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Abstract. Very little is known about clustering in heavy nuclei and in particular the
interaction between the correlated cluster nucleons and remaining core nucleons. Currently
the phenomenological Saxon-Woods plus cubic Saxon-Woods core-cluster potential successfully
predicts the alpha decay half-life and energy band spectra of a number of heavy nuclei. This
model, however, lacks a microscopic understanding of clustering phenomenon in these heavy
nuclear systems. A fully relativistic microscopic formalism is presented, which generates the
core-cluster potential by means of the McNeil, Ray and Wallace based double folding procedure.
The core and cluster baryon densities are calculated by using a relativistic mean field approach.
The Lorentz covariant IA1 representation of the nucleon-nucleon interaction is folded with the
core and cluster densities. Theoretical predictions of the ground-state decay half-life and positive
parity energy band of 2!?Po are obtained with the relativistic mean field formalism and which
are compared to the results from the phenomenological Saxon-Woods plus cubic Saxon-Wood
core-cluster potential and microscopic M3Y interaction.

© 2010 IOP Publishing Ltd 1
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1. Introduction
In nuclear dynamics, as seen in light stable nuclei, clustering phenomenon is one of the essential
features which has been studied in great detail [1]. In the physics of unstable nuclei, clustering is
one of the central areas of study. The cluster-core interaction lies central to the identification of
clustering in the nuclear matter and the description of clustering phenomenon in various nuclei.
During the last decade the modified phenomenological Saxon-Woods plus Cubic Saxon-Woods
cluster potential has successfully described various phenomenon related to alpha clustering in
light as well as even-even heavy nuclei. In order to fully describe clustering in nuclear systems
one would have to develop a microscopic model of the phenomenon at the nucleon-nucleon scale.
At a more microscopic level the core-cluster interaction may be constructed from a nucleon-
nucleon interaction. Prior to the development of the Saxon-Wood plus Saxon-Wood cubed
potential form, such a microscopic interaction had been employed in various forms to describe
a cluster bound states in light nuclei [2] and the exotic decays in heavy nuclei [3]. In recent
years the microscopic M3Y-type potential model has been extended to describe the alpha decay
half-lives and the structure of heavy nuclei [4], [5], and [6]. An application of the interaction to
%Mo and 2'?Po in particular suggests a good amount of « clustering in these nuclei [7].
Relativistic mean field theory (RMFT) [8] has proven to be very successful in describing
various properties of nuclear structure [10]. In this work a RMFT description of clustering is
presented and a comparison is made between the experimental ground-state decay half-lives
and band energy spectral of 21?2Po and cluster model predictions of these quantities which were
obtained from the Saxon-Woods + cubic Saxon-Woods potential, double folded M3Y nucleon-
nucleon interaction [9] and the microscopic RMFT based core-cluster interaction.

2. Formulation of Binary cluster model
This model is based on the preformed binary cluster model for which the decay half life is given
by

In2
Ty o0 = h— 1
1/2 T ) ( )

where I' represents the cluster decay width. For the breakup of a nucleus into the core and
cluster the decay width is defined by the relationship

B ﬁewp(—Q f[; k(r)dr)
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with (P) being the core-cluster preformation probability in the parent nucleus, u is reduced
mass of the core-cluster system and k(r) is cluster wavenumber. The wavenumber depends on
both the decay energy (E) and the core-cluster potential V' (r), and is given by

KoY = [ 351E - V), )

The energy band structure of the quasi-boundstates can be obtained from a combination of
the Bohr-Sommerfeld (BS) quantization integral

s

/2 \/;’; (B V(r)]dr = (2n+1) (4)

and the Wildermuth condition G = 2n + [, where n is the number of nodes of the radial
wavefunction and [ is the orbital angular momentum of the cluster state. G defines the global
quantum number of the core-cluster relative motion. The interaction between the core and
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cluster, V(r), is described by the sum of the attractive nuclear cluster-core potential U(r), the
Coulomb potential between the two charged centres, and the centrifugal potential.

3. Core cluster potentials

3.1. Phenomenological core-cluster interaction

The recently developed modified Saxon-Wood with an additional cubic Saxon-Woods core-
cluster phenomenological potential

T 1—=x

Uty =Uo | -— cop (=5 + (5)

is found to consistently reproduce not only the alpha and exotic decay half-lives, but also
correctly predict the level properties of nuclei in the rare earth and the actinide region. This
potential is parameterized in terms of the potential depth (Up), nuclear radius (R), diffuseness
(a), and z is a mixing parameter. Despite its success this potential model tells us very little
about the microscopic nature of clustering in closed shell nuclei.

3.2. Relativistic mean field construction of the cluster-core potential
In the IA1 representation of the nucleon-nucleon scattering amplitude [12]

F=F5TDy + F by + FP0 sy 4+ FL ot 0 + FASA A 0, (6)

Lorentz covariance, parity conservation, isospin invariance, and the constraint that the free
nucleons are on the mass shell imply that the invariant NN scattering operator F' be written
in terms of the five complex functions for pp and five for pn scattering. The quantities
M= (I, 4,77, o' 45~y#) represent the five Dirac gamma matrices [13], and the index (i = a, b)
labels the two interacting nucleons. The index L labels the scalar, vector, pseudo-scalar, tensor
and axial terms.

