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Abstract —Smart Robots are an integral part of the 4th 
Industrial Revolution. Its integration as essential components in 
robot-based services is not straightforward. Each robot is a 
cyber-physical system (CPS) where a mechanical part operates 
under the control of a digital board(s). Modeling and simulation 
of such devices has specificities to be taken into account. Model-
Driven Design (MDD) has proven to be a powerful System 
Engineering methodology able to cope with the complexity of 
services built as a system of CPSs (CPSoS). In this paper, a 
methodology is proposed to seamlessly integrate robots into a 
MDD framework so that the whole service can be simulated and 
its performance, analyzed. Although the methodology is valid 
for robots in general, it has been assessed on a drone-based 
service. 
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words) 

I. INTRODUCTION 
Autonomous, intelligent robots are an essential technology 

in the 4th Industrial Revolution [1]. Beyond the traditional 
automatized production line, the number and complexity of 
robot-based services inside, but also outside industrial 
factories is increasing dramatically. Unmanned Aerial 
Vehicles (UAV) or simply, drones, are an example of robots 
with an increasing number of applications opening the way to 
a large number of new business models. So, a market of USD 
45.8 billion by 2025, at a CAGR of 15.5% since 2019, has 
been forecasted for business using drones [2]. 

Robot-based services are Cyber-Physical Systems (CPS) 
in which the functionality has to behave correctly in close 
interaction with the physical-world inside which it operates. 
In the case of robots, this interaction is two-fold. On one side, 
as any other CPS, the digital part has to accommodate its 
behavior to the timing constraints of the physical world. On 
the other side, the robot itself is a mechanical CPS and, at the 
same time, an integral part of the system. In the general case, 
the robot-based service will be a complex, distributed, Cyber-
Physical System of Systems (CPSoS) where a large amount of 
SW has to be executed by a large number of interconnected 
computational devices of many kinds. Devices running from 
small embedded systems in the edge to large computing 
facilities in the cloud as well as other computing devices in 
between (the fog) [3]. 

There is always a high cost associated to the deployment 
of robot-based services. These services may involve 
expensive robots in close interaction among them and with a 
distributed computing and communication infrastructure.  In 
many cases, the robots carry expensive payload required by its 
mission.  The impact of any design fault detected on field may 
be very expensive and time-consuming. Consequently, 
simulation is a key technology in the verification of robot 
applications. The large variety of possible robots makes very 
difficult the availability of models. When the characteristics 
of the robot are relevant to its behavior and performance, a 
model of the robot may be required for simulation and 
analysis. This may imply a large effort in modeling the robot 
as an electro-mechanical device [4].  Most of these simulators 
are based on multi-agent simulation as underlying simulation 
technology [5]. When the electro-mechanical part is relevant, 
multi-physics simulation based on finite elements is required 
[6]. The initial modeling effort can be avoided for those robots 
with common characteristics that make possible to share 
similar simulation models, like UAVs. So, there are several 
commercial and open-source UAV simulators available 
[7][8]. 

Most robotic applications make use of the Robot 
Operating System (ROS) [9]. ROS is a widely used standard 
in the robotic domain. Actually, it is not an operating system 
but a middleware. ROS includes a collection of tools, libraries, 
and conventions that aim to simplify the task of creating 
complex and robust robot behavior across a wide variety of 
robotic platforms. Nevertheless, as a consequence of the large 
variety of robots with completely different features, ROS only 
brings the mechanisms to create nodes and define the 
communication infrastructure among them. The concrete 
messages (orders and status to and from the robot) are 
different from robot to robot so that the control code 
developed for a robot has to be changed completely when a 
new robot is used, thus, strongly limiting the reusability of the 
code. 

The most widely used communication protocol for drones 
is MAVLink. MAVLink is a lightweight messaging protocol 
for communicating with drones (and between onboard drone 
components) [10]. ROS includes a package providing a 
communication driver for autopilots with the MAVLink 
communication protocol called MAVROS[11]. 
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Model-Driven Design (MDD) has proven to be a powerful 
SW engineering methodology for robotic systems [12][13]. 
MDD can provide the SW engineering methodology required 
by the modeling and design of the robot-based service. Its 
application in robotics requires the integration of the robot and 
its characteristics as an additional actor in the system. In many 
cases, the modeling and design framework is Matlab/Simulink 
[12][14]. Matlab/Simulink provides the advantage of 
combining SW modeling and simulation in a single step. 

