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Abstract—Despite the numerous results in the literature about
the eigenvalue distributions of Wishart matrices, the existing
closed-form probability density function (pdf) expressions do not
allow for efficient sampling schemes from such densities. In this
letter, we present a stochastic representation for the eigenvalues
of 2 × 2 complex central uncorrelated Wishart matrices with
an arbitrary number of degrees of freedom (referred to as
dual Wishart matrices). The draws from the joint pdf of the
eigenvalues are generated by means of a simple transformation of
a chi-squared random variable and an independent beta random
variable. Moreover, this stochastic representation allows a simple
derivation, alternative to those already existing in the literature,
of some eigenvalue function distributions such as the condition
number or the ratio of the maximum eigenvalue to the trace of
the matrix. The proposed sampling scheme may be of interest
in wireless communications and multivariate statistical analysis,
where Wishart matrices play a central role.

Index Terms—Random matrices, Wishart matrices, eigenvalue
distribution, Rayleigh fading channels, multiple-input multiple-
output (MIMO) communications

I. INTRODUCTION

THE statistical properties of the eigenvalues of Wishart
matrices play a fundamental role in multiple applications.

For instance, they characterize the performance of multiple-
input multiple-output (MIMO) wireless communication sys-
tems in Rayleigh fading channels. As another example, many
of the standard test statistics in multivariate analysis are func-
tions of eigenvalues of a Wishart matrix. Given the importance
of the problem, an extensive body of literature exists on the
distribution of the eigenvalues of Wishart matrices that can
be traced back to the classical works of James [1] and Katri
[2] in the 1960s and, more recently, to Edelman’s thesis [3].
In the context of MIMO communications, the distribution
of the unordered eigenvalues of a Wishart matrix of the
form W = HHH (where H is the MIMO channel with
complex Gaussian entries) was used to derive the ergodic
capacity when the channel is assumed to be known at the
receiver but not at the transmitter in [4]. The distribution of
the largest eigenvalue of W characterizes the performance of
beamforming MIMO systems that apply maximum-ratio trans-
mission/combining [5], while the distribution of the smallest
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eigenvalue has application to antenna selection techniques [6],
[7], and beamforming [8]. Many other expressions of interest
concerning the distributions of the eigenvalues of Wishart
matrices and their functions have appeared in the vast literature
dealing with this subject [9]–[13].

Despite the large number of results about the eigenvalue
distributions of Wishart matrices and their functions, the
simulation from such distributions is in general not pos-
sible, since there are no methods to generate draws from
the existing probability density function (pdf) closed-form
expressions. Therefore, the conventional method to simulate
the joint pdf of ordered eigenvalues is still to generate a
Gaussian random matrix, H, calculate the Wishart Hermitian
matrix W = HHH, and finally obtain its eigenvalues. This
procedure can be clearly inefficient, so it would be of interest
in many problems to have simpler sampling methods for the
eigenvalues of Wishart matrices, for instance for proposing
more efficient methods to characterize the symbol error rate
(SER) performance of MIMO detectors [14]–[16]. In this
letter, we propose a stochastically equivalent representation
for the eigenvalues of 2×2 complex Wishart matrices with an
arbitrary number of degrees of freedom that, following [17],
are termed as dual Wishart matrices. The proposed stochastic
characterization is based on a simple transformation of a chi-
squared random variable and a beta random. Hence, it leads
to an efficient sampling scheme that may be of interest in
applications of wireless communications and multivariate sta-
tistical analysis where Wishart matrices play a central role. Our
results suggest that the proposed sampling scheme is orders of
magnitude faster than the conventional simulation procedure.
Furthermore, it allows a simple derivation, alternative to those
already existing in the literature, of some eigenvalue function
distributions such as the condition number or the ratio of the
maximum eigenvalue to the trace.

Notation. We use upper case boldface for matrices. The n×n
identity matrix is denoted as In. The symbol ()H denotes
Hermitian. The trace and determinant of a matrix W are
denoted as tr(W) and det(W), respectively. The symbol ∼
denotes “distributed as”, and ∝ means “proportional to”. The
notation used for distributions is as follows: x ∼ CN (0, 1)
denotes a complex Gaussian distribution with zero mean and
unit variance; W ∼ CWT (Σ, R) means that the T × T
matrix W follows a complex central Wishart distribution with
parameter Σ and R degrees of freedom; x ∼ χ2

ν denotes a
central chi-square with ν degrees of freedom; x ∼ Beta(α, β)
and x ∼ Gamma(α, β) denote beta and gamma distributions,
respectively, with parameters α and β.
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II. PRELIMINARIES

Let us define a complex normal random matrix H of
dimensions R × 2 (R ≥ 2) whose elements are independent
and identically distributed (i.i.d.) complex normal random
variables hi,j ∼ CN (0, 1). In wireless communications, for
instance, H represents the R × 2 Rayleigh MIMO channel
between the low-complexity user equipment (UE) with only
T = 2 antennas and the base station (BS) with R antennas.
This scenario is particularly important in MIMO wireless
communications, where the cost and size constraints of the
mobile terminals limit the number of antennas of UEs, while
the BS can have a much larger number of antennas. In fact,
with 4G Long Term Evolution (LTE) networks the use of two
receiver antennas in the user equipment (UE) has become the
norm [18].

