
Prevention vs Detection in Online Game Cheating

University of Oulu

Information Processing Science
Bachelor’s Thesis

Waranyoo Ronkainen
04.11.2021

2

Abstract

Cheating is a major problem in online games, but solving this would require either a

complicated architecture design, costly third-party anti-cheat, or both. This paper aims to
explore the differences between preventive and detective solutions against online game
cheating. Specifically, it explores solutions against software-based cheatings, what kind

of cheats there are, and what proposed and implemented solutions there are. This paper
was conducted using literature reviews as methodology, using relevant papers from

databases such as ResearchGate, ACM, and IEEE.

In this paper, it was concluded that a good prevention strategy during the game
development phase is adequate to mitigate and prevent cheating but will require

appropriate anti-cheat software to maintain fairness during the lifetime of the game. The
importance of an online game’s network architecture choice in preventing cheating

became apparent within this paper after comparing the benefits of each type side-by-side.
Results showed that peer-to-peer architecture not having a trusted centralized authority
means that the game needs to rely more on an anti-cheat software to prevent and detect

cheating. This paper could not conclude what an appropriate anti-cheat software is
because the topic is outside of the scope of this paper and lacks public data. Still, it does

raise the question of whether a more aggressive anti-cheat strategy is suitable for a game
or not.

3

Contents

ABSTRACT .. 2

CONTENTS ... 3

1. INTRODUCTION ... 4

2. MODERN ONLINE GAMES.. 6

2.1 CLIENT/SERVER .. 6
2.2 PEER-TO-PEER.. 7
2.3 HYBRID .. 8

3. CHEATS .. 9

3.1 SOFTWARE-BASED CHEATS.. 9
3.2 NON-SOFTWARE CHEATS .. 10

4. PREVENTION ... 12

4.1 SOLUTIONS .. 12
4.1.1 Server-side ... 12
4.1.2 Client-side .. 13

5. DETECTION .. 15

5.1 SOLUTIONS .. 15
5.1.1 Detecting cheat software ... 15
5.1.2 Detecting cheaters by statistic .. 16

6. DISCUSSION .. 17

7. CONCLUSION .. 19

REFERENCES .. 20

4

1. Introduction

What is the difference between cheating prevention and detection in any online game,

which solves the cheating problem more effectively, and which one provides a more cost-
effective solution? This paper will aim to answer the questions mentioned above by
conducting a literature review on software-based cheats and solutions.

Online games have become one of the largest entertainment types in the world, and it has
changed how people enjoy entertainment, and for some, it has changed how they live their

life. One of those life-changing effects is esports. Esports, short for electronic sports, are
a type of sport played on a video game platform, and like with any kind of sport, there is
a form of competition. Like all sports that have passionate fans worldwide, these

competitions can become quite fierce. Most of the time, esports takes the form of an
organized, multiplayer, tournament-style video game competition. The prize money for

the winner or winners can be as high as multiple million USD. The successful players in
these competitions can earn their living by playing games and are thus called professiona l
gamers. In some countries, these professional gamers are treated similarly to well-known

celebrities from other entertainment industries or sports. Non-professional players hope
to be recognized by a professional gaming team and live out their dream life. This

recognition is one of the reasons why the competition among non-professional players
can also be quite intense due to the aspiration of becoming a professional gamer. The
aspirations and seriousness in these competitions create the need to ensure that the game

is played fairly since some players might be motivated to cheat to win. With so many
players competing, it is quite difficult to prevent and detect every player using cheats.

Cheating has always been an issue in online games, but it has become a major problem
in recent years. It has become so much of a problem that many games have opted to use
third-party anti-cheat software or solutions. (Cano, 2016; EAC, 2018; Warren, 2020)

These anti-cheat software are intruding on players’ privacy by scanning and analyzing
the processes currently running on the player’s computer. However, some have gone

beyond this by having functions to send files back to the anti-cheat’s server and remotely
run shellcodes. (Battleye, 2016; The & Khanh, 2010.) In online gaming, the factors of
large participation groups and high monetary reward entices cheating. Developers of

online game cheats are benefiting from this economic opportunity. The practice of selling
online game cheats may be an unethical way of earning money; it has nonetheless become

a possible way to earn a living. (Maiberg, 2014.) Cheating has troubled many games and
game companies because it ruins the experience of playing games and destroys the
fairness of competition. Cheating makes some players leave the game, and as a result, the

gaming company suffers financial loss, which eventually leads to the game’s decline.
(Chalk, 2021; Warren, 2020.) Because of this, it is essential to prevent cheating and detect

cheats and/or cheaters.

Preventing cheating before it occurs would be the optimal solution, but realistically it is
impossible to prevent every cheat and their usage before they happen. Thus, cheat

detection is needed to prevent further damage after the cheating has already occurred. The
development of anti-cheat software has come far, but so have cheating techniques,

especially in modern online games (Cano, 2016). This results from modern online games
being a software distributed to players who then interact with each other over the internet.
With the increasing complexity within a game’s software and the interaction between its

players, online games become more vulnerable to many different types of cheats (Mönch
et al., 2006). Most types of cheats involve reading or tampering with the game’s code,

5

memory, and configuration data separately or any combination of the three on the
cheater’s side of the game client (Yan & Randell, 2005).

