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Abstract: Non-enzymatic amperometric glucose sensors have gained much attention in the past
decade because of the better chemical and thermal stability and biocompatibility compared to
conventional sensors based on the use of biomolecules. This study focuses on a novel copper and
copper oxide-based glucose sensor synthesized by an electrodeposition technique through a rigorous
protocol which reports an excellent analytical performance due to its structure and its increased active
area. In addition, the linear response range, detection limit and sensitivity were 0.5–5.0 mmol L−1,
0.002 mmol L−1, 904 µA mmol−1 L−1 cm−2, respectively. Results show a reliable electrode as it
is chemically stable, exhibits rapid and excellent sensitivity, and it is not significantly affected by
coexisting species present in the blood samples; furthermore, it reports a maximum relative standard
deviation error (RSD) of 6%, and showed long operating life as the electrode was used for thousand
measurements of 4.0 mmol L−1 glucose solution during three days.

Keywords: glucose sensor; non-enzymatic; copper oxide; sensitivity

1. Introduction

Non-communicable diseases (NCDs), which are not transmissible directly from one
person to another, tend to be of long duration and are the result of a combination of
genetic, physiological, environmental, and behavioral factors. The main types of NCDs are
cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes. According to
the United Nations, chronic diseases kill 41 million people each year, equivalent to 71% of
all deaths globally. Thus, this organization considers health a fundamental right for human
and sustainable development as non-communicable diseases (NCDs) were recognized not
only as a global health concern but also a threat to social and economic development [1].
Currently, almost 1 million people die from Diabetes and more than 400 million people
suffer from it. An accurate detection method of glucose concentration can be an effective
way to prevent and treat diabetes [2]. In this way, glucose sensors play an important role in
managing the level of blood glucose in diabetic patients.

Two different technologies are nowadays under development for improving glu-
cose sensors, enzymatic and non-enzymatic devices. The former type of glucose test
strips has dominated the glucose detection market since the earliest 60s. This biocatalyst
provides good selectivity and sensitivity for glucose determination in a self-monitoring
application [3]. Three different generations of glucose sensors are currently available.
The first-generation glucose sensors depended directly on the available oxygen since this
molecule was consumed by the immobilized enzymes for glucose oxidation. In the second-
generation auxiliary enzymes are coimmobilized with the analyte converting enzyme to
improve the analytical quality and to simplify the performance. Finally, the third genera-
tion eliminates the need for a reaction media by enzyme immobilization on the electrode
surface, then glucose is oxidized directly by the electrode. However, the second and third
generations present problems in terms of electrons transfer and poor reproducibility [4–7].
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Some authors report enzyme electrodes with different configurations for glucose
detection. Their results present good linear ranges and sensitivity values in accordance
with different biological fluids [8,9]. However, it is necessary to overcome barriers such as
electrode reusability as long-term sensors will be the commercial leaders in the diabetes
market. Attending lifespan criteria, non-enzymatic electrodes present better results than
enzymatic-based sensors.

The intrinsic chemical and thermal sensitivity of enzymes have stimulated researchers
to explore chemically and thermally stable metal compounds as alternative sensing ma-
terials for non-enzymatic glucose detection. This type of sensor forms an oxidation layer,
which catalyzes a glucose oxidation reaction, similar to that of the enzyme activity. Various
materials such as noble metals, transition metals, and low-cost metals have been considered
in this application. Noble metals, although they report good results in terms of linear range
and sensitivity, they present major problems related to poisoning, electron transfer kinetics,
and poor selectivity [10]. Transition metals and their oxides have gained much attention
because of the cost-effectiveness and good catalytic performance for glucose oxidation, in
terms of selectivity and sensitivity [11]. The third line of the periodic table of elements
contains metals relatively inexpensive and with a rapid and sensitive response toward
glucose molecules. Some examples are V, Mn, Fe, Co, Ni, Cu, and Zn [12–14].

In the case of copper, this metal has attracted much attention due to its properties: low
cost, several morphologies, good electrocatalytic activity, and high surface area. Copper
presents a good electrocatalytic capacity due to Cu2+ and Cu3+ ions, which act as a redox
pair in catalytic processes [15]. The proposed reaction mechanism for glucose oxidation to
gluconolactone in basic media is shown below:

Cu→ Cu2+ + 2e− (1)

Cu2+ + 2OH− → Cu(OH)2 (2)

Cu(OH)2 → CuO + H2O (3)

CuO + OH− → CuOOH + e− (4)

2CuOOH + glucosa→ 2CuO + glucolactone + 2H2O (5)

However, the single metal has poor conductivity, which hinders the transport of elec-
trons between the catalyst and the electrode, and thus, it reduces the catalytic performance
of the material [16]. Attending to the proposed reaction mechanism, copper oxide provides
a more direct glucose oxidation reaction.

