the output port when the interface function is

called.

Lines 1, 2, and 23 perform a guard preventing multiple inclusions of this class. The first time

this class is included _EXAMPLE_ string is defined, and possible further inclusions are blocked

by the #ifndef condition. The string must be unique inside the project. After this, there is an

empty space for possible file inclusions or constant declarations. This file could include a

common type definitions file as the DATA_TYPE used in line 14 in this file is not declared at

all in this file. The first two lines and the #endif at the end of the file can be replaced with

#pragma once at the beginning of the file to achieve equivalent functionality.

In HLS design good practice is that all the member variables and those member functions

that are not the interface function should be declared private. This is not mandatory, but the

variables and functions should not be accessed from the outside of the class, for example,

testbench so there is no reason to declare them public. If they are declared private, they will

trigger an error in compilation if misuse is occurring. Since this example is very simple, there

are no private members in this class.

Only public members can be accessed from the outside of the class. As mentioned before,

only the class constructor and exactly one interface function should be declared public in HLS

designs. Constructor, found in lines from 9 to 11, is called when a class is instantiated inside

another class or in the testbench. The constructor initializes member variables with default

values. Catapult only supports the default constructor, meaning no arguments can be given to

the function since it is interpreted as a reset in hardware. Default values in the constructor are

the reset values to each member.

The interface function in line 14, specified by the #pragma hls_design interface directly

above, defines what will be synthesized to hardware. It takes the interfaces, input, output, and

possible controls, as function arguments and describes the processing inside it. In this case, the

interfaces are ac_channel type din and dout containing DATA_TYPE type data.

Lines from 15 to 17 make sure of the correct functionality of the class in C++ simulation.

__SYNTHESIS__ macro is not defined in C++ simulations, so the condition makes sure there is

enough input data available in the channel before trying to read it. Read from an empty channel

would crash the C++ simulation. Line 16 makes sure there is always at least one sample in the

input channel before trying to read it. The available() function always synthesizes to true. When

the design is being synthesized the lines of code within #ifndef __SYNTHESIS__ condition are

ignored.

In line 19 there is the entire functionality of this class. When the interface function is called

and if there is data in the din channel, one sample is read from the din and written to dout.

1

2

3

4

5

6

7

8

9

10

11

#ifndef _EXAMPLE_

#define _EXAMPLE_

// file inclusions, constant declarations here

class example_c{

 private:

 // member functions and variables declared here

 public:

 // constructor

 example_c(){

 // member variable initializations here

 }

24

12

13

14

15

16

17

18

19

20

21

22

23

 // interface function

 #pragma hls_design interface

 void run(ac_channel<DATA_TYPE> &din, ac_channel<DATA_TYPE> &dout){

 #ifndef __SYNTHESIS__

 while(din.available(1))

 #endif

 {

 dout.write(din.read());

 }

 }

};

#endif

Figure 4. Example contents of a header file containing an example class.

3.3.4 Leaf blocks and top-level

Programming larger designs is best to do by dividing the design into a hierarchy according to a

predetermined block diagram. Doing this enables easy code reuse and scaling. Functional

blocks, that perform the algorithm or whatever is desired in the design, are called leaf blocks or

sub-blocks. Top-level is the class where the object declarations of the leaf blocks and

ac_channels are, and no logic is allowed in top-level [11].

Figure 5 shows an example of a small design divided into a few leaf blocks. The signal

processing does not make any sense in this example, but the class hierarchy is the point. There

are two types of leaf blocks, block1_c and block2_c classes. Objects of these classes are

declared as private members of the top_c class, there are two block1 objects and one block2.

There are also two ac_channels declared for interconnections between the leaf blocks.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include <ac_channel.h>

class block1_c{

public:

 block1_c(){}

 #pragma hls_design interface

 void run(ac_channel<int> &din, bool control, ac_channel<int> &dout){

 int dinTmp = din.read();

 if (control){

 dout.write(dinTmp);

 }

 }

};

class block2_c{

public:

 block2_c(){}

 #pragma hls_design interface

 void run(ac_channel<int> din[2], bool control, ac_channel<int> &dout){

 int dinTmp[2];

 dinTmp[0] = din[0].read();

 dinTmp[1] = din[1].read();

25

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

 if (control){

 dout.write(dinTmp[0]);

 } else {

 dout.write(dinTmp[1]);

 }

 }

};

class top_c{

 ac_channel<int> connect[2];

 block1_c block1[2];

 block2_c block2;

public:

 top_c(){}

 #pragma hls_design interface

 void run(ac_channel<int> din[2],bool control[2],ac_channel<int> &dout){

 block1[0].run(din[0], control[0], connect[0]);

 block1[1].run(din[1], control[0], connect[1]);

 block2.run(connect, control[1], dout);

 }

};

Figure 5. Example of small hierarchical design with three leaf blocks and top-level stitching

them together.

As mentioned, ac_channels can only be used in point-to-point connections. Control signals,

however, can be routed for multiple different leaf blocks. An example of this in figure 5 is the

control[0] signal which is routed for both block1’s in top-level class in lines 36 and 37. In

Catapult, these control signals must be mapped to DirectInput and in testbench, they are

assumed to be held stable during the tests to ensure no data in the pipeline won’t get corrupted

since DirectInputs have no synchronization logic. [22]

3.4 Templatizing

Templatizing is a great way to enhance code reuse in C++. Being supported by Catapult HLS,

DSP blocks and buffers, for example, can be created for different kinds of data with a single

template class. A very simple example of a shift register template class is introduced in figure

6. The problem with this kind of template class is that multiple different data types must be

supported to get the most use of it. For example, this shift register is desired to be used with AC

data types as well as data structs which introduces some challenges for the programmer.

The key to avoiding any compilation errors is the template parameter isStruct which, by

default, is declared false, but if the shift register is used with a data struct it should be manually

declared true. In the constructor line 7, the isStruct parameter is then checked and if it is left

false, the data type is assumed to be AC data type and the shift register element values are

initialized to zero with a loop. init_array function cannot be used in this case since the code

needs to compile also in case the data type is a struct, but the functionality of the function and

an initialization loop are identical.

26

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

template<class DATA_TYPE, unsigned N, bool isStruct = false>

class shiftreg_c{

 private:

 data_struct<DATA_TYPE,N> reg;

 public:

 shiftreg_c(){

 if (!isStruct){ for(int i=0; i<N; i++) reg[i] = (DATA_TYPE)0; }

 }

 #pragma hls_design interface

 void run(DATA_TYPE din, data_struct<DATA_TYPE,N> &dout){

 #pragma hls_unroll

 SHIFT:for(int i=N-1;i>0;i--){

 reg.data[i] = reg.data[i-1];

 }

 reg.data[0] = din;

 dout = reg;

 }

};

#endif

Figure 6. An example of a shift register with user-defined depth and data type that can be used

with AC data types and data structs.

If a struct is given as data type for the shift register, the example above does not initialize

the data at all in the constructor. This comes with an assumption that the struct has a built-in

constructor. Figure 7 shows an example of a struct that would work with the shift register. The

struct has two ac_int type data fields and a boolean flag variable. In line 5 there is the struct

constructor, similar to a class constructor, where all the data fields are initialized. Line 10

defines the struct behaviour when an integer type is cast to it. This must be defined since in the

shift register constructor value 0 is cast to the struct. By default, there is no conversion from an

integer to a struct so this would trigger a compilation error even though with the struct as data

type, line 7 would never be fully executed because of the condition. In this case, nothing is done

when an integer is cast to the struct.

1

2

3

4

5

6

7

8

9

10

11

struct myStruct_t{

 ac_int<8,false> field1;

 ac_int<8,false> field2;

 bool flag;

 myStruct_t(){

 field1 = 0;

 field2 = 0;

 flag = false;

 }

 myStruct_t(int){}

};

Figure 7. An example data struct with constructor and definition of behaviour when an integer

is cast to the struct.

27

Another challenge that templates present is that bit widths inside the template in some cases

might vary depending on the template parameters. To solve this issue, a group of helper

functions is included in the AC data types. Table 2 summarizes these helper functions.

The first one of these, the log2_ceil function, is probably the most useful since it returns the

base 2 logarithm value of N, which equals the number of bits required to index N elements. The

difference to the second one, the log2_floor function, is pretty obvious; if N is a power of two,

the functions return the same value, but in case of N is anything between these, the two functions

round the return value up or down. [11]

The difference between log2_ceil and nbits functions is the behaviour at the power of two

values. For example, if N equals 8 is given to both functions, base 2 logarithm of 8 equals 3, so

log2_ceil returns 3. With three bits (unsigned) it is possible to represent numbers from zero to

seven, a total of eight different numbers. However, number eight requires one more bit to be

represented in binary format, so nbits return value 4.

Table 2. Ceil, floor, and nbits helper functions

Function Description

ac::log2_ceil<N>::val

ac::log2_floor<N>::val

ac::nbits<N>::val

Returns log2 of N, rounded up

Returns log2 of N, rounded down

Returns number of bits required to represent N

28

4 CATAPULT HLS

Siemens EDA Catapult is one of the industrial HLS tools currently in the market. Catapult will

be used in the case study in chapter 6. This chapter introduces Catapult's main features and

functionality to provide a basic understanding of the HLS tool.