6

2. Modern online games

There are many types of modern online games, but the most popular types can be

categorized as Massively Multiplayer Online Game (MMOG), Multiplayer Online Battle
Arena (MOBA), First-person Shooter (FPS), and Real-time Strategy (RTS). All the types
mentioned above of online games share the same basic qualities that make them

successful: low communication delay, scalable architecture, and cheat and/or cheater
prevention and detection. (Baughman et al., 2007; Webb & Soh, 2007.) While they all

share the same qualities to be successful, the requirements to meet those qualities are
different depending on the type of the game. For example, MMOG is a type of game
where hundreds or even thousands of players share the same persistent world instances,

hence the need for robust networking and scalable architecture (Farlow & Trahan, 2014;
Webb & Soh, 2007). Whereas MOBA is a type of fast-paced game that has 2 – 10 players

share the same world instances, which resets every time the match ends, but there is a
massive amount of these instances, hence the need for low communication delay (Cassar
et al., 2014). However, to meet those requirements depends a lot on the game’s

architecture, therefore making the architecture of the game the single most important
aspect of a successful game. Client/server (C/S) architecture and Peer-to-peer (P2P)

architecture are two common architectures used in online games. (Webb & Soh, 2007.)

2.1 Client/server

C/S architecture has been popular among online games, especially in MMOGs. The

advantages of this architecture lie in the control over the game and in security. C/S
architecture has the ability for important things to be run and calculated from a trusted,

centralized server. These servers send enough information for the client to render and
update all performed actions, world instances, and the player’s character. A drawback in
C/S architecture is that it has poor scalability due to the performance and network

overhead increases in proportion to the number of concurrent players in the game. This
flaw becomes apparent in modern online games where the players might be

geographically far from each other. Therefore, a high network bandwidth and fast
networking speed from the server is required. In C/S architecture, the playing experience
is largely dependent on the server’s condition. If the server has high latency, is

overloaded, or suffers from a hardware or system failure, the players will not be having a
pleasant playing experience. Mirrored server environments aim to mitigate this problem,

but it does not change the core fact that scalability is poor. (Baughman et al., 2007; Farlow
& Trahan, 2014.)

Mirrored server architecture contains many identical copies of the game servers, and

players connect to one of them, ideally the one best suited for them. These mirrored
servers connect to each other via internal network to sync their data across the servers.

The latency problem is largely mitigated with the mirrored servers’ internal network
being a lot faster than the player’s network. This will mitigate the issue of players being
geographically far from each other while playing in the same game world instance. If

there are enough servers scattered around the world or enough servers concentrated at the
location with the heaviest network traffics, this will also mitigate server overload issues.

However, having an abundant number of servers does not fix the whole problem. Instead,
it creates an additional load known as server-to-server communication. Not only do
mirrored servers need to send updates about players and the game world to the players,

but it also needs to send the same updates to other servers to maintain consistency. Doing
so creates an additional load on the network, thus increasing the cost of

7

operating/maintaining the game. (Baughman et al., 2007; Farlow & Trahan, 2014; Webb
& Soh, 2007.) Compared to MMOG, there are no real needs to update changes about the
world with MOBA, FPS, and RTS games because the game world instances are not

persistent or shared with only a small number of players, making scalability issue smaller
for those types of games.

2.2 Peer-to-peer

P2P architecture is an architecture without a centralized server where players, i.e., peers,

are network nodes that directly send updates to each other. This is also sometimes called
serverless architecture. P2P architecture increases the scalability and performances

significantly because each connected peer increases the overall network bandwidth and
computational power. Communication delays depend on how the P2P architecture is
implemented; figures 1A and 1B illustrate this. In Figure 1A, each player is connected to

a maximum of two other players, forming a ring between all players. For this scenario,
the communication delay is determined by the player with the slowest connection speed.

In Figure 1B, every player is connected, thus, making the communication delay the
average of the connection speed of every player. (Cassar et al., 2014.) While the
previously mentioned P2P techniques solve the scalability issue, it introduces new

problems. One problem faced is the network strain on the player’s side when the
network’s performance is tied to either the weakest link or the computed average among

all peers. A new P2P technique is now being used to mitigate these new problems
introduced by the traditional P2P architecture. This technique is called supernode or
superpeer technique. (Schiele et al., 2007.)

Superpeer technique is where a game assigns a virtual “area of interest.” This area could
be a game area separated by a loading screen or the area around the specific player(s).

Inside the area of interest, peers would act according to the traditional P2P architecture
by sending updates to each other. Additionally, the game would then assign one player
inside the area to be a superpeer. This superpeer would be the only peer who sends updates

to the outside of the area of interest, thus creating a connection to all the other instances
of areas of interest. So, instead of all the peers connecting to each other, the superpeers
connect to one another and distribute the updates to the peers inside the area of interest.

This technique gives an advantage over the traditional P2P technique in performance
because the game can choose the player with the best connection speed to be a superpeer.

Figure 1A – Peers having maximum of 2 connections

to other peers forming chain of P2P network.
Figure 1B – Peers connect to all peers forming mesh

of P2P network.

8

(Cassar et al., 2014; Schiele et al., 2007.) However, this technique introduces a new
connectivity issue when the superpeer is suddenly lost or disconnected. This issue can be
mitigated with additional design to the architecture to account for the sudden drop of the

superpeer. (Schiele et al., 2007.)

All the benefits mentioned above do come with drawbacks because of how the sensitive

and critical information is stored in a player’s device, and all calculations are done locally.
It is quite easy to modify these values, and these modified values can then be sent to other
players as valid and truthful values. Since there is no centralized authority, the detection

is difficult because there is no way to determine which player data to trust (Prather et al.,
2017). Consistent algorithms can be implemented to prevent errors in the game and player

states, but this will at best mitigate the problem (Webb & Soh, 2007). This is especially
true in the case of when superpeer technique is being used because the superpeer will
essentially hold authority over other peers in the area of interest.

