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Abstract: A versatile, functional nanomaterial for the removal of ionic and non-ionic pollutants is
presented in this work. For that purpose, the high charge mica Na-4-Mica was exchanged with
the cationic surfactant (C16H33NH(CH3)2)+. The intercalation of the tertiary amine in the swellable
nano-clay provides the optimal hydrophilic/hydrophobic nature in the bidimensional galleries of
the nanomaterial responsible for the dual functionality. The organo-mica, made by functionalization
with C16H33NH3

+, was also synthesized for comparison purposes. Both samples were characterized
by X-ray diffraction techniques and transmission electron microscopy. Then, the samples were
exposed to a saturated atmosphere of cyclohexylamine for two days, and the adsorption capacity
was evaluated by thermogravimetric measurements. Eu3+ cations served as a proof of concept for the
adsorption of ionic pollutants in an aqueous solution. Optical measurements were used to identify
the adsorption mechanism of Eu3+ cations, since Eu3+ emissions, including the relative intensity of
different f–f transitions and the luminescence lifetime, can be used as an ideal spectroscopic probe to
characterize the local environment. Finally, the stability of the amphiphilic hybrid nanomaterial after
the adsorption was also tested.

Keywords: high charge mica; adsorption; calorimetry; decontamination; ionic pollutants; non-ionic
pollutants; Eu3+ luminescence

1. Introduction

Organic–inorganic hybrid nanomaterials represent a clever strategy for designing new
functional materials that combine the optimal level of hydrophobicity created by an organic
molecule or polymer—required for different industrial uses—with the structural proper-
ties of an inorganic component, preferentially thermal and mechanical stability [1]. The
intercalation of organic species in lamellar solids, specifically in clay platelets, constitutes
an important example of organically modified 2D nanocomposites with a great presence
in the industrial market [2–4]. In particular, organic nano-clays have been proposed as
efficient adsorbents to remove organic pollutants, such volatile organic compounds (VOCs)
and other non-ionic hydrocarbons (NOCs), from air and water, because of their numerous
advantages, mainly their relatively low price, high surface area and mechanical stabil-
ity, among others [5,6]. High charge micas are a family of layered aluminosilicates with
improved adsorption properties and loading capacities up to four times those of low
charged aluminosilicates, such as bentonites; and from which a set of organo-clays has
been successfully synthesized [7–9]. Additionally, those functionalized nanomaterials,
made by incorporating long chain alkylammonium cations in the galleries of the clay, have
already demonstrated their capacity to capture different NOCs, such as phenol, benzene
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and toluene, through an adsorptive removal mechanism [10]. In a similar way, success-
ful removals of some surfactants, perfluoroalkyl and pharmaceutical compounds from
aqueous solutions by organo-functionalized micas have been also reported [11–13]. Addi-
tionally, functionalization of those high charge micas with amine and thiol groups allows
the capture of ionic pollutants [14,15].

A deep knowledge of the driving forces involved in the intercalation process and the
surface chemistry is crucial to fully controlling the synthesis processes and to understand
the adsorption mechanism. Several factors, such as the electrostatic attraction between
the surfactant polar head group and the nano-clay surface, the amount and configurations
of the organic species inside the layers, the attractive van der Waals forces between tails
and the level of hydrophobicity/solubility of the surfactant, play fundamental roles in
the final properties and applicability of the products [16]. In that way, we have recently
described an experimental route to synthesizing nanostructured organo-micas prepared
from primary and tertiary C16 amines. Controlled adsorption of the organics leads to
tunable hydrophobicity in the interlayer space of the hybrid material. This provides the
possibility to choose the optimal interface nature, as is required for a variety of applications,
from a fully hydrophobic medium to an amphiphilic quasi-solution [17]. Specifically, an
organo-mica with a homogeneous single-phase organic-clay is formed from an exchange
reaction with long primary n-alkylammonium cations. In addition, a synthesis route
in which the exchange capacity of the high charge mica is not fully satisfied has been
proposed for a more amphiphilic interface, which relies on the incorporation of long
tertiary amines. For the adequate synthesis of the first type of functionalized mica, the
organo-mica, the length of the surfactant is a crucial parameter to assuring quantitative
uptake of the surfactant by the attractive van der Waals interactions between the alkyl
chains. However, the head group of the surfactant, in terms of size—steric effects—and
nature—hydrophobicity—is the fundamental parameter that controls the final product of
the second type of mica, the amphiphilic mica. In the latter case, a hydrated, homogeneous
inorganic–organic interlayer is synthesized. This hybrid material allows one to combine
exchangeable inorganic cations and adsorbent organic species between the solid layers,
creating a promising adsorbent material with dual functionality toward both hydrophilic
and hydrophobic pollutants for water and air decontamination. Besides, the surfactant
molecules are able to swell the interlayer space of the aluminosilicate, taking the layers
apart, making the Lewis acidic centers accessible to contaminants in a complementary
adsorption mechanism. Despite the promising features exhibited by this functionalized
material, its affinity for inorganic and organic species has not been analyzed in detail before.