4.1 Overview

Catapult is an HLS tool that generates RTL implementations from C/SystemC/C++ high-level

descriptions of desired hardware architecture. Catapult was released in 2004 as a C++ synthesis

tool mainly targeting data-driven applications in ASIC, where the design receives an input,

processes it, and sends an output, such as found, for example, in wireless communications and

video coding. By this day Catapult has evolved into an HLS-tool basically for any hardware

application targeting both ASIC and FPGA technologies. [10]

Catapult provides several graphical tools such as Gantt-chart viewer, resource viewer, and

schematic viewer for easier design analysing and debugging. Newer versions of Catapult also

provide the Design Analyzer tool to enable easy analysis of the relation between the source

code and generated RTL, which can otherwise be challenging to interpret. [10]

Catapult integrates HLV-flow that engages the verification team early in the design process

to enable early bug catching, even before any RTL is generated. Catapult Design Checker tool

enables catching bugs, hard to find with C++ or RTL simulation, without a testbench. Catapult

Coverage tool provides complete SystemC/C++ coverage metrics and SCverify verifies the

equivalence of C++ and RTL simulation outputs with an automatically generated testbench that

runs a co-simulation between the two models. [10]

In terms of numbers, Catapult promises up to ten times more productivity compared to hand-

written RTL flow. Up to 80 %, less source code is needed enabling easier code writing, reading,

and debugging. The verification team's time and effort are saved due to HLV flow adding up to

80 % saving in verification cost. [10]

4.2 Input languages

Catapult supports C/SystemC/C++ as input languages. C++’s class-based hierarchy is preferred

over standard C’s function-based code. SystemC is a class library addition to C++ that allows

clock accurate timing and parallel operations written directly into the source code [25].

Despite the discussion about C-like languages not being optimal for hardware description

[15], SystemC and C++ have become the dominant options for input language in HLS. The

benefits of using SystemC/C++ are briefly discussed in [7].

C++ maintains a higher level of abstraction and designer productivity compared to SystemC.

SystemC, on the other hand, offers more control to designers with clock definition and increased

parallelism in the source code by compromising a bit of the increased level of abstraction in

C++. In data-driven applications, it is beneficial to describe the algorithm in fully untimed C++

and compromise a bit of the designer’s control over the details of the final RTL [7],[26]. On the

other hand, cycle-accurate timing requiring control logic blocks may benefit from the features

brought to the table by SystemC.

29

4.3 HLS C++ synthesis

What does the HLS tool actually do? How is an untimed C++ system-level description of an

algorithm transformed into clock accurately functioning hardware? The main steps before RTL

extraction within the synthesis process are compilation, allocation, scheduling, and binding [7].

The first task an HLS tool performs to a C++ source code is the compilation and generation

of a data flow graph (DFG). DFG is created by analysing the operations and data dependencies

inside the design. DFG contains the data flow through the design and each operation performed

in it. DFG will be extended to the control data flow graph or CDFG, which adds edges to the

graph representing control states. [11]

Allocation refers to resource allocation in which the operations in DFG are mapped into

hardware resources found in the specified pre-characterized technology library. Each operation

might have multiple different resource options with different characteristics in area, power, and

latency. Catapult chooses the optimal one based on the optimization target (latency or area) for

each operation and uses these characteristics in the scheduling phase. The designer can also

manually allocate specific operations to resources to affect the results of the final RTL. [11]

Scheduling is the phase where time is added to the design process. Analysing the DFGs

operations and the resources, Catapult decides when to execute these operations and adds

registers to match the clock edges. The placement of these pipeline registers is fully automated

making a design very flexible at aiming for different clock frequencies. To perform the pipeline

register placement Catapult needs information about the clock, like frequency and uncertainty.

These must be specified by the user, again, in TCL-file or Catapult GUI. It is also possible to

manually move operations from a clock cycle to another, but this is not recommended. [11]

The binding phase binds operations to allocated resources with characteristics most suitable

for each operation. Variables carrying information over clock edges are bound to storage

elements such as registers and memories and variables between operations are bound to wires

and buses. Multiple variables with non-overlapping or mutually exclusive lifetimes can be

bound to the same storage elements. [11]

After these steps, the RTL code is ready to be extracted from the tool and multiple different

reports and graphs are presented for the user to analyse if the RTL is satisfactory or not. [7],[11]

4.4 Design flow

Catapult performs the operations in a specific order. The designer set specific constraints in

specific steps within Catapult to guide the tool to generate the desired RTL. The design steps

can be seen in the Catapult taskbar in figure 8. The steps are interdependent, so proceeding to

the next step is impossible if the mandatory actions in the previous one are left undone, or if an

error in the previous step is not fixed. The following sections will cover each step explaining

the design phases. [22]

30

Figure 8. Catapult GUI taskbar.

4.4.1 Hierarchy

After the initial Input Files -step where the input files of the design are defined, the top-level of

the design is specified in the hierarchy phase. In this phase Catapult analyses the design and

determines which functions are synthesizable blocks. These should be the functions marked

with #pragma hls_design interface included in the input files. Exactly one of them will be

defined as top-level. Other blocks defined as “block” will be their modules and blocks defined

as “inline” will be logic inside leaf blocks. These definitions can also be done already in the

source code with pragmas for example #pragma hls_design interface top right before the

interface function declaration. [22]

4.4.2 Libraries

After compiling the design, the technology library can be specified. A pre-characterized

technology library includes area and timing estimates for the components that will be used in

the design allocation phase. Memory libraries should also be included if they are used in the

design. Any previous Catapult solutions can also be added as a technology component to be

used. [22]

4.4.3 Mapping

Once the technology libraries have been determined, a clock signal can be specified. Catapult

enables setting clock frequency, high time, offset, active edge, and clock uncertainty. All but

clock frequency has default values that do not require a setting. Catapult supports multi-clock

designs. In this phase, pre-synthesized solutions added in the Libraries-phase can be mapped to

the objects if that is desired. Reset signal can be determined as well to be synchronous or

asynchronous active high or low. Clock and reset signals can be named in this phase as well.

[22]

31

4.4.4 Architecture

At this point, the entire design has been read into Catapult. The clock and reset structures have

been built and the final RTL will be determined by the constraints that will be set in the

following steps. Now it is time to evaluate how different objects in the design can be

implemented.

The interface types of the block being synthesized can be defined at this phase. Catapult

offers different handshaking protocols for channel interfaces. The default protocol is

valid/ready handshaking that ensures that both driving and receiving blocks are ready for the

data sample, but for example valid only handshaking is available as well. By default, the

channels between interfaces are implemented as FIFOs. The length of the FIFOs in C++

simulations is infinite, but the depth of the FIFO in HW is driven by a constraint by the designer.

Infinite FIFOs can’t be implemented in hardware. If not defined by the user, the default FIFO

length is -1 meaning that Catapult automatically determines the FIFO depth, but this is not

recommended and often leads to suboptimal values. By setting the depth to 0, the FIFO is

removed leaving only the handshaking logic through wires between blocks. Control signals can

be set as ccs_in with data synchronization but no handshaking or DirectInput with no

synchronization or handshaking protocol, but in that case, the control values must remain stable

during simulations to avoid data corruption in the pipeline. [10]

Arrays in the design can be mapped into registers, RAM, or ROM. The global

MEM_MAP_THRESHOLD and REGISTER_THRESHOLD directives define the default

mapping of arrays. If an array has more elements than MEM_MAP_THRESHOLD, the array

will be mapped into a memory component by default, if such component is available in the

libraries inputted to Catapult. If there are no suitable memory components available and array

size exceeds REGISTER_THRESHOLD, Catapult triggers an error. [22]

 It is possible and common practise to map arrays to desired resources independently.

Mapping to memory components should be done carefully since memory accesses are limited

and might become a bottleneck in the design. It is also possible to further avoid memory access

bottleneck with memory configuration directives such as interleave, block size, and word width.

Handling loops is arguably one of the most important steps in HLS. In a rolled loop in

Catapult, each iteration takes at least one clock cycle to execute. Loops can be unrolled,

pipelined, and/or merged. A pipelined loop initiation interval (II) tells how often a new loop

iteration starts. Catapult reports the iteration count of each loop in the source and if that is not

satisfactory to the designer, source code must be modified. Changing the number in Catapult

won’t affect the generated RTL, but only the reported number. [22]

4.4.5 Resources

The resources phase allows the user to specify which resources are used to execute different

operations. Catapult shows qualified resources from the technology library for each operation.

Catapult allows users to allocate specific resources for operations, limit the usage of some

operations or add input or output registers to resource components. [22]

4.4.6 Schedule

Now that the architecture of the design is set with source code and design constraints and the

operations are allocated to actual technology components, it is possible to schedule the design.

32

If Catapult can schedule with given constraints, the schedule will be shown as a Gantt chart

where loops, real operations, C-steps, and data dependencies can be seen.

C-steps represent FSM-states and they are roughly equivalent to clock cycles. Within C-step

there is a sequence of operations executed in that C-step and by selecting those operations, lines

will show the data dependencies to other operations. The schedule can also be adjusted

manually if that is required, but this should not be a common practice. [22]

4.4.7 RTL

The RTL phase finally extracts the actual RTL netlist and report files containing information

about the outcome, for example, QoR estimates. Automatically generated cycle.rpt and rtl.rpt

files give estimated information about the timing and area properties of the design. The

estimates are typically conservative and expected to improve after RTL synthesis. This also

depends on the technology library characterization conservativeness though.

Catapult shows comparative data of all the solutions' timing and area properties in the same

project. The data can be viewed in a table, bar chart, or XY-plot form. [22]

4.5 Top-down / Bottom-up

Catapult allows using top-down and/or bottom-up flow in the design depending on user

preference. Top-down flow means that when the design source code is done, the top-level of

the hierarchy is set as the top in Catapult and the whole design is synthesized at once. In bottom-

up flow, each leaf block is synthesized separately by setting them top in Catapult, and the actual

top level of the design is used to integrate these leaf blocks. [22]

Top-down flow compromises designers’ control over the leaf block implementation details.

Possible pros of top-down flow could be constant propagation in some interfaces improving

QoR of the design. The downsides of the top-down flow on the other hand are long run times

for the synthesis tool and compromising control over the design. Lower blocks of the design

must have #pragmas in the source code to guide the synthesis process as the details might be

unreachable from the top level in Catapult GUI. If changes are needed to the source code after

the initial synthesis the whole design must be synthesized again. Also, the amount of platform

system memory is limiting the design complexity in top-down flow since the whole design is

synthesized at once. In large designs, the top-down flow is not recommended.

