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ABSTRACT 

This thesis was completed for Nokia and in cooperation with Siemens EDA. In 

this thesis a UVM Predictor component, which wraps a C++ reference model, was 

generated with UVM Framework (UVMF) and implemented. The Predictor was 

generated and implemented to Universal Verification Methodology (UVM) 

testbench that had HLS generated Design Under Test (DUT). First, the UVMF 

generated Predictor was implemented for the UVM testbench with a small HLS-

generated design to learn the verification flow. After the first trial run, the 

UVMF-generated Predictor was implemented into an existing UVM testbench 

with a bigger subsystem as a DUT. The subsystem contained two manually 

written RTLs and one HLS-generated RTL. 

First, this thesis presents the UVM theory and the UVM technologies that are 

used in the thesis work. The third chapter introduces code coverage, different 

coverage metrics, and the coverage metrics used in this thesis. 

After theory, practical work is presented. Chapter four explains the devices 

under test, UVM components, testbench connections with a UVM Predictor, 

Predictor generation, functionality testing, and simulation. Measured coverage 

metrics, tools, and technologies are also presented. Finally, coverage results from 

thesis work with testing strategies are presented. The results of coverage closure 

are discussed in chapter 6, and the thesis is summarized in chapter 7.  

Applying a UVMF-generated Predictor to the UVM testbench for verification 

flow showed promising results for obtaining a faster verification process as well 

as produced the possibility of using various versatile verification techniques with 

the Predictor, such as stimulus generation with constrained random (CR). 
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TIIVISTELMÄ 

Tämä diplomityö on tehty Nokialle yhteistyössä Siemens EDA:n kanssa. Tässä 

diplomityössä UVM Framework työkalulla generoitiin ja toteutettiin UVM-

prediktori komponentti, joka sisältää C++ referenssimallin. Generoitu prediktori 

integroitiin universaalin varmennusmenetelmän testipenkkiin, joka sisälsi 

HLS:llä luodun testattavan suunnitelman. Ensiksi UVMF:llä generoitu 

prediktori implementoitiin UVM-testipenkkiin pienellä HLS generoidulla 

alilohkolla, jotta verifiointivuo saatiin opeteltua. Ensimmäisen testivedoksen 

jälkeen, UVMF generoitu prediktori implementoitiin olemassa olevaan UVM-

testipenkkiin, jossa varmennettavan suunnitelmana oli suurempi osajärjestelmä. 

Osajärjestelmä sisälsi kolme alilohkoa, joista kaksi oli manuaalisesti kirjoitettua 

RTL:ää ja yksi HLS generoitu RTL. 

Ensiksi tässä työssä käydään läpi UVM:n teoriaa, sekä käytettävät UVM 

teknologiat, joita sovelletaan diplomityössä. Kolmas kappale esittelee koodin 

kattavuutta ja erilaisia kattavuus parametreja. Teoriaosuuden jälkeen esitellään 

käytännön työn asiat. Kappale 4 esittelee varmennettavat suunnitelmat, UVM 

komponentit, testipenkkikytkennät prediktorin kanssa, sekä prediktorin 

generoinnin, testauksen ja simuloinnin. Myös työssä mitattavat 

kattavuusparametrit, sekä käytettävät työkalut ja teknologiat esitellään. Lopuksi 

esitellään diplomityössä saavutetut kattavuustulokset, sekä suunnitelmien 

varmennusstrategiat. Diplomityössä saavutetut tulokset käydään läpi 

seuraavassa kappaleessa, minkä jälkeen kappaleessa 7 tiivistetään koko 

diplomityö. UVMF generoidun prediktorin ottaminen mukaan osaksi UVM 

testipenkin verifiointivuota antoi lupaavia tuloksia verifiointiprosess in 

nopeuttamiseksi, ja mahdollisuuden käyttää erilaisia monipuolis ia 

verifiointitekniikoita kuten testiherätteiden luontia rajoitetun satunnaisuuden 

menetelmällä. 
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1 INTRODUCTION 

Developing verification methods for making the verification process faster and more reliable is 

an ongoing process. Methods can vary from using different Electronic Design Automation 

(EDA) tools, generated designs, and how Design Under Test (DUT) is verified. High-Leve l 
Synthesis (HLS) Register Transfer Level (RTL) is now part of DUTs more than ever before. 

Even though manually written RTL is still part of company designs, generated RTL is replacing 

it bit by bit. The study [22] from the year 2015 indicated that generated RTL cuts off a few 
months of design time when compared to manually written Field Programmable Gate Array 

(FPGA) systems-on-chip (SoC). The same study showed that using generated RTL offered a 

little less performance with shorter design time, but with generated RTL, the verifica t ion 
process could already have been begun by the time the manually written RTL is ready. [22, p.5]  

Coverage closure is an important target when verifying FPGA or Application Specific 

Integrated Circuit (ASIC). Coverage closure measures the design to verify all its features and 
functions. One important aspect when simulating the DUT is to have the testbench self-

checking that the output of the DUT matches with expected data. One way to do this is using a 

reference model (e.g., Matlab) to generate reference data files, which are then used for 
automated comparison. 

One potential method to enhance the verification process is to replace the traditional reference 

file comparison approach for the reference model that is integrated into the testbench as a 
Predictor component. A predictor is a Universal Verification Methodology (UVM) component 

that is used to calculate the expected outputs of the design [4, p.7]. The Predictor can be 

manually written with SystemVerilog (SV), but it takes time away from other verification tasks, 
which makes it so that it can also be generated by HLS tools using a reference model of the 

design as an input [4, p.129]. When verifying complex SoC systems, writing reference models 

manually can be difficult and time-consuming work. There is also an increased risk of errors in 
large designs because while writing a large amount of code, engineers are likely to include bugs. 

That is why moving to a generated reference model or design saves time and there is a better 

chance for it to work properly both in the verification and the product. 
High-Level Verification (HLV) flow approaches HLS RTL coverage in verification from a 

higher level of abstraction by covering part of the verification at the C++ level. When code at 

the C++ level is well-covered, repeating the same tests at the RTL level will result in high code 
coverage as a starting point and the focus in the verification is on the RTL components added 

by the HLS process. In many cases, generated HLS RTL is not easily human-readable, and the 

coverage gaps become more understandable at the C++ level on a higher level of abstraction. 
This thesis was completed to study an enhanced verification flow that uses a UVM Framework 

(UVMF) generated Predictor for the possibility of replacing Matlab reference files as golden 

data and the possible difficulties with HLS-generated RTL over manually written RTL in 
coverage closure [20]. The UVM testbench (TB) for small designs was created from scratch to 

prototype and to learn the setup. This flow was repeated twice: first with a small design to learn 

the flow and then for a bigger subsystem. The goal was to develop an enhanced verifica t ion 
flow or methodology for HLS RTL when moving from Matlab-generated reference files to a 

generated reference model. 

In this thesis, a UVM TB is created and a C++ reference model is wrapped to a UVM Predictor 
component generated with the UVMF. The generated Predictor is then integrated into the 

written UVM testbench, and coverage closure is performed for HLS-generated RTL.  