In this context, previous works studied the effect of different copper oxide mor-
phologies and nanostructures for glucose detection. Thus, recent studies have proposed
nanospheres, nanowires, and nanostrips structures as they provide a larger specific surface
area and superior physical and chemical properties [17]. The results reported showed high
reproducibility, wide linear ranges, and low detection limits for glucose in alkali media. Dif-
ferent nanostructures have been tested in similar conditions, for example, Pourbeyram et al.
reported a copper oxide nanoparticle on a graphene oxide electrode with high sensitiv-
ity to glucose and a linear correlation in the range of glucose concentration from 0.1 to
150.0 µM [18]. Wang et al. have synthetized mesoporous CuO electrodes with a sensitivity
of 0.08 mA·mM-1 and a linear range of 170–310 µM [19].

To advance the state of the art, this work intends to develop a simple but useful
and robust, copper oxide electrode constituting a step forward in low-cost non-enzymatic
sensors. After a rigorous characterization for glucose sensing application, the results
achieved have been compared with complex copper oxides electrodes in terms of linear
range, sensitivity, and stability. Besides these aspects, the effect of common interferences
present in the glucose oxidation reaction has been studied.
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2. Materials and Methods

This section reports the materials used and the methods employed to the complete
characterization of the electrode, paying special attention to developing a synthesis method
that can be considered reproducible, effective, and environmentally friendly.

2.1. Apparatus and Chemicals

Copper (II) sulfate pentahydrate (≥99.9%), L-ascorbic acid reagent (99.7%), Ibuprofen
(≥98%), Sulfuric acid (≥99.7%), and Nafion TM 117 (5%) were purchased from Sigma-
Aldrich Corporation (St. Louis, MO, USA). For its part, D(+)-glucose anhydrous (97%),
ethanol (absolute pure), potassium chloride, and sodium hydroxide pellets were purchased
from PanReac AppliChem Uric acid (99%) was acquired from Alfa Aesar Chemicals (Haver-
hill, MA, USA). Finally, Potassium ferrocyanide (K4Fe(CN)6) and Hexaammineruthenium
(III) chloride (Ru(NH3)6Cl3) were purchased from Sigma Aldrich. All chemicals were used
as received without any further purification. Distilled water (18.2 MU cm) was used in all
experiments to prepare all solutions and was purified with the Millipore Advantage A10
water system.

The carbon and gold-based screen-printed electrodes with a visual area of 0.12 cm2

were purchased from Metrohm Dropsens. All measurements were performed with Palm-
Sens 4 potentiostat, galvanostat, impedance analyzer. The apparatus has a large potential
range (−10 V to 10 V) and a current range (100 pA to 10 mA) with a high resolution and low
noise. PSTrace 7 software collects and displays the measurements for the glucose detection
electrodes. The schematics of the experimental setup are shown in Figure 1.
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Figure 1. Experimental set-up.

2.2. Electrodeposition of Cu and CuO

The preparation of the working electrode consists of the reconditioning of the carbon
screen-printed electrode by washing with distilled water and immediately afterward
with pure ethanol. The electrode surface is then dried at ambient conditions. Before
the electrodeposition of copper particles, the cleaned surface is treated with two cyclic
voltamperometries techniques in the range of −0.6 V to 0.6 V vs. Ag/AgCl at a scan rate of
100 mV/s with 0.1 M CuSO4 5H2O and 0.1 M H2SO4. The solution is deposited onto the
electrode surface with the corresponding pipette.

Cu particles are electrodeposited by chemical reduction of 0.1 M CuSO4 5H2O in 0.1 M
H2SO4 using the chronoamperometry technique at −0.366 V vs. Ag/AgCl according to
previous studies [20]. The deposition time of Cu particles on the carbon-printed electrode
(CPE) was studied from 100 s to 800 s.