2.3 Hybrid

Hybrid architecture is a combination of both C/S and P2P architecture. This architecture

type aims to bring the security of C/S and the scalability and flexibility of P2P architecture
together. In practice, this means that some workload will be performed on peers, but most,
if not all, of the critical calculation and data will be performed on the server. (Baughman

et al., 2007.)

There are many ways to implement the hybrid architecture. One of those ways is to have

the server act as a peer with more authority over data’s validity and consistency, and all
of the peers will connect to each other and form a mesh. The server is there to verify the
received data and distribute it further. This implementation will lessen the server’s strain

compared to C/S architecture and will have improved control over the game compared to
P2P architecture. This implementation can be further improved using the

beforementioned superpeer technique used in P2P architecture. In this scenario, the server
will always act as the superpeer instead of having one of the peers take on the role. The
server’s strain will be further lessened, and the same security level will be kept. (Bethea

et al., 2011; Buyukkaya et al., 2009; Cassar et al., 2014.)

However, accomplishing the things mentioned above is a difficult thing to do. The

difficulty arises from how complex the data distribution among the peers is and the
complexity of how much is given to each peer without compromising the integr ity,
consistency, or security. (Cassar et al., 2014.)

9

3. Cheats

Cheating in modern online games can be largely categorized into two big categories:

software-based cheating and non-software-based cheating. In practice, software-based
cheats mean that cheaters have developed or obtained cheat software to be used on an
online game to gain an unfair advantage over normal players. This cheat software could

assist cheaters by showing any hidden information. The hidden information could be as
small as seeing another player hiding behind the nearby wall or as large as showing the

exact location of all the other players in the game world. For example, the cheater may
react to specific things more quickly, like dodging attacks or initiating a counterattack by
seeing the hidden information. (Cano, 2016; Yan & Randell, 2005; Web & Soh, 2007.)

Non-software-based cheating means gaining an advantage without relying on a software
or exploiting a game’s bugs, such as colluding and disconnecting before match round

ends, thus avoiding loss. (Yan & Randell, 2005.)

3.1 Software-based cheats

There are many types of software-based cheats, and there are many ways to categorize

them. Some ways to categorize these cheats are by their nature, such as automation,
visualization, modification, and exploitation; by their capabilities such as reading and

modifying a game’s data or memory; and by how they gain access to a game’s data
memory/functions, external memory reading, and internal code injection/hooking. (Cano,
2016; Yan & Randell, 2005.) While how cheat software gains access to the game’s

data/memory is out of the scope of this paper, we will explore cheat software’s nature and
capabilities because it will be important in the context of prevention and detection of

cheat software.

Automation cheats are those that automatically do something for the cheater. This type
of cheat could be something as simple as macros that repeatedly left-click a specific

position on the screen to activate an activity in the game while the cheater is not present
in front of the gaming device, gaining in-game items while not playing the game. It could

also be as complicated as mimicking the human’s mouse movement, such as non-linear
and non-smooth acceleration/speed of mouse movement to assist in aiming at the enemy
in FPS type of online games. In the context of cheating in online games, automation has

no obvious limitation of what can be achieved. For example, a complex automation
software suite (bot) can be developed to play the entire game for you from the beginning

until the end. (Cano, 2016; Yan & Randell, 2005.)

Visualization cheats reveal hidden information to the cheater. This hidden information
could be stealth enemies that could not be seen normally; details of the enemies such as

health, weapons, and/or ammunitions; and/or game world’s hidden information such as
next event’s details and enemies’ spawn timings. Visualization cheats have a strict

limitation of what it can achieve because what information the game client does not have
cannot be revealed. (Cano, 2016; Moffatt et al., 2011; The & Khanh, 2010; Yan &
Randell, 2005.)

Modification cheats modify how the game works. In some cases, this means modifying a
cheater’s game character to have better attributes or prevent a specific attribute from

falling below a specific level. These modifications could be freezing or giving infinite
health points, giving more movement speed than normally possible, preventing
ammunition from decreasing, etc. (Cano, 2016; The & Khanh, 2010; Yan & Randell,

2005.)

10

Exploitation cheats are a cheating activity that involves exploiting the flaws or bugs
within a game design to achieve an unfair advantage. This exploit can be software-
assisted, but it is not necessary. For example, there could be an exploit to duplicate a

game’s item. This exploit can be made more effective for a cheater by making a macro
that automatically duplicates the item as fast as possible. (Yan & Randell, 2005.)

Before any cheat software can do automation, modification, or visualization, it will need
to somehow access the game’s information. This is, in most cases, done with reading the
device’s memory section allocated for the game. By reading the game’s memory, a cheat

software could display any hidden information within the game’s code yet not visually
displayed. This results in visualization cheats. The cheating software could also read the

location of a game’s objects which can be used to automate things by simulating the
mouse movements and keyboard keypresses. This results in automation cheats. (Cano,
2016; The & Khanh, 2010; Yan & Randell, 2005.)

Reading a game’s memory might not be enough to achieve some of the things that
cheaters want to achieve, thus making memory modification the next step in software-

based cheats. Adding memory modification capability to a cheat software will not only
make modification cheats possible, but it will also make a greater level of automation
possible. This greater automation level comes from the ability to directly invoke the

game’s code to interact with the game’s objects, such as attacking or casting spells. (Cano,
2016; The & Khanh, 2010.)

