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Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms

(i. e., impulse control disorders) are frequent and disabling non-motor symptoms of

Parkinson’s disease (PD). The identification of changes in neuroimaging studies for

the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms

associated with Parkinson’s disease, as well as their pathophysiological understanding,

are critical for the development of an optimal therapeutic approach. In the current

literature review, we present an update on the latest structural and functional

neuroimaging findings, including highmagnetic field resonance and radionuclide imaging,

assessing cognitive dysfunction and impulse control disorders in PD.

Keywords: impulse control disorders (ICD), Parkinson’s disease dementia (PDD), mild cognitive impairment (MCI),

magnetic resonance imaging (MRI), positron emission tomography (PET), single photon computed tomography

(SPECT)

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world.
Formerly considered to predominately be a movement disorder caused by the degeneration of
dopaminergic neurons of the substantia nigra pars compacta (SNc) (1, 2). PD is now accepted to
also present with non-motor features as part of the clinical manifestations. Among them, cognitive
decline and neuropsychiatric alterations are highly debilitating and frequent.

In fact, the risk of developing dementia is about six times higher in PD patients than in age-and-
gender matched populations (3). Importantly, within the first 10 years of PD progression, dementia
appears in more than 50% of patients (4), reaching up to 80% in the long-term (3, 5). Furthermore,
mild cognitive impairment is highly prevalent in PD (PD-MCI) (mean 26.7%; range 18.9–38.2%)
(6–9) and is a risk factor for the development of dementia (PDD) (10). Longitudinal studies have
revealed that the conversion to dementia occurs in roughly 25–50% (6, 11) of PD-MCI patients
within 5 years.

The pathological basis of PDD is multifactorial, as demonstrated in post-mortem and
clinical studies (12). For example, studies have reported dopaminergic neurodegeneration within
the medial areas of the SNc, ventral tegmentum areas, and fronto-limbic areas (13), and
neurotransmitter dysfunction in the cholinergic projections from the nucleus basalis of Meinert
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as well as in the serotoninergic and noradrenergic efferent fibres
from the raphe nucleus and locus coeruleus, which play an
important role in cognitive dysfunction (14–16). Furthermore,
alpha-synuclein deposition in the form of Lewy bodies and
Lewy neuritis spreading to the amigdalar complex, hippocampus,
fusiform gyrus and temporal cortex along with synergistic
Alzheimer’s disease (AD) pathology with beta-amyloid plaques
and phosphorylated tau (neurofibrillary tangles) (17) are also
critical in the pathogenesis of the cognitive decline.

Apart from cognitive impairment, psychiatric conditions are
also common in PD, affecting the majority of patients during
the course of the illness. The most frequent and problematic are
affective disorders (depression and anxiety), psychosis (mainly
visual hallucinations), apathy, and impulse control disorders
(ICDs) (18). Themost common ICDs experienced by PD patients
include pathological gambling, binge eating, hypersexuality, and
compulsive shopping, as well as other impulsive-compulsive
behaviours (ICBs), such as punding, hobbyism or walkabout.
To further complicate matters, approximately 14–17% of PD
patients treated with dopaminergic replacement therapy, in
particular with dopaminergic agonists (DA), may develop ICDs
(19) although the cumulative incidence can be much higher
(over 46%) (20) ICDs often result in devastating financial, legal,
or psychosocial problems (19). Unfortunately the management
of these behaviours, which typically involves reducing DA
treatment, can be challenging and often carries the risk of motor
worsening or the development of DA withdrawal syndrome (21).

The development of neuroimaging techniques, including
high field structural and functional magnetic resonance (MRI)
and nuclear imaging, using positron emission tomography
(PET) and single photon emission computed tomography
(SPECT), helps in the diagnosis and monitoring of the motor
and cognitive impairments associated with PD. Furthermore,
neuroimaging can be used to shed light on the underlying
pathophysiological aspects of cognitive impairment and
neuropsychiatric manifestations, which in turn are associated
with high levels of patient disability and morbidity.

In the current review, and for the sake of brevity, we will
focus on cognitive decline and ICDs in patients with PD. To this
end, we conducted a literature review of existing functional and
structural imaging studies in cognitive dysfunction and ICD in
PD. We performed a thorough search of the PubMed database
selecting for English language articles containing “Parkinson’s
disease dementia,” “mild cognitive impairment,” “impulse control
disorders,” “imaging,” “PET,” and “MRI” published up until the
15th of March, 2021. The abstracts were screened for relevance,
and carefully read if they were suitable. This review highlights
the imaging modalities that detect consistent brain changes
associated with cognitive impairment and ICD in PD.

COGNITIVE IMPAIRMENT AND DEMENTIA

Magnetic Resonance Imaging
Grey Matter
Grey matter (GM) abnormalities have been the focus of
numerous MRI studies in PD. Methodological approaches have
substantially changed over the years. Analytical tools did only

allow for regions of interest (ROIs) approach in early studies,
which consisted of delineating certain brain areas, measuring
their volume, and comparing them among different groups. This
approach has been clearly overtaken by whole-brain approaches,
which are able to disclose differences in GM volume without
an a priori hypothesis. There are two main techniques, voxel-
based morphometry (VBM) and surface-based analyses (SBA),
both of them widely used in current studies. Whereas VBM
measures GM volume, SBA is able to measure cortical thickness.
As compared to VBM, cortical thickness is more sensitive to
cortex changes, possibly because it is less dependent on cortical
folding and the overall brain size (22). In the present review, we
only include VBM and SBA studies (see Table 1).

Early whole-brain studies found higher levels of atrophy in
PDD and PD-MCI patients compared to their cognitively normal
counterparts (PD-NC) and control subjects [for review see (70,
71)], particularly in the parietal, occipital, mesial temporal, and
frontal lobes, as well as in the hippocampus, amygdala, caudate,
putamen, thalamus and substantia innominata. Furthermore,
compared to PD-MCI patients, PDD patients exhibit GM
reductions in the temporal and prefrontal areas (25), the
amygdala (26), the anterior cingulate, the entorhinal and
orbitofrontal cortices as well as in the parahippocampus,
temporal pole, precuneus, and fusiform and lingual areas (28). A
recent meta-analysis of voxel based morphometry (VBM) studies
found that PD-MCI patients exhibited greater atrophy in the left
anterior insula compared to PD-NC patients (35). However, PD-
MCI is a heterogeneous clinical entity in which one or several
cognitive domains may be affected. Therefore, the focus of the
field over the last few years has been to elucidate what type of
PD-MCI confers a higher risk of progression to dementia. Most
studies in PD-MCI patients, who were prospectively followed
and classified according to conversion (or not) to PDD, found
that frontal atrophy was associated with conversion to dementia
(36, 72, 73). In fact, PD-MCI patients who converted to dementia
in <3 (36) or 4 years (37) had greater widespread atrophy
and cortical thinning in the frontal, insular, and left middle
temporal lobes at baseline than non-converters, with frontal lobe
atrophy being the strongest predictor of progression to dementia
(37). These findings were reinforced by a cross-sectional study
showing that patients who developed PD-MCI within 2 years
of diagnosis exhibited greater atrophy in the superior frontal
gyrus than those with later cognitive decline (40). In addition,
longitudinal studies in PD-NC patients who converted to PD-
MCI patients over time showed greater GM atrophy in the
frontal, parietal, and temporal areas (32), as well as in the insular
cortex and caudate nucleus (29, 32, 39). Overall, the presence of
frontal lobe atrophy seems to be a good predictor for cognitive
decline in both PD-MCI to PDD and PD-NC to PD-MCI
patients, which in turn is associated with lower cognitive scores
on frontal/executive, language, and memory domains (7, 72–74).

Alzheimer’s disease (AD)-related pathology is also present in
cognitively impaired PD patients, specifically of the amnestic
type (75). In fact, the presence of AD-related atrophy, such as
hippocampal atrophy, has been described in PD patients with
cognitive impairment. Previous studies have found increased
hippocampal and entorhinal cortex atrophy in PDD patients
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TABLE 1 | Magnetic resonance imaging studies of cognitive impairment or dementia in Parkinson’s disease.

References Population Radioligand and

technique

State Main results/findings

Grey matter imaging

Camicioli et al. (23) PD-MCI

PD-NC

VBM Resting ↓ hippocampus (AD < PD-NC < PDD < HC)

↓ left hippocampus correlated with recognition memory and MMSE

Brück et al. (24) PD-NC VBM Resting ↓ hippocampus and prefrontal (PD < HC)

↓ left hippocampus correlated with verbal memory

↓ prefrontal atrophy correlated with sustained attention tests

Song et al. (25) PD-MCI

PDD

PD-NC

VBM Resting ↓ bilateral temporal, left prefrontal, insular, right occipital (PDD < PD-MCI < HC)

↓ right parietal, middle frontal, insular, striatum (PDD < PD-MCI < PD-NC)

↓ PCC correlated with disease duration in PDD

Choi et al. (26) PDD

PD-MCI

PD-NC

VBM Resting ↓ substantia innominata (PDD > PD-MCI and PD-NC)

↓ substantia innominata correlates with MMSE, attention and object naming

domains.

Beyer et al. (27) PD-MCI

PD-NC

VBM Resting ↓ hippocampal volume (CA1, CA3 and subiculum area) (PD-MCI, PD-NC < HC)

↓ hippocampal volume correlated with CVLT-2 delayed free recall

↓ right hippocampal CA1 and subicular region correlated with CVLT-2

recognition score

Pagonabarraga et

al. (28)

PDD

PD-NC

SBA Resting ↓ parietal, temporal, occipital areas (PDD < PD-MCI < PD-NC)

↓ temporal correlated with attentional and language deficits

↓ occipital correlated with attentional, memory and language deficits.