The 2 × 2 Grammian W = HHH follows a com-
plex central Wishart distribution with R degrees of free-
dom W ∼ CW2(I2, R). Its density is f(W) ∝
det(W)R−2 exp(− tr(W)). The Wishart distribution in the
particular case of dual matrices (T = 2) was first derived by
Fisher in 1915 [19], and for a general T ≥ 2 was derived by
Wishart in 1928 [20].

The joint distribution of the ordered eigenvalues λ1 ≥ λ2 ≥
0 is

f(λ1, λ2) =
e−(λ1+λ2)

Γ(R)Γ(R− 1)
(λ1λ2)R−2(λ1 − λ2)2. (1)

Although the distribution in Eq. (1) admits a simple ex-
pression, to the best of the authors’ knowledge there are
no efficient procedures to sample from this distribution. An
approximate method based on importance sampling has been
proposed in [21], but it only provides an approximation of the
true distribution of Eq. (1), and further, it is useful primarily
for approximating the distribution of arbitrary eigenvalue
functions, but not for generating samples of the joint distri-
bution. In practice, the standard method for simulating from
f(λ1, λ2) is to generate R× 2 complex normal matrices with
CN (0, 1) entries, and then directly calculate the eigenvalues of
W = HHH. Although this procedure does not represent any
difficulty in most cases, it can be inefficient especially when R
grows. This is due to the need to generate 2R complex normal
random variables, then calculate the 2×2 Wishart matrix, and
finally obtain its eigenvalues by solving a simple quadratic
equation.

It is possible to design a more efficient simulation scheme
based on the well-known Bartlett’s factorization theorem [22].
Bartlett’s theorem states that the R×2 complex Gaussian data
matrix H can be factored as H = QR, where the R×2 matrix
Q is a slice of an R×R unitary matrix (uniformly distributed
on the Stiefel manifold), and R is a 2 × 2 upper triangular
matrix with positive elements on its diagonal

R =

[
r11 r12
0 r22

]
. (2)

According to Bartlett’s factorization theorem, the elements of
R are distributed as follows: r211 ∼ 1

2χ
2
2R, r222 ∼ 1

2χ
2
2(R−1)

and r12 ∼ CN (0, 1). Moreover, they are independent. Note
that the dual Wishart matrix is stochastically equivalent to

W = HHH = RHR =

[
r211 r11r12
r∗12r11 |r12|2 + r222

]
. (3)

Hence, a more efficient procedure to sample from f(λ1, λ2)
amounts to generating 3 random variables: r211 ∼ 1

2χ
2
2R, r222 ∼

1
2χ

2
2(R−1) and r12 ∼ CN (0, 1); then form W as in (3) and

obtain its eigenvalues.

III. PROPOSED STOCHASTIC CHARACTERIZATION

The main contribution of this letter is to propose a yet
more efficient sampling method that only requires the gen-
eration of two random variables and then performs a simple
transformation of them. The method is based on a stochas-
tic characterization of the eigenvalues obtained through the
characteristic polynomial of the dual Wishart matrix. The
eigenvalues λ1 ≥ λ2 ≥ 0 of W satisfy the characteristic
polynomial

det(W − λI2) = λ2 − λ tr(W) + det(W), (4)

whose roots are

λi =
1

2
tr(W)

(
1±

√
1− det(W)(

1
2 tr(W)

)2
)
, i = 1, 2, (5)

where λ1 (λ2) corresponds to the root with positive (negative)
sign. It is interesting to note that the term inside the square
root, η = det(W)

( 1
2 tr(W))

2 , is the sphericity statistic [23], which is

the generalized likelihood ratio (GLR) statistic to test whether
an i.i.d. sequence of vector-valued normal random vectors are
spatially white or not. The exact distribution of the sphericity-
test in the complex-valued case has been derived in [24],
[25]. A stochastic representation of the sphericity statistic
under the null hypothesis as a product of independent beta
distributions was derived in [26]. The distribution of η when
W ∼ CW2(I2, R) reduces to