The second chapter presents the theory for the evolution of UVM, UVM phases, and the UVM 
technologies that are adapted for this thesis. The third chapter presents coverage metrics. The 
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fourth chapter presents the practical work as it describes the used DUTs, UVM components, 

testbench connections with the Predictor, Predictor generation, testing, and simulation of the 

Predictor. Used coverage metrics, tools, and technologies are also discussed. The fifth chapter 
presents RTL coverage closure flow, the used testing strategies for coverage closure, and the 

results. The sixth chapter contains the result analysis, and the seventh chapter summarizes the 

whole thesis. 
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2 UVM VERIFICATION WITH SYSTEMVERILOG 

2.1 Universal Verification Methodology 

Universal verification methodology (UVM) is the first-ever verification methodology to be 
standardized by the IEEE Standards Association, and it is developed by Accellera. Figure 1 

shows the overall development of the UVM methodology. Standardization was possible 

because of the work that was done between EDA vendors and customers. UVM is a 
combination of technologies and knowledge that is inherited from Mentor’s Advanced 

Verification Methodology (AVM), Mentor and Cadence’s Open Verification Methodology 

(OVM), Verisity’s eReuse Methodology, and Synopsys Verification Methodology Manual-
Register Abstraction Layer. [4, p.7] OVM is an open-source verification methodology 

containing base classes written in SystemVerilog. It is inherited from Mentor’s AVM and 

Cadence’s Universal Reuse Methodology (URM). OVM has features of integrating component 
architectures, Transaction- level modeling with stimulus transactions, phasing of testbench 

execution, and Object-Oriented Programming (OOP). [4, p.538, 7] 

 

 
Figure 1. Development of UVM methodology. 
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UVM uses OVM as its base code, which contains the technology for OOP and combines it with 

Synopsys’s VMM, as shown in figure 1. UVM has a flexib le way of executing testbench phases 

and using and creating UVM components and testbenches. UVM TBs are written with hardware 
description languages (HDL), such as Verilog or SystemVerilog. Between these two HDLs, 

Verilog does not include OOP features like SystemVerilog. [4] 

 
2.1.1 UVM phasing 

The testbench execution flow is divided into three main phases to keep execution 
straightforward. The phases are build phases, run phases, and cleanup phases, and they are also 

executed in that sequence. [4, p.17] At build phases, TB and all UVM components are 

configured, constructed, and connected before the beginning of the simulation. Simulation time 
is not consumed at build phases due to its methods being functions. Run phases start the 

stimulus generation execution of the test case. Simulation time starts running and all phases 

from start_of_simulation to post_shutdown are executed. Phases executed during run phases 
can be seen in figure 2. Mostly just reset, configure, main, and shutdown phases are necessary 

to implement on a testbench, but their post- and pre-phases can be implemented if needed. The 

last main phases to be executed are the cleanup phases. During cleanup phases, information 
from the testbench scoreboards and monitors is gathered and reported. The collected data 

contains the details of whether the test case is passed or failed, as well as what kind of coverage 

results are gained during the process. [4, p.17–20] 
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Figure 2. UVM Phases. 

 

Starting the execution of UVM phases is done by calling the run_test() method that is normally 
implemented and called in the top level of the testbench. [4, p.18] Phases that are executed 

during the calling of the run_test() method are shown in figure 2. 

 
2.1.2 UVM Testbench Architecture 

Figure 3 represents the typical UVM testbench architecture, and figure 4 represents the 
testbench hierarchy used in this thesis. The highest level of a testbench is the testbench top 

where other UVM components are then constructed. Tb_top contains an initial block where the 

run_test() method is called and test execution is begun. [4, p.10] The top-level UVM component 
test encapsulates the environment, configures it, and provides a stimulus from the environment 

to the DUT. The testbench has one base test, and a TB can contain separate tests with various 

stimuli, which are all extended from that base test. The environment instantiates and configures 
other testbench components that are connected with a DUT, such as scoreboards and agents. 
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Usually, there is only one environment instantiated, but it is possible to have as many as 

preferred in parallel. [6, p.8]  

 

 
Figure 3. Typical UVM testbench hierarchy. 

 

UVM scoreboards are UVM components whose task is to check if the design is working 
properly. The scoreboard takes transactions from the DUT’s outputs and reference data from a 

reference model or reference files and compares them to confirm that the design works properly. 

The scoreboard is connected to the UVM Agent’s Monitor. [6, p.8] The UVM Agent configures 
and instantiates UVM components and connects them together. The components inside a UVM 

Agent are the sequencer, driver, and monitor. These three components are connected to each 

other and the DUT’s interfaces. There may also be other components inside a UVM Agent, 
such as coverage collectors or Transaction-Level Modelling (TLM) models. UVM Agents can 

be configured to be passive or active. An active Agent has all three components mentioned 

above and their transactions are driven. However, passive Agents contain only the Monitor 
component, so no stimulus driving happens. [4, p.25–26, p.28, 6, p.8–9] 

The UVM Sequencer handles transaction flow and sends transaction items created by UVM 

Sequences to the UVM Driver. There can be several UVM Sequences handled by just one 
Sequencer. The UVM Sequences create the stimulus for the Sequencer and control how many 

data items the sent package is holding. The transaction from a UVM Sequencer is collected by 

a UVM Driver which then forwards the transaction towards the DUT’s interface and the DUT 
itself. The DUT’s interface is also connected to a UVM Monitor which observes the DUT’s 

behavior at the transaction level. The Monitor is a passive component, so it only monitors the 

DUT’s behavior and does not drive anything. [4, p.22, p.32, 6, p.9] The testbench hierarchy 
shown in figure 4 was used in this thesis work. 
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Figure 4. The testbench hierarchy used in thesis work. 

 

The testbench adopted a dual top testbench architecture with a Hardware Description Language 

(HDL) and Hardware Verification Language (HVL) top. DUT_Top instantiates the used 
interfaces, Master and Slave side assigns to the interface signals and DUT instantiation. All 

integrations to HDL_Top are associated with the clock signal level activity of the DUT. The 

TB_Top wraps the OOP testbench with used Agents and UVM components. The run_test() 
method is instantiated inside the initial block which calls the method and starts the execution 

of the test. Also, all Agent and interface database configurations are set in HVL_Top to the 

configuration database. [26] 
 

2.2 UVM Technologies 

2.2.1 UVM Connect 

UVM Connect (UVMC) is an open-source library that makes it possible to perform TLM 
transactions and object passing between foreign languages and SystemVerilog modules, TLM1 

and TLM2 connectivity, and components. The supported programming languages are C, C++, 

and SystemC. 
UVMC offers IP and VIP reusability for reusing stimulus generation VIPs in SystemVerilog to 

verify SystemC models. It is also a possible to access and control UVM simulation from 

SystemC through the UVM Command Application Programming Interface (API). With API 
one can control, for example, UVM transitions, prints, and UVM factory overrides. UVMC has 

a built-in feature for the TLM generic payload (TLM GP). [4, p. 433–434] 

 
2.2.2 UVM Framework 

Fast UVM testbench implementation offers many possibilities for verification. Users may also 
want different variants of the designed chips. Having a separate testbench for each DUT is time -

consuming, which is why the UVM framework is a great solution for faster UVM TB 

development. This thesis generated only the Predictor UVM component, while other parts of 
the testbench and components were disabled from generation. UVMF enables recyclable UVM 

methodology and rapid automated UVM TB generation. [1, 2, p.8] It can automatically generate 

a complete TB architecture with interconnectivity for interface packages, agents, scoreboards, 
and TLM ports by using SystemVerilog as the output Hardware Description Language. 
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The first part of UVMF flow is to design and picture the UVM TB that needs to be verified and 

measured. After TB planning has been made, all information is put into a configuration file, 

such as a YAML file or a Python API-based file. YAML is a data serialization language which 
the UVMF generator uses as an input to generate testbench environments and Predictors with 

a shell script. [20] In this thesis, the YAML file was used to define Predictor, TLM ports, 

pinpoint paths to different submodules, and C++ model files. Figure 5 depicts an example of a 
YAML file structure used in this thesis, where used parameters, TLM ports, and design files 

needed to be declared. The configuration file is then fed into a script that generates a TB using 

UVM Framework. [20] 
 

 
Figure 5. YAML file syntax structure. 

 

Several things in the YAML file are non-mandatory, so the user can define what kind of 
environment and TB to generate. [2] There are also many integrated tools and technologies that 
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come with UVMF. They are shown in Table 1, which is also where the purpose of the tool or 

technology is explained. [2] In this thesis, a Visualizer simulator as well as a Regression 

Management System (RMS) based on Siemens EDA’s Verification Run Manager (VRM) 
system were used. 