Lee et al. (29) PDD

PD-MCI

PD-NC

VBM Resting

(Longitudinal)

↓ left prefrontal, left insular and CN (PDD converters < PD-MCI no converters)

PDD converters associated with ↓ executive function, verbal memory, visual

recognition memory

Filoteo et al. (30) PD-NC VBM Resting ↓ medial temporal and frontostriatal areas correlated with memory deficits

↓ frontostriatal volumes correlated with executive function

↓ frontal and occipital volumes with visuospatial function

Kandiah et al. (31) PD-NC VBM Resting

(longitudinal)

↓ Hippocampal volume is a risk factor for PD-MCI and PDD

Wen et al. (32) PD-NC VBM Resting

(longitudinal)

↓ frontal areas in PDD converters

↓ frontal and parietal areas associated with global cognitive scrores

Foo et al. (33) PD-NC

PD-MCI

VBM Resting

(longitudinal)

↓ right hippocampus at baseline (PD-MCI < HC)

↓ baseline right CA1 correlated with attention

↓ CA 2-3 at follow-up correlated with episodic memory in PDD converters

Low et al. (34) PD-NC SBA Resting

(longitudinal)

↓ global hippocampal at baseline predicted PDD

↓subiculum and fimbria volume correlated with attention and executive functions

Zheng et al. (35) PD-MCI

PDD

PD-NC

VBM Resting

(meta-analysis)

↓ left anterior insula in PD-MCI < PD-NC (predictor)

Gasca-Salas et al. (36) PD-NC

PD-MCI

SBA Resting

(meta-analysis)

↑ thinning in bilateral frontal, insular and left middle temporal areas (PD-MCI

converters > PD-MCI non-converters > controls)

Chung et al. (37) PD-MCI

PDD

PD-NC

SBA Resting ↑ thinning from posterior cortical area to frontal cortex (PDD converters > PDD

non-converters)

↑ thinning in right medial superior frontal and olfactory cortices distinguishes

PDD converters from PDD non-converters.

Xu et al. (38) PD-NC VBM Resting

(longitudinal)

↓ bilateral hippocampal at baseline (PD-NC < HC) correlated with MMSE

↓ bilateral CA4, ML, GC-DG subfields, and left CA2/3 and right presubiculum

subfields at follow-up (PD-MCI < PD-NC) correlated with MMSE and MOCA.

.

Zhou et al. (39) PD-MCI

PDD

VBM Resting

(longitudinal)

↓right temporal at baseline and left temporal and frontal lobe at follow-up (PDD

converters < non-converters)

Donzuso et al. (40) PD-MCI

PD-NC

VBM Regional ↓ frontal gyrus, precuneus, angular gyrus, temporal lobe and cerebellum (PD-MCI

< HC)

↓ frontal gyrus correlated with RCPM

↓ precuneus correlated with accuracy of Barrage

↓ Inferior frontal gyrus with Stroop test.

White matter imaging

Kamagata et al. (41) PDD

PD-NC

DTI Resting ↓ FA in prefrontal white matter and genu of corpus callosum (PDD < PD-NC)

↓ FA in prefrontal white matter and genu of corpus correlated with MMSE

(Continued)
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TABLE 1 | Continued

References Population Radioligand and

technique

State Main results/findings

Hattori et al. (42) PDD

DLB

PD-NC

DTI Resting ↓ FA in bilateral in SLF; ILF, IFO, UNF, CIN, INC, CCA, CRA (DLB, PDD, PD-MCI

< PD-NC and controls)

↓ FA in parietal WM areas with MMSE

Deng et al. (43) PDD

PD-MCI

PD-NC

DTI Resting ↓ FA left frontal and right temporal WM (PDD, PD-MCI < PD-NC)

↓ FA left AC and CC splenium correlated with disease duration

Meltzer et al. (44) PDD

PD-MCI

PD-NC

DTI Resting ↓ FA and ↑ MD in SLF, IFU, UNF and corpus callosum (PDD , PD-NC < HC)

↓ FA in anterior WM tracts correlated with executive function

↑ MD in anterior WM tracts correlated with global cognition deficits

Agosta et al. (45) PD-MCI

PD-NC

DTI Resting ↓ FA in SFO, IFO UNF, genu and body of CC (PD-MCI < HC)

Auning et al. (46) PD-MCI

PD-NC

AD

DTI Resting ↓ FA in WM of temporal-parietal tracts (PD-MCI < HC). No differences PD-MCI vs

AD.

↓ FA in WM prefrontal tracts with executive and visuospatial deficits.

Chen et al. (47) PDD

PD-NC

DTI Resting ↓ FA left hippocampus (PDD < PD-HC)

↑ MD in SLF, SFO, UNF, genu of corpus callosum (PDD > PD-HC)

↓ FA in SLF, SFO and hippocampus correlated with MOCA

Bledsoe et al. (48) PDD

PD-NC

DTI Resting ↑ MD and AD in anterior segments in CC (PDD > PD-NC)

↑ MD and AD in anterior CC associated with global and specific cognitive

domains in PDD.

Chondrogiorgi et al.

(49)

PDD

PD-NC

DTI Resting ↓ FA body corpus callosum, cingulum, corona radiate (PDD < PD-NC)

↓ FA and ↑ MD in limbic, prefrontal and CC tracts associated with PD-CRS

Beyer et al. (50) PDD

PD-NC

WMH Resting ↑ WMH in deep WM and periventricular areas (PDD > PD-NC)

WMH is associated with MMSE

Lee et al. (51) PDD

PD-NC

AD

WMC Resting ↑ WMH in PDD > PD-NC

WMH correlated with UDPRS, MMSE and PD-CDR

Joki et al. (52) PDD

DLB

PD-NC AD

WMC Resting ↑ WMH in DLB and AD > PDD > PD-HC and HC

Huang et al. (53) PD-MCI

PD-NC

WM Resting WHM burden associated with PD-MCI (p < 0.05) besides the presence of CV risk

factors

Periventricular WMH burden associated with executive function and visuospatial

function

Functional MRI

Lewis et al. (54) PD-NC

PD-MCI

fMRI Working memory

task

↓activity of caudate nuclei during retrieval and manipulation. (PD-MCI < PD-NC)

Underactivation of dorsolateral and ventrolateral prefrontal cortex and right

putamen

Monchi et al. (55) PD-MCI fMRI Card-sorting task ↓activity in tasks involving the caudate nucleus in DLPFC and VLPFC in PD

↑ activity in tasks that do not require the caudate nucleus in DLPFC and VLPFC,

premotor, posterior prefrontal

Seibert et al. (56) PDCN

PDD

fMRI Resting No differences in FC of the DMN (PD-NC = PDD)

Baggio et al. (57) PDCN

PD-MCI

fMRI Resting ↓ connectivity in long-range connections and increased local

interconnectedness (PD-MCI < PD-NC)

Lebedev et al. (58) PD fMRI Resting Executive impairment associated with altered balance between cortical and

subcortical processing at rest

Amboni et al. (59) PD-MCI

PD-CN

fMRI Resting ↓ FC of bilateral prefrontal cortex within left F-P network (PD-MCI < PD-NC).

Positive correlation between visuospatial function Z score and left prefrontal

cortex ICA z score.

Baggio et al. (60) PD-MCI

PDCN

fMRI Resting ↓ FC of the DAN with widespread, right sided, frontal/insular areas, thalami and

left striatum (PD-MCI < HC) .

↓ FC less extensive, and regions of DAN itself and of the right FPN. (PD-MCI <

PD-CN)

Gorges et al. (61) PDCN

PD-MCI

fMRI Resting ↓ intrinsic FC within the DMN, the motor network, and the DAN (PD-MCI < HC)

↓ intrinsic FC preferentially in the DMN, but also in the motor, DAN, VAN, and

basal ganglia-thalamic intrinsic functional networks (PD-MCI < PD-CN)

(Continued)
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TABLE 1 | Continued

References Population Radioligand and

technique

State Main results/findings

Shin et al. (62) PDCN

PD-MCI

(early/late)

fMRI fResting ↓ FC in parahippocampal gyrus, DLPC temporal, and precuneus; ↑ FC in the

inferior frontal, primary motor, and occipital areas (PD-MCI early vs PD-CN)

↓ in the medial frontal areas andcingulate cortex and ↑ FC in the parietal and

occipital areas (PD-MCI (longer) vs PD-CN)

Chen et al. (63) PDCN

PD-MCI

fMRI Resting ↓ in PCC-prefrontal cortex, left parieto-occipital juntion, and right temporal gyrus

(PD-MCI < PD-CN)

↓ PCC- left inferior temporal gyrus, hippocampus, inferior parietal lobules and

PCC/precuneus (PD-MCI <. HC)

Bezdicek et al. (64) PD-CN

PD-MCI

fMRI Resting ↓ FC in bilateral superior parietal lobule and precuneus (PD-MCI < PDCN)

↓ interconnectedness of the lentiform nuclei and midcingulate cortex,

precuneus, the superior parietal cortex and extended portions of the

temporoparietal associative cortex bilaterally (PD-MCI < HC)

Diez-Cirada et al. (65) PDCN

PD-MCI

HC

fMRI Resting No differences (PD-MCI vs. PDCN)

↓ internetwork FC between the somatomotor and cognitive control networks,

somatomotor and visual networks, somatomotor and auditory networks,

cognitive control and visual and subcortical and DMN (PD-MCI < HC).

Hou et al. (66) PD-MCI

PD-NC

fMRI Resting ↓ activity betweem DMN and prefrontal cortex (PD-MCI < PD-CN)

Wolters et al. (67) PDD

PD-MCI

PD-NC

fMRI Resting

(meta-analysis)

↓ activity in Dorsomedial prefrontal cortex (within the DMN) in PD-MCI

Fathy et al. (68) PD-MCI

PD-NC

fMRI Resting ↓ FC of DMN and dorsal anterior insula associated with cognitive performance in

PD.