We present in this work a deep insight into the dual functionality of the amphiphilic
mica as a versatile adsorbent for ionic and non-ionic pollutants. For that purpose, the
swellable high charge mica Na-4-Mica was exchanged with the tertiary R-N(CH3)2 amine
with alkyl length R = 16, in an acidic medium. When the Na-4-Mica is exchanged with the
tertiary ammonium cation [RNH(CH3)2]+, R = 16, the exchange capacity is not fully satis-
fied, and a homogeneous heteroionic structure is formed with mixed organic/inorganic
cations in the same interlayer [17]. The organo-mica, C16H33NH3

+-mica, was also syn-
thesized via cation exchange reaction. The length of the primary ammonium cation was
carefully chosen to assure that van der Waals interactions between alkyl chains would be
strong enough to allow a quantitative uptake of the surfactant cations in this sample [17].
This organo-mica has been previously reported to be an improved adsorbent material
of hydrophobic VOCs for water decontamination [10]. Then, both functionalized clays
were firstly exposed to a saturated atmosphere with cyclohexylamine. Cyclohexylamine
is a strong organic base that is used widely as a corrosion inhibitor, and it is toxic at
high exposure levels [18]. Under these unfavorable conditions, a comparative analysis of
their adsorption capacities for non-ionic compounds was carried out. In a second step,
the sample C16H33NH(CH3)2

+-mica was put in contact with a Eu3+ water solution as a
proof of concept of its capacity to adsorb inorganic contaminant cations. Eu3+ cations
incorporated in the interlayer space of high charge mica have been recently proposed as an
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ideal luminescent probe to determine the sorption behavior and cation environment [19].
Moreover, it has to be mentioned that high charge micas have been proposed as ideal
materials to capture radioactive waste. In particular, superselectivity and stable immobi-
lization have been described by Komarneni et al., for 137Cs and 226Ra, through electrostatic
bonding at room temperature [20]. It is standard practice to use the appropriate stable
lanthanide cation instead its corresponding actinide as the chemical simulator [21–23]. The
functionalized high charge micas were firstly characterized by X-ray diffraction (XRD) and
transmission electron microscopy (TEM). The physisorbed cyclohexylamine was analyzed
by thermogravimetric (TG) and mass spectroscopy analyses. The interlayer exchange of
Na+ with Eu3+ in the amphiphilic mica was monitored by luminescence measurements,
since Eu3+—by it emission, including the relative intensities of different transitions and
the luminescence lifetime—can be used as an ideal spectroscopic probe to characterize the
local environment of Eu3+. For that purpose, a doped Eu3+ Mica-4 was also synthesized
and characterized by XRD, TG and optical measurements.