 

Table 1. Integrated tools and technologies inside UVMF 

TOOL/TECHNOLOGY PURPOSE 

Questa Verification IP (QVIP) IDE instantiates, configures, and connecting 
QVIP components 

inFact UVM/SV importer that accelerates coverage 

closure 

Verification Management (VM) Coverage data and metrics ranking, 

merging, analyzing, and reporting 

Verification Run Manager (VRM) Regression testing optimization, integration 
into Jenkins ecosystem 

Vista Hybrid SystemC/SV that accelerates SoC 

simulation/emulation 

Visualizer Advanced design simulator and 

reconstruction technology increasing debug 
speed 

Veloce Hardware (HW) assisted TBX verification 

for reusing UVM test benches 

 
2.2.3 Direct Programming Interface 

A direct programming interface (DPI) is an interface that is situated between the foreign 

programming language layer, usually C or C++, and the SystemVerilog layer that is the surface 
of the UVM. DPIs on both sides are isolated. [13, p. 939] A DPI can be compared to a black 

box: the specifications and implementations of components are fully isolated and are 

transparent to the rest of the system. Because of this, the instantiation of programming 
languages is transparent as well. The isolation between the foreign language and SystemVerilog 

is performed by functions. These functions can be instantiated into the SystemVerilog side or 

the foreign language side and called from either side to another. [13, p. 939] 
DPI offers an easy way to use function calls between different programming languages and to 

move data between programming layers. Functions that are called from the SystemVerilog side 

are called imported functions, and function calls happening on the foreign side are called export 
functions. Task calls between languages are also possible. Imported tasks called from 

SystemVerilog act in the same way as in standard SystemVerilog tasks, so they never return 

any value and can consume the run time of the simulation. In DPI all functions are supposed to 
finish their execution immediately and consume zero simulation run time. [13, p. 939-940] DPI 

can be written either manually or automatically by the tool. 

 
2.2.4 SystemC 

The complexity and sizes of modeled hardware and software are growing, which is where 
SystemC comes into the picture. SystemC is an open-source C++ class library that was made 

for hardware modeling purposes. It can model complex hardware and software on many levels 
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of abstraction. SystemC supports all C++ data types as well as some that are native only to 

SystemC. [14, p.8, p.388] 
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3 CODE COVERAGE AND METRICS 

 
3.1 Coverage 

Coverage measures the design during the stimulus and communicates which part of the code is 

executed and completed during the simulation. Coverage can be split into implicit coverage and 

explicit coverage, as shown in figure 6. An example of explicit coverage is functional coverage. 
Functional coverage is a manually written and defined coverage model in which the metrics 

and features that need to be covered are usually discussed with the designer. [9, p.8] Coverage 

measurement can also be automatically built by a tool, which is called an implicit coverage 
metric. Measuring coverage in a testbench is an automatic process that collects data from the 

DUT during the stimulus. All design features and requirements that need to be verified are 

documented in the test plan. [9, p.6–8] 
 

 
Figure 6. Coverage metrics categories. 

 
The target for code coverage is always 100%, but this is often not possible due to design 

limitations or how the IP is designed and how it works together with other IPs. This might leave 

some code coverage gaps that are reviewed together with design and verification teams to 
decide which gaps are acceptable. There are eight different code coverage metrics that can be 

measured: toggle coverage, line coverage, statement coverage, condition coverage, branch 

coverage, expression coverage, focused expression coverage (FEC), and finite-state machine 
coverage. [9, p.12] 

 
3.1.1 Line Coverage 

Line coverage measures all source code lines that do and do not execute during the simula t ion 

of the design, including how many times they are executed. Measuring line coverage is a good 
way to find bugs, lines that need another test to be covered, and unused or dead code. Dead 

code or unused code is a part of code that is not executed during simulation or supported in the 

current IP and which show as gaps in coverage. Line coverage helps a verification engineer to 
decide if the minimum line execution threshold has been achieved. [9, p.11] 
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3.1.2 Statement Coverage 

Statement coverage measures all statements that are reached during the simulation and how 
many times they are executed. It is similar to line coverage, but many verification engineers 

prefer statement coverage over line coverage. This is because statement coverage can analyze 

several statements in a single line of the code. This is one of the most basic coverage metrics 
that are measured. All statement lines are analyzed independently. [9, p.11, 10, p.927] 

 
3.1.3 Branch Coverage 

The branch coverage metric measures different statement branches as if–or cases. The results 

from all true and false statements that are evaluated from the Boolean expression table are 
reported. Even states that cannot happen are measured, so the results need to be discussed with 

the designer of the IP. [9, p.11] 

 
3.1.4 Condition Coverage 

The condition coverage metric measures if and ternary statements. [11, p.894] Ternary 
statements contain the ternary operator ?: which is a condition operator in the SystemVerilog 

language. The ternary operator has multiple expressions which are chosen by the first 

expression executed. If the first expression condition is 1, then the second expression is 
executed, but if the first expression condition is 0, then the third expression condition is 

executed. The ternary operator is usually used with multiplexers because multiplexers have 

multiple inputs and with the ternary operator it is easy to choose which input is in use. [12, 
p.206] Condition does not have any logical operators, so it is a Boolean operand. [9, p.12] 

 
3.1.5 Expression Coverage 

Expression coverage is close to condition coverage, and it also measures conditions that are 

evaluated as true or false. It uses a Boolean expression table and checks each expression that 
could happen. [9, p.12] Expression analyzes all assignment statements that are executed during 

simulation. [11, p.894]  

 
3.1.6 Focused Expression Coverage 

The focused expression coverage (FEC) metric measures all inputs. When input expressions 
and conditions hit 100%, then that input is fully covered. FEC is used by the DO-178B and DO-

254 standards. DO-178B is a standard for safety-critical software certification. DO-254 is a 

standard for formal airborne electronic hardware certification. [9, p.12, 10, p. 939] 
 

3.1.7 Toggle Coverage 

Toggle coverage is a metric that measures which bits of a signal are registered or hit. There are 

different requirements depending on the signals and projects. Sometimes some signal bits are 

not registered because those signal bits are not in use on a higher- level testbench. Analyzing 
toggle coverage may be more harmful than helpful when there is little knowledge of which bits 

should toggle. However, this can usually be discussed with the designer. This is why toggle 
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coverage can sometimes be left unanalyzed if other metrics add more value. Toggle coverage 

can help connectivity checking between IP blocks. [9, p.11] 

 
3.1.8 FSM Coverage 

The finite state machine (FSM) coverage metric measures all states and transitions that occur 
during simulation. All states that happen in state machines and all transitions from one state to 

another are measured and included in the final results. [9, p.12, 10, p.1023] 

 
3.1.9 Functional Coverage 

Functional coverage is a model that covers different design features or specifications that are 
defined by the designer. If some feature is determined as a functionality in the design with a 

functional coverage model, a verification engineer can verify that the design supports these 

features. Functional coverage is explicit coverage, so the model is not automatically generated 
and requires manual implementation by a verification engineer. Functional coverage is divided 

into two main types of how to measure it: cover groups and cover properties. [9, p.14]  

A verification engineer cannot implement cover groups and properties blindly. The engineer 
also needs to know when the measurement trigger should happen. Cover groups contain values 

from interfaces, registers, and buses that are under observation during cover group sampling. 

Sequences that occur during RTL simulation are measured with cover properties. This is a good 
way to verify block functions. The most effective way to measure functional coverage is to use 

groups and properties together. [9, p.15] 
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4 TESTBENCH IMPLEMENTATION WITH A UVMF-BASED C++ 
REFERENCE MODEL 

The goal of this thesis was to build a UVM TB for a smaller design, wrap a C++ reference 
model to a UVM Predictor component automatically generated by UVMF and integrate it with 

a TB, and do coverage closure for an HLS-generated RTL. Predictor implementation was done 

with two different IPs. First with a smaller design to test and learn new verifica t ion 
methodology, and then by implementing the reference model to a much larger subsystem called 

DMRS. The smaller design is named Submodule0. The DMRS DUT contained three subblocks: 

HLS_Block, Manual_RTL1, and Manual_RTL2. The UVM testbench for Submodule0 was 
performed by using Nokia’s verification platform. The platform acts as a skeleton for UVM TB 

to enable the faster implementation of the testbench. 