↓ connectivity between dAI and ACC was associated with reduced CAMCOG

scales

Pan et al. (69) PD-MCI

PD-NC

fMRI Resting ↑ FC between dAI and superior parietal gyrus (PD-MCI vs PD-NC) correlated with

memory and executive tests

↑ FC between dAI and cingulated gyrus (PD-MCI vs HC) correlated with

attention/working memory, visuospatial function, and language

PD-NC, PD with normal cognition; PD-MCI, PD with cognitive impairment; PDD, PD with dementia; LBD, Lewy Body Dementia; AD, Alzheimer’s disease; MMSE, Mini metal State

Examination; MOCA, Montreal Cognitive Examination Test; RCPM, Raven Coloured Progressive VBM, Voxel-Based Morphometry; SBA, Surface-based approach; CVLT II, California

Verbal Learning Test II; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; OCC, Occipital; SLF, Superior longitudinal fasciculus; IFL, Inferior longitudinal fasciculus; SFO,

Superior frontooccipital fasciculus; IFO, Inferior frontooccipital fasciculus; UNF, Uncinate fasciculus; CIN, Cingulum; INC, Internal capsule; CCA, Corpus callosum; CRA, Corona radiata.;

WMH, White matter connectivity; FC, functional connectivitiy; rs-fMRI, resting state functional magnetic resonance imaging; DMN, default mode network; DAN, dorsal attention network;

VAN, ventral attention network,; DLPFC, dorsolateral prefrontal cortex; VLPDF, ventrolateral prefrontal cortex; CAMCOG, Cambridge Cognition Examination.

compared to non-demented patients (70, 71), which was
associated with memory impairment (24, 27, 30). In addition,
reduced hippocampal volume has been associated with the
development of PD-MCI and PDD in longitudinal studies (29,
31, 76). Recent advances in analytical imaging procedures have
allowed the analysis of hippocampal subfields volume, indicating
that the atrophy of some regions might confer higher risk of
dementia (33, 34, 38).

The association of certain gene variants and cognition and
their influence on structural changes have been assessed in some
studies. Among genes associated with PD, glucocerebrosidase
(GBA) mutations confer the highest risk of dementia. PD
patients with GBA mutations as compared to those without
GBA mutations experienced a more rapid motor and cognitive
decline together with a greater, earlier and faster cortical thinning
in posterior parieto-occipital regions as well as frontal and
orbito-frontal cortices as demonstrated in longitudinal study
(77). The catechol O-methyltransferase (COMT) Val158Met
polymorphism has also been associated with cognitive decline.
It has been recently shown that PD patients harbouring the

Val/Val genotype had widespread reduction in GM, including
fronto-subcortical and parieto-temporal territories (78). Finally,
microtubule-associated protein tau (MAPT) H1/H1 genotype is
considered a risk factor for taupathies in addition to cognitive
dysfunction in PD. In an interesting study from Sampedro et al.
(79) cross-sectional and longitudinal GM reductions in parieto-
temporal areas were found in PD patients with homozygous
for MAPT H1 compared to PD patients not harbouring this
genetic mutation.

In summary, GM atrophy occurs in the early stages of
cognitive decline in PD, and steadily increases along with the
progression of cognitive deficits, before broadly affecting the
cortical and subcortical areas in the dementia stage. Therefore,
atrophy in frontal areas and certain hippocampal subfields might
lead to the development of dementia in PD and should be
considered as a potential biomarker.

White Matter
Several studies have shown that fractional anisotropy (FA) is
reduced and mean diffusivity (MD) is increased in the main
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white matter (WM) tracts (the superior and inferior longitudinal,
inferior fronto-occipital, cingulate and uncinated fasciculi, and
the anterior limb of the internal capsule) of PDD patients
compared to PD-NC patients or controls [for review see (70,
71)]. Similarly, PD-MCI patients exhibit less FA than PD-NC
patients or controls in the inferior fronto-occipital and uncinate
fasciculi corpus callosum as well as the corona radiate (42–
45, 80). Interestingly, a previous longitudinal study observed
higher widespread MD in patients with PD-MCI than in those
with PD-NC at 18 months follow-up (81), which correlated
with lower executive and attention cognitive scores. It has been
suggested that WM alterations conveying a cortical-subcortical
disconnection may precede GM changes in PD patients during
the process of cognitive decline. Indeed, Hattori et al. found
prominent WM changes in both PDD and PD-MCI patients,
while concurrent GM changes were only observed in subjects
with PDD (42).

The role of WM tracts in cognition is further supported
by several studies reporting correlations between cognitive
functions and WM abnormalities in PD-NC patients. In fact,
global cognition has been shown to be correlated with low
FA values in the superior and inferior longitudinal fasciculi,
the inferior fronto-occipital fasciculus, the corpus callosum,
the uncinated fasciculus, and the cingulum (41, 47, 82, 83).
Furthermore, impairments in executive function have been
consistently found to be associated withWMabnormalities in the
frontal and parietal regions (46, 48, 49, 84).

Another, seemingly more imprecise, way of assessing WM
integrity is detecting the presence of WM hyperintensities
(WMHs), which has yielded heterogeneous results. For example,
several longitudinal studies did not find any significant
differences in WMHs between PD-MCI, PDD and PD-NC
patients (51, 85, 86) or any association between WMHs
and clinically relevant cognitive decline in studies (86).
However, others studies have reported greater deep WMHs and
periventricular WMHs in PDD patients compared to PD-NC
patients (50–52) and in PD-MCI to PD-NC patients ( 68).

In summary, WM integrity is disrupted in the main tracts in
PD-MCI and PDD patients. These changes might precede GM
atrophy suggesting that abnormalities within keyWM tracts may
be the first structural changes resulting in functional asynchrony
of interconnected brain regions devoted to cognitive function.
The value of several WM related metrics, such as FA and MD, in
the early diagnosis of cognitive decline deserve further attention.

Functional MRI
Functional connectivity (FC) studies assess regional activation
of the brain or the level of dependency between two or
several anatomic locations through functional MRI (fMRI) in
resting state or with the execution of experimental paradigms.
The default mode network (DMN) symmetrically involves the
medial prefrontal cortex, precuneus, posterior cingulate gyrus,
inferior parietal lobes, and lateral temporal cortices (87) and is
activated during cognitively demanding tasks requiring higher-
order conceptual representations (87). It is the most studied
resting-state network in PD, showing enhanced activity during
rest and decreased activity during experimental tasks.

Importantly, there is a clear direct association between
DMN activity and cognition in PD. For example, a resting-
state fMRI study (88) found that PD-NC patients displayed
a positive correlation between the connectivity of their right
medial temporal lobe and the DMN in the context of memory
performance, as well as between the inferior parietal cortex and
the DMN in visuospatial performance. A recent meta-analysis
found that cognitive impairment in PD was associated with brain
FC alterations, predominantly in the DMN (67). Studies in PD-
MCI patients have also revealed functional hypoconnectivity of
the DMN (61–63, 89, 90), which was positively associated with
global cognitive function (63, 68, 91, 92). Interestingly, DMN
connectivity with the occipital and posterior parietal cortical
regions was found to be increased in PD-MCI patients (60),
which in turn was correlated with visuospatial performance and
occipital-parietal cortical thinning (57). Findings from other
studies suggest that DMN connectivity abnormalities can be
used to characterise PD patients, regardless of their cognitive
status (66, 93), and that other resting-state networks, such as the
fronto-parietal network (FPN), are more specifically linked to
PD-MCI (59). Nevertheless, abnormalities in other resting-state
networks, such as in the sensorimotor network (SMN) (65, 89),
the ventral attention network (VAN) (94), the dorsal attention
network (DAN) (64), and the salience network (SN) (69) have
been found to be associated with PD-MCI, and with low cognitive
performance in PD patients (54, 58, 95). However, differences in
pre-processing and analysis methods as well as in the PD-MCI
criteria may explain the heterogeneity of these results.

Importantly, fMRI task-based studies have shown that PD-
NC patients demonstrate weaker recruitment of several areas,
including the anterior cingulate cortex, caudate, putamen, and
left precentral gyrus as well as the medial, dorsolateral and
ventrolateral prefrontal cortices during working memory or
executive function tasks (55, 96, 97). However, those changes are
also found in PD-MCI patients, hence they may be associated
with the presence of executive dysfunction (54).

Recognition memory is typically impaired in patients with
dementia (98). fMRI while performing a verbal memory
paradigm PD patients showed a weaker deactivation than
controls in the inferior orbitofrontal and temporal cortices that
correlated with verbal recognition memory (99).

In conclusion, an altered pattern of resting FC in the DMN
seems to be associated with cognitive impairments in PD, which
in turn is associated with posterior cortical cognitive deficits
that eventually progress to dementia. Functional brain changes
might precede structural abnormalities and thus, the value of
fMRI in early diagnosis is a promising tool to be considered in
further studies.

Nuclear Imaging
Brain Glucose Metabolism
Several [18F] fluoro-D-glucose ([18F]FDG) PET studies with
PD-MCI patients show reduced frontal, temporoparietal,
occipital and precuneal metabolism as well as the caudate
nucleus compared to healthy controls, and in less degree to
PD-NC (100–104), being regional hypometabolic changes more
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marked in multi-domain PD-MCI patients than in single-
domain (103). Furthermore, extensive areas of hypometabolism,
mostly affecting the posterior cortical regions, including the
parieto-occipital, associative parietal, and inferior temporal
cortices (102) and to a lesser degree, the striatum and prefrontal
cortex (101, 104, 105), have been observed in PDD patients when
compared to controls, PD-NC and PD-MCI (see Table 2).