3.2 Non-software cheats

Non-software cheats are the more “classical” way of cheating. Some examples of non-
software cheats include cheating by colluding, match-fixing, “boosting,” and

intentionally disconnecting during the game (Yan & Randell, 2005). While not as game-
breaking as software-based cheats, non-software cheats still negatively impact normal

players due to the unfairly gained advantage or status. (Blackburn et al., 2014.)

Collusions as a non-software cheat in any online game have been widely seen in recent
years. Collusions happen most often in online games that have a limited number of players

interacting with each other simultaneously, like in MOBA, FPS, or RTS. A common
collusion is when two or more players conspire to have a secret alliance until they are the

only ones left in Free-For-All (FFA) game mode. (Yan & Randell, 2005.)

Match-fixing is when two or more players/teams have decided beforehand which one of
them will win the match. The teams will proceed to play the match in a way that will

favor the player/team they chose to win without letting any spectators notice. Match-
fixing usually has monetary motives involved. For example, Team A decides to pay Team

B to make them intentionally lose the match, Team A, an underdog, and Team B, the
tournament’s favorite. Team A then proceeds to bet using third-party personnel that Team
A will win in the gambling platform. With large odds against Team A winning, the money

obtained by this match-fixing can be a lot more than what Team A would obtain through
legitimate means in the tournament. (Yan & Randell, 2005.)

Boosting is where a player hires or lets a more skilled player play on their account to
achieve a better ranking while pretending to achieve everything by themselves.
(Blackburn et al., 2014.) If the game has a ranking system, the boosted player often ruins

other players’ experience because they have attained a rank that does not suit their skill
level, thus lowering the match quality for other players. Boosting is considered cheating

11

due to breaking the game’s term of services, most if not all of the online games prohibit
account sharing in any form. (Blackburn et al., 2014; Yan & Randell, 2005.)

12

4. Prevention

Cheat prevention is a challenging task that has to be taken into consideration at all levels,

from design to maintenance, to achieve the best possible result. The reason is that no
matter how good cheating prevention measures are taken in the maintenance phase, it will
always be inferior to having a good design that takes cheat prevention into consideration.

Preventing cheats at a design level costs much less than preventing cheats after the game’s
release. (Baughman et al., 2007; Bethea et al., 2011; Chambers et al., 2005; Mönch et al.,

2006.)

Even when cheat prevention is taken into consideration in every phase of the game’s
development, there might be things that could not be anticipated. There might be things

that by taking cheat prevention measures would require unreasonable overhead from the
game, such as the network bandwidth. The cost in either the development or maintenance

phase might also be too high for such preventive measures. This cost creates the need to
have an anti-cheat system that could be continuously developed even after the game is
released and continues to work independently from the game. (Bauman & Lin, 2016; The

& Khanh, 2010.) Many online games develop their own anti-cheat system, but most
online game developers buy a license to use or integrate third-party anti-cheat system into

their games. Currently, the most popular online games use third-party anti-cheat systems
such as BattlEye (BE) and EasyAntiCheat (EAC) (SteamDB, 2013).

4.1 Solutions

There are many solutions to prevent cheats, but they can be categorized into server-side
and client-side solutions. Server-side solutions simply mean that those solutions are

deployed in the server, such as server-side verification or minimizing information
exposure to players. Client-side solutions are deployed with the game’s client, those
solutions usually involve anti-reverse engineering, anti-hooking, and/or anti-code

injection. (Bauman & Lin, 2016; Bethea et al., 2011; Chambers et al., 2005; The &
Khanh, 2010.)

4.1.1 Server-side

The server-side solution will not work in P2P architecture due to the nature of serverless
architecture. Also, server-side solutions introduce an additional strain to the server,

making scalability even worse than before. (Baughman et al., 2007; Bethea et al., 2011;
Chambers et al., 2005; Moffatt et al., 2011.)

Server-side verification means that some or all of the game client’s actions need to be
verified by the server before the actions take place or become permanent. In practice, this
often means that an update to critical data such as health points will be checked by the

server whether the update is valid or not. This could also mean that the critical
calculations such as movement speed are being checked/calculated from the server. For

example, the server receives an update on player A’s location, and in the next update,
player A’s location was drastically changed. The server will check whether this change
could be made without cheating and then will take appropriate action. (Bethea et al., 2011)

In theory, this could prevent anything that modifies the game client to achieve unfair
actions/interactions. However, due to computational power, network speed, and

bandwidth limitations, it is realistically impossible to verify everything.

13

While server-side verification can prevent many cheats, especially modification cheats, it
will still not prevent visual cheats. For example, the “wallhack” allows a cheater to see
another player through the wall. To prevent or minimize the effect of such cheats is to

minimize the information exposure to game clients. The server should not send any
information that the client does not need to them. Even though the idea itself is simple,

the implementation is not. To know what information the client needs will depend on the
genre of the game and how much overhead the server has. For example, an FPS game
might have a valid reason to send information about the enemy behind the wall if the

current gun can penetrate the wall. However, it could also be hidden, and if the player
decides to shoot the wall, the server will calculate whether that shot will hit the enemy

behind the wall or not. (Chambers et al., 2005; Moffatt et al., 2011.)

The server-side solution will increase the development cost because of added works and
testing that needs to be done. This will also greatly increase the cost of

operating/maintaining the game due to the need for increased computational power and
network speed/bandwidth in the server.