UML is by far the language most widely used to support 
MDD. In order to capture the required semantics in this 
domain a large number of Domain-Specific Languages (DSL) 
has been proposed [13]. A robotic DSL may facilitate the 
modeling of robotic-based services, but it makes difficult the 
interoperability among design frameworks, reduces the 
integration in the framework of third-party tools and limits 
reusability. Being focused on robot-based systems, the DSL 
may not support efficiently SW (system) engineering. 
Particularly, when the SW engineering framework uses its 
own profile(s) with contradictory semantics. 

S3D is a general-purpose, Model-Driven, Single-Source 
System Modeling & Design Framework where all the relevant 
information about the system is captured in the same model in 
order to support the different design steps from the initial 
functional system architecture until the SW stack to be 
compiled to each computing resource in the decided HW 
implementation [15]. S3D makes use of fundamental 
computational paradigms allowing a domain-independent 
modeling. Consequently, it can be applied to services on the 
Internet of Things (IoT) where several domains interact each 
other and a holistic modeling and analysis approach is 
required. S3D makes use of a reduced subset of the 
UML/MARTE standard profile for Real-Time and Embedded 
systems [16]. Only when a specific concept is absolutely 
necessary in a specific domain, a minimal extension to the 
S3D MARTE subset is made. An important result from this 
work is that modeling, simulation and performance analysis of 
robot-based services do not require any domain-specific 
extension of the S3D/MARTE profile. 

In order to facilitate the coding and improve reusability of 
ROS code, an S3D interface allowing the development of 
drone-independent control code, is proposed. 

Performance analysis of the application code on each 
computing resource can make use of native simulation 
technology to estimate non-functional characteristics as 
execution time and energy. Using native simulation to 
estimate the performance of middleware is cumbersome as the 
technique has to be applied to the whole code in the 
corresponding library. In some cases, when the source-code is 
not available, it is just impossible. A performance estimation 
methodology for the ROS infrastructure is proposed. The 
complete modeling and performance analysis methodology is 
exercised on a delivery service among buildings using rovers 
and drones. 

II. STATE OF THE ART 
As commented above, Matlab/Simulink is a widely used 

modeling, simulation and design framework combining MDD 
and simulation. The Robotics System Toolbox™ from 
Mathworks provides tools and algorithms to design, simulate, 
and test manipulators, mobile robots, and humanoid robots. 
For humanoid robots and manipulators, this toolbox includes 

algorithms for collision checking, trajectory generation, 
forward and reverse kinematics, and dynamics using a rigid-
body tree representation. In the case of mobile robots, it 
includes algorithms for mapping, locating, path planning, path 
tracking, and motion control. The toolbox provides reference 
examples of common industrial robotics applications [17]. 
The Toolbox can operate in conjunction with 
Matlab/Simulink and the ROS Toolbox [18], thus supporting 
MDD, simulation and code generation of robot-based 
services. Using Matlab/Simulink brings all the advantages of 
this SW modeling and design framework but also all its 
limitations. Among them, scalability, simulation speed and 
implementation efficiency. Moreover, performance analysis 
and design-space exploration are difficult. A similar approach 
is represented by SimCenter AmeSim [19]. It can also provide 
a very precise modeling and simulation of robots. In both 
cases, simulation accuracy comes at the cost of a smaller 
simulation speed. 

In [13] a comprehensive overview and analysis of existing 
MDD approaches in robotics has been made. Almost all the 
proposals define their own DSL. The need for a common 
modeling language (ML) is highlighted by some works but, 
the solution proposed is a new ML [20]. In few cases, the ML 
is shared by some groups. Acceptance is not the only problem 
for a DSL. If it captures all the semantics needed by a certain 
domain, e.g. robotics, it will be weak in supporting SW 
(system) engineering at large. MDD based on UML and/or 
DSLs put the focus on the system architecture and the code 
generation, usually on a general-purpose computer. As a 
consequence, very few MDD frameworks support simulation 
and performance analysis on distributed, heterogeneous 
platforms. From the large list of MDD approaches for robotic 
systems in [13], only 10% address simulation. In most cases, 
the simulation is functional, and no performance analysis is 
made. Nevertheless, this is a serious limitation for two main 
reasons. On the one hand, the development of robotic systems 
requires simulation in order to avoid detecting design failures 
very late, at the prototyping stage with the corresponding high 
cost. On the other hand, a robot is an edge device and 
therefore, subject of resource-constrained design. Therefore, 
performance analysis and optimization are key design 
activities. 