Bottom-up flow enables the synthesis of each block separately and using these blocks as

technology library components. This means that blocks can be synthesized before the whole

design source code is ready. If changes are needed for the source code, only those blocks that

are changed are needed to be re-synthesized. On the top level, the latest solutions of the block

must be included in the libraries. This saves a great amount of synthesis runtime. The design

complexity is no longer limited by the amount of platform system memory as the design is

partitioned and synthesized in small sections.

Pre-synthesized solutions must be included in the Libraries phase and blocks must be

mapped to those solutions in the Mapping phase of the synthesis flow to exploit bottom-up

flow, otherwise, they will be synthesized as top-down blocks under the current Top defined in

Hierarchy phase. A mixture of top-down and bottom-up is allowed. [22]

33

4.6 CCORE

Catapult C Optimized Reusable Entity (CCORE) is a custom operator synthesized from a

source code function. CCOREs are defined in the source code as leaf blocks having their class

with constructor and interface function declared as public members and everything else as

private. CCORE can be identified with the #pragma hls_design interface ccore statement

before the interface function. CCOREs can be combinational or sequential and they are most

practically used as small to medium size functions that appear repeatedly in the design.

CCOREs must only have wire-type interfaces. This means that no handshaking logic is

included. Pipelining with initiation interval 1 is required for sequential CCOREs for the data

not to stall in the pipeline and not get lost when running the CCORE. Combinational CCOREs

must be able to execute within a single clock cycle. [22]

If there is no #pragma statement identifying CCORE, a block can be defined as a CCORE

in Catapult GUI. Input and output registers can be added for sequential CCOREs if that is

desired. Synthesizing a CCORE is like synthesizing a leaf block, it is possible to use top-down

or bottom-up flow. Bottom-up flow enables more control over the details of the CCORE since

they cannot be accessed in top-down flow. After the synthesis, bottom-up CCORE library

components are retained in the project folder and top-down CCOREs in the Catapult cache that

is in the user home directory by default. Whenever a top-down CCORE is used, Catapult checks

the cache if there is a corresponding component already synthesized and available for use to

reduce runtime.

If a sequential CCOREs latency can be statically determined the parent process of the

CCORE will wait for the CCORE execution by the amount of max latency clock cycles. If the

latency cannot be determined by Catapult, an interface will be generated for the CCORE that

tells the parent process when the CCORE execution has finished. [22]

If the designer is not satisfied with the latency and area report estimates given by Catapult,

they can be changed with the DATUM_OVERRIDE directive. This directive should be used

with care, CCOREs with negative slack estimates cannot be used afterwards so it might be

useful to set it to zero for further usage since the original report is just an estimate. Final reports

can be achieved with an RTL synthesis tool. [22]

34

5 CODING PRINCIPLES

In order to achieve high QoR with HLS, it is important to follow some guidelines and have an

idea of what kind of hardware is generated from the code that is written. This chapter presents

some typical code structures and examples demonstrating how to achieve optimal results in

them. The examples are generalized and simplified versions of the problems and solutions

found in the case study.

5.1 Loops

Loop handling is one of the key features in HLS to tune up the performance of the design. As

mentioned in 2.3.6, loops can be unrolled or pipelined to exploit parallelism in C++ code. These

can be done either directly in the source code or the HLS tool. For a loop to be pipelined or

unrolled, however, certain rules need to be followed to achieve good, expected results.

The first thing Catapult defines in a loop is the iteration count. This should be clearly defined

in the source code with strict boundaries since it cannot be changed in Catapult. Dynamic loop

bounds should be avoided in HLS code if possible, but an early break from a fixed bound loop

is allowed. If it is uncertain if the loop is always going to exit in an early break or not, the

iteration count can be minimized for example with an appropriately sized ac_int-type loop

iterator. This kind of structure should be avoided as well, if possible.

Figure 9 shows an example code of a simple shift register class. It has DATA_TYPE and

unsigned integer type N as template parameters in line 5. DATA_TYPE is the type of data that

the shift register contains and N the depth of the shift register. The actual shift register variable

is declared in line 8 as an N-element data struct. The source code of the data struct is presented

in figure 10.

In the constructor line 12, the shift register elements are initialized with the init_array helper

function to zero values. The same functionality could be achieved with a loop that assigns zeros

to each element.

In the interface function of the class in line 18, there is a SHIFT-loop with decreasing iterator

i that starts from value N-1 and ends at value 1. Naming the loops is not necessary but it is a

good practise, especially if there are multiple or nested loops in the code, and it helps to identify

the loops in Catapult GUI as they are handled there.

In the loop body, the previous element of the array is shifted to the next one and the last

element is overridden or “shifted out”. The starting index N-1 points to the last element and the

index 1 points to the second element of the array since indexing starts from zero and there are

N elements. When the loop is executed, the input data din is saved to the first element of the

array and the whole array is written to output data dout.

In line 15, directly above the loop, #pragma hls_unroll makes the loop iterations execute in

parallel. This decreases the latency significantly; if the loop is left rolled each iteration takes at

least one clock cycle even though there was slack time for more executions. Thus, the latency

of a rolled loop in clock cycles is at least the number of the loop iterations. Unrolling the loop

decreases the latency to the latency of the longest iteration in the loop. In this case, where the

loop simply moves data from one register to another, the latency on an unrolled loop is one

clock cycle. Usually, unrolling a loop would increase the amount of generated logic hardware

since there would be fewer opportunities for resource sharing. This case is again exceptional

due to the simple nature of the shift register; there are no actual resources to be shared in the

first place, so the area of the unrolled loop is expected to be similar, or even smaller, compared

to the rolled one’s.

35

The loop in line 18 has N-1 iterations. Since N is a template parameter, it is seen as constant

inside the class and thus, N-1 is constant. Therefore, Catapult can define the absolute number

of loop iterations and the hardware needed for the unrolled loop design. Since the N or

DATA_TYPE might change in other instances of the class each one of the instances with

different template parameters will have different hardware, so they must be synthesized with

Catapult separately.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#ifndef _SHIFTREG_

#define _SHIFTREG_

#include <ac_fixed.h>

#include "data_struct.h"

template<class DATA_TYPE, unsigned N>

class shiftreg_c{

 private:

 data_struct<DATA_TYPE,N> reg;

 public:

 // constructor

 shiftreg_c(){

 ac::init_array<AC_VAL_0>(®.data[0],N);

 }

 // interface function

 #pragma hls_design interface

 void run(DATA_TYPE din, data_struct<DATA_TYPE,N> &dout){

 #pragma hls_unroll

 SHIFT:for(int i=N-1;i>0;i--){

 reg.data[i] = reg.data[i-1];

 }

 reg.data[0] = din;

 dout = reg;

 }

};

#endif

Figure 9. Example code of a shift register template class.

1

2

3

4

template<class T, unsigned N>

struct data_struct{

 T data[N];

};

Figure 10. Source code of the data struct used in example codes. This struct can be included in

a source code with #include "data_struct.h" at the beginning of the file.

One important thing when writing a loop that is planned to be unrolled is that data

dependencies between loop iterations must be avoided. This may seem obvious, but some

dependencies might be difficult to identify in the source code. Fortunately, Catapult provides

the tools to identify data dependencies and locate them in the source code.

36

Figure 11 shows an example code of a simple accumulator. The shift register and data struct

source codes from figures 6 and 7 are included. Lines from 5 to 7 cover the AC type definitions

to be used in the example, data_t is the 5-bit signed integer input and acc_t is the 9-bit signed

integer output data type. acc_t_RND_SAT is not used in the following example so it can be

ignored for now. Line 9 shows the shift register declaration with template parameters data_t

and 10. The shift register contains and returns 10 data_t type elements.

In the interface function line 14, an appropriately typed variable arr is declared for the output

of the shift register. This does not need initialization values since the array in the shift register

is initialized to zeros and returned. Line 15 shows the accumulator type variable acc declaration

and initialization. This variable is initialized to zero for every function call and then

accumulated with all the data in the shift register. The return value is the sum and the ACC-loop

is fully unrolled with the pragma.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#ifndef _ACC_

#define _ACC_

#include "shiftreg.h"

#include "data_struct.h"

typedef ac_fixed<5,5,true> data_t;

typedef ac_fixed<9,9,true> acc_t;

typedef ac_fixed<7,7,true,AC_RND,AC_SAT> acc_t_RND_SAT;

class acc_c{

 shiftreg_c<data_t,10> shiftreg;

 public:

 acc_c(){}

 #pragma hls_design interface

 void run(data_t din, acc_t &dout){

 data_struct<data_t,10> arr;

 acc_t acc = 0;

 shiftreg.run(din, arr);

 #pragma hls_unroll

 ACC:for (int i=0; i<10; i++){

 acc += arr.data[i];

 }

 dout = acc;

 }

};

#endif

Figure 11. Example source code of an accumulator. Shift register source code from figure 6 is

included and used in this example.

Since the data types used in this example use the default rounding and saturation modes that

clip the out-of-bounds bits away, no data dependencies are created between the loop iterations

and everything can be executed within one clock cycle. This can be seen from the schedule of

the design in figure 12. Starting from the top left in the main-loop, at the end of the C1 step

there is the IO-access <=, the shift register CCORE operation <C> and then all the accumulation

operations within C2. Finally, the output IO-access is at the end of the C2 step. The adders do

37

not appear to be in parallel in the schedule since Catapult allocates the slowest and smallest

resources it can to fit the operations within one clock cycle.

Figure 12. Schedule view of a source code in figure 11 in Catapult GUI. In this case, AC data

types with default quantization and overflow modes were used.

The schematic of the design can be seen in figure 13. As expected, there are nine adders

instantiated. The large purple rectangle represents the shift register CCORE. There are ccs_in

and ccs_out ports for input and output. The blue rectangles on the right are the output registers,

dout in the source code, and the blue rectangle on the bottom left represents the FSM logic

automatically generated by Catapult. In conclusion, this is a compact RTL design with no

unexpected hardware generated by the HLS tool.