2. Materials and Methods
2.1. Synthesis of High Charge Micas

Na-4-Mica, with four negative charges per unit cell in its structure and ideal chemi-
cal formula Na4[Mg6Si4Al4O20F4] · H2O, was synthesized following the “NaCl method”
described by Park et al. [24]. Stoichiometric amounts of SiO2, (from Sigma, purity 99.8%),
Al(OH)3 (from Riedel-de-Haën, purity 99.7%), MgF2 (from Aldrich, purity 99.9%) and
twofold the stoichiometric amount of NaCl (from Panreac, purity 99.9%) were well mixed
in an agate mortar. Reactants were thermally treated in a Pt crucible at 900 ◦C for 15 h and
left to cool down. After cooling, the solid was washed with deionized water to eliminate
the excess of NaCl and dried at room temperature.

2.2. Synthesis of the Organo and the Amphiphilic-Mica

The chemical products used for the preparation of the organo-mica and the am-
phiphilic mica, hexadecylamine (RNH2) and dimethylhexadecylamine [RN(CH3)2] with
R = 16, respectively, were obtained from Aldrich Chemical Co. Neutral amines, were firstly
converted to the protonated form by adding them in an aqueous solution of 0.1 M HCl, in
a molar ratio amine:HCl 1:1, and stirred at 80 ◦C for 3 h. Then, 1 g of Na-4-Mica was added
to the protonated amines and they were left to react for 24 h at 80 ◦C. A two-fold excess
of the clay cation exchange capacity (CEC) of the amines was used in order to favor the
cation exchange reaction. Both the organo-clay and the amphiphilic clay were recovered by
centrifugation, washed with deionized water and ethanol and dried at room temperature.

2.3. Adsorption of Cyclohexylamine and Eu3+Cations

The organo-mica and the amphiphilic mica were put in contact with a saturated
atmosphere of cyclohexylamine for 48 h hours. For the adsorption of Eu3+, 300 mg of
Mica-4 and the amphiphilic sample were dispersed in 50 mL of a Eu(NO3)3 (REacton 99.9%)
water solution 0.01 M, respectively. The process was repeated three more times. Then, the
samples were centrifuged and washed with deionized water.

2.4. Characterization

XRD patterns were obtained with a Bruker D8 Advance instrument using Cu Kα

radiation at 40 kV and 30 mA. Diffractograms were obtained from 1.5◦ to 70◦ (2θ) at a
scanning speed of 0.05 deg·min−1 and a counting time of 5 s.

TG analysis was performed on a Setaram Setsys evolution TGA-DTA/DSC model.
The sample was heated from room temperature to 800 ◦C at a heating rate of 10 ◦C min−1

in air. Approximately 20 mg of sample was heated up in an open platinum crucible.
TEM images were obtained on a JEOL JEM 2100 microscope with a CeB6 filament.

TEM samples were prepared by sonication of the powder in ethanol and evaporating one
drop onto a holey carbon film on top of a copper grid.
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Steady state luminescence, excitation and lifetime measurements were performed us-
ing a FLS920 spectrofluorometer (Edinburgh Instruments) equipped with double-monochro-
mators, a continuous Xe-lamp of 450 W and a pulsed Xe-lamp of 60 W (µF920) for excitation
and a Hamamatsu R928 photomultiplier tube (PMT) for detection. All emission spectra
were corrected for the system response.

3. Results and Discussion
3.1. Functionalization of Na-4-Mica

Figure 1 includes the diffraction analysis and TEM images of the starting samples;
the organo-mica, C16H33NH3

+-mica; and the amphiphilic mica, C16H33NH(CH3)2
+-mica.

The XRD diagram of the organo-mica shows a principal reflection attributed to the (001)
basal reflection with an associated d spacing value of 4.4 nm. The high interlayer space has
been previously associated with a paraffin bilayer structure of the surfactant with double
all-trans conformation, with the hydrophobic tails pointing toward the interlayer space
tilted 58.2◦ away from the clay surface [7,17]. The existence of other (001) reflections in the
diffraction pattern, and the regularly ordered layered structure that can be observed from
the TEM image in the figure, confirm the homogeneous distribution and dense packaging
of the surfactant in the galleries of the clay. As a consequence, a hydrophobic/hydrophilic
hybrid material, made of alternating hydrophobic galleries fully occupied by surfactant
cations and hydrophilic clay layers, was generated for the full displacement of the interlayer
sodium cations by the organic species.
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C16H33NH3
+-mica (c); and TEM images of the amphiphilic mica (b) and the organic-mica (d).