S3D support system simulation and performance analysis 
using native simulation [21]. Native simulation technology 
brings enough flexibility to seamlessly enable system 
simulation at different abstraction levels. Based on it, a multi-
level simulation framework for robot-based services able to 
simulate the system at a very high, pure functional level at the 
earliest stages of the design cycle, has been proposed. Using 
the same infrastructure, simulation can be enriched with more 
accurate models for the execution times of the functional 
components once the code has been developed. The ROS 
infrastructure should be included. Finally, this code can be 
simulated against realistic models of the robots using 
simulators such as Ardupilot. Although it is possible to 
annotate the C++ code in order to estimate its performance in 
terms of execution time and energy, estimation of the impact 
of the underlying ROS infrastructure using native simulation 
is much more difficult as it would require cross-compiling and 
annotating the complete ROS library. Moreover, this would 
lead to higher simulation times with a small impact in 
accuracy. Being an external library, it would bring few 
optimization alternatives. Nevertheless, if precise 
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performance estimation is required (e.g., for design constraint 
validation or design-space exploration), it is necessary to take 
these execution times into account. As the percentage of ROS 
code in the application code is small, even a rough estimation 
of the ROS code performance would improve accuracy. 

III. MODELING OF ROBOT-BASED SERVICES 

A. S3D Model of Robot-based Services 
The goal of the modeling methodology proposed is to 

enable the integration of robots into the S3D system model-
driven design framework. Therefore, the focus is put on the 
service being analyzed but taking into account the fact that 
part of the system functionality and performance strongly 
depends on the behavior of robots as mechatronic devices. In 
Fig. 1, a delivery service for parcels among hospitals in a city 
is shown: 

 
Fig. 1. The system and its environment. 

The system receives orders from requesters for certain 
goods. Provided it is a valid request and the good is in the 
store, the system has to select and control the movement of 
Unmanned Terrestrial Rovers (UTR) and Unmanned Aerial 
Vehicles (UAV) in a fleet to take the parcel from the store and 
send it to the final destination. UTRs oversee taking the parcel 
to the drone port and from the destination drone port bring it 
to the requester. The drones are in charge of moving the 
parcels among drone ports. All the process is under the 
supervision of the provider who is informed of the service and 
its status at any time. 

In Fig. 2, the functional architecture of the system is 
shown: 

  
Fig. 2. The system’s functional architecture. 

The system is composed of five different functional 
components. The Delivery_Central, in charge of managing 

and following the requests, selecting the appropriate rover and 
drone, asking the Route_Generator for the best path to be 
followed by rovers and drones and send it to them. The 
Rover_Control and Drone_Control components are in charge 
of controlling the robots stablishing a dialog with them using 
ROS. The Precision_Landing component takes the control of 
the drone when it is close to the drone port in order to ensure 
that the drone takes and delivers the good in perfect shape to 
and from the right position. 

In S3D, each component may be associated to different 
models in order to cover the simulation and performance 
analysis tasks during the different stages along the system 
design process. So, during system requirement analysis and 
partitioning, models with a minimal functionality associated 
to constant execution times and energy consumptions are 
needed. After component development, the full code is 
available and then, the complete behavior of the system can 
be simulated. Moreover, components might be in different 
languages. A property in the generalization of the component 
will provide the programming language used and the path 
where the corresponding file is: 

$language=C++ 
$path=C:/projects/C4D/UC3/Demo2/Files 

‘Rover_Control’ is not a ‘pure’ C++ component as it 
makes use of ROS functions and therefore, it needs the ROS 
library to be compiled. The C++ implementation of ROS is 
called ‘roscpp’. In order to let the simulation model generator 
(mSSYN) to know that the ROS infrastructure has to be 
integrated as part of the model, it is enough to identify the 
programming language used as ‘roscpp’:  

$language=roscpp 
$path=C:/projects/C4D/UC3/Demo2/Files 

Therefore, no modification to S3D is required due to the 
fact that in robot-based systems using ROS, the ROS library 
has to be included. 

In S3D, Provided/Required interfaces are explicitly 
declared in the model with the list of methods they include. 
So, mSSYN, will connect the two component instances and 
linked them through the corresponding interfaces. As an 
example, the interface in the ‘Get_Path’ port will link the 
services required by the ‘Delivery_Central’ with the interface 
in the ‘Get_Route’ port of the ‘Route_Generator’ component 
providing them (Fig. 2). Based on the properties in the port 
and the interface, different models of computation and 
communication (MoCC) are supported. Contrarily, ROS 
follows a publish/subscribe MoCC that cannot be 
implemented in the same way as the rest of S3D service/client 
methods. The way decided to handle this difference and 
enable mSSYN to automatically generate the model is quite 
simple: just let the interfaces empty. In that case, mSSYN does 
nothing but launching the ROS master process because there 
is a ROS node in the system, and the master will be in charge 
of deploying the infrastructure to enable ROS communication 
methods. 