Figure 13. The RTL schematic of the design in figure 8 generated by Catapult.

Now a designer wants to create a similar design but with rounding and saturation modes. For

demonstration, here is an example of a bad way to do it.

Let’s use the figure 11 source code except for using the acc_t_RND_SAT data type for the

variable acc. Source code is compiled and executed with a testbench to verify that it works

38

correctly. The generation of RTL with Catapult, however, does not result in satisfactory

extraction. Figure 14 presents a schedule view of this example.

Comparing this to the previous example, the functionality looks similar, but the

accumulation operations are not executed in parallel despite the loop unrolling, and the latency

is increased by two clock cycles. By clicking, for example, the adder in the ACC-5 iteration,

the data dependencies can be seen. Each of the operations requires the previous operation to be

finished in order to perform the computation. The reason for this is the fact that the data type

of acc performs rounding and saturation in each iteration.

It can be seen from the schedule that Catapult tries to unroll the ACC loop. As mentioned

before, if a loop is left rolled each iteration will take at least one clock cycle. In this case, the

loop would take ten cycles to finish whereas now it takes three. Since one adder doesn’t take

the whole clock cycle Catapult fits as many of them to one as possible.

Figure 14. Schedule of the source code in figure 11. In this example, the acc_t_RND_SAT data

type is used for the variable acc.

The RTL schematic of this example can be seen in figure 15. It is far more complex than the

one in the previous example since the saturation logic is generated for each adder. However,

since the loop is completed within three clock cycles instead of one, resource sharing

opportunities are opened, and Catapult automatically generates optimal or as good as possible

RTL from the non-optimal source code. Only three adders can be found from this schematic.

Nevertheless, this is not an optimal design nor the expected hardware in this case. Non-default

quantization and overflow modes should never be used within unrolled loops to avoid

unexpected data dependencies. Note that rounding logic is not generated even though it is

39

defined for the variable since all the data types are integers and therefore no rounding can occur

in this case and Catapult can optimize it away.

Figure 15. The schematic view of the accumulation example with rounding and saturation

within the loop.

Figure 16 presents a better way to perform rounding and saturation in this kind of case. Now

the default quantization and overflow modes are used within the loop and it is made sure that

there is enough bit-width for not losing any data during accumulation. A temporary variable is

declared after the loop with the desired bit-width, quantization, and overflow modes. The

accumulated value is then assigned to this variable to perform rounding and saturation. This

way, the quantization and overflow logic would be generated only once and no data

dependencies between loop iterations would occur.

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include "shiftreg.h"

#include "data_struct.h"

typedef ac_fixed<5,5,true> data_t;

typedef ac_fixed<9,9,true> acc_t;

typedef ac_fixed<7,7,true,AC_RND,AC_SAT> acc_t_RND_SAT;

class acc_c{

 shiftreg_c<data_t,10> shiftreg;

 public:

 acc_c(){}

 #pragma hls_design interface

 void run(data_t din, ac_int<7,false> &dout){

 data_struct<data_t,10> arr;

 acc_t acc = 0;

 shiftreg.run(din, arr);

 #pragma hls_unroll

 ACC:for (int i=0; i<10; i++){

 acc += arr.data[i];

 }

 acc_t_RND_SAT tmp = acc;

 dout = ac_int<7,false>(tmp);

 }

};

Figure 16. An example with good coding in the accumulator with rounding and saturation.

As can be seen from the schedule in figure 17, the execution takes only one clock cycle and

the schedule is nearly identical to the schedule in figure 12 since the saturation logic takes a

very short time to execute. Figure 18 presents the schematic of the design, where nine adders

can be identified as well as only one instance of the saturation logic, as desired.

41

Figure 17. A schedule view from an accumulator with saturation and rounding logic with good

coding.

Figure 18. A schematic view from an accumulator with saturation and rounding logic with good

coding.

Figure 19 compiles the area and latency estimates of the examples. acc_c.v1 represents the

latest example with an accumulation loop followed by rounding and saturation. acc_c.v2 is the

first example with no rounding nor saturation and acc_c.v3 is has the rounding and saturation

within the loop.

42

Figure 19. Table view from Catapult GUI showing the area and latency estimates of different

accumulator solutions.

As expected, acc_c.v3 has two clock cycles longer latency than the other ones. It also has a

remarkably higher area despite resource sharing. acc_c.v1 and acc_c.v2 have a very minimal

difference in terms of timing and area.

The same technology library and clock settings were used for each solution in this

demonstration.

5.2 Conditions

Typically, Catapult can share components in mutually exclusive branches of the code. Such

mutual exclusivity can be caused by if-else or switch-case statements. In general, Catapult is

good at finding mutual exclusivity in the source code, but poor coding practices result in poor

hardware and sharing opportunities.

It may be easy to write complex nested conditions and see the mutual exclusivity by

analysing that code, but the key to achieving high QoR is keeping the code simple so it is easy

to analyse for the synthesis tool as well. If it is possible, resource sharing should be written in

the source code with conditional input variables to a function call instead of a conditional

function call. A simple example of this is presented in figures 20 and 21. The functionality in

both interface functions is identical: there are two integer type inputs and a boolean control

signal that chooses one of the inputs to be raised to the power of the two and assigned to the

output. It is worth mentioning at this point that this example is so simple that both source codes

may result in identical hardware, but the coding practices demonstrated should be applied to

more complex situations where they make a difference.

43

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class pow2{

 int pow2(int x){

 return x*x;

 }

 public:

 pow2(){}

 #pragma hls_design interface

 run(int din1, int din2, bool control, int &dout){

 int tmp;

 if(control){

 tmp = pow2(din1);

 } else {

 tmp = pow2(din2);

 }

 dout = tmp;

 }

};

Figure 20. Example source code of bad coding in a mutually exclusive function call.

In the first example, there is an integer type temporary variable initialized to zero in line 9.

If the input control is ‘1’, din1 is raised to the power of two and the return value is assigned to

tmp. If the control signal is ‘0’, the same thing is performed to din2, but never to both. The

operations are mutually exclusive. Now that there are two separate conditional function calls

the designer is relying on Catapult’s ability to prove mutual exclusivity in the code and generate

only one instance of the multiplier logic. This example of mutual exclusivity is as simple as it

gets so Catapult could probably handle it.

Figure 21 presents a better alternative for the interface function in figure 20. The rest of the

class is assumed identical to the class in figure 20, only the interface function is replaced with

a new one.

Figure 21. A better coding interface function example for the class in figure 20.

Since the designer knows that the function calls with different inputs are mutually exclusive,

the mutual exclusivity can be written in the source code so the resulting hardware’s QoR is not

depending on Catapult’s ability to prove mutual exclusivity. In figure 21, only the value stored

in tmp depends on the control signal, and the pow2()-function is called only once with the tmp

1

2

3

4

5

6

7

8

9

10

#pragma hls_design interface

run(int din1, int din2, bool control, int &dout){

 int tmp;

 if (control){

 tmp = din1;

 } else {

 tmp = din2;

 }

 dout = pow2(tmp);

}

44

as input, so it is certain that the synthesis tool only generates one instance of the multiplication

logic.

What is demonstrated above with a function call, applies to return statements. Multiple

conditional return statements are allowed by both C++ and HLS in general, but they are not

recommended. If a conditional return statement is mapped to an IO-component and Catapult

cannot prove mutual exclusivity, the main loop can’t be pipelined with II=1 since only one IO

access per clock cycle is allowed. A general rule of thumb is that each function should only

have one return statement and the number of function calls in conditional programs should be

minimized.

5.3 IO and memory accesses

IO and memory access tend to be the bottleneck in the design quite frequently since they are

limited in bandwidth. Therefore, the designer must be careful when programming these

interfaces and know exactly what is desired, and what kind of hardware is expected from the

written source code.

5.3.1 Pass by value

Inputs can be passed by values to functions. What this means in hardware is that the inputs are

read into registers inside the hardware module at the beginning of the function call [10]. The

values outside the function might change outside the function but that does not affect the

function itself. When the function is called again, new values are read into input registers and

the function executes with these values.

5.3.2 Pass by reference

Inputs passed by reference are not read at the beginning of the function call. They are not stored

in registers inside the hardware module by default, but they are read from the interface when

they are used inside the function. This requires that the inputs are kept stable during the function

execution to ensure correct functionality. [10]

Arrays in interfaces are references, so they are not read inside the hardware module at the

beginning of the function call, but when they are used instead. When dealing with arrays in the

interface it is important to make sure with a proper coding style that multiple unmergeable array

accesses are not generated within the same clock cycle. It is possible to manually read an array

from the interface at the beginning of the function if it is not clear that the array values are held

stable during the function call. This way the array accesses are merged through the interface

and there are no restrictions in accessing the array within the function anymore. This generates

another array to the hardware inside the function which might not be optimal especially if the

array is very large.

The outputs of a function should always be passed by reference, so the function can

manipulate the external variable. Also, ac_channels are always passed by reference in the

interface and accessed with desired read() and write() functions. ac_channels themselves are

declared at the top level to connect different sub-blocks.

45

5.3.3 Memory access

The designer must be decently careful while when writing memory accesses in the source code,

but when properly written, Catapult offers a lot of flexibility with different directives. Figure

22 shows a coding example of memory access, where both memories memA and memB are

accessed twice in one clock cycle (indices 0+i and 32+i). If it is desired to pipeline the design

with II=1 this obviously cannot be scheduled with the default settings since only one memory

access per clock cycle is allowed.

1

2

3

4

5

6

7

8

9

10

11

class memoryExample_c{

 public:

 memoryExample_c(){}

 #pragma hls_design interface

 void run(uint8 memA[64], uint8 memB[64]){

 MEM_LOOP:for(int i=0;i<32;i++){

 memB[i] = memA[i];

 memB[i+32] = memA[i+32];

 }

 }

};

Figure 22. Memory access example with multiple memory accesses per clock cycle.