Out of the Lorentz covariant McNeil, Ray and Wallace (MRW) construction of the optical
potential for nucleon-nucleus scattering [11], arises the double folded MRW form which describes
the cluster-core potential

4 a3
UL(r7 6) — ]\;ZCZQ)/( (i zquL q7 /dS / —zq r’ /dS " —zq r’’ (T’”), (7)

where r represents the separation distance between the cluster (1)and core (2)center, and e is
the laboratory energy of the nucleons in the cluster. The momentum of the nucleons in the
nucleon-nucleon (NN)center of mass system is given by p while M represents the nucleon mass.
Equation (7) contains the Lorentz covariant nucleon-nucleon scattering amplitudes F*(q,e),
which are functions of the NN centre of mass momentum transfer (¢) and nucleon laboratory
energy (), as well as the respective cluster and core densities p¥ and p.

The Walecka model is based on a relativistic mean field theory with an effective Lagrangian
which describes the NN interaction via the electromagnetic interaction and the effective meson
fields [8]. The dynamical equation which results from the Lagrangian is given by

Hy(x) = (ia- V = g, "VO(r) + BIM — g,6(r)])u(r) = B(r) (8)

with the Dirac Hamiltonian operator (H = ia - V — g,7°VO(r) + B[M — gs6(r)]), vector and
scalar fields g, and g, respectively, as well as the zeroth component vector field (Vj) and scalar
field (¢). Equation (8) has both positive and negative solutions U(r) and V(r), and thus the
field operator can be expanded as
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The baryon and antibaryon creation operators ATA and B/T\ satify the standard anticommutator
relationships and the index A specifies the full set of single-particle quantum numbers, which
for a spherically symmetric and parity conserving system, are the usual angular momentum and
parity quantum numbers, as given by reference [13]. The positive-energy spinor can be written
as

_ _( i[Grjue(r) /7] @jim
0 = Units) = (g ) "
where @, is the angular momentum and spin dependent part of the solution and n and ¢
represents the principal quantum number and two component isospinor which is labeled by the
isospin projection ¢. The functions G(r) and F(r) represent the radial wave functions for the
upper and lower components of the positive energy spinor Uy
Neglecting the negative-energy spinors the local baryon (pp) and scalar (ps) densities can be
derived from the positive-energy solutions

p5(r) } = Y 0A) ( ’YIO )UA(I'). (11)

A

4. Model predictions and conclusions

For the BMP phenomenological form of the cluster-core potential prediction of the positive
parity alpha band energy structure of 2'?Po the parameters Uy = 208 MeV, a = 0.66 fm, = =
0.30 and R = 6.784 were used with G = 18 [15].

The Walecka based RMFT prediction uses the experimental masses M = 939 MeV, m, = m,, =
738 MeV, m, = 770 MeV, my = 520 MeV, and o = /47 = 1/137.36 are used. The coupling
constants for the scalar, vector, and p-meson are g2 = 109.6, g2 = 190.4, and gg = 65.23
respectively. We apply the Dirac-Hartree code Timora [14] to calulate the scalar and vector
densities for both the protons and neutrons. The densities of the core and cluster systems are
inturn used to calculate the core-cluster potential by means of the double folded MRW method.
The results of the calculated a-decay half-life of the ground-state as predicted by the
phenomenological BMP, the microscopic M3Y with phenomenological core and cluster baryon
densities [15], and MRW double folded relativistic mean field nucleon densities with Lorentz
covariant NN scattering amplitudes are compared with experimental data [16] in Table I.
Table II compares the predicted band energy structure from the BMP, M3Y and RMFT model
calculations with available experimental data [16].

From the results in Table (1) and (2) one see that the Saxon-Woods plus cubic Saxon-Woods
potential gives a reasonable prediction of the half-life of the 0", while the microscopic M3Y
and RMFT based models underpredict the ground-state alpha decay half-life of ?'2Po by a
factor of approximately 2. Furturemore the energy spectra of the excited « states are predicted
reasonably well by the Saxon-Woods plus cubic Saxon Woods core-cluster potential where as
both the microscopic M3Y and RMFT model potentials show a clear inversion of the energy
spectra. The energy bands structure as predited by the RMFT model is wider spread at large [
values as compared to the M3Y predictions.
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Table 1. The experimental ground state decay of 2'?Po and the corresponding values obtained
with the BMP phenomenological potential given by equation (5), double folded M3Y potential
with phenomenological Saxon-Woods and Gaussian baryon density distributions (M3Y), and
the double folded RMFT potential (RMFT).

Ty /2(Exp) ns Ty /2(BMP) (ns) Ty/2(M3Y) (ns) Ty/2(RMFT) (ns)

300 348.0 157.4 153.8

Table 2. The experimental energy level scheme of 2'2Po and the calculated spectra obtained
with the BMP phenomenological potential given by equation (5) and the double folded RMFT
potential.

JT Eexp (MeV) EBMP MeV EM3Y ERMFT (MGV)

ot 0.000 (0.495) —0.004 —0.007
2+ 0.727 0.659 —0.067 —0.136
4t 1.132 0.948 —0.229 —0.575
6" 1.355 1.318 —0.508 —1.584
8+t 1.476 1.730 —0.930 —3.346
10" 1.834 2.145 —1.538 —5.917
12+ 2.702 2.519 —2.358 —9.407
14+ 2.885 2.805 —3.437 —14.226
16* — 2.941 —4.800 —21.000

18+ 2.921 2.841 —6.477 —30.040
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