Components in the verification environment can also be 
associated to different functional files. This also affects the 
models for the drones, i.e., the autopilot and the model of the 
aerodynamics. Therefore, integrating an external executable 
into the simulation framework may be required for some 
external aerodynamics simulators (e.g., Gazebo, SimCenter 



   
 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

AmeSim …), while others are included in the drone software 
(e.g., ArduCopter+SITL). 

B. Common control interface for drones 
ROS does not provide a unified way to use a flight controller 
such as Ardupilot, PX4, Paparazzi or DJI. Although it defines 
how to register a node, to what topic to publish and subscribe 
and how to publish a message in a particular topic, the content 
of the messages is different from one robot to another. As a 
consequence, the ‘roscpp’ code to control a robot (i.e. a 
Paparazzi drone) is different than the code to control another 
robot (i.e. a DJI) even when the orders are the same (i.e. take 
off, go to a GPS position, etc.). S3D targets pure platform 
independent modeling so that a particular code can be mapped 
to different execution units. In order to overcome this 
problem, an interface class that allows the user to perform the 
basic functions of a drone is proposed. This class is inherited 
by all the drone controllers, establishing a unique frame and 
unifying the control operations of the above-mentioned 
controllers. Each of the drone control classes should 
implement the interface functions according to its particular 
functionality. This solution could be applied to any family of 
robots sharing similar actions. 

The C++ interface proposed has been developed for the 
Ardupilot, Px4, Paparazzi and DJI drones but could be 
extended to any other. The interface has differentiated two 
function groups, the GPS operation group and the non-GPS 
operation group as shown in Fig. 3. 

GPS operations depend on aircraft positioning and require 
an operational positioning system, while non-GPS operations 
do not require operational positioning. 

The developed interface is the following: 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

class I_RosDron { 
public: 
    virtual ~I_RosDron() {} 
     
    //Advanced features 
    virtual void uc_drone_gps_fly(float height) = 0; 
    virtual void uc_drone_return_ground() = 0; 
    virtual void uc_drone_gps_go(double lat, double lon, double alt) = 0; 
     
    //Mode no GPS 
    virtual void uc_drone_joystick(double x, double y, double z, double r) = 0; 
    virtual void uc_drone_stabilize_fly() = 0; 
    virtual void uc_drone_alt-hold_fly() = 0; 
    virtual void uc_drone_land_ground() = 0; 
}; 

Fig. 3. The multi-drone interface. 

As with the ROS interfaces in the model, this one has not 
to be described in each port of the component as it does not 
require an implicit connection among the component 
instances as the usual, client-server, S3D interfaces. 

For a better understanding of the interface, let us provide 
an example of its usage. Consider a drone initialized as a 
pointer to an object of one of the above-mentioned drone 
control modules named “drone”.  

To perform the first takeoff after the vehicle is connected, 
the "drone->uc_drone_gps_fly();" statement would be used. 
This function, like the rest of this interface, will remain 
blocked until the drone is taken off the ground and there rises 
to the altitude designated in each case by the controller. 

Immediately afterwards the drone can be sent to a GPS 
position using the following statement: "drone-
>uc_drone_gps_go(43.4747386, -3.7986268, 50);". This 

instruction receives as parameters the coordinates in north 
latitude in degrees, east longitude in degrees, and the absolute 
height in meters from sea level. To use this function, it is 
essential to use the uc_drone_gps_fly function in advance, as 
it will change the flight mode of the aircraft if necessary. 

At the end of the flight mission, the instruction "drone-
>uc_drone_return_ground()" can be used, which will cause 
the drone to return to the starting point and land safely. 

The following functions do not require an orientation 
system, but a transition between modes (GPS/noGPS) can be 
performed during the flight. 

To start a flight in fully manual mode (stabilized only) the 
"drone->uc_drone_stabilize_fly();" statement can be 
executed. Furthermore, to start a flight with height hold 
(stabilized and maintaining height) the instruction "drone-
>uc_drone_alt-hold_fly();" can be executed. This instruction 
is equivalent to the previous one, but if the throttle is 
maintained at 50% the height is automatically maintained. 