To make the scheduling possible, the memories can be split into a total of four memories

with the BLOCK_SIZE directive set to 32. If consecutive indices were desired to be accessed

from the memories at the same clock cycle the WORD_WIDTH directive could be set to 16 to

merge the two memory accesses and generate two 32*16bits memories or INTERLEAVE

directive could be set to 2 to generate four 32*8bits.

In more complex situations all these directives can be mixed to find the optimal solution.

5.4 Multidimensional array access example

A specific but often used and interesting example of HLS generated RTL working exactly like

the original source code syntax is when accessing a multidimensional array that has a non-

power of two dimensions in C++.

In C++, if an index in a multidimensional array goes out of bounds of the inner dimension,

it points to the next index of the outer dimension. An example is shown in figure 23. A two-

dimensional array called array has 10*10 elements. Let’s assume some data is stored in this

array and is then assigned to variables data0 and data1. data0 accesses element [0][10] of the

array, which is out of bounds by one since the indexes of a 10-element array go from 0 to 9. In

C++ this is completely legal, and the return value assigned to data0 is the first element of the

next dimension.

1

2

3

int array[10][10];

int data0 = array[0][10]; // indexes go from 0 to 9, 10 is out of bounds

int data1 = array[1][0]; // the same element of an array as [0][10]

Figure 23. Example presenting how multidimensional array indexing works in C++.

46

Catapult HLS generates RTL that works exactly like the source code syntax, meaning that

this feature is also inherited in C++ HLS. If the array dimensions are factoring of two, this is

not an issue since the index variables pointing to the array have a fixed number of bits and if

sized correctly, out of bounds of the array is also out of bounds of the variable range.

If the array dimensions are not factoring of two like in the example above, this feature can

cause problems to an ignorant designer. For indexing a 10-element array, one needs a 4-bit

unsigned variable that covers values from 0 to 15. Values from 10 to 15 in the inner dimension

would not be used, but according to C++ syntax, they would be accessing specific elements

causing undesired multiplexing in the generated hardware. In the outer dimension, the effect

would be even worse since indexing the array with the values from 10 to 15 would cause

undefined behaviour and therefore, unexpected hardware.

Figure 24 presents an example of bad coding practice in both non-constant array indexing

and multidimensional array accessing. The class contains a ten-by-ten array as a persistent

variable and it functions as a delay line for ten data channels. The channel is chosen with the

input ix and the input din is saved in the first element of the corresponding channel. Every

function call, elements in channel ix are shifted forwards and the last element of array[ix] is

returned to the output. In C++ this works perfectly if it’s known that from outside this class ix

can only have values between zero and nine.

However, Catapult does not know which values of ix are used, so it generates the RTL

functionality for all the values since the range is not limited in any way. Another issue with this

code is that ix is not a constant and therefore its value is checked individually in each loop

iteration. This leads to data dependencies between loop iterations since Catapult does not

understand how the shifting per channel works generating excessive logic and not being able

to fully unroll the loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include <ac_int.h>

class arrayExample_c{

 typedef ac_int<6,false> data_t;

 data_t array[10][10];

 public:

 arrayExample_c(){

 ac::init_array<AC_VAL_0>(&array[0][0], 100);

 }

 #pragma hls_design interface

 void run(data_t din, ac_int<4,false> ix, data_t &dout){

 #pragma hls_unroll

 for (int i=9;i>0;i--) array[ix][i] = array[ix][i-1];

 array[ix][0] = din;

 dout = array[ix][9];

 }

};

Figure 24. An example of a bad coding style for multidimensional array access.

Figure 25 presents the schedule in compact mode. It can be seen that the loop iterations are

not executed in parallel but sequentially and there are a lot of multiplexers in each loop iteration.

The clock frequency is set that low in this case, that the loop still fits within one C-step since

47

there are data dependencies from later loop iterations to previous ones and Catapult was not

able to schedule the design with higher clock frequency due to a too long feedback path.

Figure 25. Schematic of a poorly coded multidimensional array access.

Taking a look at the schematic in figure 26, it is far more complex than desired knowing that

a hundred registers and shifting logic are the goal.

Figure 26. Schematic of a bad coding style example for multidimensional array access.

In figure 27 these issues are fixed by placing the array access loop within another unrolled

loop and a condition. This way, the ix range is limited to 0-9 with the condition, and if larger

values are inputted the behaviour can be defined which in this case is nothing since the code

within the condition is never executed. Now all the array pointers are constants which allows

Catapult constant propagation to optimize multiplexers away as well as the outer loop of the

design.

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

#include <ac_int.h>

class arrayExample_c{

 typedef ac_int<6,false> data_t;

 data_t array[10][10];

 public:

 arrayExample_c(){

 ac::init_array<AC_VAL_0>(&array[0][0], 100);

 }

 #pragma hls_design interface

 void run(data_t din, ac_int<4,false> ix, data_t &dout){

 #pragma hls_unroll

 for (int j=0;j<10;j++){

 if (ix == j){

 #pragma hls_unroll

 for (int i=9;i>0;i--) array[j][i]=array[j][i-1];

 array[j][0] = din;

 dout = array[j][9];

 }

 }

 }

};

Figure 27. Better coding style of the same multidimensional array access example as in figure

24.

The corresponding figures for this design implicate much simpler and more efficient

hardware. Figure 28 shows the schedule where there are no sequential operations, everything

is executed in parallel despite the output write.

Figure 28. Schedule of a properly unrolled loop from a good coding style example.

49

In figure 29 the schematic of the fixed multidimensional array access is presented and

compared to figure 26 it is much simpler and looking more like what is expected. The relative

area numbers for good and bad coding styles for this example are 9448,97 and 3629,84 with

the same technology library and clock frequency so with a simple example like this one it is

possible to generate over 2,5 times larger design compared to the optimal one with poor coding

style.

Figure 29. Schematic of a good coding style in multidimensional array access example.

5.5 In-context variable declaration

Variables should be declared in the context they are used, or as close to it as possible. This helps

the HLS tool to analyse the dependencies and lifetime of the variable better.

The worst coding practice in these terms is to declare all signals within a block as member

variables of a class. In HLS, these are called persistent variables since their data will be saved

from one function call to another causing data registers in hardware. This might occur to

variables declared within functions as well. The goal of in-context variables is to minimize the

usage of registers and optimize as many variables to wires as possible.

Coding, where a variable is declared and used, followed by lines of code, and then using

the variable again should be avoided if possible. The reason for this is the same as above: lines

of code in between might take more than one clock cycle to finish leading to registering the

original variable to save the value for later use. A better way would be to bring the usages of

the variable closer together or to declare a new variable containing the same information later,

if possible. The unintuitive thing about the in-context variable declaration is that using the

smallest number of variables does not always result in the smallest hardware.

References to variables outside context should be minimized as well to avoid unexpected

data dependencies. This means, for example, that persistent variable arrays should preferably

not be accessed within unrolled loops if they cannot be indexed with the loop iterator. A better

practise is to declare temporary variables to save the data in the loops, then create another loop

where it is possible to index the persistent array with the loop iterator. Loop iterator is constant

in unrolled loops and often optimized away generating only wires instead of multiplexers in the

case of bad coding examples. Temporary variables should also be optimized away by the HLS

tool, but this must be confirmed by the designer.

50

A bad coding style like this can also lead to unexpected data dependencies and bad

scheduling. If indexing an array with something else than the loop iterator within an unrolled

loop, the HLS tool might not be able to prove if the same element of an array is accessed in

multiple loop iterations. In this case, the loop cannot be fully unrolled leading to longer latency

and excessive multiplexing and area.

5.6 Summary of coding principles

As a summary for the HLS specific coding principles it can be said that the more parallelism

there are in the target architecture, the more careful the designer must be to achieve optimal

results. If the target architecture is a single pipe, where the operations are performed to one

input signal in sequential order and there are no unrolled loops, the HLS tool is likely to extract

good quality RTL. If there is a lot of parallel operations in the target architecture, it must be

written to the source code and care must be taken so no undesired data dependencies between

the desirably parallel operations are generated.

With the target architecture being known, the data flow and the amount of the resources

should be known as well. This means that the resource sharing opportunities should be clear for

the designer and the resource sharing should be written to the source code. Even though

Catapult can prove mutual exclusivity in a lot of the cases in the source code, it does not

understand the high-level data flow within the design. Therefore, the designer should leave as

little as possible room for incorrect interpretation of the source code by the HLS tool.

The functionality should be perfectly described in the source code. There must be no room

for undefined behaviour for example in form of uninitialized memory reads. Different

compilers might interpret the undefined behaviour differently resulting in terrible quality of

results.

51

6 CASE STUDY

This chapter of the thesis includes a case study of a digital downconverter and decimator IP

block designed in HLS methodology using Catapult HLS tool and C++ as input language. The

algorithm and architecture of the design are designed in a Nokia SoC organization and it is

originally implemented in RTL level of abstraction. The aim is to implement the same design

with HLS using Catapult and compare results in terms of area, latency, power, and designer

productivity. Due to confidentiality policies, C++ source codes and the details about the design

cannot be presented.

First, the design was partitioned into reasonably sized units after which they were described

with C++ and finally translated to RTL with Catapult. C++ test benches were created as well

to verify the correct functionality of the source code. Thorough RTL verification of the design

is not a scope of this thesis and therefore not completed within the time frame. The C++ source

code was verified properly and SCverify was used with some of the test cases to verify correct

timing and the equivalent functionality of original C++ and the synthesized RTL with the given

test cases.

As mentioned, the design consists of a digital downconverter (DDC) and decimator (DEC).