In addition, due to the attraction between the organic tails, a quantitative uptake of
the surfactant and even additional adsorption have been described for surfactants with
long alkyl chains, since the van der Waals forces are proportional to the number of CH2
groups (1-1,5 kJ per CH2 group) [25]. For the other sample, the amphiphilic mica, the XRD
diagram exhibited a (001) reflection at 2.7◦ 2θ with a basal space of 3.3 nm, compatible
with a paraffin bilayer arrangement of the dimetilhexadecylammonium surfactant on the
galleries of the silicate, with a tilting angle of 32.2◦. This tilting angle of 32.2◦ together
with the displacement of the (001) reflection up to 3.3 nm suggest partial replacement
of the hydrated sodium cations by the organics. It was confirmed by TG measurements.
Additionally, the formation of a heterostructure or a segregation arrangement can be
discarded by the absence of a second basal reflection family corresponding to hydrated
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sodium in the interlayer [17]. The presence of organic cations on the C16H33NH(CH3)2
+-

mica and C16H33NH3
+-mica samples was also corroborated by infrared measurements,

and the results are included as Supplementary Materials.

3.2. Adsorption of Cyclohexylamine

Firstly, cyclohexylamine was used as the model for an organic contaminant, and
its uptake by the adsorbent materials was estimated using TG measurements. Figure 2
includes the TG-DSC curves of the hybrid materials before and after the adsorption
of cyclohexylamine.
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Three regions can be identified in the mass loss curve of the organic functionalized
micas [26–28]. Up to 170 ◦C, the first mass loss step, associated with an endothermic peak
in the heat flow curve, relates to desorption of water from the clay mineral and dehydration
of the interlayer cation. For the pure organo-mica, there was not mass loss in that region
according to the structure introduced above. However, the mass loss in the amphiphilic
mica was about 2.2%, corroborating the presence of inorganic cations in the interlayer
space. In the second region, between 170 and 500 ◦C, the mass loss was associated with
the thermal oxidation of the organics in the interlayer space of the clay, and it was also
accompanied by one or more exothermic peaks in heat flow. The combustion process could
be prolonged with higher temperatures, depending on the nature of the organic matter, the
amount of surfactant adsorbed and the oxygen availability.

While the potential use of this organo-mica as an effective adsorbent of non-ionic
pollutants has been previously probed in aqueous solutions, the adsorption capacity for
non-ionic contaminants in air has not been tested before. The efficiency of the samples in
cyclohexylamine uptake after being exposed to a saturated atmosphere for two days was
comparatively studied, and the respective amounts of cyclohexylamine adsorbed were
evaluated by TG measurements. The amount of adsorbed cyclohexylamine is attributed
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to the extra mass loss shown in the second region of the thermogram. Under these
unfavorable conditions compared with an aqueous medium, TG measurements show
that cyclohexylamine was not adsorbed in the organo-mica, probably due to the large
number of surfactant molecules closely packed in the interlayer space. In this sample, the
surfactant was adsorbed in higher amounts than its cation exchange capacity suggests, so
the extra organic molecules could have been in the organo-layer saturating the adsorption
centers. On the contrary, cyclohexylamine was adsorbed in the amphiphilic sample. The
amount of adsorbed cyclohexylamine was estimated to be 16% of the sample mass.

TG experiments of the initial Mica-4 exchanged with C16H33NH(CH3)2
+ ions showed

a ratio of replacement of 50% of the interlayer Na+ (~38% mass loss). The hybrid material
was then organized in a regularly intercalated layered phase, with surfactant cations
and sodium cations in an associative distribution, forming hydrophobic and hydrophilic
independent clusters in the interlayer space of the aluminosilicate [17]. The composition
of the interlayer agrees with the results extrapolated from the TEM image and the XRD
diagram included in Figure 1. In the amphiphilic mica, a homogenous distribution of
the organic and inorganic clusters along the interlayer provides the sample with the
adequate level of hydrophobicity to facilitate the incorporation of cyclohexylamine in
the functionalized material. Additionally, chemical adsorption of the primary amine
onto the Lewis acidic centers, exposed on the silicate surface, can help in the adsorption
process. Under this premise, the TG measurements showed satisfactory preliminary results
for the adsorption of non-ionic or hydrophobic VOCs when using cyclohexylamine as a
tester molecule.