Several longitudinal studies have assessed the progression of
regional metabolic changes in PD with cognitive dysfunction
(100, 107, 108). The aforementioned studies showed severe
bilateral hypometabolism in parieto-occipital areas, especially
within the visual association cortex (Broadman area 18) and
posterior cingulate cortices (100), as well as the fusiform gyrus
(107), predicting cognitive decline after more than 2 years follow
up, thus heralding the conversion from PD-NC and PD-MCI
to PDD.

The role of regional hypometabolism in cognition is further
supported by several studies reporting correlations between
memory and visuospatial functions in the posterior temporal and
parietal regions and also with attentional, executive, and language
functions in the frontal regions in patients with PD-MCI and
PDD (101, 144). Furthermore, in a prospective study (145)
found that the association between reduced regional metabolism
in temporoparietal and occipital areas and the presence of
visual hallucinations in linked with the conversion from PD-NC
to PDD.

Using voxel-based spatial covariance analysis of FDG imaging,
previous studies described the presence of a PD cognition-related
pattern (PDCP) (106) consisting of hypometabolism in the
medial prefrontal, premotor, precuneus, and parietal association
areas. This pattern increased over time along with cognitive
decline (146), and was associated with dopaminergic denervation
in the nucleus caudate (116), as well as with executive and
memory performance in PD-MCI patients (106). The expression
of PDCP has been considered as a potential imaging biomarker
for cognitive dysfunction in PD, although its prognostic value is
yet to be ascertained (147).

The relationship between cerebral metabolism and atrophy
displays dissociable patterns along cognitive impairment in
PD, with regional hypometabolism preceding spatially matching
structural atrophy areas (105). Thus, in PD-MCI patients,
areas with hypometabolism exceed atrophy in the angular
gyrus, occipital, orbital, and frontal lobes, however in PPD
patients; these hypometabolic areas are replaced by atrophy and
widespread cortical and subcortical reductions in metabolism
is observed surrounding the atrophy areas. This indicates that
there is a specific gradient of severity in cortical changes as
cognitive dysfunction progresses in PD, with atrophy lagging
behind hypometabolism as the pathological stages continue.

In conclusion, changes in brain glucose metabolism are
present at the early stages of cognitive impairment in PD with
hypometabolism in posterior parieto-occipital areas in PD-MCI,
which steadily extends to the frontal and subcortical areas in
PDD. Hypometabolism in the posterior cortex may point to the
development of dementia in PD, representing an earlier step to
grey matter atrophy.

Dopamine
Several studies have suggested that cognitive dysfunction in PD
is partially based on striatal dopaminergic degeneration, which
leads to dysfunction of the frontostriatal pathways (109, 110, 114,
115). In fact, studies have found that PDD and in less degree PD-
MCI patients have a greater striatal dopaminergic deficit than
PD-NC patients, as assessed with either 123I Ioflupane FP-CIT
SPECT (110, 114) or 18Flurodopa (F-Dopa) PET (109, 111).

In particular, higher dopaminergic denervation in the caudate
nucleus has been found to be associated with dysfunction in
working memory, attention, and verbal fluency (109, 112–114)
in both PDD and PD-MCI patients. Importantly, the associative
fronto-striatal circuitry (orbitofrontal and dorsolateral prefrontal
cortices) is known to be modulated by caudate dopaminergic
signalling in PD patients suffering from executive dysfunction
(115). Dopamine transporter (DAT) binding in the caudate
nucleus is associated with the expression of the PD-related
cognitive pattern (PDCP) (116), highlighting the importance
of nigral dopaminergic input in the caudate nucleus and its
cognitive functioning in PD. According to previous studies,
reduced DAT availability in the caudate nucleus may be used
as a potential predictor of cognitive dysfunction in PD (148),
but only when combined with other diagnostic biomarkers in a
multiple regression analysis including CSF (Aβ42 to t-tau ratio)
and non-motor clinical scales (Montreal Cognitive Assessment
(MoCA) andUniversity of Pennsylvania Smell Identification Test
(UPSIT) scores).

Dopaminergic depletion in extrastriatal areas derived from
mesocortical and mesolimbic projections is also involved in the
cognitive dysfunction associated with PD. For example, previous
studies have found that frontal areas, including the anterior
cingulate cortex (ACC) and middle frontal gyrus as well as the
caudate nucleus, displaying reduced dopaminergic F-dopa-PET
uptake in patients with PDD (109, 111, 112) when compared
to PD-NC and controls. Moreover, the dopaminergic reduction
in frontal areas shows inverse correlation with executive and
attentional dysfunction in PDD (109).

Furthermore, the availability of post-synaptic dopaminergic
D2 tracers such as 11C Raclopride is found to be decreased along
the mesolimbic and mesocortical areas in patients with PDD
compared to PD-NC and controls (117). In contrast, reduced
availability of D2 receptors is showed in bilateral insula, ACC and
parahippocampal giry in patients with PD-MCI when compared
to PD-NC (118), being in turn associated with executive and
memory deficits.

The relationship between striatal dopaminergic degeneration
and cortical degeneration is of special interest in PD. In
a multimodal study, Sampedro et al. (149) showed that
dopaminergic loss in caudate nucleus in early stage PD patients as
measured with DAT is associated with reduced cortical thickness
in both frontal, temporal and posterior cortices in cross-sectional
and longitudinal cohorts, which in turn are associated with
neuropsychological deficits. Previous results are important to
remark as reduced caudate DAT uptake as well as cortical
thickness in temporo-parieto-occipital areas in PD-NC patients
could potentially predict the conversion to PD-MCI (70).
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TABLE 2 | Radionuclide imaging studies of cognitive impairment or dementia in Parkinson’s disease.

Studies Population Radioligand and

technique

State Main results/findings

Glucose metabolism

Huang et al. (106) PD-MCI

PD-NC

PET FDG Resting ↓ posterior cortical prefrontal and parietal (PD-MCI < PD-NC

↑metabolism in brainstem and cerebellum (PD-MCI > PD-NC)

Expression of PDCP (p > 0.05)

Hosokai et al. (102) PD-MCI

PD-NC

PET FDG Resting ↓ posterior cortical regions (temporo-parieto-occipital junction)

(PD-MCI < PD-NC, HC)

Pappatá et al. (104) PD-MCI

PD-NC

PET FDG Resting ↓ prefontal, parietal, associative cortices and striatum (PD-MCI <

PD-NC, HC)

Bohnen et al. (100) PDD

PD-NC

PET FDG Resting

(Longitudinal)

↓ caudate, occipital PCC and associative visual cortex (BA 18) in PDD

< PD-NC and HC) baseline.

↓ follow up at thalamus, PCC, occipital, parietal and frontal in (PDD <

PD-NC).

García-García et al. (86) PDD

PD-MCI

PD-NC

PET FDG Resting ↓ frontal and parietal (PD-MCI < PD-NC); ↓ arietal, temporal and

occipital (PDD < PD-MCI)

Executive function correlated with parieto-temporo-occipital and frontal

metabolism; memory correlated with temporo-parietal metabolism;

visuospatial correlated with parieto-temporo-occipital metabolism;

Language with frontal metabolism

González-Redondo et al.

(105)

PDD

PD-MCI

PD-NC

PET FDG

VBM

Resting ↓ metabolism > atrophy in angular gyrus, occipital, orbital and frontal

lobes (PD-MCI > PDD)

↓ metabolism areas replaced by atrophy with widespread

hypometabolism (PDD > PD-MCI)

Tard et al. (107) PDD

PD-NC

PET FDG Resting

(Longitudinal)

↓ follow up metabolism bilateral precuneus, left temporal and fusiform

gyrus (PDD < PD-NC)

Baba et al. (108) PDD

PD-MCI

PD-NC

PET FDG Resting

(Longitudinal)

↓ follow up metabolism bilateral parieto-occipital cortices (PDD <

PD-MCI and PD-NC)

Dopaminergic imaging

Rinne et al. (109) PD-NC PET

[18F]fluorodopa

Resting Put, CN and Frontal cortex (PD < HC)

↓FDOPA in CN correlated with Stroop interference task

↓FDOPA in Frontal cortex correlated with digit span, verbal fluency and

recall tests.

Walker et al. (110) PD-NC

DLB

AD

SPECT

[123 I]FP-CIT

Resting Put, CN (PD, DLB < AD, HC)

Ito et al. (111) PD-NC

PDD

PET

[18F]fluorodopa

Resting CN, VS and ACC (PDD < PD-NC, HC)

↓DaT in CN correlated with MMSE

Nagano-Saito et al. (112) PD-NC PET

[18F]fluorodopa

PET FDG

Resting RCPM score positively correlated with the FDOPA Ki in the left

hippocampus and ACC

Van Beilen et al. (113) PD-NC PET

[18F]fluorodopa

Resting ↓FDOPA in CN correlated with executive, memory and language

composite scores

Nobili et al. (114) PD-NC

ET

SPECT

[123 I]FP-CIT

Resting Caudate and right putamen (PD-NC < ET)

↓DaT in CN correlated with executive score deficits

Polito et al. (115) PD-NC SPECT

[123 I]FP-CIT

PET FDG

Resting ↓DaT in CN correlated with verbal fluency performance

↓DaT in CN modulates hypometabolism in ACC and DLPFC

Niethammer et al. (116) PD-NC SPECT

[123 I]FP-CIT

PET FDG

Resting Correlation of DAT CN uptake and PDCP expression

Sawamoto et al. (117) PD-NC PET

[11C]-raclopride PET FDG

Resting ↓ RAC binding in ACC and MPFC in PD

↓ dopamine release in CN in PD in working memory task

Christopher et al. (118) PD-MCI

PD-NC

[11C]FLB 457 PET

[11C]-DTBZ PET

Resting ↓ D2 binding in salience network PD-MCI < PD-NC

↓ D2 binding in PHG and insula correlated with memory performance

↓ D2 binding in ACC and insula correlated with executive function

Cholinergic imaging

Bohnen et al. (119) PDD

PD-NC

LBD

[11C]-PMP AChE Resting ↓Global cortical AChE of 12.9% in PD-NC, 19.8% in PDD < HC

(Continued)
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TABLE 2 | Continued

Studies Population Radioligand and

technique

State Main results/findings

Hilker et al. (120) PDD PD-NC [11C]-MP4A AChE Resting ↓Global cortical AChE of 29.7% in PDD and 10.7% in PD-NC < HC)

↓AChE in left inferior parietal lobule, precentral gyrus, and right PCC

(PDD < PD-NC)

Gilman et al. (121) PD-NC [11C]-PMP AChE Resting ↓Global cortical AChE of 15.3% (PD-NC < HC)

Regional reductions mainly located in temporal, parietal,occipital

cingulate cortices as well as amygdala and hippocampus.