 
4.1 Designs Under Test 

4.1.1 Submodule0 

Submodule0 was the first design to be verified as a DUT and to learn UVMF base Predictor 

generation and integration. It is a submodule and part of a much bigger subsystem called 
Physical Uplink Shared Channel (PUSCH) and is a fully HLS-generated design. Figure 7 shows 

the block diagram of Submodule0. Submodule0 has two data input and output ports. One for 

streaming I/Q data and the other channel for streaming control data. Each input and output had 
VLD and RDY handshake interfaces in order to let the design know when to start or stop feeding 

data. 

 
Figure 7. Block diagram of Submodule0, consisting of control and processing blocks. 

 

Control and I/Q data are fed through the block with Advanced Extensible Interface 4 (AXI4)-

Stream type interfaces. Data feeding starts by feeding the first set of dynamic configurat ions 
into the block. Used configurations can be seen in table 2. Submodule0 is a frame-based design, 

so it takes one set of I/O configuration parameters and the right amount of I/Q data. After the 

first configurations come from the block, the amount of fed I/Q data samples are calculated 
from the configurations and fed through the processing block of Submodule0. 
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4.1.2 Demodulation Reference Signal 

The second DUT to be verified was the Demodulation Reference Signal (DMRS), which is also 
a frame-based design, so it takes a set of configuration data with the right amount of I/Q data. 

Figure 8 shows the block structure of the DMRS and its subblocks. DMRS forms from three 

subblocks where two are manually written RTLs and the third is an HLS-generated RTL. 
DMRS writes outputs to buffers and another output block. 

 
Figure 8. The DMRS DUT and its subblocks. 

 
Configurations and I/Q data are written to the DMRS block with memory interfaces to Random-

access memory (RAM) blocks, which are inside Manual_RTL1. The AXI4-Stream bus is in 

use for all internal interfaces. Manual_RTL1 sends collected configurations and I/Q data 
through the AXI4-Stream interface to the HLS-generated design. HLS_block processes data, 

and output is collected to the measurement block and forwarded to Manual_RTL2. 

Manual_RTL2 streams data to buffers and sends a control signal to control_block. 
Control_block sends a message to Manual_RTL1. The message contains information about the 

form of data. 

 
4.2 UVM Components 

In this chapter, the UVM components used in the practical work are introduced. 
 

4.2.1 Transformers 

The UVM TB needed transformers because the instantiated Predictor component used a 

different datatype than the testbench itself. Transformers were instantiated as UVM 

components, extending from the uvm_subscriber class. Transformers transform one type of data 
into another. Figure 9 shows the example code of the transformer component. In that example, 

Transformer takes a ccs_transaction data type input from its analysis_port and assigns it to a 

data item that is an AXI data type. Transformer components can be made reusable because they 
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can be parameterized. In this thesis, data widths of the incoming data are parametrized. Because 

data width is parametrized, an unlimited number of transformers can be created with different 

data widths. 
 

 
Figure 9. A transformer component extending from the uvm_subscriber class. 

 

Each input and output stream needs a Transformer. The transformer used analysis_port, which 
is part of the uvm_subscriber class, to collect input or output data, which is then collected from 

the write function and forwarded to another analysis_port that is declared into the transformer’s 

output side. The transformer class contains a construction function where data objects are 
constructed with a new build_phase function for building data items as well as a write function, 

which obtains data from the subscriber’s analysis_port and assigns data to another object, which 

is a different type of data, and forwards data to the output side analysis_port. 
 

4.2.2 Predictor 

A predictor predicts the output value of the verified DUT. It is a verification component that is 

used to model reference data to the scoreboard where the output of the DUT is compared to the 

expected data coming from the predictor. Predictors can have several input and output data 
streams depending on the HLS part of the design. The predictor takes the same observed data 

that is going to the DUT and transforms it into the expected data from the predictor’s output. A 

predictor is usually part of the scoreboard, but it can also be its own UVM component. As all 
verification components, a predictor has TLM ports that are used to connect the predictor to the 

testbench. Data is streamed to these analysis ports and fed through the predictor.  

Predictors are usually written in a foreign language such as C, C++, or SystemC, but they can 
also be written with SystemVerilog. The predictor can also act as a proxy DUT. Usually, a 

predictor is written at a higher level of abstraction which is why writing data through a predictor 

and the availability of data takes less time than a DUT. [4, p. 129] 
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The reference model in this thesis work is the UVMF-generated UVM Predictor component 

which contains a wrapped C++ reference model. The wrapped C++ reference model only 

contained the HLS part of the DUT. Figure 10 presents the Predictor hierarchy and its layers 
when it is fully generated by the UVMF. 

 

 
Figure 10. Predictor hierarchy. 

 

The Predictor has four different layers. The lowest layer and its core are C++ design files that 

are wrapped inside the Predictor. The C++ reference model models the behavior of the DUT. 
C++ is then automatically transformed into SystemC form. Between the C++ side TLM wrapper 

and the SystemVerilog layer is the DPI. DPI allows C function calls from the SystemVerilog 

side, which makes it so the foreign-SystemVerilog line can be crossed. The highest layer is the 
UVMF layer which itself is UVM code. The UVMF layer has a wrapper that uses the UVMC 

library that includes function calls for TLM packet transactions from the SystemVerilog-

SystemC interface. These transactions are sent through TLM1 and TLM2 connectivity and 
Analysis Ports. [23] 

The Predictor has as many input and output ports as the DUT, so Submodule0’s predictor had 

one data and control data input port as well as two output ports. 
The DMRS Predictor had two inputs for data and control as well as several outputs. The 

Predictor is only for the HLS part of the design and does not include manual RTL. This is 

expected since only the HLS part of the DMRS design is modeled in C++, which is used to 
generate wrappers for the Predictor component. It is not unusual for the whole design or DUT 

to include some subblocks that are manually written and some that are generated through HLS. 

To support manual RTL verification when using Predictor, alternative methods must be 
included when the entire design needs to be verified and some design parts are not supported 

by the Predictor. An example of such a method would be using a reference file for the data 

stream coming from manual RTL. Similarly, if the data stream combines HLS and manual RTL 
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signals, the solution could be to combine HLS data from Predictor with reference data created 

by engineers. 

 
4.3 Testbench Connections with Predictor 

The starting point of this thesis was the fact that Nokia’s UVM test benches used traditiona l 
Matlab-generated reference files to check that the outputs of the DUT match with expected 

data. In order to help speed up the design verification process, an enhanced method was 

requested. To help with this goal, it was preferred that the reference model should be a part of 
the UVM testbench. Using the Predictor as a reference model offers various different 

verification techniques that can be used with it. One such technique is the Constrained Random 

stimulus as it can generate tests on a much bigger scale than the traditional file Input/Output 
(I/O) stimulus. It is also faster to generate and execute the Predictor component and it takes less 

disc space than Matlab files. 

The Predictor is integrated with similar connections on both UVM test benches. Figure 11 
shows the testbench connections to both the Predictor and DUT. The Predictor is integrated as 

an outside component into UVM TB. It is connected to transformer components that are 

instantiated into the UVM environment. In this thesis, TLM ports were used upon 
implementation to the UVM testbench as well as for data streaming to the Predictor. The 

squares and circles in figure 11 represent TLM ports and connectivity between the Predictor 

and UVM TB. 
 

 
Figure 11. Predictor connections with UVM testbench. 

 

The testbench’s AXI4 data types are based on ARM’s AXI4-Stream Protocol which is 
integrated into Nokia’s in-house developed VIP [27]. CCS_transaction is a data type generated 

by the UVMF for the C++ reference model that is wrapped inside the Predictor. 
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CCS_transaction is generated as a class where an incoming transaction is converted into a 

generic payload by a function that is integrated inside the class. 

All components for Predictor integration are instantiated, built, and connected in the UVM 
Environment at build_phase and connect_phase. An example of this can be seen in figure 12. 