TG-DSC measurements were also monitored by acquiring the CO2 and H2O signals
of the evolved gas from the thermal treatment using mass spectrometry. The results are
included in Figure 3. Below 170 ◦C, the mass loss observed in the thermogram of the
amphiphilic mica, associated with the dehydration process of the inorganic interlayer
cations, was confirmed by a maximum in the water signal at 100 ◦C (Figure 3b,d). However,
this maximum is absent for the organic sample in the water signal (Figure 3a,c). As result
of the combustion of organic matter in an air atmosphere at temperatures below 450 ◦C,
the mass loss process in all the samples reached a maximum alongside maxima for both
water and CO2 signals. This process was prolonged up to a third region where the residual
charcoal was fully oxidized above 500 ◦C, evidenced by a maximum in the CO2 curve [29].
Thus, mixed ion clays, combining both potentially exchangeable adsorbent organics species
and inorganic cations, represent significant new forms of decontaminant for both non-ionic
or hydrophobic VOCs and cationic inorganic ions, such as heavy metals.

3.3. Adsorption of Eu3+Cations

Once the capacity for retention of cyclohexylamine was demonstrated in the am-
phiphilic sample, the adsorption spectrum of inorganic contaminants was analyzed using
Eu3+ as a cationic model. The optical properties of the amphiphilic clay upon contact with
a solution of europium nitrate have been studied in detail. Excitation and luminescence
measurements of Eu3+ were previously used, considering Eu3+ as a probe, to explore the
adsorption mechanism of cationic species in high charge micas [30].

Firstly, the structural and optical properties of a doped Eu3+ Mica-4 were analyzed
for comparative purposes. Importantly, the structure of high charge micas presents some
particular advantages for use as luminescent sensors to explore the adsorption mechanisms
of inorganic cations: (1) The absence of undesirable impurities such as iron in the structure
that can cause luminescence quenching. (2) High charge micas are fluorinated clays with
poorly hydrated cations in the interlayer space. It is well known that hydroxyl groups cause
luminescence deactivation through nonradioactive processes. (3) Interlayer cations are
homogenously distributed along the surface of the aluminosilicate, preventing aggregation
of lanthanide ions.
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Figure 4 includes the XRD patterns of a Na-Mica-4 and a Eu3+-doped Mica-4 sample
and a schematic representation of the unit cell with sodium and europium cations in the
interlayer space, respectively. The (001) basal reflection of the as-synthesized mica, situated
at 2θ ~7.4◦, corresponds to a spacing value of d = 1.2 nm, and it is associated with Na+

cations accommodated in the hexagonal cavities of the tetrahedral sheet, and a pseudo-
monolayer of water between the silicate layers, according to the literature [31,32]. The
diagram of the Eu3+-doped sample exhibits two (001) basal reflections, the most intense
situated at 2θ ~6.5◦ and a shoulder at 2θ ~7.4◦. Since the basal reflection situated at 2θ = 6.5◦

(basal distance = 1.4 nm) is associated with hydrated trivalent europium cations in the inner
sphere complex located in the ditrigonal holes of the aluminosilicate, the basal reflection at
7.4◦ (distance = 1.2 nm) is attributed to hydrated Na+ cations in the interlayer space of the
mica type clay [19,33]. Attending to the relative intensities of the peaks, an almost complete
interlayer cation exchange of Eu3+ by Na+ can be deduced from the XRD diagram, where
a predominance of Eu3+-exchanged Mica-4 coexists with a minority of Na+-exchanged
Mica-4. Figure 4 also shows the TG analysis of Mica-4 before (c) and after (d) the exchange
of interlayer Na+ with Eu3+. The TG measurements were also followed by measuring the
water vapor evolution signal with temperature through mass spectrometry (in green). The
mass loss curve of swelling phyllosilicates is characterized by one mass loss step below
250 ◦C corresponding to desorption of water from the clay’s surface and dehydration of the
interlayer cation. Mica-4 has a mass loss step of ca. 6% associated with a maximum in the
water vapor curve at ~100 ◦C. The number of water molecules in the coordination sphere
for each Na+ cations has been calculated to be 0.7 from the 6% water loss, in agreement
with previous reports. The sample exchanged with Eu3+ cations showed more than one