For the oxidation of copper particles, 20 voltammetry cycles from −0.5 V to 0.5 V vs.
Ag/AgCl at a scan rate of 100 mV/s with 1 M NaOH solution is needed. Figure 2 compares
the electrode before and after.
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2.3. Electrode Characterization and Electrochemistry Measurements

The electrode characterization is addressed by scanning electron microscopy (SEM)
and Energy X-ray Powder Diffraction analysis with the SEM microscopy EVO MA15
ZEISS ® (Germany). The morphology of the electrode surface after the galvanostatic
electrodeposition was studied by recording SEM images.

For the electrochemical behavior of the electrode, several techniques were used. Cyclic
voltammetry displays the redox reaction profiles, and therefore the glucose oxidation
potential can be determined for the different metallic microstructures. To mimic a real
application of a continuous glucose sensor, chronoamperometry and pulsed amperometry
detection techniques are mostly employed. A constant potential is applied while the
glucose is oxidized onto the electrode surface.

3. Results and Discussion

This section reports and discusses the main results accomplished for the development
of the new non-enzymatic amperometric glucose screen-printed sensor.

3.1. Characterization of Screen-Printed Electrodes Modified with Copper and Copper
Oxide Particles

Figure 3 depicts the SEM morphology of the synthesized sensors. The image shows
the presence of copper and copper oxide particles on carbon surfaces. The particle size for
copper and copper oxide is 2 µm, but particle agglomeration was more present in the case
of copper-based electrodes. The size is in accordance with previous articles and promotes
a high increment in the electrode surface area [20]. The particles were homogeneously
dispersed as shown by the white dots on both images (Figure 3a,b). Figure S1 in the
Supplementary Materials shows the rough surface of carbon screen printed electrodes,
where the copper microparticles are electrodeposited.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 
(a) (b) (c) 

Figure 2. Screen-printed electrodes (a) carbon printed electrode—before copper electrodeposi-
tion; (b) copper-based electrode—before oxidation step; (c) copper oxide electrode. 

2.3. Electrode Characterization and Electrochemistry Measurements 
The electrode characterization is addressed by scanning electron microscopy (SEM) 

and Energy X-ray Powder Diffraction analysis with the SEM microscopy EVO MA15 
ZEISS ® (Germany). The morphology of the electrode surface after the galvanostatic elec-
trodeposition was studied by recording SEM images. 

For the electrochemical behavior of the electrode, several techniques were used. Cy-
clic voltammetry displays the redox reaction profiles, and therefore the glucose oxidation 
potential can be determined for the different metallic microstructures. To mimic a real 
application of a continuous glucose sensor, chronoamperometry and pulsed amperome-
try detection techniques are mostly employed. A constant potential is applied while the 
glucose is oxidized onto the electrode surface. 

3. Results and Discussion 
This section reports and discusses the main results accomplished for the develop-

ment of the new non-enzymatic amperometric glucose screen-printed sensor. 

3.1. Characterization of Screen-Printed Electrodes Modified with Copper and Copper Oxide 
Particles 

Figure 3 depicts the SEM morphology of the synthesized sensors. The image shows 
the presence of copper and copper oxide particles on carbon surfaces. The particle size for 
copper and copper oxide is 2 μm, but particle agglomeration was more present in the case 
of copper-based electrodes. The size is in accordance with previous articles and promotes 
a high increment in the electrode surface area [20]. The particles were homogeneously 
dispersed as shown by the white dots on both images (Figure 3a,b). Figure S1 in the Sup-
plementary Materials shows the rough surface of carbon screen printed electrodes, where 
the copper microparticles are electrodeposited. 

  
(a) (b) 

Figure 3. SEM image of copper and copper oxide-based electrodes: (a) copper-based electrode; (b) 
copper oxide electrode. 
Figure 3. SEM image of copper and copper oxide-based electrodes: (a) copper-based electrode;
(b) copper oxide electrode.



Appl. Sci. 2021, 11, 10830 5 of 14

The composition of both electrodes was analyzed by using Energy X-ray Powder
Diffraction (EDX). Figure 4. illustrates the spectrum for the copper and copper oxide
profiles. As it is shown in Figure 4 copper was present in both electrodes in more than
50% in terms of weight percentage, 71% for copper-based electrode and 57% for copper
oxide electrode. Up to 30% of the weight of copper oxide corresponds to oxygen, while in
the case of copper-based electrodes the percentage is only 5%. These results are in good
agreement with previously reported results in the literature [21]. Sun et al., performed an
electrode composed of CuO spindle-like nanosheets grown on a carbon cloth [22].
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The electroactive area of the electrode was estimated from cyclic voltammetry per-
formed at different scan rates. Commercial gold, copper, and copper oxide particles’ active
areas were compared by using different reactants, [Ru(NH3)6]3+ and [Fe(CN)6]4−. These
species follow the next reactions when the potential is applied on the electrode surface [23,24]:

[Ru(NH3)6]3
+ + e− ↔ [Ru(NH3)6]2

+ (6)

[Fe(CN)6]3
− + e− ↔ [Fe(CN)6]4

− (7)

Peak to peak separation (∆Ep) analysis of the cyclic voltammetry profiles is useful
to determine if the redox process is reversible or irreversible. For those cases where
∆Ep—57 mV and is independent of the scan rate, the process is considered reversible.
On the contrary, when ∆Ep increases with the scan rate, the redox process is classified as
quasi- or irreversible.

In the latter case, the Randles Equation (Equation (8)) can be applied. This equation
relates the effect of scan rate on the current peak.

ip = 0.4463 ·
(

F3

RT

)
·n3/2·A·C·D1/2·v1/2 (8)

where F is Faraday constant (96,500 C mol−1), R is the universal gas constant (8143 J mol−1 K−1)
and T is the absolute temperature (K). The other parameters are: n, number of electrons in-
volved in the redox half-reaction (-); D, the diffusion coefficient for the redox-active species
on the solution media (cm2 s−1), C is the solution molar concentration of the redox species
(mol cm−3) and A is the surface area (cm2) and v is the scan rate of the experiment (V s−1).

The Randles–Ševčík equation is often written in an abbreviated form under the as-
sumption that the temperature is fixed at 298.15 K (25 ◦C) [25]. For this specific temperature,
the constants appearing at the beginning of the equation, 0.4463, can be combined allowing
the equation to be written in a simplified form as follows [25]:

ip =
(

2.99× 105
)
·n3/2·A·C·D1/2·v1/2 (9)
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The constant appearing at the beginning of this simplified equation, 2.99 × 105 is
known to have units C mol−1 v−1/2.

For gold-based electrodes, 1 mM K4Fe(CN)6 in 0.1 M KCl was used as redox solution
for active area determination. The scan rate varies from 100 to 10 mV s−1. Diffusion
coefficient of K4Fe(CN)6 in 0.1 M KCl were obtained from Pahlavi et al., which reported a
value of 7.6 × 10−6 cm2 s−1 [26].

Figure 5 shows cyclic voltammetry profiles and Randles Equation linear regression for
gold-based electrodes. As expected gold commercial visual area coincided with the active
area determined by the Randles–Ševčík equation, 0.12 cm2. This result demonstrates that
there are no significant nanostructures that contribute to increasing the surface area of the
commercial electrode. The experiment was repeated twice obtaining the same result, no
variation between visual and active area.
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Selecting the correct probe is crucial to gain accuracy in calculating the active area of
the electrode. For copper-based electrodes, K4Fe(CN)6 is not recommended because iron
ions interact with copper atoms leading to unstable cyclic voltammetry profiles, therefore
different probes should be used. In this work, [Ru(NH3)6]3+ salt has been selected for the
characterization of the active area of copper-based electrodes. In this case, the diffusion
coefficient of 5 mM Ru(NH3)6Cl3 in 0.1 M KCl was obtained from Lee et al. which reported
a value of 8.43 × 10−6 cm2 s−1 [24].

Cyclic voltammetry experiment displayed from 500 mV s−1 to 10 mVs−1 also was
used to determine the active area by the Randles–Ševčík equation. In this case, the surface
area was increased from 0.12 cm2 to 1.72 cm2. Considering all the experiments, the error is
less than 15%. Figure S2 represents the cyclic voltammetry experiment for copper-based
electrode and the linear fitting to the Randles–Ševčík equation (Equation (9)).

Ru(NH3)6Cl3 was also used for the determination of the copper oxide active area.
The experimental conditions were the same as in the determination of the copper active
area. In this case, the active area was 1.50 cm2. Figure S3 represents the cyclic voltammetry
experiment for a copper oxide electrode. Considering other tested electrodes, the average
active area was 1.6 ± 0.2 cm2.