The reference model uses the CCS data type, and the testbench for Submodule0 uses the AXI4-

Stream data type. The DMRS TB uses AXI4-Stream with the design’s internal signals or 
memory data type through memory interfaces. Verification Intellectual Property (VIP) with the 

AXI4-Stream bus handles data streaming through the DUT and Predictor with the same control 

and data channels. The DMRS Predictor’s inputs are connected inside the DUT between 
Manual_RTL1 and HLS_block to control and I/Q data streams. Predictor outputs are connected 

to transformers and, finally, to the UVM Scoreboard. Connections are made with TLM analys is 

ports and analysis exports. 
 

 
Figure 12. Predictor TLM connections to the UVM testbench. 

 
In the study completed in 2020 [24], the C++ reference model was implemented into a UVM 

TB, where reference model implementation to the testbench and data streaming to the reference 

model were performed by using packages that included structure and functio n declarations in 
the SystemVerilog code. The structures contained fixed-size arrays where configurations and 

I/Q data were assigned. The function calls between DPI wrappers were manually implemented. 

[24, p.30–32] In both the 2020 study and this one, the C++ reference model was used but 
implemented differently. 

The thesis completed in 2020 implemented the HLS C++ model directly to the UVM TB, which 

was wrapped between the SystemVerilog side and the C++ side wrappers. Between those 
wrappers, DPI was manually implemented in order to allow function calls between 

SystemVerilog and the foreign language C++. However, this thesis wrapped the C++ reference 

model inside the Predictor UVM component which allowed the use of TLM connectivity. The 
implementation of the Predictor is easier to do with TLM ports than connecting it by function 

calls, as its connections on the UVM side work like any other UVM component. Also, the Direct 

Programming Interface was implemented manually in the year 2020 thesis, but in this thesis, it 
was done automatically by the UVMF generator. 
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4.3.1 Predictor Generation 

In this thesis, only the Predictor part was generated with the UVM framework, which takes 
YAML files as an input. YAML is a readable data serialization language that is usually used in 

cases where data needs to be transmitted. [8] Figure 13 shows this generation flow. It also shows 

which tool is used in which part of the flow. 

 
Figure 13. Predictor generation flow. 

 

YAML files and TLM wrapper files are generated using Catapult. After YAML and wrapper 
files are generated, paths to C++ design codes and TLM ports are defined to the YAML file. 

Shell script generates the Predictor that has a C++ reference model wrapped inside the 

component. The C++ reference model works as an input for Catapult, and the modified YAML 
and wrapper files are inputs for the UVMF generator. The generated Predictor’s packages and 

files are compiled with a separate Makefile, which is included inside the main Makefile. This 

makes it so that both the whole UVM TB and the Predictor are compiled with the same 
compilation. The Predictor uses generated CCS and Predictor environment packages to compile 

a generated Predictor at the same time with the UVM testbench as these packages are imported 

to the UVM test and environment packages. The CCS package imports all used packages and 
files that contain information about various ccs datatype interfaces. Predictor environment 

packages contain source files for Predictor configuration and structure. 
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4.3.2 Verifying Functionality of the Predictor 

The assumption at the verification phase is that the C++ reference model which is wrapped 
inside the Predictor is working correctly because the C++ model has already been verified by 

the HLS flow in the C testbench. The UVMF-generated Predictor functionality was verified 

with DUT during the simulation process. First, the used C++ design files needed to be the same 
version as the verified design. This was to make sure that the Predictor worked, and if problems 

were to occur, they would not happen because of incompatibility problems between the design 

and the C++ design files. Secondly, the Predictor Makefile was integrated into the main 
Makefile and compiled with DUT. After the Reference model was fully integrated into the 

UVM testbench, the model’s endpoint was in the Scoreboard component where the UVM 

comparator was instantiated.  
The comparator was class uvm_in_order_comparator which organized incoming data from the 

DUT and Predictor into lines, and when there was data on both lines, it compared the data from 

the DUT and Predictor. The Comparator contained a counter that that gained in value each time 
when a new output sample came to the comparator. If DUT output samples did not match the 

output samples coming from the Predictor, the counter would issue a notification to alert to the 

disproportion of the samples. Finally, DUT and Predictor output samples are compared to each 
other, and if matching, it then verified that the Predictor was working. 

 
4.3.3 Simulation of the Reference Model 

The reference model was based on a frame-based design, which takes one set of configura t ion 

data and the right amount of I/Q data. The Predictor was created at build_phase and connected 
at connect_phase to the AXI4-Stream VIP, transformers, and Scoreboard. Catapult uses Kahn’s 

Process Networks for computation modeling. With Kahn’s Process Networks, it is possible to 

model parallel processes with sequential language (C++). [25, p.1] 
Data feeding to Predictor is done in parallel by streaming the same I/Q data and control data 

that is going to DUT through TLM ports. From the Predictor side, accepting data into the C++ 

reference model is done with available checks. Available checks block the Predictor from 
reading the empty channel and checking that all inputs are available. Figure 14 presents an 

example of available checks inside C++ design files. I/O configuration and stimulus data signa ls 

to the design can be seen. Available checks check that the correct amount of configuration data 
exists in the channel, after which the design runs stimulus data available checks before the 

design continues processing. Available() is a method of the ac_channel library. Checks 

calculate values for the right amount of control and I/Q data, and when those values are true, 
the Predictor takes data through a block. Each subblock of HLS_block needed its own availab le 

check. Using the available method was discussed with Siemens EDA. 
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Figure 14. Example of available() checks inside the design C++ files. 

 
The stimulus was generated by using either Matlab-generated stimulus files or by generating 

data with constrained random (CR) stimulus. The UVM testbench for the bigger DMRS design 

used both of these methods, while Submodule0 used only Matlab stimulus files. The Predictor 
was concealed with wrappers that contained the UVMC library, which was implemented as a 

SystemVerilog package and a SystemC namespace. This enabled sending and receiving TLM 

data packets from the SystemVerilog-SystemC interface. Configurations and data exited from 
the Predictor’s output side analysis_ports, which are connected to transformers at the 

connect_phase of the UVM Environment class. Data and configurations were sent to 

Scoreboard, where they were compared with the DUT’s output. 
 

4.4 Coverage Metrics used in this Thesis 

In this thesis, Measured Coverage metrics varied and metrics were chosen with mutual 

understanding with Nokia and Siemens EDA. The functional coverage model was made for the 

Submodule0 testbench and measured with cover groups. The used coverage metrics for 
Submodule0 testbench were: Branch, Statement, FEC Expression and Condition, and cover 

groups. The DMRS testbench measured the Branch, Statement, FEC Expression and Condition, 

FSM, and Toggle coverage metrics. DMRS added the FSM and toggle coverage metrics, and 
no functional coverage model was taken into coverage closure flow for DMRS because such a 

model was not implemented. 

 
4.5 Tools and Technologies 

Multiple tools and technologies were used in this thesis, and they are categorized here. 
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4.5.1 Questa SIM 

Questa SIM is a simulation tool from Siemens EDA for Verilog, VHDL, SystemVerilog, 
SystemC, and mixed-language designs. It offers automatic design optimizations, design file 

compiling, simulation loading and running, and debugging environment tools for tracking 

problems such as waveform viewing, stimulus generation with Waveform editor, and design 
connectivity testing. [15, p.21–25] In this thesis, Questa SIM was used for simulation run and 

debugging purposes with Waveform editor. Other features were not tried during thesis work. 

 
4.5.2 Questa CoverCheck 

Questa CoverCheck is a formal verification analysis tool from Siemens EDA for faster 
automatic coverage closure. CoverCheck examines the coverage database and items in an RTL 

design, analyzing reachability and unreachability through Post-simulation or Pre-simula t ion 

Analysis. The tool can be run in Graphical User Interface (GUI) mode or with Tcl commands. 
During Post-simulation Analysis, Questa CoverCheck receives coverage results from Questa 

SIM. This makes the analysis process faster when the CoverCheck tool does not have to process 

data that is already covered. CoverCheck analyzes all coverage items to define which ones are 
unreachable. Unreachable code is part of the code that cannot be covered or reached during 

simulation. [16, p.11–12] 

 

 
Figure 15. Post- and Pre-simulation Analysis Flows. 