Nanomaterials 2021, 11, 3167 8 of 13

mass loss step below 250 ◦C, suggesting the existence of water molecules attached to the
silicate through bonds with various levels of strength.
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The associated water vapor curve presents two maxima at ~130 and ~180 ◦C. The mass
loss of the Eu3+-exchanged Mica-4 was ~9%, which corresponds to 3.8 water molecules per
cation. It has to be mentioned that the whole amount of water was considered to identify
the coordination sphere of Eu3+ in the aluminosilicate from TG measurements. In both
samples, the interlayer cation adopted an inner-sphere conformation, since the existing
water molecules were not numerous enough to fully address the coordination sphere of
the interlayer cation. Thus, the coordination sphere would have been completed with the
basal oxygens of the tetrahedral sheet.

Sharp-line Eu3+ luminescence has been successfully used to study the adsorption
mechanisms of inorganic cations in different crystalline materials [34–36]. However, the
emission bands from Eu3+ adsorbed on other silicates are broad and not well resolved,
giving limited information about the closed environments of the luminescent cations in
the host materials. Most recently, the optical properties of Eu3+ in contact with a high
charge mica have been presented as an ideal tool to monitor the cation environment within
the clay [14]. Figure 5 includes the excitation (a) and luminescence (b) spectra of Eu3+

incorporated in the interlayer of a Mica-4 sample. The excitation spectrum, recorded at
610 nm, consists of a set of narrow peaks associated with f–f Eu3+ transitions from the 7F0
ground state to the different excited states marked in the Figure 5. The emission spectrum
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of Eu3+-doped Mica-4 was recorded upon excitation at 394 nm. Only the luminescence
from the 5D0 Eu3+ excited state is usually observed in clay minerals; however, the emission
spectrum of the Eu3+-doped Mica-4 is composed of sharp emission bands from both the 5D1
and 5D0 excited states to the 7FJ (J = 0–4) low-lying multiplets. The presence of the green
Eu3+ emission from the 5D1 excited state is associated with Eu3+ cations in the interlayer
space of the aluminosilicate, in agreement with the XRD results. The inset in Figure 6 shows
the temporal evolution of the 5D0 Eu3+ emission on a semilog scale. Clearly, non-single
exponential behavior is shown. As stated before, the 5D0 → 7FJ (J = 0, 3) transitions are
highly sensitive to the local environment of the Eu3+ [36]. Thus, analysis of the Eu3+ optical
properties, namely, luminescence intensity and lifetime, provides valuable information
regarding the adsorption process of an inorganic cation.
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Figure 6 shows the excitation and emission spectra of Eu3+ incorporated in the am-
phiphilic mica. The observed peaks are assigned to the same transitions as in Figure 5.
The temporal evolution of Eu3+ luminescence is also presented in the inset of Figure 6b.
Clearly, the decay curve is identical to the one observed for Eu3+ in the interlayer of Mica-4
(Figure 5b). This represents the first evidence of Eu3+’s incorporation in the interlayer of
the amphiphilic sample. Although its intensity is low (note the scale factor), the obser-
vation of the green Eu3+ emission from the 5D1 level is also consistent with the cation’s
incorporation in the amphiphilic mica interlayer. The 5D0→ 7F0 transition is very sensitive
to the environment; thus, the fact that it is slightly blue-shifted, narrower and more intense
for the amphiphilic mica, compared to the Mica-4 sample, is the result of small differences
in Eu3+–ligand angles and distances. The intensity ratio of the 5D0 → 7F2 and 5D0 → 7F1
transitions, R, is usually used as an indication of the Eu3+ site’s asymmetry. The fact that we
found R to be two-fold larger for the amphiphilic mica than the high charge mica evidences
stronger distortion of the Eu3+ coordination complex in the former.