The input for the design is a composite signal from which different carriers are separated and

mixed down to the baseband. After this, the decimator drops the sample rate of the signal to a

minimum level without compromising the data. The downmixing is done with a numerically

controlled oscillator (NCO) followed by a chain of half-band filters (HBF) where each filter

drops the sample rate of the signal to half. Before NCO, there are polyphase sub-band

decimation (PSD) filters that separate the composite signal into sub-bands and drop the sample

rate by four or two depending on the configuration. This allows the NCO to run at lower sample

rates and reduces power consumption. The design can manage a maximum of 16 composite

input and 64 output signals concurrently.

The design consists of three large design blocks placed sequentially one after another.

Initially, each design block was programmed separately and tested with a separate test bench.

After a basic functionality was verified with single carrier test cases, a top-level of the design

was created to integrate design blocks as well as a top-level testbench for larger-scale

verification. This enabled multi-carrier testing with multiple different configurations.

Carrier-specific configurations were given to the design from a software register bank

implemented as direct input signals in the HLS design.

6.1 Requirements

Since it is desired to compare the HLS design to handwritten RTL programmed by other

designers, some requirements need to be set for the HLS design to achieve.

The target architecture is the same as in the original RTL design. As mentioned about the

capacity, 16 composite input signals arrive in four different input ports equalling a max of four

composite signals per port. Polyphase sub-band decimation filters separate the composite

signals to max 64 carriers in a total of four output ports. The number of filters in the design is

pre-defined as well as the signal routing and timing for different filters for optimal usage.

The target clock frequency is 983.04 MHz. The design must be able to receive a data sample

to all four input ports every clock cycle and produce an output sample to all four output ports

every clock cycle as well. For HLS this means that the main function must be pipelined with

II=1 and the design must not stall under any circumstances if there is data available. The input

sample rates per antenna vary from 122.88 MSps (Mega samples per second) to 3932.16 MSps

52

and the output sample rate per carrier from 7.68 to 491.52MSps. Input sample rates that are

greater than the clock frequency mean that more than one input port is used to transfer the

signal. Many different configurations need to be supported as well as runtime reconfiguration

of the design.

The technology library used for the design is the same as used in the RTL design and it is

provided by an external tool vendor.

Area- and latency-wise the goal was to match or go under the reference RTL written by hand

after Design Compiler gate-level synthesis while meeting the timing requirement (throughput

1 and no negative slacks). Power was not an optimization target in this work, but the power

data is also gathered for reference.

6.2 Catapult usage

During the design work, there was close support from Siemens EDA to help with Catapult. This

was critical to find best practices and avoid mistakes in the design process. A lot of C++ coding

style suggestions and advice came from Siemens EDA to achieve optimal QoR and to help

understanding how the tool interprets C++, how to interpret the error messages, and how to fix

the source code to be Catapult-friendly.

After a decent learning period Catapult usage became intuitive. Applying the basic directives

to guide the RTL generation process and analysing their effect on the design was easy, but when

run into difficulties the support was critical and it was there. The support also suggested special

directives under development for some special optimization cases that would probably have left

unnoticed otherwise even though found in the documentation.

The directives for the design were quite similar throughout different blocks. Common

directives file was set up containing the default settings for the project. All the needed tool

flows were enabled here, default settings applied as well as the technology library definition

and clock and reset declarations. This file was then called at beginning of each design block's

directives file.

The single most altered directive was clock overhead. This defines how big of a percentage

of a clock cycle is left for the backend design. For example, if the clock cycle was 10ns and the

clock overhead 20, Catapult would only use 8ns of the clock cycle for logical operations and

leave the 2ns unused. Iterating this directive with Design Compiler, optimal timing solutions

were found. If Design Compiler reported negative slack, clock overhead was increased and if

the timing requirements were achieved easily, clock overhead could be reduced. Clock

overhead can be defined locally for different blocks to optimize the design.

As described earlier, all the loops within the design were unrolled and the interface functions

of sub-blocks were pipelined to achieve throughput 1. This caused some trouble with the

scheduling of the design at some parts of the process, but all the problems were eventually

solved with good coding practices described in chapter 5. Due to the throughput 1 requirement,

back pressure could be removed from the design by changing the interface types. Since all the

blocks had to be able to receive data every clock cycle, there was no need to use valid-ready

type interface handshaking, but only valid could be used to tell the receiving block when to

process the input data. Depending on if the receiving block had to function if there were no

valid data available or if the block could wait for a valid sample, blocking or non-blocking read

was used.

The directives were also used to give the same timing information to Catapult as were given

to the Design Compiler so nothing unexpected would happen there. Before this information

was aligned, Catapult would fill all clock cycles with logic, then Design Compiler would have

53

additional information for example about external input delay on input ports causing negative

slack times on these ports or usage of excessively large logic components to meet the timing

requirements.

Once all the necessary information was in place to generate the desired hardware, some

optimization was done with Catapult by analysing the schedule and adjusting directives to fill

the possible gaps. More of this optimization could have been done to further reduce design

latency and area but since the results were already quite satisfactory and the process of iterating

with Catapult and Design Compiler is time-consuming, further optimization was left for future

projects.

When creating and synthesizing the initial design, a lot of small entities were mapped into

CCOREs, but in later optimization phases a lot of these small entities were inlined by removing

the interface pragma from the class. This way the function logic of the class is handled as a part

of the higher level in the hierarchy, where the function is called instead of synthesizing the class

separately and using it as a library component. This may increase synthesis runtime as each

function call is handled separately by Catapult, especially if there are multiple instances of the

class. The upside of this is that the schedule and the resource usage of the block are not fixed

to what is defined for the CCORE, but logic is handled as a part of a larger logical block. This

potentially enables Catapult to push more operations within each clock cycle, which decreases

latency and register usage. Greater resource-sharing opportunities may be introduced as well

since the different instances of the same class use the same resources but not necessarily at the

same time.

In the final optimization phases, using Catapult was critical since the last pieces of area

optimization were done as well as all negative slack times needed to get rid of. At this point the

process was iterative and the iterations took hours since changes needed to be done in Catapult

and run DC synthesis after that to see and analyse the results to make any adjustments if needed.

The changes were also very minimal since the negative slack times were small as well as the

number of violating paths.

6.3 Results

The original goal of this work was to create a complete HLS implementation of the DDC DEC

IP that was originally written by hand in VHDL language. This way perfect one-to-one

comparison could be made between the two designs to analyse the QoR and design effort

between the two methodologies. However, due to the schedule of this work, a few things are

lacking from the HLS design which of course are excluded from the QoR comparison as well

as possible.

Lacking features in the HLS design are some debugging features in the original RTL. There

are also some bugs in the HLS design, like minor data mismatch occurring from data rounding

or slightly mismatched data types. One bigger bug was left in the design that caused a major

data mismatch in some test cases with very specific carrier combinations. This is probably a

data alignment issue, where to samples get routed to the same place at the same time causing

the loss of another sample and corrupting the following data for the same channel. These bugs

are not estimated to remarkably affect the design area, but they should be kept in mind when

comparing the results.

Dynamic reconfiguration was left undone as well. The features were programmed to the

design as well as possible, but the verification effort for these features was too large in the given

time window so it cannot be stated that dynamic reconfiguration works in the design. Since

different carrier configurations have been verified and the dynamic reconfiguration simply

54

changes the configuration in run-time, these features mostly require proper data alignment from

the design. This functionality is not expected to increase the design area remarkably.

Design effort cannot be compared one-to-one in this case. In the original hand-written RTL

design, there were two hardware designers with different experiences and a separate verification

team working, all working on the same IP. While these people's working hours on the project

could be count, in theory, the number would not be realistic since there is also other work than

only the design included such as documentation, research, and decision making about

architectural choices that were not included in the HLS design.

The HLS design on the other hand included adoption and learning of the methodology, the

tool, and the source code language. The whole process of design and verification was done by

one person with the support of another from Siemens EDA, who did not even have access to

the source code files all the time during the process.

The area scores of the HLS and hand-written RTL design are presented in Table 3 as well as

the relation between the two. If the percentage number is less than one hundred it means that

the HLS design was smaller compared to hand-written RTL, and vice versa. To achieve one-

to-one comparison, the differences between HLS and RTL design have been minimized as well

as possible by for example excluding the missing debug features from the reference’s numbers.

As can be seen from Table 3, the HLS design was in total approximately twenty per cent

smaller than the hand-written RTL design, and there is only a single block that was bigger in

HLS.

After the initial functional design was programmed but before the source code optimization,

the area numbers were compared against the numbers in the RTL design. Depending on the

nature of the block the area numbers varied from roughly the same as RTL to approximately

ten times the corresponding RTL areas. It could be generalized that the blocks that were

sequential by nature, for example, NCO had good results initially and those that exploited high

parallelism had the worst results and there required the most optimization effort. After analysing

the results and applying the source code optimization according to chapter 5, the results in table

3 were achieved.

The latency numbers in Table 3 do not include the group delays of the FIR-filters in the

design. Latency reported here is the latency reported by Catapult, which means the number of

clock cycles it takes from the first valid input to the first valid output sample. In the case of this

design where multiple different channels are handled concurrently, achieving these latency

numbers in a realistic test would require valid data coming in for the same channel every clock

cycle in the input of each of the blocks reported. Since the nature of the design is to drop the

sample rate of the channels, this will never happen, but the latency numbers illustrate the

theoretical latencies of each block. The group delay of the filters is easily calculated from the

number of taps in the filters.

To achieve the realistic latency numbers for comparison between the two designs, the same

test case with theoretically longest latency was run and the latency was observed from the

simulation waves. The latency number for RTL design was 2655 clock cycles and for HLS

design, 2629.

Table 3. The area scores of synthesized blocks for both HLS and hand-written RTL design.