 

Figure 15 depicts the Post- and Pre-simulation flows during a Questa CoverCheck run. In Post-
simulation flow, the Questa database is loaded by the Questa SIM and simulated. CoverCheck 

also runs the analyzing tool and automatically creates an exclusion file.  

After Post-simulation Analysis, CoverCheck automatically creates Post-simulation phase 
reports, and exclusions generated by CoverCheck are applied to UCDB and unreachable code 

is now excluded from coverage analysis. In the Pre-simulation Analysis flow, only formal 

verification analysis for the whole design coverage items with CoverCheck is included [16, 
p.12–13] In this thesis, the Post-simulation Analysis flow was used to check unreachable code 
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from the Questa database. Questa CoverCheck commands were run by a separate Makefile 

Makefile_CoverCheck.mk which was included to base Makefile. To start the CoverCheck tool 

to check unreachables, the following Unix command was run: 
 

o make cv DUT=<DESIGN> UCDB=<database> -f Makefile_CoverCheck.mk 

 
In the Unix command, the verified DUT and the used coverage database needed to be defined. 

 
4.5.3 Catapult 

Siemens EDA’s Catapult is an HLS and verification tool for automated ASIC and FPGA RTL 

implementation. It is compatible with C, C++, and SystemC design specifications as an input 
language to create VHDL or Verilog RTL. Catapult HLS supports multi-block synthesis with 

a Bottom-up or Top-down synthesis strategy. Both Bottom-up and Top-down are synthes ized 

from source code. In the Bottom-up strategy, Catapult uses presynthesized units to map blocks 
of the design one block at a time, and after that a separate top-level build is executed. In the 

Top-down method, the whole design is built with one synthesize run. 

Synthesized RTL is already set for simulation running and gate-level synthesis. Catapult also 
offers RTL power optimizations for lower power usage and tools for resource allocation 

handling, such as loop unrolling, merging, and pipelining. Catapult can be used with various 

procedures: in GUI mode for graphical experience, with the command line using scripts, and 
using source code as input for the tool. [17, p.24–25] 

 

 
Figure 16. Shell script for synthesizing design and generating YAM and wrapper files 

 

This thesis used Catapult HLS-generated RTL as a DUT.  Catapult was also used to generate 

YAML and wrapper files from C++ design files. A flow where Catapult was used can be seen 
in figure 13. Figure 16 shows the shell script which was used to synthesize a design with the 

Bottom-up method to generate YAML and wrapper files. 

 
4.5.4 Design Analyzer 

Design Analyzer is part of the Catapult tool. Catapult Design Analyzer makes it easier to 
understand what is happening during the HLS process at different stages. With a ready Catapult-

generated design project, Design Analyzer can be used to look at schematics and preview 

generated RTL code. It lets users trace RTL code lines back to the C++ level. This can make 
debugging possible because schematic locations can be pinpointed from generated RTL. [17, 

p.1173] This was attempted when trying to identify HLS coverage gaps. However, this was 
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found not to be helpful during the thesis work because no coverage gaps were able to be 

identified with it. Design Analyzer continues to evolve, which will make it an even better tool 

in the future. 
 

4.5.5 Matlab 

Matlab is a matrix-based language platform for programming and computing. It manages to 

verify big wireless communication systems, analyze big designs, automate test processing, 

machine and deep learning, and signal processing. Matlab supports several programming 
languages such as Python, C/C++, Fortran, Java, and many Component Object Model (COM) 

components. [18, 19, p.10] In this thesis, Matlab was used for generating test vectors for the 

Submodule0 block and the DMRS subsystem. Test vectors are different test scenarios that 
contain various values of system parameters. There are some restrictions on what kind of test 

vectors and on what signal levels they can be generated. The maximum and minimum signal 

levels might not be possible to achieve in real life, but to close the coverage gaps, it might be 
necessary to produce a test artificially in order to find out whether the design block can handle 

such a test. 

 
4.5.6 Visualizer Debug Environment 

The Visualizer Debug Environment is Siemens EDA’s back-end graphical user interface 
simulator for the Questa SIM Simulator tool and Veloce emulator. It is a tool for viewing, 

analyzing, and debugging designs. The Visualizer contains several supported debugging 

features, and it has two working modes. It supports features such as live tracking of currently 
executing code and hierarchical UVM debugging, including sequences, threads, locals, and 

configurations. It also has waveform debugging of design signals, class objects, and 

transactions like the Questa SIM tool. Users can define the Visualizer’s working mode from the 
following selections: Post-simulation mode or Live-simulation mode. In Post-simulation mode, 

the tool loads and views results from a previous simulation. In Live-simulation mode, the 

Visualizer uses the current (live) simulation. [28, p.21–22] 
The Visualizer has an interesting feature that captures C++ side signal level activity to the same 

wave window as RTL level waves. Adding this feature would have required further tool 

integration on the Makefile side and was not tried in this thesis, but it would have made 
debugging Available() checks a faster process than adding prints for I/Q and control data at the 

C++ level. 

 
 

4.5.7 Regression Management System 

In this thesis, the tool’s name is changed to Regression Management System (RMS) because it 

is a tool developed in-house at Nokia. RMS makes it possible to run basic shell commands in a 

flexible way. It is Nokia’s inner regression management tool, and it is based on Siemens’ VRM 
system. Table 2 shows the files belonging to the RMS system and their descriptions. 
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Table 2. Files that belong to the RMS system and their descriptions 

File Description 

RMS Python-based front-end to use the RMS 

system. Imports rms_base.py 

regression.xlsx Executable command definitions for 

regressions 

rmsbase.py Python-based regression system 

implementation 

rms.rmdb Contains rules for Siemens VRM to execute 

commands in parallel in GRID 

xlsx2csv.py Converts the XLSX file to CSV format for 

parsing 

 

The RMS is a great tool for running multiple test vectors in parallel, and it is used in this thesis. 

It contains a regression.xlsx file that has multiple regression commands. In regression.xlsx it is 
possible to declare the used simulation tool, memory size, seed number, commands, and 

different execution phases. Each command belongs to a phase, and the phases are executed 

sequentially. After regressions are run, the tool indicates whether the regression passed or failed 
and generates reports from simulation results. 

 
4.6 Problems with Generated RTL 

HLS RTL generation can save time from manual RTL writing and speed up verification, but 

some problems that do not occur with manual RTL may arise. It often happens that machine -
generated RTL is not easily readable, even though the RTL structure is reiterative and 

understandable, which makes understanding coverage gaps easier. This is why it may be 

difficult to start looking for coverage gaps in the code by reading the RTL. When analyzing 
HLS RTL, the best way to start is to first aim for high coverage at the C++ level with a high 

level of abstraction. After that goal is achieved, it is recommended to move to the RTL level, 

where parts that are not visible in the untimed description are covered. 
The HLS tool might generate some unused code which causes coverage gaps. Unused code is 

a part of code that is never used. If the verification engineer needs to know how to toggle some 

bits or how some finite state machine state shift is happening, the information might be difficult 
to come by because even the designer of the block might not be able to tell from reading the 

generated RTL. Even though coverage closure for HLS-generated RTL is harder at the RTL 

level, it does not mean that it should not be done. Developing tools to help analyze generated 
code and obtaining knowledge on how to do it may bring about some productive results.  

The year 2013 study showed that HLS-generated RTL used a similar number of resources as 

manual RTL, but generated RTL cut the design’s cycle, decreased latency by a factor of 30x, 
and offered similar results when comparing to manually written RTL. [21, p.1,4] The advantage 

with generated RTL is that it will most likely meet the requirements in area or time execution, 

but manual RTL might not, which is why it can consume more time to manually write working 
RTL. 
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5 COVERAGE CLOSURE AND RESULTS 

 
5.1 RTL Coverage Closure Flow 

Figure 17 shows the flow used for RTL coverage closure. The whole coverage closure flow 

starts from a higher level of abstraction by covering code at the C++ level. The coverage closure 

process was done by a colleague, covering the C++ reference model using Catapult Coverage 
(CCOV) flow. A colleague found and ran a set of tests that offered a good coverage percentage 

in statement, branch, and FEC at the C++ level. Knowing which tests delivered good coverage 

at the C++ level created a good starting point for testing at the RTL level. The RTL level focus 
was more geared toward covering the remaining HLS RTL gaps, such as FIFOs and stalls. 