Finally, to assure the stability of the functionalized Mica-4 after the adsorption of
Eu3+cations, the sample was analyzed through XRD and TG techniques. Figure 7b includes
the mass loss curve and DSC analysis from room temperature up to 800 ◦C. The mass
loss in the first step—below 170 ◦C—which is attributed to the loss of water molecules
adsorbed in the solid and preferentially from the hydration shell of the interlayer cations,
was ~3.4%. The mass loss was accompanied by an endothermic peak in the DSC curve.
This value is slightly superior to its equivalent step observed in the amphiphilic sample,
C16H33NH(CH3)2

+-mica.
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+-mica after Eu3+ cation adsorption (b).

The increment in the amount of water observed in this region can be explained by the
incorporation of Eu3+ in the solid, as it was suggested by luminescent measurements.

As it was mentioned before, the mass loss in the second region, between 170 and 500 ◦C,
was the result of the combustion process of the organics in the interlayer space of the clay
under an oxidative atmosphere, and it was also accompanied by one or more exothermic
peaks in the heat flow curve. The mass loss in this second region, after the adsorption of
the Eu3+ cations, was still the 35% of the sample mass, similar to the 38% described for the
starting functionalized mica. This fact proves the stability of the sample when it is dispersed
in an aqueous media, and it is indicative of the ability of the amphiphilic mica to be used as
adsorbent for inorganic cations. This adsorption probably occurs in the interlayer space of
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the sample through a cation exchange mechanism by substituting hydrated sodium cations
with Eu3+. Figure 7a includes the XRD patterns of the amphiphilic mica before (black) and
after the treatment with the Eu(NO3)3 water solution (red). No change was observed in
the positions of the (001) basal reflections relative to the alkylammonium cations in the
interlayer space. The basal distance was d = 3.3 nm for both samples, compatible with the
paraffin bilayer arrangement of the dimetilhexadecylammonium surfactant on the galleries
of the silicate, with a tilting angle of 32.2◦, previously described for the amphiphilic sample.
A broad contribution associated with the basal reflection (002) was observed after the Eu3+

uptake. Besides, the clusters of surfactant molecules situated in the bidimensional galleries
of the aluminosilicate remained unchanged.

4. Conclusions

We presented in this paper a versatile hybrid material as adsorbent of both ionic
and non-ionic pollutants. This dual functionality comes from a combined hydropho-
bic/hydrophilic interlayer after the functionalization of the high charge mica, Na-4-Mica,
with the tertiary (R-NH(CH3)2)+ amine, the alkyl length being 16 carbons. The ability of the
material to absorb non-ionic compounds was tested using cyclohexylamine, a strong base,
which is toxic at high exposure levels. From TG measurements, an adsorption capacity of
0.2 g of cyclohexylamine per gram of hybrid material was calculated for the amphiphilic
mica, under a saturated atmosphere of cyclohexylamine. Under these experimental con-
ditions, this hybrid material demonstrated better adsorption ability than its homologue,
the organo-mica. The amphiphilic sample was then exposed to a Eu3+ aqueous solution
as a proof of concept of the ability of the adsorbent to incorporate harmful inorganic
cations in its structure. Complementarily to XRD, optical measurements of Eu3+ served to
identify the adsorption mechanism of Eu3+ cations. Specifically, upon comparison with the
optical properties of Eu3+ in the interlayer of Mica-4, both the 5D0 Eu3+ lifetime and the
presence of green 5D1 emission corroborated the presence of Eu3+ in the amphiphilic clay
interlayer. Finally, the stability of the hybrid material was maintained through and after
the adsorption process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11123167/s1, Figure S1: Infrared spectra of the amphiphilic-mica, C16H33NH(CH3)2

+-
mica (red) and the organo-mica, C16H33NH3

+-mica (black).
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