Block name Area Area_ref Area % Latency

alignmentbuffer 2233,1779 2596,6966 86 4

psd7_2 5878,0634 7554,4517 78 3

psd7_4 44861,8089 55303,8486 81 6

bandselector 41180,7533 37753,1335 109 5

55

hm_ddc 100183,5645 109732,396 91 15

NCO 1876,5403 2040,7824 92 5

HBF1 2714,4266 3953,7525 69 3

partial_deca 7812,0461 8385,457 93 9

hm_dec_a 64975,9506 67083,656 97 9

HBF2 4726,9051 7936,7392 60 2

HBF3 8768,1686 15116,3178 58 2

HBF4 17698,3904 22967,5434 77 5

six_to_two 879,282 1767,839 50 2

packetizer 6163,6608 8992,1376 69 1

cascaded_hbfs 69745,2223 98568,1478 71 17

hm_dec_b 139557,0936 197136,2956 71 17

Total 304716,6087 373952,3476 81 41

Gate and register counts of the two designs are presented in table 4. The differences between

the two designs are not considered here, so these are absolute total counts for both designs, and

they are not equivalent to each other. These numbers should not be looked at too closely as it’s

known that there is more hardware included in the RTL design compared to the HLS design.

That is also implied by the total number of gates and registers.

One thing to note in this table is that for decimator A (hm_dec_a), there are more logic gates

but approximately 30 % fewer registers in the HLS design. This would imply that Catapult can

push more operations within each clock cycle, using the resources more effectively while saving

total area and latency as can be seen from Table 3.

In other design blocks, the numbers seem to be in line with Table 3 as the HLS gate and

register counts are smaller as expected. Keep in mind that the numbers in Table 4 are not one-

to-one comparable.

Table 4. Logic gate and register count numbers for HLS and hand-written RTL designs.

 Gate count Register count

 HLS RTL HLS RTL

hm_ddc 526333 614184 145660 177669

hm_dec_a 468189 457110 70905 106421

hm_dec_b 557025 918950 250233 291098

Total 1551547 1990244 466798 575188

The power consumption of the two designs is presented in table 5. The power numbers are

acquired from the RTL level for both designs, not from more accurate gate-level models like

the area numbers above. The same test case has been used to get these power numbers by

generating a switching activity file with an RTL simulator using the same time window in the

power simulations. The power analysis tool used for both designs was Ansys PowerArtist. Since

the power simulations are performed in RTL and not gate level, the power numbers are only

rough estimates as well, since RTL level power analysis inaccuracy might even be higher than

10 %. The differences between the two designs are again not considered since both designs

must be fully functional for this kind of power analysis. Therefore, the missing features cannot

56

be excluded from the RTL design, but these features’ power consumption should be marginally

small since they are not used in these test cases and therefore there is no switching activity in

these parts of the design.

The UL test case is theoretical a maximum power test case, where data is fed into the design

through all inputs with maximum input rate. The output rate is maximum as well since all four

outputs feed out valid data every clock cycle.

In the DL test case, zero-data is fed into the design in the time window with some carriers

enabled in the configuration by direct inputs. The zero data travels through the design as well

since its purpose is to flush the pipeline of all valid data if there was some.

The purpose of the power consumption comparison is not to compare which methodology

produces more power-efficient hardware. Since there are differences in the designs compared

in table 5 and the RTL-level power analysis is so inaccurate, the purpose of this comparison is

simply to prove that Catapult HLS generated RTL is not particularly bad in terms of power

consumption, but the power consumption numbers are in the same order of magnitude as hand-

written RTL. Again, there are many variables in this comparison and the results are not accurate,

but the order of magnitude is the same. Note, that Catapult Ultra power optimization steps were

run for the solution to achieve these results. This is not a part of the basic Catapult HLS package,

but it requires a separate license.

Table 5. Power consumption in mW of HLS and RTL designs with the same test case.

 Downlink (DL) Uplink (UL)

 HLS Ref HLS Ref

hm_ddc 76,8 89,0 332,2 324,5

hm_dec_a 101,1 138,8 220,3 237,7

hm_dec_b 131,9 151,2 234,9 392,1

Lines of code comparison have been done for the two designs. Active lines have been

counted with a script that excludes blank and commented lines from the files in a given file list.

C++ block comments are not excluded from the comparison, but their effect on the total line

count is very minimal. The lines of code comparison itself is very rough that should not be

looked at too closely but gives some estimation on the scale of coding effort. It should be noted

as well that the directives files are not included for the comparison, so it is assumed that the

synthesis to final RTL is done manually in Catapult GUI that takes time and effort as well.

The file list given to the script contains all synthesizable C++ source code files and the files

that are required to compile the design for the HLS. This means that for example the testbench

is not included in the count. For RTL design, the target for the file list is to include files that

would share the same functionality with the HLS design. This means that the missing features

from the HLS design are also excluded from the RTL designs file list. The generated VHDL

lines of code have been included as well, for reference. This file list only contains the

concatenated VHDL file from the Catapult. In this file, the entire synthesized design is in a

single file.

The lines of code for the designs are presented in table 6. As can be seen, there are over 80

% fewer source code lines for HLS design compared to the hand-written RTL. Comparing the

VHDL lines from the output of Catapult compared to hand-written VHDL, hand-written one

has over 96 % fewer lines compared to the synthesized one. This, however, is not very relevant

since the outputted files are not meant to be debugged or modified. Ideally, the RTL should not

be touched since the functionality is supposed to be equivalent to the source code.

57

Table 6. Active source code line counts for HLS and hand-written RTL design.

Language HLS RTL

C++ 2461

VHDL 361305 13390

6.4 Analysis

Compared to hand-written RTL, HLS works better on resource allocation and scheduling the

design. It was also noticed how big of an advantage design space exploration is in HLS. Even

though the target architecture was known in the initial phase of the design work and it was

written to the source code, DSE allowed to quickly explore different design options such as

mapping block to top-down or bottom-up CCOREs or inlining the interface function, setting

input or output registers to CCOREs and change clock overhead to push more or less logic

within the clock cycles. All the solutions gave a different set of area, latency, and slack times

for the blocks, the optimal ones were chosen for gate-level synthesis, and finally, if there were

no problems and the results were satisfactory, there was no need for further iteration.

Especially big differences can be seen in the half-band filters. This can be explained by the

fact that there are two different instances of FIR-filters in the RTL design, one for real and

another for the imaginary part of the complex data. These two instances were created to the

C++ source code as well, targeting the same architecture, but instead of leaving them as two

separate instances in the final design, DSE allowed to inline the filter instances on the HLS

design giving better results in terms of area and latency. Assumably this is because both

instances had their own adder trees that could be combined and optimized more effectively as

part of the higher-level hierarchy.

The overall difference in terms of the area can be explained by Catapult's ability to push the

maximum number of operations within each clock cycle and therefore optimise the register

usage. This was observed in practise while optimizing the design to get rid of the negative slack

times; if any negative slack times were left on some of the design paths, there were immediately

thousands of violating paths of similar negative slacks. By slightly increasing clock overhead

or some other method, the timing violations were fixed but that just tells how effective the

scheduling in Catapult is. The latency numbers acquired from the simulation waves also refer

to the fact that Catapult optimized the pipeline better.

It is also easy to analyse the schedule of the design in Catapult and adjust directives in case

there are for example loosely filled clock cycles. In traditional RTL-flow, these are not possible,

and the final fine-tuning of the solution is a lot more difficult and time-consuming, and often

left undone.

The gate and register counts of the two designs seem to be roughly in line with the area

numbers as well as the ratios between the two. The only noticeable thing is that there are more

logic gates in the HLS design for hm_dec_a and remarkably fewer registers compared to hand-

written RTL considering the overall three per cent area difference between the two. This would

suggest that Catapult can push more operations within each clock cycle optimizing register

usage and decreasing latency of the design. Otherwise, gate and register counts seem as

expected.

The power consumption comparison was done to demonstrate similar order of magnitude in

the acquired power numbers. From this point of view, the comparison was successful but any

other conclusions can be made due to the inaccuracy in the numbers.

58

The lines of code comparison is done to roughly evaluate the design effort of the designer.

Designer's personal preferences in the writing process, for example, have an impact on these

numbers so they only roughly give the scale of the source code amounts. While being a rather

silly way to measure it, lines of code in a specific language give some idea about the design

complexity and workload related to the projects. Of course, in the case of HLS writing the

source code is not the entire work, but the HLS tool must be used as well to achieve the RTL

that is written directly in the other flow.

The VHDL lines for the Catapult HLS design are added simply for reference and it is not a

relevant number by any means. The VHDL files contain some information that the designer

might need to check but these files are not supposed to be modified and there should not be a

need to debug these as the functionality is equivalent to the original C++ source code files.

59

7 DISCUSSION

The idea of HLS first seems like an easy methodology to create high-quality hardware, but the

truth is that to get acceptable results from HLS generated RTL, the designer must know about

SW, HW design, and the tool itself. The designer must be able to write flexible high-quality

C++ or other high-level code and have an idea of the target architecture to achieve the optimal

QoR. If, and when, the tool does not understand the programmer’s intent and extracts

unexpected hardware the designer must be able to figure out what the tool is doing and fix the

source code or design constraints.

This thesis aimed to find the best C++ coding practices to generate high-quality RTL with

an HLS tool. Theoretically, the same RTL architecture should be achievable with HLS and

hand-written RTL. According to the results of the case study, good practices were found to

generate the desired hardware.

The goal of the case study in chapter 6 was to generate RTL with equivalent QoR as in hand-

written RTL, with a five per cent margin acceptable in the area. As it turned out, some extra

optimization opportunities were found with HLS thanks to DSE compared to the hand-written

design resulting in a 19 % smaller total area with the same throughput and power consumption.

These results are better than in previous case studies [3],[4],[5],[6], and the goals of the thesis

work were achieved, but it cannot be generalized that HLS generates better hardware compared

to hand-writing the RTL. Equivalent hardware can be created with both methodologies. It

should be noted that in HLS, DSE allows easy exploration to find the optimal solutions for each

sub-block potentially resulting in better QoR.

The differences and difficulties in writing HLS friendly C++ that produces high-quality

hardware compared to traditional software code are related to the parallel nature of the target

architecture in HLS. Traditional software code targets a different kind of technology that

executes the operations in the source code sequentially. In HLS this changes since a lot of the

operations in the source code are desired to be executed in parallel. Instead of writing sequential

code, the designer must understand the parallelism in the written source code. The parallel

operations and the order of execution might not be dependent on the order of the operations in

the source code but the data dependencies between the operations instead.