Klein et al. (122) PD-NC

PDD

LBD

[11C]-MP4A AChE
18F Fdopa
18FDG PET

Resting ↓Global cortical AChE of 22.6% in PD-NC, 33.2% in PDD < HC

Global cortical reductions from frontal to occipital areas PDD < PD-NC

and HC

Kotagal et al. (123) PD-NC

PDD

LBD

11C]-PMP AChE Resting ↓thalamic AChE of 12.8% in PD-NC, 19.8% < HC

Shimada et al. (124) LBD

AD

[11C]-MP4A AChE Resting ↓Global cortical AChE of 27.8% (LBD<AD)

Regional reductions mainly located in temporal, parietal, occipital,

cingulate cortices (in order of reduction)

Meyer et al. (125) PD-NC

PD-MCI

[18F]-Fluoro-A-85380 Resting ↓Global cortical and subcortical α4β2*-nicotinic acetylcholine receptor

PD-MCI <PD,

Regional reductions in hippocampus, amygdala, cerebellum, thalamus,

and putamen

Colloby et al. (126) DLB

AD

[123I]-5-IA-85380 Resting ↓Global cortical and subcortical nicotinic acetylcholine receptor in left

frontal gyri and ACC DLB < AD

↓Global nicotinic acetylcholine receptor correlated with executive tasks.

Protein deposition

A. Amyloid

Edison et al. (127) PDD

LBD PD-NC

[11C]PIB-PET Resting Amyloid positive were found in PDD (2/12) and DLB (11/13) when

compared to PD-NC and healthys

Regional amyloid deposition in associative, cingulate cortices and

striatum

Jokinen et al. (128) PDD

PD-NC

[11C]PIB-PET

FDG PET

Resting No differences in amyloid deposition

Gomperts et al. (129) PD-MCI

PD-NC

[11C]PIB-PET Resting No differences in amyloid deposition in precuneus at baseline (PD-NC =

PD-MCI)

↑PiB retention in precuneus at baseline predicted a greater risk of

conversion to PDD.

Petrou et al. (130) PDD

PD-MCI

LBD PD-NC

[11C]PIB-PET Resting

(meta-analysis)

PiB-positive prevalence:

- DLB group: 0.68 (95% CI, 0.55-0.82)

- PDD group: 0.34 (95% CI, 0.13-0.56)

- PD-MCI and PD-NC groups:0.05 (95% CI, −0.07-0.17)

Shah et al. (131) PD-NC [11C]PIB-PET Resting ↑cortical (37%) and striatal (16%)-amyloid deposition (PD > HC)

Combined presence of striatal and cortical amyloid associated with

lower cognitive z score

Ahktar et al. (132) PD-MCI

PD-NC

[18F]-florbetapir Resting Amyloid-positive scans do not help for diagnosis of PD-MCI

↑ amyloid in PCC correlated with verbal memory performance

↑ amyloid in precuneus, frontal cortex and ACC correlated with naming

perfomace

Fiorenzato et al. (133) PD-NC [18F]florbetaben Resting Amyloid positive 10/48 (21%) in PD

Regional amyloid deposition in cortical and subcortical areas

associated with reduced MOCA and SDMT

Melzer et al. (134) PD-MCI

PDD

PD-NC

[18F]florbetaben Resting No differences in amyloid deposition (PD-NC = PD-MCI = PDD)

Absence of clinical associations

Na et al. (135) PDD [18F]florbetaben Resting Amyloid positive were found in PDD (4/23)

↑ amyloid correlated with executive function

Biundo et al. (136) PDD

PD-MCI

LBD PD-NC

[18F]flutemetamol Resting Amyloid positive was 50% in PD and 50 % in LBD at baseline

↑ amyloid associated with reduced MOCA, MMSE, executive and

language scores

At follow-up there amyloid was associated with dementia.

(Continued)
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TABLE 2 | Continued

Studies Population Radioligand and

technique

State Main results/findings

B. Tau

Gomperts et al. (137) PDD

LBD

PD-NC

[18F]T807 PET

[11C]PIB-PET

Resting ↑ cortical tau in inferior temporal gyrus and precuneus (PDD, LBD >

PD-NC)

↑ cortical tau in inferior temporal gyrus correlated with MMSE and CDR

Kantarci et al. (138) DLB

AD

[18F]T807 PET

[11C]PIB-PET

Resting ↑ cortical tau in medial temporal cortex (AD > DLB)

↑ cortical tau in posterior temporoparietal and occipital cortices (DLB >

AD)

Buongiorno et al. (139) PD-NC

PDD

[18F]-FDDNP Resting

(longitudinal)

↑ cortical tau in lateral temporal cortices in PD-NC with longitudinal

progression to PDD

Neuroinflammation

A. Microglial activation

Edison et al. (140) PDD

PD-NC

[11C](R)PK11195-PET

[11C]PIB-PET

FDG-PET

Resting ↑ microglial activation in ACC, PCC, frontal, temporal, pariental cortices

and striatum (PDD > PD-NC and HC)

Fan et al. (141) PDD

AD

[11C](R)PK11195-PET

FDG-PET

Resting ↑ microglial activation correlated with MMSE in AD and PDD

Femminela et al. (142) PDD

AD

[11C](R)PK11195-PET

FDG-PET

Resting ↑ microglial activation in hippocampal/parahippocampal areas were

associated with cortical atrophy and metabolism in PDD and ADD.

B. Astroglial activation

Wilson et al. (143) PD-NC [11C]-BU99008 PET Resting ↓ astroglial expression in posterior cortical and subcortical areas in PD

with moderate-advanced stages

Astroglial expression correlated with MOCA in moderate-advanced PD.

PD-NC: PD with normal cognition; PD-MCI: PD with cognitive impairment; PDD: PD with dementia; LBD: Lewy Body Dementia; AD: Alzheimer’s disease; ET: essential tremor; PET:

positron emission tomography; SPECT: single-photon emission computed tomography; PDCP: Parkinson’s disease cognitive pattern; DAT: dopamine transporter; AAC: anterior

cingulate cortex; PCC: posterior cingulate cortex, CN: caudate nucleus; Put; Putamen; VS: ventral striatum; DLPC: dorsolateral prefrontal cortex; MPFC: medial prefrontal cortex;

PHG: parahyppocampal gyrus; MMSE: minimental test of Folstein; MOCA: Montreal cognitive assessment test; SMDT; symbol Digit Modalities Test; CDR: clinical dementia rating;

RCPM; Raven’s coloured progressive matrices.

In summary, dopaminergic depletion in the caudate nucleus,
as well as in the extrastriatal mesocortical and mesolimbic
areas, are associated with the progression of cognitive decline
in PD. Furthermore, reduced caudate dopaminergic function
may be a surrogate marker of cognitive decline in PD,
but first and foremost, this deficit indicates the presence of
executive dysfunction.

Acetylcholine Activity
Cholinergic transmission from the basal forebrain and brainstem
(nucleus basalis of Meynert and pedunculo-pontine nucleus,
respectively) has been found to be reduced in PD patients
(150), suggesting that it plays a relevant role in cognitive
dysfunction (150).

Several radioligands that bind the vesicular acetylcholine
transporter, analogues of the acetylcholinesterase, and post-
synaptic nicotinic and muscarinic receptors have been assessed
using SPECT and PET techniques (151).

Patients with PDD and PD-MCI show a significant cortical
reduction of cholinesterase activity in the temporal, occipital,
parietal, frontal, and anterior cingulate cortices (119, 121, 123,
124), as well as in the amygdala and thalamus (121, 123),
compared to PD-NC patients. Interestingly, loss of cortical
cholinesterase activity may also occurs in early stages of the
disease in de novo PD-NC patients showing significant (12%)
losses in the medial occipital cortex (121) when compared to

healthy controls. In addition, reduction of acetylcholinesterase
activity in PDD patients is associated with poorer performance in
global cognition (152) as well as working memory and attention
deficits (151) but not with the severity of motor symptoms.

Furthermore, significant changes in post-synaptic Ach
receptors have been found parallel cognitive dysfunction in
PD patients (151). PD-MCI had reduced binding of nicotinic
receptors in the thalamus, temporal and parietal cortices as well
as hippocampus when compared to PD-NC and healthy controls,
which in turn was associated with the severity of the cognitive
deficit when measured with global cognitive scales (125).
Importantly, post-synaptic cholinergic receptors may display
compensatory increase, no change, or a decrease probably due to
degeneration of non-cholinergic systems, such as noradrenergic
and serotoninergic systems, to which these receptors are coupled
(153) which has to be taken into account in the interpretation of
the findings.