3.2. Electrooxidation of Glucose

The oxidation mechanism of glucose was firstly studied by using cyclic voltammetry.
Figure 6 represents the cyclic voltammetry profile of the commercial gold, copper, and
copper oxide electrodes. All electrodes were conditioned with cyclic voltammetry with
0.1 M NaOH before use.
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As it can be seen in Figure 6, copper oxide provides a higher amperometric signal
when 5 mM glucose is oxidized in basic media. CuO is directly oxidized to CuOOH, a
strong oxidizing agent. The Cu (III) species then electrochemically oxidized glucose to
gluconolactone, responding to the oxidation peak of glucose’s oxidation reaction, as shown
in Figure 6. In the case of copper, this metal needs to be oxidized to Cu (III) in two reaction
steps. In the case of gold and bare carbon, they do not present significant catalytic activity
for glucose oxidation.

Cyclic voltammetry was also employed to determine glucose in different concentra-
tions using the reported electrodes as the working electrode. Based on the cyclic voltam-
metry profiles in Figure 6, the glucose oxidation potential is fixed in 0.55 V. Figure S4
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represents cyclic voltammetries for a copper oxide electrode from 1 to 10 mM of glucose.
These data were used to determine the calibration curve of the electrode.

All experiments were replicated three times keeping the same conditions: temperature,
pH, cycles voltage, and conditioning process. The calibration curves in Figure 7 show a
linear range of up to 5 mM of glucose in all cases. For copper oxide electrode, the linear
equation is y (µA) = 108.48 × (mM) + 8.59 with a regression coefficient of 0.99. In the case
of copper, the equation is y (µA) = 54.65 × (mM) + 36.06. The gold commercial electrode
does not show a significant sensitivity for glucose.
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Figure 7. Calibration curve of current response vs. glucose concentration for copper oxide, copper,
and commercial gold electrode.

The amperometric signal starts to decline because the active surface of the electrode is
saturated with glucose. The sensitivity reported in the linear ranges is 904 µA·mM−1·cm−2.
The limit of detection (LOD) was 0.002 mM, it was estimated by using (Equation (10)):

LOD = 3.3 ·
sy

S
(10)

where Sy is the standard deviation of the regression line and S is the slope.
Blood and interstitial fluid normal glucose values go from 4 mM to 11 mM of glu-

cose [27,28]. However, other biological fluids present glucose maximum values lower than
5 mM, this is the case of pleural, ascites, and spinal liquid besides urine and tears [29–33].

Table 1 shows results from similar non-enzymatic electrodes. The developed copper
oxide electrode provides good linearity and high sensitivity compared to similar electrodes
reported in literature.

Table 1. Copper and copper oxide-based electrodes for glucose sensing.

Electrode Linear Range (mM) LOD
(µM)

Sensitivity
(µA·mM−1·cm−2)

Media
NaOH Ref

Cu/Graphene 0.02–2.3 1.39 379.71 0.1 M [34]
Cu2O 0.05–6.0 0.13 277.1 0.1 M [35]

Cu/Polyaniline/Graphene 0.001–3.7 0.27 150 0.1 M [36]
CuO/NC 1 0.0001–2.55 0.14 272.6 0.1 M [37]
CuO/GCE 0.005–5.89 0.012 1467.32 0.1 M [38]

CuO/stainless 0–3 N/A 1017 0.1 M [21]
CuO/GCE 0–5 0.002 904 0.1 M This work

1 NC = nanocomposite.
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3.2.1. Reproducibility, Repeatability, and Stability

Copper oxide electrodes were also characterized in terms of reproducibility among
different electrodes, repeatability, and stability with time for different storage conditions:
NaOH 0.1 M, distilled water, and ambient conditions.

Measurements from nine different electrodes with different glucose concentrations are
represented in Figure 8. The variation among the electrodes is attributed to the variability
of the active area. Error bars corresponding to error less than 18% in the worst case. All
measurements were performed under basic media with cyclic voltammetry electrochemical
technique. Data were collected at 0.55 V vs. Ag/AgCl.
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Regarding repeatability, there is no significant variability among measurements within
the same copper oxide electrode. For this experiment, a glucose concentration of 4 mM was
measured up to 25 times with the same electrode. As it can be seen in Figure 9, all profiles
coincide pointing to good repeatability of the copper oxide electrode. Not all measurements
are represented in the chart below.
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A pulsed amperometric detection technique was employed to determine the stability
through time. This electrochemical technique uses a fixed potential to measure glucose
concentration in a bulk solution. The fixed potential was set to +0.55 V according to
previous experiments. Figure 10 shows 3 days measurements for the same copper oxide
electrode. A total number of 120 measurements were performed every day.
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Figure 10. Stability of copper oxide electrode. Pulsed amperometric detection (+0.55V) of 4 mM
glucose in 0.1 M NaOH during 1200 measurements each 10 s.