4.1.2 Client-side

Every software-based cheat starts from reverse-engineering the game’s code except
certain cheat types that scan for specific pixels to gain information from the game. The

reason is that the cheat software needs to be somehow aware of the game’s world. The
game’s code needs to be protected to prevent or make it harder for cheat developers to

create cheats for the game; this is known as anti-reverse engineering. For this reason,
most of the games or third-party anti-cheat solutions use anti-reverse engineer techniques.
These techniques may include control flow hiding, code encryption, code virtualizat ion,

and/or packing. Having an anti-reverse engineer system is generally a good idea, even for
offline games, because it will help with the unauthorized distribution of the game.

(Bauman & Lin, 2016.) However, just protecting the game code is not sufficient since not
only is it not effective enough, but it is also hard to update/improve afterward.

To further protect the game from software-based cheats, the anti-cheat system needs to

protect the memory segment that stores the game client’s data. Protecting the game’s
memory segment is challenging because the anti-cheat system needs to essentially protect

the memory segment in an untrusted environment while still giving access to the game
client. This task is more difficult if the game is cross-platform due to different levels of
exposure and access to a low-level application programming interface (API). For this

reason, the main focus will be on Windows-based solutions because Windows is the most
used operating system (OS) for online gaming purposes, that is, if you do not count mobile

and console games. The currently proposed and implemented solutions to protect the
game’s memory segment are to prevent blacklisted (or only allow whitelisted) processes
from accessing the memory segment; elevate the game process’s level so that it would

require at least kernel-level of access to read/modify the game’s memory or hide the
game’s process from Windows process list. In Windows environments, this can be done

by hooking into the lowest-level (ring0) API. (The & Khanh, 2010.) Over the years,
protecting the software’s memory has had improvement, with the latest one having the
most promise for wide adoption was Intel’s Software Guard Extensions (SGX). SGX

provides a user-level code in an isolated region of memory protected from processes
running at higher permission levels or with lower ring access. However, this feature falls

short because it is only available on Intel processors, specifically on Intel Skylake or
newer. (Bauman & Lin, 2016.)

14

Developing a complex and extensive anti-cheat system is quite costly; therefore, most
game developers or publishers tend to buy a license or contract an anti-cheat company to
deploy their anti-cheat solution. For this reason, anti-cheat solutions are made in a way

that requires little action from the game developers. However, this does not stop cheat
developers from finding a way to bypass, exploit vulnerabilities and develop a cheat

application, therefore creating an arms race between the cheat developer and the anti-
cheat developer. (Robles et al., 2008; The & Khanh, 2010.)

15

5. Detection

Sometimes, it is hard to differentiate between cheat prevention and detection. In this

paper, detection will be defined as detecting a successful cheating action and preventing
further cheating with the same cheat software.

Cheat detection is often underestimated in an anti-cheat discussion even when studies

show that with limited resources, the best strategy is to invest more into detection than
prevention. This is mostly because game experiences and/or reputations have been ruined

before cheating is successfully detected. Detection is more of damage control than
damage prevention due to the nature of current cheat detection techniques. Nonetheless,
cheat detection is still important because it is realistically impossible to prevent all

cheatings perfectly. (Barreto et al., 2017)

5.1 Solutions

Cheat detection can be divided into detecting cheat software and statistical/behavio ra l
analysis to detect cheaters. Cheat detection is not as straightforward as cheat prevention
due to the nature of the ever-evolving cat-and-mouse game that cheat developers and anti-

cheat developers have. Efforts have been made to stop this cat-and-mouse game by
instead of analyzing the statistic and behavior of the players to detect cheaters, but those

have been proven to be difficult to implement and prone to false positives (Alkhalifa,
2016; Chapel et al., 2010; The & Khanh, 2010.)

5.1.1 Detecting cheat software

Once again, this section will focus only on Windows-based solutions for the reasons
mentioned in the “Prevention - Client-side” section. The current proposed and

implemented solution is to have a hook in the ring0 API that gets called every time a new
process is created or tries to get the handle for the game’s process. The process or the file
will then be analyzed. If the process is found to be suspicious, the details and possibly the

file that created the process will be sent to an anti-cheat expert for further analysis. Once
the expert has determined the process or file to be a cheat software, the code signature or

file hash will be added to the blacklist to prevent any further cheating with the same cheat
software. (The & Khanh, 2010.) Anti-cheat developers could also acquire the cheat
software like cheaters do. For example, an anti-cheat developer could download cheat

software from public sources or buy it from private cheat developers. After that, they can
analyze it and then blacklist it.

This solution is expensive and, most of the time, ineffective. This is because of the need
to manually analyze the process or file and sometimes manually acquire the cheat
software to be analyzed. Also, it is easy to bypass this type of detection due to how a

cheat software gets blacklisted by code signature or file hash. Thus, it depends on how
strict the scans are; it could be easily bypassed by modifying the code of cheat software.

On the other hand, if the scans are too loose, it will produce false-positive results.

There have been proposed solutions that are hardware-based, but those have the same
limitation as Intel SGX’s solution in cheat prevention, thus resulting in poor adoption

(Feng et al., 2008). However, hardware-based solutions might be a good solution for
esports tournaments where a small number of players are competing, and the hardware

used to play the game is owned by a single company. This is, however, out of this paper’s
scope.

16

5.1.2 Detecting cheaters by statistic

Currently proposed and implemented statistic-based detection solution analyzes either the
player’s overall statistics or the game’s specific events. Win rate, headshot percentage,

and online time are usually included when analyzing the player’s overall statistics. Mouse
movement before/after kills and reaction time are usually looked at when it comes to the

specifics of the game. (Chapel et al., 2010; Liu et al., 2017; Yu et al., 2012.)