These two modes above require data from a joystick 
controller. This requires that the controller update function is 
sent at least once before running the instructions above. This 
function is named "drone->uc_drone_joystick(0,0,500,0);", 
where the arguments are pitch, roll, throttle, and yaw. Throttle 
takes values between 0 and 1000 while the rest take values 
between -1000 and 1000. 

To land safely without GPS the instruction "drone-
>uc_drone_land_ground()" can be used, which will 
automatically descend the aircraft until it touches ground. 

This set of instructions has been chosen because it allows 
to perform almost any drone mission. Although not all the 
functions of the drone can be accessed, the generated code is 
independent of the flight controller so that only drone-specific 
commands have to be isolated from the drone-independent 
code. 

This interface is useful when multiple drones are used. 
Different flight controllers have different procedures. Even, 
DJI uses a distinct approach in its different drones to 
determine the status of the aircraft, which is published in the 
"/dji_sdk/flight_status" topic. Next, these procedures and their 
equivalent in the proposed interface are described. 

Paparazzi UAV integrates a ROS communication module 
named “pprzros”. It only publishes on the topic 
“/pprzros/to_ros” and receives publications from the topic 
“/pprzros/from_ros”. To use this controller, the developer has 
to work with a predefined data structure containing all the 
required drone control fields, both for sending and receiving 
data. In this case, the data of all drones that are flying goes 
through the same “pprzros” and broadcasted to all the ROS 
modules they listen to. 

For Ardupilot and PX4 controllers, the MAVROS control 
module has been used. Nevertheless, even between these two 
controllers differences exists in the way they operate. For 
example, in PX4 the auto-control mode is called "offboard", 
while the same mode in ArduPilot is called "guided". To 
perform a flight in guided mode, the operation is divided into 
3 fundamental parts: takeoff, mission and landing. 

For taking off in PX4 it is enough to order arming engines 
and indicate the first reference point, while ArduPilot needs to 
be armed first and then sending the “takeoff” command. In 
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DJI and Paparazzi UAV controllers the common interface 
must assemble and take off the aircraft in the same way as 
ArduPilot and PX4, respectively. If using the proposed 
common interface, the developer will not have to create a 
complex sequence with its utility limited to a particular drone: 
only by executing the "uc_drone_gps_fly()" function, the 
necessary tasks for the drone to be in the air will be performed. 

Landing in PX4 requires activating the "auto.land" mode, 
while in ArduPilot the serial equivalent mode is named 
"LAND". Paparazzi UAV and DJI have specific modes of 
landing that are activated by changing a particular value. 
Using our approach, running the "uc_drone_land_ground()" 
function would get the same result in each case. 

When sending mission coordinates, ArduPilot and PX4 
behave almost the same, since the only difference is that PX4 
requires a constant refreshment of the mission, while 
ArduPilot only requires receiving the command once, moving 
to the destination until instructed otherwise or until it reaches 
the target. Using the proposed "uc_drone_gps_go()" function 
of the interface, the executed code will block until the drone 
has reached the destination. 

For manual control, some flight controllers have several 
modes available. The most interesting modes are the stabilized 
mode, which allows a manual flight with few iterations, and 
the height lock, which allows to keep the drone at a fixed 
height while manually directing the drone. In these cases, a 4-
axis flight control is used: x-axis for pitch, y-axis for roll, z-
axis for throttle and r-axis for yaw. Using the 
"uc_drone_joystick()" function of the interface the criteria and 
data types are unified so it can be transparent to the developer. 

This interface allows the user to only have to develop with 
a standardized drone and not the actual drone model to be 
implemented, allowing to change the model later or even use 
multiple different drone models. An additional advantage is a 
strong reduction in the lines of code to be written. 

Next, real code of our approach and the original autopilot 
control instructions are compared. Arducopter is used as the 
autopilot for the following examples. 

Using our proposal, the source code of a flight mission that 
sends the drone to three GPS coordinates and lands it at the 
last point, is the following: 

1 
2 
3 
4 
5 

drone->uc_drone_gps_fly(float height); 
drone->uc_drone_gps_go(46.0828, -103.899, 940); 
drone->uc_drone_gps_go(46.0828, -103.820, 940); 
drone->uc_drone_gps_go(46.0820, -103.822, 920); 
drone->uc_drone_land_ground(); 

 

Fig. 4. Drone-independent mission code. 