It is important to note that both dopaminergic and cholinergic
dysfunction provide divergent contributions to cognitive
dysfunction in PD according the “dual-syndrome” hypothesis
(154). In fact, multi-radiotracer studies (120, 122) have showed
cholinergic denervation and glucose hypometabolism is present
in the neocortex from the frontal to the occipital areas in PDD
patients, as well as minimal cholinergic denervation in PD-NC
patients, compared to controls. On the other hand, dopaminergic
denervation in the striatum, limbic, and associative cortices is
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found in both PD-NC and PDD. The relationship between
cortical cholinergic loss and striatal dopaminergic denervation
in PDD suggests that cognitive decline in PD appears when
the disease spreads from SNc neurons to the cortex, hence the
presence of cholinergic dysfunction facilitates the appearance of
cognitive decline in PD.

In conclusion, cholinergic imaging in PD patients suffering
from cognitive impairments offers an interesting approach
for understanding the pathophysiological aspects of PD,
especially when used in combination with dopaminergic and
glucose tracers.

Protein Deposition Imaging

β-Amyloid
The development of β-amyloid specific tracers using 11C-
Pittsburg compound B (PiB) and other radiotracers (18F-
Florbetaben and 18F-Florbetapir) have provided a means for
measuring in vivo amyloid pathology. To date, several studies
have reported heterogeneous results in PDD and PD-MCI
patients, taking into account “amyloid positivity” as AD-range of
cortical amyloid deposition with PET imaging using PiB. Some
studies observed the complete absence of amyloid (127, 128, 134)
while others showed mild to moderate amyloid deposition (130,
131) in PDD and PD-MCI patients compared to controls.

Importantly, due to the small sample size of the studies, a
meta-analysis (130) found substantial variability of PiB positive
results in PD patients with cognitive impairment, with higher
levels of binding in patients with Lewy body dementia than in
patients with PDD and PD-MCI compared to controls.

Cross-sectional and longitudinal amyloid PET studies show
significant associations between cortical amyloid load and global
cognitive decline as well as executive dysfunction in PDDpatients
(133, 135) with respect to PD-NC and controls. However,
other studies have observed an association between memory
performance with amyloid load in PDD patients (132). One
longitudinal PET study (129) found that baseline amyloid
binding predicted the severity of cognitive dysfunction over time
in PD-NC. Furthermore, a recent prospective amyloid PET study
(136) reported that cortical amyloid deposition in PDD and Lewy
body dementia is associated with global cognitive deficit as well as
language and attention-executive dysfunction when compared to
PD-MCI and PD-NC. Interestingly, Shah et al. showed that the
combination of amyloid deposition in the striatum and cortex
is associated with greater cognitive impairment than amyloid
deposition only in the cortex (131).

In summary, although β-amyloid deposition as measured
by PET is not always observed in the brain of PDD patients,
its presence may predict the presence of cognitive decline and
dementia over time.

Tau
The recent development of selective and high affinity
radioligands capable of binding to tau, such as 18F-AV-1451, has
paved the way for the assessment of tau deposition in PD patients
with cognitive impairment. A cross-sectional study by Gomperts
et al. found that increased 11F-AV-1451 binding was present in
the precuneus and inferior temporal gyrus only in patients with

PDD, which in turn was associated with an impairment in global
cognitive scales (137).

To date, a few double tracer studies have examined the co-
pathology between amyloid and tau in PD. The presence of tau
deposition in the posterior cortical areas is in line with previous
studies reporting global β-amyloid deposition in PDD patients,
compared to those with PD-NC (138). In addition, a previous
study found that tau binding was increased in patients with
Aβ-positive scans compared to those with Aβ-negative scans,
suggesting that tau and β-amyloid deposition display parallel
patterns of deposition. Interestingly, in this study (155) tau
deposition did not differ in PD-NC, PD-MCI patients, and
normal controls.

A longitudinal PD study (139) using another radiotracer
(18F-FDDNP) that binds both amyloid and tau, reported
increased baseline lateral temporal binding in PD-NC patients
who eventually progressed to PDD, suggesting that the basal
deposition of tau and amyloid is associated with poorer future
cognitive function in PD.

Although, to date, only a few imaging studies have measured
tau deposition in PD, their findings suggest that it is increased in
PDD patients; whereas, they found tau deposition to be relatively
absent in PD-MCI and PD-NC patients. In addition, cortical
tau deposition is higher with concomitant β-amyloid deposits,
indicating the feasibility of detecting in vivo co-pathology of
protein deposition as demonstrated in post-mortem studies (17).

Neuroinflammation Imaging
Neuroinflammation has been reported to be associated with
the loss of dopaminergic neurons in the SNc of PD patients
(156). Microglial cells can structurally and functionally change
when they are activated by the presence of diverse agents,
such as oxidative stress, α-synuclein protein aggregation, and
neurodegeneration (157). It is thought that activated microglia
may display a dual role, both protective and deleterious, thus
enhancing the chronic neuroinflammatory process (156).
However, whether the progressive neurodegeneration is
associated with increased activation of microgliosis remains
unclear (158). Nevertheless, post-mortem studies have observed
increased microglial activation in the limbic and cortical regions
of PDD patients (159). Thus, in vivomeasurements of microglial
activation have begun to be pursued over the last few years.

Importantly, the expression of mitochondrial translocator
protein (TSPO) is known to be associated with microglial
activation. In fact, first generation TSPO tracers, such as 11C-
(R)PK11195, have revealed increased cortical binding in PDD
patients predominating in the posterior cortical regions, which
is associated with reduced cortical metabolism, as measured with
18F-FDG, and with low global clinical cognitive performance
(140, 141). Microglial activation has also been shown to
be correlated with cortical atrophy in the hippocampus and
parahippocampus in PDD patients (142). Due to the non-specific
binding of 11C-(R) PK11195, new second-generation TSPO
radioligands have been developed, including 11C-DPA713 and
18F-FEPPA. However, to date, there have been no studies using
these second-generation TSPO ligands to assess cognitive decline
in PD (160, 161).
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Astrocytes are the most abundant glial cells in the brain.
Similar to microglia, astrocytes change in function and number
in the presence of oxidative stress, neurodegeneration, and
other factors (162). However, little is known about the role of
astrogliosis and the development of cognitive impairment in PD.

Imaging of glial fibrillary acidic protein (163), an astrocytic
intermediate filament, with 11C-BU990088 (143) revealed
widespread binding in the brainstem and cortex in early PD-
NC patients compared to controls. In the same study, patients
with moderate-late stage PD were observed to have reduced
astrocyte expression in the posterior cortical and subcortical
areas. They also found that glial fibrillary acidic protein
expression was positively associated with global cognitive scores,
suggesting a neuroprotective and compensatory mechanism of
astroglial activation.

Due to the small number of microglial imaging studies,
as well as the lack of specificity of the radiotracers used, the
possible role of microglial activation in the cognitive dysfunction
associated with PD remains unknown. Similarly, the involvement
of astroglial activation in PD is beginning to emerge (164). The
recent development of new TSPO radioligands and astroglial
tracers will allow researchers to study the role of glial cells in the
cognitive decline associated with PD more effectively.

NEUROIMAGING OF IMPULSE CONTROL
DISORDERS IN PATIENTS WITH
PARKINSON’S DISEASE

Magnetic Resonance Imaging
Grey Matter
Whole brain studies using VBM and SBA have also been
undertaken in PD patients suffering from abnormal impulsivity.
There is some evidence pointing towards higher cortical
thickness in PD patients with ICD (PD-ICD) in the ACC, rostral
pole and OFC compared to PD patients without ICD (PD-
nonICD) (165–167). However, other studies have shown reduced
cortical thickness in PD-ICD patients in the inferior frontal
gyrus and pars orbitalis (168, 169) or a lack of corticometric
changes between PD patients with or without ICD (170, 171).
In a prospective study (172) found a small area of increased
atrophy the anterior limb of the left internal capsule adjacent to
the left caudate nucleus in PD-ICD when compared to the PD-
nonICD, with no other significant cortical changes. Interestingly,
Tessitore et al. (167) described positive correlations between
cortical thickness in the ACC and OFC and ICD severity scores
(see Table 3).

In summary, morphometric studies have not yet reached
conclusive results in PD-ICD patients although it might be
that changes in grey matter volume are associated with lack of
inhibition related to ICD behaviours in PD.

White Matter
Diffusion tensor imaging (DTI) tractography studies have
reported widespread WM tract damage in PD-ICD. In
particular, increased radial and axial diffusivity of the genu
of corpus callosum, uncinate fasciculus, parahippocampal and
pedunculopontine tracts in PD-ICD patients as compared to
PD-nonICD and controls, regardless of depression and apathy

severity (169, 173–175). However, a recent study found that
although PD-ICD patients had increased FA in several WM
tracts, the WM regions known to be involved in reward- related
behaviours were preserved (173).

In summary, only few DTI studies are available in
the literature, thus future diffusional imaging studies are
needed in order to ascertain the role of WM integrity
in ICD.

Functional MRI
Resting fMRI studies in PD-ICD patients have observed reduced
or enhanced activation in regions known to support cognitive
control and inhibition of inappropriate behaviours, such as the
PFC, OFC, inferior frontal cortex and ACC (165, 178, 181,
203, 209). In fact, RS fMRI studies have reported both reduced
(165, 171, 176) or increased (178, 180) cortico-striatal FC in
areas of the limbic circuit as well as others brain-wide networks
including the salience, executive, and default-mode networks
(169, 170, 177, 181, 210). Interestingly, these studies support the
idea that dopaminergic medication is able to alter limbic cortical
signals to the VS, impairing the ability to change behavioural
focus in response to a change in stimulus salience (177, 178, 186).