Statistic-based detection depends on the modeling of the game and cheaters to
differentiate between cheaters and legitimate players. This means that before the detection

can be implemented, a set of data has to be collected, and models have to be made. It is a
costly operation, and the result will be tied to that specific game the models are made for,

thus making statistic-based detections not well adopted in the gaming industry. Artific ia l
intelligence (A.I.) based solutions have been proposed and used in recent years, such as
machine learning. These A.I.-based solutions have the potential to be more accurate than

traditional human-made models and produce fewer false positives. These solutions will
not fix the fundamental problem with statistic-based detection. If the specifics of statistic

models are exposed or leaked, the cheaters can effectively avoid detection by software or
gameplay style means. (Alkhalifa, 2016; Chapel et al., 2010; Liu et al., 2017.)

Statistic-based detection is prone to false positives because all of it is probabilities. It is

up to the implementer to decide at what percentage it becomes beyond reasonable doubt
that the player is cheating. Therefore, most of the proposed and used solution includes

manual reviews by humans at some point before the decision is made whether the player
is cheating or not. This will introduce human error to the system, but it will mitigate if
not eliminate the systematic error by statistic-based detection completely. (Barreto et al.,

2017; Chapel et al., 2010; Liu et al., 2017; Yu et al., 2012.) Having a manual review at
any point of the time in a cheat detection system will increase the cost of operating the

system and greatly decrease the scalability of the anti-cheat system because of labor costs.
Some solutions use statistic-based detection to flag potential cheaters and have other
players do a majority vote whether the player cheated or not. (Lahti, 2018; Valve, 2016.)

17

6. Discussion

Software-based cheats cause the most damage in online games when it comes to cheating

because it is often a game-breaking level of abuse, and it can be done on a large scale.
But no matter how carefully a game is designed, how much cheat prevention and detection
are taken into consideration; there will always be cheat developers motivated enough to

find the way to cheat (Barreto et al., 2017). Game design that doesn’t unnecessarily make
the game more prone to cheating is the cheapest and most effective way to prevent

cheatings. If a lot of effort is put into a game design that is cheat resistant, it will lower
the required investment to other kinds of cheat prevention and detection afterward. For
example, having unencrypted network communication and unminimized information

exposure to the client will enable visualization cheat and enable cheat based on a Man-
In-The-Middle (MITM) attack. Essentially, cheaters can have a software to parse the

network packets from servers and get the exact location of other players, which results in
a virtually undetectable cheat because the parser could be running on another computer
completely isolated from the game and anti-cheat software. At the minimum, the game

design should at least minimize information exposure, encrypt network communicat io n,
and implement server-side verification if C/S architecture is being used. This will, at

minimum, minimize the advantage gained from visualization cheats and make
modification cheats unusable.

Game code and memory segment protection will further make it harder for cheat

developers to develop cheats. Developing a robust and reliable anti-cheat system is
challenging and costly. Thus, buying a license to use an anti-cheat system or contract an

anti-cheat company to develop an anti-cheat system is reasonable depending on the cost
of such license or contract. This, however, can have a backlash effect from the players
within games due to the nature of the techniques used by the anti-cheat system (Rawda,

2020). Some of the techniques used by an anti-cheat company are controversial, such as
hooking into Windows’ ring0 API “NtCreateFile” and sending a sample of the suspicious

process back. NtCreateFile API gets called whenever any process tries to create or open
a file (The & Khanh, 2010). Furthermore, the aggressive nature of these techniques has
caused problems to the players’ system, such as Blue Screen of Death (BSOD) (Gonzalez,

2018).

Such capabilities raise users’ privacy protection questions such as what information is

being specifically collected and how the user’s information is protected. This topic has
been one of the most debated topics in gaming communities recently, and for a good
reason. Some anti-cheat system companies have stated that they will not collect

information unrelated to cheating and will not sell players’ information (Battleye, 2016,
The Riot Security Team, 2020). However, there have been many scandals related to

privacy and internet neutrality in recent years, that this statement holds little to no
meaning. Even if this statement holds true, it still does not change the fact that there is
potentially a major vulnerability in a player’s computer. If an anti-cheat system’s server(s)

is compromised either by an external attacker or a rogue employee, the privacy of its users
will also be compromised. In the worst-case scenario, controls of the anti-cheat system

get compromised, and then attackers could potentially steal any kind of data from the
user’s system.

Investing heavily in the game design, such as minimizing information exposure;

underlying architecture, such as mirrored C/S architecture; and adding an appropriate
third-party anti-cheat system seems to be the most cost-effective and optimal way to

18

protect online games from cheaters. The question remains, what does an appropriate third-
party anti-cheat system mean? If everything is measured by gain and loss in financ ia l,
having a good anti-cheat system might not be optimal. For example, the current game

with the highest all-time peak of concurrent players online in Steam gaming platform is
PlayerUnknown’s Battleground (PUBG). This game uses BE as an anti-cheat system.

Battleye, which is currently is one of the most used anti-cheat systems. For example, out
of the top five non-free-to-play online games in SteamDB’s (2013) charts of most played
games; two games use BE, the rest either use their proprietary anti-cheat system or do not

use any known anti-cheat system. BE has generated controversy on the internet due to the
techniques used (Douggem, 2014). It has the capability to block access to a game ’s

process (thus requiring cheat software to also be operating in ring0); send back files to its
server; and remotely execute shellcodes in the player’s system.

While BE has a lot of capabilities to prevent and detect cheats, it is however not perfect.