η =
det(W)(
1
2 tr(W)

)2 ∼ Beta

(
R− 1,

3

2

)
, (6)

and it is independent of tr(W) = tr(HHH) = λ1 + λ2 ∼
1
2χ

2
4R. Note that if η ∼ Beta (R− 1, 3/2), then 1 − η ∼

Beta (3/2, R− 1).
To summarize, an exact procedure to sample from the joint

f(λ1, λ2) in Eq. (1) is:
1) Generate s ∼ Beta

(
3
2 , R− 1

)
and t ∼ 1

2χ
2
4R

2) Calculate λ1 and λ2 as the following transformation of s
and t

λ1 =
1

2
t
(
1 +
√
s
)
,

λ2 =
1

2
t
(
1−
√
s
)
, (7)

The procedure does not involve matrix operations or eigen-
value decompositions, simply one square root, two additions
and two multiplications.
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a) The case of real central Wishart matrices: When H
is a real R × 2 normal matrix with i.i.d. entries, then W =
HTH ∼ W2(I2, R) follows a real central Wishart matrix with
R degrees of freedom. In this case, tr(W) ∼ χ2

2R and, as
proved in [27], the distribution of the sphericity ratio is

η =
det(W)(
1
2 tr(W)

)2 ∼ Beta

(
R− 1

2
, 1

)
. (8)

Therefore, to sample from the joint f(λ1, λ2) in the real case
we generate s ∼ Beta

(
1, R−12

)
and t ∼ χ2

2R, and then
calculate λ1 and λ2 as in (7).

A. Characterization of eigenvalue functions

The proposed stochastic characterization allows for a simple
derivation of the distribution of certain functions of the eigen-
values of dual Wishart matrices. Let us begin with the condi-
tion number c = λ1/λ2. In numerical analysis and matrix alge-
bra, the condition number determines the sensitivity of solving
linear systems, which are ill-posed when the condition number
is very large. In MIMO communications a large condition
number of HHH implies a near rank-deficient matrix, which
in turn impacts the main figures of merit such as multiplexing
gain or symbol error rate. An expression for the distribution
of the condition number of R× 2 complex Gaussian matrices
was originally given by Edelman in [3, Chapter 7, Eq. (7.2)].
The expression was derived by integrating the joint distribution
with respect to the condition number. The derivation is simple
but tedious, so it is omitted in [3]. A comprehensive study on
the condition number distribution of complex Wishart matrices
was carried out in [17]. Theorem 2 in [17] provides a closed-
form expression of the cumulative density function (cdf) of the
condition number of W ∼ CW2(I2, R), and the corresponding
pdf is obtained by derivating the cdf in Corollary 1 (cf. [17, Eq.
(15)]). The pdf expression, however, involves the summation
of R terms.

Using the parametrization in terms of t and s, it follows
that the condition number is stochastically equivalent to

c =
1 +
√
s

1−
√
s
, s ∼ Beta (3/2, R− 1) , (9)

so it is a one-to-one mapping of a beta random variable from
the interval 0 ≤ s ≤ 1 to the interval 1 ≤ c ≤ ∞. It is then
straightforward to obtain the pdf of c as

f(c) = K
(c− 1)2cR−2

(c+ 1)2R
, 1 ≤ c ≤ ∞, (10)

where the normalizing constant is

K =
2(2R−1)Γ

(
R+ 1

2

)
√
πΓ(R− 1)

=
Γ(2R)

Γ(R)Γ(R− 1)
. (11)

The pdf f(c) is related to [3, Eq. (7.2)], which is the pdf
of c1/2. We believe that the derivation based on the new
stochastic characterization is much simpler than the procedure
followed in either [3] or [17].

In addition, this result opens up the possibility of applying
alternative Monte Carlo schemes such as importance sampling

[28]. For example, in certain applications it may be of inter-
est to generate eigenvalues of Wishart matrices that are ill-
conditioned (values of c >> 1) with higher probability than
that given by the true pdf in Eq. (10). To do this, it is sufficient
to sample from s ∼ Beta (a,R− 1) with a > 3/2, while
maintaining the trace distribution t ∼ 1

2χ
2
4R. The samples

of s generated this way are more likely to be close to 1,
thus increasing the probability of obtaining higher condition
numbers.