A recent studying using a dynamic functional network
connectivity approach found dynamic functional engagement
of local connectivity involving the limbic circuit, which led to
the inefficient modulation of emotional processing and reward-
related decision-making (179). It is worth mentioning that
there have been very few studies assessing the topological
characteristics of brain networks in these patients using
graph theory analysis (171, 190). The studies above suggest
that, in PD-ICD patients, connectivity is dysfunctional within
and between dopaminergic neuronal circuitries involving
disrupted communications between important subcortical and
limbic-cognitive cortical regions. This implies that the neural
mechanisms associated with ICDs in PD patients span molecular
to system levels, which are complex and dynamic, and that they
cannot already draw a clear and complete picture of ICDs in
PD patients.

Previous fMRI studies using reward-related tasks in PD-ICD
patients have reported discrepant results. While two studies
pointed towards diminished activation in the right VS, OFC and
ACC (182, 184), three other studies reported higher activation in
the VS, anterior prefrontal cortex (PFC), ACC, and OFC (183,
185, 186). Interestingly, a recent study proposed a hypothesis
for this cortico-subcortical interaction, suggesting that the right
VS plays a critical role in modulating the functional dynamics
of inhibitory-control in frontal regions when PD-ICD patients
face penalties (187) pointing to the possibility that these non-
unidirectional changes aremediated by various psychological and
neural mechanisms.

Furthermore, previous studies have investigated the role
of dopaminergic medications during the execution of an
ICD-related task. For example, one study performed in PD-
ICD patients with and without dopaminergic medication
during a gambling task reported medication-independent and
medication-related differences in neural activity, which may set
a permissive stage for the emergence of ICD during dopamine
replacement therapy in PD patients (188).
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TABLE 3 | Magnetic resonance imaging and radionuclide imaging studies of cognitive impairment of impulsive control disorders in Parkinson’s disease.

References Population Radioligand and

technique

State Main results/findings

Magnetic Resonance Imaging

Grey Matter Studies

Biundo et al. (168) PD-ICD Structural MRI SBA ↑ cortical thinning in fronto-striatal circuitry and ↑ in

the left amygdala (PD-ICD)

Pellicano et al. (166) PD-ICD Structural MRI SBA ↑of cortical thickness in rostral ACC and frontal pole

(PD-ICD)

Yoo et al. (173) PD-punding Structural MRI VBM Atrophy in dlPFC area spreading to OFC (PD-ICD

punding)

Tessitore et al. (167) PD-ICD Structural MRI VBM No findings

Thicker cortex in ACC and OFC correlated with ICD

severity (PD-ICD)

Tessitore et al. (170) PD-ICD Structural MRI VBM No differences

Imperiale et al. (169) PD-ICB Structural MRI SBA

Tractography

Left precentral and superior frontal cortical thinning,

and motor and extramotor white matter tract

damage (PD-ICD)

Hammes et al. (165) PD Structural MRI SBA CT and severity of PD-ICD were positively

correlated in the subgenual rostral ACC

White Matter Imaging

Yoo et al. (73) PD-ICD Structural MRI DTI ↑FA in corpus callosum, internal capsule, PCC and

right thalamus (PD-ICD)

Canu et al. (174) PD-ICD

punding

Structural MRI Tractography Alteration in left pedunculopontine tract and

splenium of the corpus callosum (PD-ICD punding)

Mojtahed Zadeh et al.

(175)

PD-ICD No

treatment

Structural MRI Diffusion MRI

connectometry

Disrupted connectivity in the network of

connections between cerebellum, basal ganglia,

cortex, and its spinal projections (PD-ICD)

Functional MRI

a) Rs-fMRI and FC

Carriere et al. (176) PD-ICD Structural MRI FC Functional disconnection between the left anterior

Pur and left inferior temporal gyrus and the left ACC

Tessitore et al. (170) PD-ICD Rs-fMRI FC

Longitudinal

↓FC in DMN and central executive network and

↑FC in salience during follow-up (PD-ICD)

Tessitore et al. (177) PD-ICD Rs-fMRI FC

Transversal

↑FC in salience and DMN, which correlates with

ICD severity (PD-ICD)

↓FC in frontal executive network (PD-ICD)

Ye et al. (171) PD-ICD Rs-fMRI FC + AD

administration

In somatosensory network: ↓FC between caudate

and other cortical regions

Petersen et al. (178) PD-ICD/ICB Rs-fMRI FC ↑FC between VS and ACC, OFC, insula, putamen,

globus pallidum (PD-ICD)

Imperiale et al. (169) PD-ICD Rs-fMRI FC ICD severity and duration modulate FC between

somatosensory, visual and cognitive networks

(PD-ICD)

Hammes et al. (165) PD Rs-fMRI FC PD patients with more severe ICB had a ↓ FC

between rostral ACC and the nucleus accumbens

Navalpotro-Gomez et

al. (179)

PD-ICD Rs-fMRI DNFC Dynamic functional engagement of local connectivity

involving the limbic circuit and increased local

efficiency in all the aforementioned areas (ICD+)

Koh et al. (180) PD-high

impulsivity (HI)

Rs-fMRI FC ↑FC between the right frontoparietal network and

medial visual network (PD-HI)

Mata-Marin et al. (181) PD-HS Rs-fMRI FC ↑salience network activity with significant ↑ in the

right IFG (HS+).

Functional disconnection between associative and

limbic striatum with precuneus and superior parietal

lobe (HS+)

(Continued)
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TABLE 3 | Continued

References Population Radioligand and

technique

State Main results/findings

a) fMRI during task or stimulus

Rao et al. (182) PD-ICD Perfusion fMRI Balloon Analogue

Risk Task

↓BOLD activity in the right VS during risk taking and

significantly ↓ resting CBF in the right VS (PD-ICD)

Frosini et al. (183) PD-PG fMRI with visual

reward

Gambling-related

visual cues/

neutral stimuli/rest

periods

↑activation in bilateral ACC, medial and superior

frontal gyri, precuneus, right inferior parietal lobule

and VS (PD-ICD)

Voon et al. (184) PD-ICD (PG

or CB)

fMRI with task Gambling task

DA administration

↑more risky choices in the “Gain” relative to the

“Loss” condition along with ↓ OFC and ACC

activity (ICD+)

↑ sensitivity to risk along with ↓ VS activity (ICD+)

Politis et al. (185) PD-HS fMRI with visual

reward

Visual sexual cues

On/off

↑activation in regions within limbic, paralimbic,

temporal, occipital, somatosensory and PFC

cortices and correlated with increased sexual desire

in VS, ACC and OFC (HS+)

Off: ↓activation during stimuli

Petersen et al. (178) PD-ICD/ICB fMRI with

pharmacologic

stimuli and task

AD administration

Reward learning

↑FC between amígdala and midbrain

↑FC between VS and ACC, not with

punishment-avoidance learning

Girard et al. (186) PD-HS fMRI with visual

stimuli

Delay-discounting

of erotic rewards

On/off

↑delayed visual stimuli in on PD-HS Association

between VS, vmPFC and PCC

Paz-Alonso et al. (187) PD-ICD fMRI during task Iowa Gambling

Task

↑activation in subcortical and cortical regions

typically associated with reward processing and

inhibitory control (PD-ICD)

Association between ICD severity and regional

activations in the right insula and right IFG,

mediated by FC with the right VS (PD-ICD)

Haagensen et al. (188) PD-ICD fMRI during task Seuqential

gambling task

On/off

↓”continue-to-gamble” activity in right IFG and

subthalamic nucleus (PD-ICD)

Individual risk-attitude scaled positively with

“continue-to-gamble” activity in right subthalamic

nucleus and striatum (PD-ICD) Dopaminergic

therapy ↓ FC between IFG and subthalamic nucleus

during “continue-to-gamble” decisions and

attenuated striatal responses towards

accumulating reward

Radionuclide imaging

Glucose metabolism

Tahmasian et al. (189) PD-ICD PET FDG Resting Patients with ↑ impulsivity ↑ metabolism in OFC,

ACC and right insula

Verger et al. (190) PD-ICD PET FDG Resting Right middle and inferior temporal gyri (ICD+ >ICD)

↑connectivity of these areas with OFC.

↓connectivity with right parahippocampus and with

the left caudate (PD-ICD)

Marin-Lahoz et al. (191) PD-ICD PET FDG Resting ↑metabolism in widespread areas comprising PFC,

both amygdalae and default mode network hubs

(PD-ICD > PD-nonICD-) ↓metabolism in right

caudate (PD-ICD < HC)

Molecular studies focusing dopaminergic system

a) Dopamine transporter (DaT) or F-Dopa

Cilia et al. (192) PD-PG SPECT

[123 I]FP-CIT

Resting ↓VS (PD-ICD < PD-nonICD)

(Continued)
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TABLE 3 | Continued

References Population Radioligand and

technique

State Main results/findings

Joutsa et al. (193) PD-ICD PET

[18F]fluorodopa

Resting ↓Medial OFC (PD-ICD < PD-nonICD)

No striatal differences

Voon et al. (194) PD-ICD SPECT

[123 I]FP-CIT

Resting ↓VS (PD-ICD < PD-nonICD)

Lee et al. (29) PD-ICD PET [123 I]FP-CIT Resting Right vmPFC (PD-ICD < PD-nonICD) Tendency left

accumbens nucleus (PD-ICD < PD-nonICD)

Vriend et al. (195) PD-ICD SPECT

[123 I]FP-CIT

Resting

(longitudinal)

Retrospective

PD naïve

↓VS (PD-ICD < PD-nonICD)

Smith et al. (196) PD-ICD SPECT [123 I]β-CIT Resting

(longitudinal)

Prospective

PD naïve

↓CN and right Put (PD-ICD < PD-nonICD) ↓Total

striatum (PD-ICD < PD-nonICD)

Premi et al. (197) PD-ICD SPECT

[123 I]FP-CIT

Resting ↓ Left Put and IFG (PD-ICD < PD-nonICD)

Functional desconnection between basal ganglia

and contralateral ACC (PD-ICD)

Navalpotro-Gomez et

al. (198)