There have been reports in 2017 by PUBG and BE that state that they have a daily ban
rate of 6000 - 13000 (Duwe, 2017). This means thousands of cheaters have, one way or

another, ruined a normal player’s experience before getting banned, and since it is a daily
ban rate, the normal players’ experiences continue to be ruined the next day. But if taken
into consideration that cheaters also have to, one way or another, get a new copy of the

game before they can cheat again due to bans on their previous accounts. In that case, it
is a reasonable assumption that the cheaters themselves generate quite a lot of income for

the game developers/publishers. However, without the game’s internal statistics of bans
and revenues, it is impossible to say for sure whether it is profitable for game developers
or game publishers to have a “healthy” number of cheaters in a popular online game or

not.

19

7. Conclusion

What is the difference between cheating prevention and detection in any online game,

which solves the cheating problem more effectively, and which one provides a more cost-
effective solution? Prevention is done at the game or architecture design level, and it can
only truly prevent few types of cheats, but it will be really effective in preventing those.

Detection is done after the game has been published, it can be continuously developed,
unlike prevention which will be hard to add after the game has been published. Every

type of cheats can be detected but depending on the detection method and cheat type, it
will be more effective to prevent than detect. Implementing server-side verificat ion,
minimizing information exposure to the game’s client, and deploying a third-party anti-

cheat system is the optimal way from the cost and effectiveness perspective. If there are
not enough resources to invest in both prevention and detection, investing more into

detection is more effective due to the nature of detection methods and the various types
of cheats it can detect.

Many different questions, cheat types, and anti-cheat solutions were left unexplored in

this paper due to a lack of resources and scope of this paper. It could be interesting to
explore how much cheaters negatively affect normal players and which types of cheat

brings the most harm to the game.

20

References

Alkhalifa, S. (2016). Machine learning and anti-cheating in FPS games [Master’s

thesis, University College London]. ResearchGate
https://dx.doi.org/10.13140/RG.2.2.21957.86242

Barreto, C., Cardenas, A. A., & Bensoussan, A. (2017). Optimal security investments in
a prevention and detection game. Proceedings of the Hot Topics in Science of

Security: Symposium and Bootcamp, Hanover, MD, USA. 24-34.
https://doi.org/10.1145/3055305.3055314

Battleye (2016, April 18). Privacy policy. Battleye. Retrieved September 19, 2021, from
https://www.battleye.com/privacy-policy/

Baughman, N. E., Liberatore, M., & Levine, B. N. (2007). Cheat-proof playout for

centralized and peer-to-peer gaming. IEEE/ACM Transactions on Networking,

15(1), 1-13. https://doi.org/10.1109/TNET.2006.886289

Bauman, E., & Lin, Z. (2016). A case for protecting computer games with SGX.
Proceedings of the 1st Workshop on System Software for Trusted Execution,
Trento, Italy. 4:6. https://doi.org/10.1145/3007788.3007792

Bethea, D., Cochran, R. A., & Reiter, M. K. (2008). Server-side verification of client

behavior in online games. ACM Transactions on Privacy and Security, 14(4), 1-27.
https://doi.org/10.1145/2043628.2043633

Blackburn, J., Kourtellis, N., Skvoretz, J., Ripeanu, M., & Iamnitchi, A. (2014).
Cheating in online games: A social network perspective. ACM Transactions on

Internet Technology, 13(3), 1-25. http://dx.doi.org/10.1145/2602570

Buyukkaya, E., Abdallah, M., & Cavagna, R. (2009). VoroGame: A hybrid P2P

architecture for massively multiplayer games [Conference presentation]. Consumer
Communications and Networking Conference, Last Vegas, NV, USA.

https://doi.org/10.1109/CCNC.2009.4784788

Cano, N. (2016). Game Hacking: Developing Autonomous Bots for Online Games.

Cassar, S., Montebello, M., & Zammit, S. (2014). Hybrid peer to peer and server client

system for limited users multiplayer first person style games [Conference
presentation]. Conference on Games and Virtual Worlds for Serious Applications,
Valletta, Malta. https://doi.org/10.1109/VS-Games.2014.7012161

Chalk, A. (2021, April 23). Warzone director says cheaters are ‘ruining some of the best

work that I’ve done in my life’. PC Gamer. https://www.pcgamer.com/warzone-
director-says-cheaters-are-ruining-some-of-the-best-work-that- ive-done-in-my-life/

Chambers, C., Feng, W., Feng, W., & Saha, D. (2005). Mitigating information exposure
to cheaters in real-time strategy games. Proceedings of the International Workshop

on Network and Operating Systems Support for Digital Audio and Video,
Stevenson, Washington, USA, 7-12. https://doi.org/10.1145/1065983.1065986

21

Chapel, L., Botvich, D., & Malone, D. (2010). Probabilistic approaches to cheating
detection in online games. Proceedings of the IEEE Symposium on Computational
Intelligence and Games, Copenhagen, Denmark, 195-201.

https://doi.org/10.1109/ITW.2010.5593353

Douggem (2014, June 2). Battleye is sending files from your hard drive to its master
server [Online forum post]. Reddit.
https://www.reddit.com/r/arma/comments/2750n0/battleye_is_sending_files_from_

your_hard_drive_to/

Duwe, S. (2017, October 13). BattlEye has banned over 320,000 cheaters from PUBG.
Dot Esports. https://dotesports.com/pubg/news/pubg-battleye-bans-320k-news-
18018

EAC (2018, May 18). Our Games. EAC. Retrieved September 21, 2021, from

https://www.easy.ac/en-us/partners/

Farlow, S., & Trahan, J. L. (2014). Client-server assignment in massively multiplayer

online games [Conference presentation]. International Conference on Computer
Games, Louisville, KY, USA. https://doi.org/10.1109/CGames.2014.6934147