To generate high-quality hardware, the designer must understand how the tool interprets the

source code, which might even be slightly tool-dependent. Learning how Catapult analyses the

variable lifetimes and data dependencies between operations helps also to understand if the

source code is good or not, and how to make it better even before the synthesis. The target

architecture should be known before even writing the code so if the outcome is not what is

desired that should be visible to the designer.

It was found that the claim in [2] about HLS tools behaving like black boxes is not entirely

true. It certainly is easy to generate sub-optimal hardware, but while there were some difficulties

analysing the unexpectedly generated hardware in some cases, the behaviour of the synthesis

tool certainly got clearer with more experience with it. This might have changed in the past few

years but the analysability of the generated RTL is rather simple in different analysis views in

the current Catapult version and they even include the Design Analyser tool to help the analysis

and link the source code to the resulting RTL.

Learning the HLS friendly C++ coding and understanding the synthesis tool comes with

experience in HLS. In the beginning trial, error and analysis are common and good ways to

learn but since some things in HLS may seem unintuitive, not all cases can be reverse

engineered, and in those cases, support is needed to improve.

60

For an HW designer to adopt HLS friendly coding principles, they would require training in

the input language and the HLS tool. The training should include some hands-on example

exercises with the tool to demonstrate the effects of the changes in the source code. For an SW

engineer, training on the target technology would be required as well as the synthesis tool to

demonstrate the parallelism in the source code and the difference to traditional SW coding. In

both cases, an open mind should be kept since good HLS coding principles might not comply

with the previously learned ones.

Memory components were not used in the case study so the coding principles with those

were not experimented with too carefully. HLS might introduce some challenges or

optimization opportunities with them, so that could be studied more in the future.

For the tool developers, maybe the tool could trigger a warning if assumingly unexpected

RTL is about to be generated, for example, if a loop that is supposed to be unrolled, cannot be

fully unrolled. This would simplify the analysis process of the generated hardware since now it

is the designer’s responsibility to notice these things the analysis views after the synthesis. This

kind of unexpected structure often is larger and has longer latency than the desired one.

In conclusion, Catapult HLS with C++ is a viable option for traditional RTL flow in data-

driven applications such as this one. The case study shows that HLS can potentially produce

higher quality RTL compared to handwriting it with less effort. The design effort was only

compared in terms of lines of source code in this thesis but other studies [4],[5][6],[9] suggest

fewer working hours for HLS as well.

61

8 SUMMARY

The purpose of this thesis was to find good coding practices for C++ targeting high-level

synthesis. The thesis includes a case study where a digital downconverter and decimator is

implemented with high-level synthesis using the found coding practices and the quality of

results is compared against the same design hand-written in VHDL by other designers.

Chapters 2, 3, and 4 of this thesis contain an introduction to HLS as well as the used input

language C++ with the HLS additions and restrictions such as the algorithmic C data types.

Siemens EDA Catapult HLS tool is introduced with the functionality, features, and design steps

within the tool.

Chapter 5 generalizes some of the coding principles to achieve optimal QoR in the resulting

RTL. Different examples are presented with good and bad coding in some specific cases as well

as the effect of different coding styles on the QoR.

Chapter 6 presents the case study of designing an uplink digital downconverter and

decimator with HLS. First, the specifications and the requirements of the design are discussed,

followed by personal user experience with Catapult and HLS in general. Finally, the results of

the case study are presented in terms of area, latency power, and lines of active source code,

and these results are compared against a close to equivalent hand-written RTL design written

by different designers. The results show that the HLS design is almost 20 % smaller with

slightly lower latency. The power numbers are not accurate, but the order of magnitude is found

to be similar in both designs.

As an overall conclusion, it can be stated that Catapult HLS generates high-quality RTL if

the source code is written properly according to good coding principles. It is easy to generate

poor-quality RTL without paying attention or not analysing the result with the provided tools

within Catapult. Minor differences to the source code have a huge impact on the resulting

hardware. According to this thesis, Catapult HLS is a viable option for traditional RTL flow

DFE ASIC development.

62

9 REFERENCES

[1] G. Martin and G. Smith (2009) High-Level Synthesis: Past, Present, and Future. In: IEEE

Design & KPN Test of Computers, August 21, vol. 26, no. 4, pp. 18-25

[2] Zelei Sun et al. (2016) Designing high-quality hardware on a development effort budget:

A study of the current state of high-level synthesis. In: 21st Asia and South Pacific Design

Automation Conference (ASP-DAC), March 10, Macao, China, pp. 218-225.

[3] Joentakanen T. (2017) Evaluation of HLS modules for ASIC backend, Master of science

thesis, Master's Degree Programme in Electrical Engineering, Tampere University of

Technology, Tampere, 71 p.

[4] Torppa E. (2015) High-level synthesis in IP based SoC development. University of Oulu,

Department of Electrical Engineering, Degree Programme in Electrical Engineering.

Master’s thesis, 69 p. I. Kivimäki

[5] Ollikainen P. (2016) SoC subsystem design using SystemC based high-level synthesis.

University of Oulu, Degree Programme in Electrical Engineering. Master’s Thesis, 48 p.

[6] Kivimäki I. (2016) High-Level Synthesis Design Flow in FPGA Design. Degree

Programme in Electrical Engineering, University of Oulu, Oulu, Finland. Master’s thesis,

60 p.

[7] P. Coussy, D. D. Gajski, M. Meredith & A. Takach. (2009) An Introduction to High-

Level Synthesis. In: IEEE Design & Test of Computers, August 21, vol. 26, no. 4, pp. 8-

17.

[8] Brucek Khailany, Evgeni Krimer, Rangharajan Venkatesan, Jason Clemons, Joel S.

Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney, Yakun

Sophia Shao, Shreesha Srinath, Christopher Torng, Sam (Likun) Xi, Yanqing Zhang, and

Brian Zimmer (2018) A modular digital VLSI flow for high-productivity SoC design.

In: Proceedings of the ACM/IEEE Design Automation Conference, June 24-28, San

Francisco, CA, USA, pp. 1-6.

[9] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, (2019) Are We There Yet? A Study

on the State of High-Level Synthesis. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, May 8, vol. 38, no. 5, pp. 898-911.

[10] Mentor Catapult HLS tool Datasheet (accessed 14.1.2020). URL:

https://s3.amazonaws.com/s3.mentor.com/public_documents/datasheet/hls-lp/catapult-

high-level-synthesis.pdf

[11] High-level Synthesis Bluebook v10.6 (2020), Mentor Graphics Corporation, Oregon, 251

p.

[12] B. C. Schafer and Z. Wang, (2020) High-Level Synthesis Design Space Exploration: Past,

Present, and Future. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, September 24, vol. 39, no. 10, pp. 2628-2639

[13] G. Schewior, C. Zahl, H. Blume, S. Wonneberger and J. Effertz, (2014) HLS-based FPGA

implementation of a predictive block-based motion estimation algorithm — A field

report. In: Proceedings of the 2014 Conference on Design and Architectures for Signal

and Image Processing, October 8-10, Madrid, Spain, pp. 1-8.

[14] Stefan Hadjis, Andrew Canis, Jason H. Anderson, Jongsok Choi, Kevin Nam, Stephen

Brown, and Tomasz Czajkowski (2012) Impact of FPGA architecture on resource sharing

in high-level synthesis. In: Proceedings of the ACM/SIGDA international symposium on

63

Field Programmable Gate Arrays (FPGA '12), February 22, New York, NY, USA, 111–

114.

[15] S. A. Edwards. (2006) The Challenges of Synthesizing Hardware from C-Like

Languages. In: IEEE Design & Test of Computers, September 25, vol. 23, no. 5, pp. 375-

386.

[16] J. Santiago da Silva, F. Boyer & J. M. P. Langlois. (2019) Module-Per-Object: A Human-

Driven Methodology for C++-Based High-Level Synthesis Design. In: 2019 IEEE 27th

Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), April 28-May 1, San Diego, CA, USA, pp. 218-226.

[17] C++ reference, Information, A brief description page (accessed 29.12.2020). URL:

http://www.cplusplus.com/info/description

[18] Stroustrup B. (1985) The C++ Programming Language. Addison-Wesley, Reading, MA,

326p.

[19] C++ reference, Information, History of C++ page (accessed 28.12.2020). URL:

http://www.cplusplus.com/info/history

[20] Cook S. (1989) Introducing object-oriented systems. In: IEE Colloquium on Applications

of Object-Oriented Programming, November 16, London, UK, pp. 1-1

[21] J. R. Garcia Ordaz & D. Koch. (2017) On the HLS Design of Bit-Level Operations and

Custom Data Types. In: FSP 2017; Fourth International Workshop on FPGAs for

Software Programmers, September 7, Ghent, Belgium, pp. 1-8.

[22] Catapult Synthesis User and Reference Manual (2020), Mentor Graphics Corporation,

Oregon, 1236p.

[23] HLS LIBS Homepage (accessed 29.12.2020). URL: https://hlslibs.org/

[24] Kahn, G. (1974). The semantics for simple language for parallel programming. In:

Information Processing 74, Proceedings of IFIP Congress 74, August 5-10, Stockholm,

Sweden.

[25] IEEE Standard for Standard SystemC Language Reference Manual. (2012). In: IEEE Std

1666-2011 (Revision of IEEE Std 1666-2005), January 9, pp. 1-638.

[26] F. Sijstermans, J. Li (accessed 14.1.2020) Working smarter, Not harder: NVIDIA Closes

Design Complexity Gap with High-Level Synthesis, Mentor paper, URL:

https://resources.sw.siemens.com/en-US/white-paper-working-smarter-not-harder-

nvidia-closes-design-complexity-gap-with-hls