Another useful function of the eigenvalues is the ratio
Λ = λ1

λ1+λ2
which, as proved by Besson and Scharf in [29],

is the generalized-likelihood ratio statistic for the problem
of detecting a signal whose spatial signature is known to
lie in a one-dimensional subspace in the presence of white
Gaussian noise of unknown variance, also known as the
matched direction detector. Using our result, the distribution
of this statistic is

Λ =
1 +
√
s

2
, s ∼ Beta (3/2, R− 1) , (12)

and its density is

f(Λ) = 4K

(
Λ− 1

2

)2

(1− Λ)R−2ΛR−2,
1

2
≤ Λ ≤ 1,

(13)
which is the result in [29, Eq. (25)].

Interestingly, the proposed stochastic characterization shows
that the trace t = λ1+λ2 and the condition number c = λ1/λ2
are independent random variables. This suggests yet another
parametrization of the joint in (1) that can be factored as the
product of the marginals of t and c. The transformation is

λ1 =
ct

1 + c
,

λ2 =
t

1 + c
, (14)

whose Jacobian determinant is J = t/(1+c)2. Then, the joint
distribution of t and c is

f(c, t) =
t2R−1e−t

Γ(R)Γ(R− 1)

(c− 1)2cR−2

(c+ 1)2R
, (15)

which is the product of the marginal of c, given in (10), and
the marginal of the trace f(t) = t2R−1e−t/Γ(2R). Therefore,
c and t are independent random variables for dual Wishart
matrices.

Finally, the distribution of d = λ1−λ2 can also be obtained
by resorting to the proposed stochastic characterization. We
have that d ∼ t

√
s, so after some algebra the distribution of

d is found to be

f(d) =
R−2∑
k=0

hkd
2(k+1)Γ(2(R− 2− k) + 1, d), (16)

where Γ(a, x) =
∫∞
x
ta−1e−tdt denotes the upper incomplete

gamma function, and the mixture coefficients are

hk =
4
(
R−2
k

)
(−1)kΓ

(
R+ 1

2

)
√
πΓ(2R)Γ(R− 1)

. (17)
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Fig. 1. Simulation time to generate a certain number of draws using
the conventional method (red line), Bartlett’s method (black line), and the
proposed method (blue line) for R = 20 (dashed) and R = 200 (solid).
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Fig. 2. Contour plot of the theoretical bi-variate pdf of λ1 and λ2) in Eq.
(1) (top), and a kernel density estimator of the 200, 000 pairs of eigenvalues
simulated by means of the conventional sampling method (middle) and the
proposed stochastic characterization (bottom), for R = 2 (left) and R = 20
(right).

TABLE I
COMPARISON SAMPLING METHODS

# r.v.’s real operations
#products #sums #sqrt

Conventional
method

2R CN (0, 1) O(R) O(R) 1

Bartlett’s
method

2 chi-square
1 CN (0, 1)

10 8 1

Proposed
method

1 chi-square
1 beta

2 2 1

IV. RESULTS

Table I summarizes the computational complexity, in terms
of the number of random variables generated and the real
floating-point operations, of the different parametrizations for
the simulation of one bi-variate sample of (λ1, λ2). The com-
putational complexity of the conventional method grows with
R. The method based on the proposed stochastic representation
is by far the simplest.

For a more detailed comparison between the different sim-
ulation methods, Fig. 1 shows the execution time required
to generate a certain number of realizations of the eigenval-
ues (λ1, λ2). The simulation has been performed in Matlab
(R2020b) running on a personal computer with CPU at 3.60
GHz and 128 GB of RAM. Clearly, the results may vary
depending on the programming language or the computer
environment, so they are only intended to give an approximate
idea of the simulation speedup provided by the proposed
method. Clearly, as seen in Fig. 1, the proposed method is
orders of magnitude faster than both the conventional method
and Bartlett’s method. This is partly because the proposed
method does not need any loop and can generate the desired
number of chi-squared and beta samples very efficiently. In
addition, the simulation time of the conventional method
increases with the degrees of freedom, R, while the simulation
time of the proposed method, as well as Bartlett’s method, do
not depend on R.

In Fig. 2, we display the bi-variate pdfs for R = 2 (first
column) and R = 20 (second column), for the theoretical
joint pdf of (λ1, λ2) (top), and a kernel density estimator
of the 200, 000 pairs of eigenvalues simulated by means of
the conventional sampling method (middle) and the proposed
stochastic characterization (bottom).

V. CONCLUSION

In this letter, we have shown that, to generate realizations
of the eigenvalues of dual Wishart matrices with an arbitrary
number of degrees of freedom, it is sufficient to simulate a
beta random variable and an independent chi-square random
variable, and then apply a simple transformation. The proce-
dure is computationally simpler than the standard sampling
method, especially for the generation of a large number of
draws. Future work will consider extensions to other cases,
e.g., non-central Wishart distributions or Wishart matrices of
dimension greater than two.
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