Feng, W., Kaiser, E., & Schluessler, T. (2008). Stealth measurements for cheat

detection in online games. Proceedings of the 7th ACM SIGCOMM Workshop on

Network and System Support for Games, USA,15-20.
https://doi.org/10.1145/1517494.1517497

Gonzalez, O. (2018, July 19). ‘Fortnite’ BSOD: How to Fix the Blue Screen of Death

Bug. Inverse, https://www.inverse.com/article/47196-how-to-fix-the-fortnite-blue-

screen-of-death-bug

Lahti, E. (2018, March 26). Valve has 1,700 CPUs working non-stop to bust CS:GO
cheaters. PC Gamer. https://www.pcgamer.com/vacnet-csgo/

Liu, D., Gao, X., Zhang, M., Wang, H., & Stavrou, A. (2017). Detecting passive cheats
in online games via performance-skillfulness inconsistency [Conference

presentation]. 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Denver, CO, USA. https://doi.org/10.1109/DSN.2017.20

Maiberg, E. (2014, April 30). Hacks! An investigation into the million-dollar business
of video game cheating. PC Gamer. https://www.pcgamer.com/hacks-an-

investigation-into-aimbot-dealers-wallhack-users-and-the-million-dollar-business-
of-video-game-cheating/

Mönch, C., Grimen, G., & Midtstraum, R. (2006). Protecting online games against
cheating. Proceedings of the 5th ACM SIGCOMM Workshop on Network and

System Support for Games, Singapore, 20-es.
https://doi.org/10.1145/1230040.1230087

Moffatt, S., Dua, A., & Feng, W. c. (2011). SpotCheck: An efficient defense against
information exposure cheats [Conference presentation]. 10th Annual Workshop on

Network and Systems Support for Games, Ottawa, ON, Canada.
https://doi.org/10.1109/NetGames.2011.6080984

22

Prather, J., Nix, R., & Jessup, R. (2017). Trust management for cheating detection in

distributed massively multiplayer online games [Conference presentation]. 15th

Annual Workshop on Network and Systems Support for Games, Taipei, Taiwan.
https://doi.org/10.1109/NetGames.2017.7991547

Rawda, O. (2020, May 6). Understanding Valorant’s Anti-Cheat Controversy. CBR.

https://www.cbr.com/understanding-valorant-anti-cheat-controversy/

Robles, R. J., Yeo, S. S., Moon, Y. D., Park, G., & Kim, S. (2008). Online games and

security issues. Second International Conference on Future Generation
Communication and Networking, Hainan, China.
https://doi.org/10.1109/FGCN.2008.199

Schiele, G., Suselbeck, R., Wacker, A., Hähner, J., Becker, C., Weis, T. (2007).

Requirements of Peer-to-Peer-based Massively Multiplayer Online Gaming
[Conference presentation]. Seventh IEEE International Symposium on Cluster
Computing and the Grid, Rio de Janeiro, Brazil.

https://doi.org/10.1109/CCGRID.2007.97

SteamDB (2013, December 8). Steam Charts. SteamDB. Retrieved September 19, 2021,
from https://steamdb.info/graph/

The, L. B., & Khanh, V. N. (2010). GameGuard: A windows-based software
architecture for protecting online games against hackers. Proceedings of the 2010

Symposium on Information and Communication Technology, Hanoi, Vietnam. 171-
178. https://doi.org/10.1145/1852611.1852643

The Riot Security Team (2020, April 17). A Message About Vanguard From Our
Security & Privacy Teams. Riot Games. https://www.riotgames.com/en/news/a-

message-about-vanguard-from-our-security-privacy-teams

Valve (2016, July 3). CSGO – Overwatch System. Steam. Retrieved September 19,

2021, from https://help.steampowered.com/en/faqs/view/65DA-BD12-0DE9-9853

Warren, T. (2020, May 6). The world’s biggest PC games are fighting a new surge of
cheaters and hackers. The Verge.
https://www.theverge.com/2020/5/6/21246229/pc-gaming-cheating-aimbots-

wallhacks-hacking-tools-developer-response-problem

Webb, S. D., & Soh, S. (2007). Cheating in networked computer games: A review.
Proceedings of the 2nd International Conference on Digital Interactive Media in
Entertainment and Arts, Perth, Australia. 105-112.

https://doi.org/10.1145/1306813.1306839

Yan, J., & Randell, B. (2005). A systematic classification of cheating in online games.
Proceedings of 4th ACM SIGCOMM Workshop on Network and System Support for
Games, USA. 1-9. https://doi.org/10.1145/1103599.1103606

Yu, S. Y., Hammerla, N., Yan, J., & Andras, P. (2012). A statistical aimbot detection

method for online FPS games [Conference presentation]. 2012 International Joint

23

Conference on Neural Networks, Brisbane, QLD, Australia.
https://doi.org/10.1109/IJCNN.2012.6252489

	Abstract
	Contents
	1. Introduction
	2. Modern online games
	2.1 Client/server
	2.2 Peer-to-peer
	2.3 Hybrid

	3. Cheats
	3.1 Software-based cheats
	3.2 Non-software cheats

	4. Prevention
	4.1 Solutions
	4.1.1 Server-side
	4.1.2 Client-side

	5. Detection
	5.1 Solutions
	5.1.1 Detecting cheat software
	5.1.2 Detecting cheaters by statistic

	6. Discussion
	7. Conclusion
	References