For the first day, the signal for 4 mM is slightly smaller than the one obtained with
cyclic voltammetry. However, its value remains constant at 360 ± 7 µA for 1000 s. For the
second and third day, the signal increased up to 426 and 416 µA, respectively. However, the
error percentage also increased to 6% in both cases. This signal increase could represent a
higher copper oxide/copper ratio due to the surface contact with the atmospheric oxygen.

Considering the electrode sensitivity, 904 µA mmol−1 L−1 cm−2, this increase repre-
sents a 12.5% over the concentration of the study (4 mM of glucose).

3.2.2. Common Interferences Study

Another important aspect of a good glucose sensor is the performance in the pres-
ence of common interferences. Most of the nonenzymatic glucose sensors based on pre-
cious metals and alloys present poison problems in presence of chloride ions [39]. Other
molecules such as ibuprofen (IB), ascorbic (AA), and uric acid (UA) were also investigated
since they are glucose coexisting species in common biological fluids. Concentration val-
ues for the analysis have been selected according to the maximum biological values in
the bloodstream [40–42].

Figure 11 represents the electrode signal for 4 mM of glucose with and without the
interferences of 0.41 mM UA and 0.05 mM of IB. At 300 s, the bulk solution—4 mM of
glucose and the corresponding interference concentration—was changed to the 4 mM
glucose solution. As it can be seen in Figure 11, the presence of 0.41 mM UA decreases
the electrode signal roughly by 16%, which according to the reported sensitivity, this
means a variation of 0.46 mM. It is hypothesized that uric acid may be adsorbed onto the
electrode surface blocking glucose to be oxidized. However, the signal reduction meets the
commercial error requirements.
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Figure 11. Pulsed Amperometric response of the copper oxide electrode in the presence of common
interfering substances and 4 mM of glucose at +0.55 V (vs. Ag/AgCl) in 0.1M NaOH (pH 13).
0.41 mM uric acid and 0.05 mM ibuprofen.

On the other side, ibuprofen does not interfere the glucose oxidation on copper
oxide electrodes.

Figure 12 shows the signal with chlorine and ascorbic acid interferences. This time
the experiment started with 4 mM glucose solution and after 340 s, the bulk solution was
replaced by a solution of glucose and the respective interference.
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Figure 12. Pulsed Amperometric response of the copper oxide electrode in the presence of common
interfering substances and 4 mM of glucose at +0.55 V (vs. Ag/AgCl) in 0.1 M NaOH (pH 13). 0.1 mM
ascorbic acid and 0.1 M chlorine.
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Chlorine reduced the electrode signal up to 15% while ascorbic acid reduced it by
nearly 14%. This result indicates that CuO/GCE relatively prevented the poisoning of the
chloride ion, which made some nonenzymatic glucose sensors lose their activity.

All interferences, except ibuprofen, decrease the glucose oxidation signal by less than
18%. It means that the interfering molecule is adsorbed on the active sites of the electrode
blocking the area for the glucose to be oxidized. However, the signal reduction fits the
standard error provided by ISO 15197.

4. Conclusions

In this study, the electrode made by CuO was successfully synthesized on a carbon
printed electrode. The reported protocol provided reproducible and good results in terms
of sensitivity, stability, and linear range up to 5 mM. In addition, the electrode response,
independently of common biological interferences, meet the ISO requirements for in vitro
glucose diagnostic self-test systems.

This work opens up new opportunities for constructing nanostructure material for
high-performance and affordable non-enzymatic glucose sensors. More efforts are still
needed for the development of electrodes sensitive to physiological conditions, especially pH.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112210830/s1, Figure S1: SEM image of carbon screen printed microelectrodes. (a) 200×.
(b) 2000×, Figure S2: Active area calculation for copper based electrode (a) Cyclic voltam-metry with
5 mM Cl3[Ru(NH3)6] in 0.1 M KCl with a scan rate from 500 to 10 mV s−1. (b) Randles-Equation
linear regression. Figure S3: Active area calculation for copper oxide based electrode (a) Cyclic
voltammetry with 5 mM Cl3[Ru(NH3)6] in 0.1 M KCl with a scan rate from 500 to 10 mV s−1.
(b) Randles-Equation linear regression. Figure S4: Copper oxide electrode cyclic voltammetry curves
(1 cycle, −0.7 to +0.7 V vs. Ag/AgCl) with different glucose concentrations in 0.1 M NaOH.
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