 

 
Figure 17. RTL coverage closure flow. 

 
RTL was fed with stimulus, and coverage databases were run iteratively with the CoverCheck 

tool. If the coverage goal was not achieved, more tests were added depending on the coverage 

gaps. A key part of this flow was to cooperate closely with the designers. If coverage gaps could 
not be identified, the designer of the block could always be consulted on how to identify the 

gaps and the potential methods of covering them. 
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5.2 Testing Strategy 

The testing strategies presented here were used to achieve as close as possible to 100% code 
coverage. 

 
5.2.1 Submodule0 Testing Strategy 

Matlab was used to create a set of test vectors for Submodule0 to obtain results of first baseline 

coverage. These vectors contain tests, and one vector can have multiple sets of tests that 
increase code coverage. Information about the vectors that needed to be generated was received 

from the designer of Submodule0. There were about 600 vectors that were run with the 

regression manager tool (RMS) and generated with Matlab. These vectors contained different 
system parameters in order to obtain good coverage over parameter ranges. The vectors had 

control and IQ data files that were used as input for feeding the DUT. Some of the author’s own 

stall tests were also added to verify the block. The idea of stall tests is to feed control data or 
IQ data to the channel so that it fills Submodule0’s inner control and processing blocks.  

Stall conditions happen when the block’s output rdy and vld signals are forced down and input 

data feeding continues. After the stall has happened, the block does not accept any new control 
or stimulus data. Subsequently, those outputs are released so the block can recover and continue 

processing. If a block does not recover, it is not working correctly. The Submodule0 testbench 

used only file I/O-based test sequences. 
After getting baseline coverage for Submodule0, Questa Covercheck was used to check 

unreachables and states that were impossible to occur in the RTL simulation and exclude them 

from the Questa coverage database. This step was repeated as many times as new unreachable 
coverage holes were found. When new unreachable holes were no longer found, the database 

was opened in Questa GUI to check for coverage gaps, and the block designer was consulted 

in order to remove some unnecessary code.  
The most effective tests were found with the test ranking feature in Questa. The test ranking 

feature analyzes which tests and vectors improve code coverage and which do not. There were 

only three tests that improved RTL code coverage, so simulations were run again with tests that 
increased coverage and other test vectors were not used. At this point, code coverage was almost 

the desired 100%. To reach 100% coverage saturation, conditions had to be exercised. This was 

achieved by modifying the stimulus data by manually altering in-phase/quadrature (I/Q) data 
by changing I and Q pairs to theoretical maximum and minimum. 

 
5.2.2 DMRS Testing Strategy 

The testing strategy and coverage closure flow for the DMRS subsystem was similar to the 

Submodule0, but with some differences. There were two regression runs executed. One 
regression run was performed with Matlab-generated stimulus as the DUT’s input, which 

included stall tests for the DMRS’s HLS subblock. The test vectors contained various values of 

system parameters. Another regression run was performed with added Constrained Random 
(CR) stimulus for control data and I/Q. These two regression coverage databases were merged 

to cover some test gaps that were not tested during constrained random regression or when 

using Matlab files. CR made it possible to do a larger variety of tests on different signal levels.  
Unreachable states and unused code were analyzed with Questa Covercheck iteratively, and 

project exclusion files were examined with the designer and excluded from the coverage results. 

Also, few coverage gaps were closed by looking into the C++ coverage results. When the best 
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coverage results with the CoverCheck tool were achieved, most of the remaining gaps occurred 

because of stall testing. Some of the stall conditions were impossible to generate due to how 

the DMRS block’s subblock’s datapath was implemented together with the manual RTL’s, even 
though this was not identified as unreachable by the CoverCheck tool. The DMRS’s HLS block 

has fifteen subblocks and to verify all stall conditions, these subblocks would have to have been 

fed full of IQ data and configuration data to get them to stall. The problem with this was how 
the previous Manual_RTL1 worked with the HLS block. It was possible to close some gaps by 

doing specific testing that was artificially aimed directly at the gap. 

 
5.3 Coverage Results 

These results were achieved with the testing strategies presented in previous chapters. Table 3 
shows the coverage results of Submodule0. Table 4 presents coverage results when only the 

baseline vectors from a designer are run. In table 5, the final results of the DMRS are listed 

when stall tests and exclusions from the coverage database are included. The values are 
presented as percentages. In table 5, a positive value under the percentage signifies an 

improvement in percentage. For example, (+5.07) indicates that the coverage percentage 

improved by that much. In the coverage report, N/A means Not Available, which happened to 
Manual_RTL1 in FEC Expression coverage. 

 
Table 3. Coverage results of Submodule0 

Block\Coverage 

Metric 

Branch 

%  

Statement 

%  

FEC 

Expression 

%  

FEC 

Condition 

Covergroups  

%  

Submodule0 (DUT) 100 100 100 100 100 

 
Table 4. Coverage results of DMRS and its subblocks before stall tests and exclusions 

 Block\Coverage 

Metric 

Branch 

%  

Statement 

%  

FEC 

Expression 

%  

FEC 

Condition 

%  

FSM 

%  

Toggle 

%  

 HLS_block 78.84 94.92 79.31 36.06 79.75 89.20 

DMRS 

(DUT) 

Manual_RTL1 89.81 89.00 N/A 54.83 70.95 80.37 

 Manual_RTL2 93.03 97.36 100 66.66 78.88 89.81 

 
Table 5. Coverage results of DMRS and its subblocks after all tests and exclusions 

 Block/Coverage 

metric 

Branch 

%  

Statement 

%  

FEC 

Expression 

%  

FEC 

Condition 

%  

FSM 

%  

Toggle 

%  

 HLS_block 99.91 

(+21.07) 

99.99 

(+5.07) 

93.74 

(+14.43) 

93.15 

(+57.09) 

100 

(+20.25) 

93.96 

(+4.76) 

DMRS 

(DUT) 

Manual_RTL1 100 

(+10.19) 

100 

(+11.00) 

N/A 100 

(+45.17) 

100 

(+29.05) 

98.70 

(+18.33) 

 Manual_RTL2 99.06 

(+6.03) 

100 

(+2.64) 

100 

(+0.00) 

100 

(+33.34) 

100 

(+21.12) 

97.17 

(+7.36) 
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Submodule0 was a small subblock, so it did not require many tests to achieve the 100% 

coverage target, and thus no constrained random stimulus was added into the testbench. The 

HLS part of DMRS was not able to achieve a 100% coverage because of the limitations of how 
Manual_RTL1 was designed and integrated with the HLS part. This caused stall tests to not 

work properly. Stall tests were directed only at the HLS block. Manual_RTL1 fed 

configurations and I/Q to the HLS block, and stall tests began to delay the HLS block’s outputs. 
The problem was that when the first subblocks inside the HLS began to stall and Manual_RTL1 

noticed that it is not possible to feed data through the outputs, it stopped feeding data. This 

made it impossible to keep feeding configurations and data to the HLS block because the 
previous Manual_RTL1 block did not allow data feeding if, at the same time, that data could 

not also be fed out. This problem did not occur with Submodule0 because data was fed directly 

to the HLS block and Submodule0 was very small. In DMRS some interface stalls froze data 
feeding, and as a result, it was not possible to feed more data. DMRS was a more complex 

design than Submodule0. 