PD-ICD QUIP

QUIP-RS

SPECT

[123 I]FP-CIT PET

FDG

Resting VS (PD-ICD < PD-nonICD)

↓DaT in VS associated to ↓metabolism in PFC and

ACC (PD-ICD)

Hammes et al. (165) PD QUIP-RS

BIS

18F-DOPA-PET Resting ↓ Dopamine synthesis capacity in the nucleus

accumbens was associated with ICB

Hinkle et al. (199) PD-ICD QUIP SPECT

[123 I]FP-CIT

VMAT2

PET (18F-AV133)

Resting Right striatal VMAT2 ↑ (PD-ICD)

Normalizing VMAT2 with DaT SBR strengthened

bidirectional correlations with ICD (high VMAT2/DaT)

in all striatal regions bilaterally

b) Studies with dopaminergic receptors

Boileau et al. (200) PD PET

[11C]-raclopride

[11C]-(+)-PHNO

Resting VS (PD<HC)

GP (PD<HC)

Putamen (PD>HC)

Payer et al. (201) PD-ICD PET

[11C]-(+)-PHNO

Resting VS (ICD+ <ICD-)

Dorsal striatum (ICD+ >ICD-) Negative correlation

between VS with ICD severity (ICD+)

Stark et al. (202) PD-ICD PET [18F]

fallypride

Resting VS (ICD+ <ICD-)

Putamen (ICD+ <ICD-)

Task related studies

a) Activation studies

van Eimeren et al. (203) PD-PG PET H2(15)O Before and after

3mg apomorphine

Card selection

game with

probabilistic

feedback

↓activity with DA in left OFC, amygdala and ACC

(PG+)

Antonelli et al. (204) PD PET H2(15)O Before and after

1mg PMX

Delay discounting

task, Go/ No Go

Task

DA ↑medial PFC and PCC and ↓ in the VS in

cognitive impulsivity tasks

a) Molecular studies focusing dopaminergic system with task

Steeves et al. (205) PD-PG PET

[11C]-raclopride

Gambling task PD-PG ↑ dopaminergic release in VS during

gambling

O’Sullivan et al. (206) PD-ICD/ICB PET

[11C]-raclopride

Reward-related

cues and L-dopa

challenge

↑ Dopaminergic release in VS in ICD/ICB+ following

reward-related cue exposure and L-Dopa challenge

Ray et al. (207) PD-PG PET [18F] fallypride Gambling task ↓ Dopamine in ACC during control task, not during

gabling task in PD-PG

↑ Dopamine in SN and in the TVA

(Continued)
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TABLE 3 | Continued

Wu et al. (208) PD-ICD single

or multiple

PET

[11C]-raclopride

Reward-related

visual cues/neutral

visual cues

↑ Dopamine release in VS in both single and

multiple ICD patients in response to reward cues

PD-PG, PD patients with pathological gambling; G-SAS, Gambling Symptom Assessment Scale; BIS, Barratt Impulsiveness Scale 11; MRI, magnetic resonance imaging; VBM, voxel-

based morphometry; SBA, Surface-based analysis; OFC, orbitofrontal cortex; PD-ICD, PD patients with impulse control disorder; MIDI, Minnesota impulse disorder inventory; QUIP,

Questionnaire for Impulsive-Compulsive Disorders; CT, cortical thickness; ICB, impulse control behaviours; ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; dlPFC, dorsolateral

prefrontal cortex; TCI-R, Temperament and Character Inventory-Revised; DTI, diffusion tensor imaging; FA, fractional anisotropy; PRS, Punding Rating Scale; rs-fMRI, resting state-

functional MRI; CF, functional connectivity; DMN, default-mode network; DA, dopaminergic agonists; PD-CB, PD patients with compulsive buying; VS, ventral striatum; PD-HS, PD

patients with hypersexuality; MGS, Massachusetts Gambling Screen, DDS, dopaminergic dysregulation syndrome; PCC, posterior cingulate cortex; ASBPD, Ardouin Scale of Behaviour

in Parkinson’s disease; SPECT, single-photon emission computed tomography; PD-ICD, PD patients with impulse control disorder; OFC, orbitofrontal cortex; SOGS, South Oaks

Gambling Scale; PFC, prefrontal cortex; ACC, Anterior cingulate cortex; PCC, posterior cingulate cortex; BIS, Barratt Impulsiveness Scale 11; PET, positron emission tomography;

MIDI, Minnesota impulse disorder inventory; SRMI, Self-Report Manic Inventory; QUIP, Questionnaire for Impulsive-Compulsive Disorders; VS, ventral striatum; vmPFC, ventromedial

prefrontal cortex; GP, Globus pallidus; SAST, Sexual Addiction Screening Test; G-SAS, Gambling Symptom Assessment Scale; DA, dopaminergic agonists; PMX, pramipexol; ICB,

impulse control behaviors; DDS, dopaminergic dysregulation syndrome; SN, substantia nigra; VTA, ventral tegmental area.

In conclusion, altered patterns of resting FC in regions
involved in cognitive control and inhibition of inappropriate
behaviour are associated with ICD in PD, with an important
putative effect of dopaminergic medication in the FC between
areas of the limbic system and VS participating in the inhibitory-
control in the reward circuitry.

Nuclear Imaging
Glucose Metabolism
Studies with 18F-FDG PET in ICD show heterogeneous
methodology, which can lead to some discrepant findings. Some
of them have evidenced higher metabolic rates in the OFC,
AAC, and insula in PD patients with higher impulsivity scores
(189), with increased connectivity between the parahippocampus
and the caudate (190) in patients with ICD respect to non-
ICD. A recent systematic review stated that medicated PD-ICDs
show increased metabolism in OFC and cingulate cortices, VS,
amygdala, insula, temporal and supramarginal gyri (210). In the
same line, a recent study suggests that brain metabolism is more
preserved in PD-ICD patients than in patients without ICD,
which could be related to ICD development (191). In contrast, a
single study in PD-ICDs patients reported an association of lower
DAT availability in the VS with lower FDG uptake in several
cortical areas belonging to the limbic and associative circuits
as well as in other regions involved in reward and inhibition
processes (198). All these evidences can be matter of debate
regarding metabolic studies in general population, which have
largely demonstrated that, the hypometabolism of brain regions
from “control networks” such as the PFC or the ACC could
increase their vulnerability to relapse since it would interfere with
cognitive inhibition.

Taken together, available data suggest that ICDs in PD
patients are associated with functional alterations (with
the influence of dopaminergic treatment) within the
mesocorticolimbic network that could affect the control
of impulse and lead to impaired inhibitory mechanisms.
Although most studies show hypermetabolism in areas of
mesocorticolimbic system involved with inhibition and cognitive
control networks, one study looking at the relationship of
cerebral metabolism and dopaminergic denervation found
hypometabolic limbic and associative areas which in turn

correlated with the severity of dopaminergic degeneration in the
ventral striatum.

Dopamine
The most severe dopaminergic cell loss in PD patients occurs in
the ventrolateral SNc, leading to dopaminergic deficits mostly
in the posterior putamen, ultimately affecting the function of
the motor circuit of the basal ganglia (211). However, molecular
neuroimaging studies in PD-ICD patients, have revealed that
patients also have decreased dopaminergic innervation in the
ventral striatum (VS), as measured by DAT SPECT and PET
(165, 192, 196–199, 212, 213). Nevertheless, not all studies
reported previous finding (193). Moreover, reduced mesolimbic
DAT availability has been reported even before the emergence
of ICDs, indicating that it may be a predisposing factor for the
development of these disorders (195, 196) once dopaminergic
treatment is initiated.

Interpretation of altered DAT binding can sometimes be
confusing because of two reasons. First, DAT availability may not
correlate with dopaminergic neuron counts in PD patients (214).
Second, its variation can reflect a functional downregulation in
order to increase available dopamine in the synapse, given that
the striatal dopamine synthesis capacity in PD-ICDs patients is
not reduced, compared to matched PD-nonICDs (215).

On the other hand, functional molecular studies indicate that
PD-ICDs patients have a higher release of dopamine in the VS
during reward-related tasks (205, 206, 208). Moreover, there
is also some evidence of a negative association between the
VS dopamine synthesis capacity and ICD severity. Importantly,
dopaminergic changes can be alsomeasured outside the striatum.
In fact, extrastriatal D2/D3 dopamine receptors can be measured
using high-affinity radiotracers (such as [18F] fallypride or
[11C] FLB-457). For example, one study in PD patients with
pathological gambling showed a reduction in [11C] FLB-457
binding potential in the midbrain during gambling, where
D2/D3 receptors are dominated by autoreceptors, along with low
dopaminergic tone in the anterior cingulate cortex (ACC) (216).

Taken together, mounting evidence suggests that abnormal
dopaminergic innervation or tone in the VS and possibly in
the mesocortical circuit are key factors in the development of
ICD in PD patients, and could potentially be used in the future
as biomarkers for identifying patients at risk of developing
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such abnormal behaviour when exposed to dopaminergic agents,
especially DA.

CONCLUSION

In the current review, we highlighted the available and emerging
MRI and radionuclide imaging (PET and SPECT studies)
techniques used to assess cognitive impairment and ICD in
PD. Although several limitations of the aforementioned studies
are worth mentioning, including the literature review is not
systematic, sample sizes are limited in some studies and
different experimental designs and analysis techniques have
been used, their findings still shed light on the potential
usefulness of imaging for early diagnosing and monitoring the
cognitive and neuropsychiatric symptoms of PD. Nevertheless,
multimodal multimodal functional and structural longitudinal
studies in early PD patients in large well-defined cohorts using

advanced method of analysis are still needed in order to better
predict the risk of dementia and ICD in PD patients, better
understanding of pathophysiology as well as develop novel
therapeutic interventions to improve patient care.
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