Coverage results were good. The 100% coverage goal was achieved for Submodule0, and 
overall coverage results were also acceptable for the DMRS block, even though the 100% 

coverage goal was not reached. It would have been possible to achieve 100% code coverage for 

the DMRS’s HLS part. To get the HLS part of DUT fully verified, the HLS block would have 
to be verified separately by generating stimulus directly to it. Coverage closure at the RTL level 

is also possible even though it is more difficult. However, fortunately there were many tools 

and methods to help in that process. 
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6 DISCUSSION 

This thesis aimed to generate and implement a UVM Framework-based Predictor that wraps 

the C++ reference model in the UVM testbench with HLS-generated RTL and to do coverage 

closure to the DUT. In this thesis, a newly adopted verification method was taken into account 
during the verification process. As a result, the UVM Framework-generated Predictor with the 

wrapped C++ reference model was successfully integrated for a smaller IP as well as a larger 

subsystem containing multiple of such IPs. 
Using a UVM Predictor generated by UVMF as a golden reference instead of Matlab-generated 

files showed promising results. A generated UVM Predictor takes less disc space than vector 

files and it is faster to generate a working model than vectors that are generated with Matlab. 
Reference models are usually implemented with foreign programming languages such as C, 

C++, or Python. One benefit of the RTL coverage closure flow used in this thesis is that it 

enables the possibility of fast coverage results, and it also works well with HLS-generated RTL, 
where coverage gaps might not be so easily recognized. 

Using Nokia’s in-house verification platform offered a good starting point for UVM testbench 

development for Submodule0. This provided the skeleton for building a testbench. The only 
downside to the platform was that a lot of files and code were received that were not needed by 

the smaller IP. The platform is definitely more suitable for bigger IPs. Also, the UVM agent 

that was used was an AXI4-Stream type VIP, which would have been more suitable for IPs that 
use the full AXI4-Stream bus. The agent had to be modified to get configuration and stimulus 

data through. Looking back, it might have been easier and perhaps faster to make a simpler 

agent from scratch. 
The goals laid out for this thesis were achieved, and a functional UVMF Predictor was 

generated with a wrapped C++ reference model and integrated into the testbench. It is a feasible 

option to make the verification process smoother. 
UVM Framework is used as a generator for UVM code. Because it can generate large test 

benches very quickly, it is also a good tool for demonstrating things. In this thesis work, UVMF 

was used to generate the UVM predictor component which acts as the reference model for the 
verified design. Reusing design files for generating a golden reference model is time-saving 

and practical as it most likely works for verifying the design due to a reference model already 

having been verified at a higher level of abstraction. However, it has to be ascertained that 
design files are up to date with the RTL design that must be verified. In addition, the Predictor 

responds better to different verification methods as well as different stimulus generation 

approaches, such as Constrained Random (CR) stimulus generation. CR allows doing testing 
on a bigger scale and obtaining similar or better coverage results faster than with Matlab files, 

which was also demonstrated in the 2020 thesis [24]. Also, simulation times will decrease 

compared to running a simulation with Matlab-generated files. 
The ideal method would be to start the analysis of the design at the C++ level with the Catapult 

Coverage tool, which brings the RTL coverage metrics to the C++ level, and then take those 

coverage results and move to the RTL level to analyze the remaining gaps. This has usually 
been the case due to generated code not being easily human-readable, but in which structures 

are repetitive which then makes gaps more understandable. This made it possible to identify all 

stall and FIFO fill level gaps. A colleague ran CCOV, identified the C++ reference model’s 
gaps, and documented them. This made it possible to identify some of the gaps in the HLS code 

as gaps that are happening at a higher level of abstraction at the C++ level as ones that are also 

happening at the HLS RTL level. 
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There are different varieties of Predictor components. They can be made manually or 

automatically and have different foreign languages at their core. It is time-consuming to create 

reference models manually, and with deadlines closing in, every second counts. In this work, 
the reference model was developed by engineers, but the UVM Predictor was generated by 

UVMF. 

When moving to bigger and more complex IPs writing Predictor, its interfaces and connectivity 
can be a difficult task to do manually. That is why UVMF is a great tool to generate a Predictor 

as it generates the whole UVM Predictor with a wrapped C++ reference model and 

automatically uses DPI between the foreign language and SystemVerilog. It also integrates a 
bunch of useful tools and technologies such as Visualizer.  

Machine-generated RTL and unfamiliarity with it caused some difficulties during the coverage 

closure process, but most of the problems were able to be solved by either asking a designer or 
by looking at the VCS tool’s exclusion files from the project. Sometimes even the designer of 

the block may not know what is causing the gap or how some generated FSM states happen in 

RTL code. There might be also some code that is not in use but is generated in RTL. These 
lines of code should be removed from the final generated RTL because they cause unnecessary 

coverage gaps. The UVM Predictor’s generation and integration into UVM Testbench for a 

smaller IP took longer than for a larger subsystem’s testbench. The smaller IP’s UVM testbench 
was done from scratch, and Predictor generation and integration flow were also learned. 

The process to integrate Predictor into testbench was easy to do because it obeyed the basic 

functionality of the UVM component connectivity because data could be transferred through 
the Predictor via TLM analysis ports. The generation process and integration did take some 

time to learn and did not go as smoothly for the Subblock0 testbench as the DMRS testbench.  

For the purposes of future projects, it would be interesting to find out what kind of results could 
be achieved if the whole UVM testbench was generated with UVMF because it makes it 

possible to generate even large-scale IPs in just a few hours. Additionally, it would also be 

interesting to determine the differences between the fully generated UVM TB and the manua lly 
written UVM TB. Some parts of the UVMF Predictor generation flow could be affected by 

human error and cause the Predictor to not work properly. For example, this kind of error could 

happen when writing on a YAML file. The human errors are mostly misspellings or typos. 
These could be solved by automating the generation process even further, even though some 

level of knowledge of the design should be obtained. 

Awareness of the design in design teams should be increased, so that design engineers could 
plan ahead or determine which interfaces can or cannot stall due to design implementations and 

verification engineers would be made aware if a gap is excludable. The available checks that 

were made so data could be fed through Predictor could also be made by a designer because a 
designer would know best when a block should begin taking data and configuration. 
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7 SUMMARY 

Designs will become both larger and more complex in the future, which is why it is good to 

develop different verification methods and tools to accelerate the verification process. The goal 

of this thesis was to generate a working UVMF-generated UVM Predictor component which 
wrapped the C++ reference model inside the predictor. The predictor is then integrated into the 

UVM testbench. Integration is performed first for an HLS Submodule0 as DUT and then for a 

bigger subsystem DMRS, which had two manually coded RTL subblocks with one HLS 
subblock. After integration coverage, closure is done for DUT. The achieved levels of code 

coverage for HLS RTL were satisfactory in this thesis, and it was found that design style can 

impact how a design works when testing certain conditions, such as stall conditions. 
First, this thesis presented the general verification-based UVM theory and the UVM 

components that were used. Chapter three presented code coverage metrics. In chapter four 

DUTs were introduced with testbench connections with the Predictor along with generation, 
simulation, and testing of the Predictor. Used coverage metrics, tools, and technologies were 

also presented. Chapter five represented RTL coverage closure flow with results gained from 

coverage closure. After that results of the thesis are discussed. 
The generated Predictor offered techniques to be used with the verification flow, such as 

constrained random stimulus. The Predictor worked well with a constrained random stimulus, 

which allowed similar or better coverage results with a shorter simulation time to be obtained. 
Achieved coverage results were good. The smaller IP, Submodule0, was able to be fully verified 

by code coverage, up to 100%. DMRS achieved a good overall coverage result, even though 

some subblocks of the DMRS were not fully verified. The HLS block of DMRS could have 
been verified to full 100% if it could have been verified separately without the manual RTLs 

connected to it. Some gaps were left due to design limitations or simply because there was no 

information available on whether the gap should be happening or not. This is true at least of the 
toggle coverage. HLS designers should consider design testability and how design acts during 

testing. From a coverage point of view, using a Predictor is a way of verifying design and not 

increasing coverage. 
In closing, when verifying a DUT, the golden reference that is used has several different 

variations. Some may take more time to integrate or offer more functions with other techniques. 

Using a generated Predictor instead of Matlab reference files showed great promise to be used 
in future projects. 
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