This same program would require 60 lines of code for 
Ardupilot, increasing 12 times the original size: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

mavros_msgs::CommandTOL cmdTOL{}; 
mavros_msgs::CommandBool cmdBool; 
mavros_msgs::SetMode mode; 
geographic_msgs::GeoPoseStamped pose; 
double vel; 
mode.request.custom_mode="GUIDED"; 
ros::Rate r(10); 
do{ 
  ros::spinOnce(); 
  while(state.mode!=mode.request.custom_mode){ 
    set_mode_client.call(mode); 
    r.sleep();  
    ros::spinOnce(); 
  } 
  cmdBool.request.value=true; 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
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38 
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  while(state.mode==mode.request.custom_mode && !state.armed){ 
    arming_client.call(cmdBool); 
    r.sleep(); 
    ros::spinOnce(); 
  } 
  cmdTOL.request.altitude=2; 
  while( state.mode==mode.request.custom_mode && state.armed && 
state.system_status!=4){ 
    takeoff_client.call(cmdTOL); 
    r.sleep(); ros::spinOnce(); 
  } while(std::abs(2-altRel)>0.25) ros::spinOnce(); 
} while(state.mode!=mode.request.custom_mode || !state.armed || 
state.system_status!=4); 
double lat[] = {46.0828,46.0828,46.0820}; 
double lon[] = {-103.899,-103.820,-103.822}; 
double alt[] = {940,940,920}; 
for(int i=0;i<3;i++){ 
  pose.pose.position.latitude = lat[i]; 
  pose.pose.position.longitude = lon[i]; 
  pose.pose.position.altitude = alt[i]; 
  global_pos_pub.publish(pose); 
  ros::spinOnce(); 
  r.sleep(); 
  do{ 
    ros::spinOnce(); 
    r.sleep(); 
    vel=(std::abs(motion.twist.linear.x)+std::abs(motion.twist.linear.y)+ 
std::abs(motion.twist.linear.z))*0.2+vel*0.8; 
  } while(vel<1.5 && state.mode!="GUIDED"); //Wait_start_motion 
    ros::spinOnce(); 
vel=(std::abs(motion.twist.linear.x)+std::abs(motion.twist.linear.y)+std::abs(
motion.twist.linear.z))*0.2+vel*0.8; 
  } while(vel>1.5 && state.mode!="GUIDED"); //Wait_stop_motion 
} 
mode.request.custom_mode="LAND"; 
do{ 
  ros::spinOnce(); 
  r.sleep(); 
  while(state.mode!=mode.request.custom_mode){ 
    set_mode_client.call(mode); 
    ros::spinOnce(); 
    r.sleep(); 
  }while(state.mode==mode.request.custom_mode  &&  
state.armed)ros::spinOnce();  
} while(state.mode!=mode.request.custom_mode || state.armed); 

 

Fig. 5. Ardupilot code implementing the mission in Fig. 4. 

This simplification is possible because the flight controller 
procedures are large and complex, meaning that many of them 
can be reduced into a simple function. As an example, 
Ardupilot requires 3 steps to initialize and takeoff the drone, 
while by using the proposed interface, it can be done in a 
single step. As an example of the code inside a method of the 
proposed interface, the code in Fig. 6 corresponds to the 
procedure for initiating the GPS-guided flight of a drone with 
an Ardupilot controller, equivalent to the “uc_drone_gps_fly” 
function: 

uc_drone_gps_fly(float height) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
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22 
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24 

mavros_msgs::CommandTOL cmdTOL{}; 
mavros_msgs::CommandBool cmdBool; 
mavros_msgs::SetMode mode; 
mode.request.custom_mode="GUIDED"; 
ros::Rate r(10); 
do{ 
  ros::spinOnce(); 
  while(state.mode!=mode.request.custom_mode){ 
    set_mode_client.call(mode); 
    r.sleep();  
    ros::spinOnce(); 
  } 
  cmdBool.request.value=true; 
  while(state.mode==mode.request.custom_mode &&!state.armed){ 
    arming_client.call(cmdBool); 
    r.sleep(); 
    ros::spinOnce(); 
  } 
  cmdTOL.request.altitude=height; 
  while(state.mode==mode.request.custom_mode && state.armed &&   
state.system_status!=4){ 
    takeoff_client.call(cmdTOL); 
    r.sleep();  
    ros::spinOnce(); 
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25 
26 
27 
28 

  } 
  while(state.system_status==4&& (relAlt<height) ros::spinOnce(); 
}while(state.mode!=mode.request.custom_mode ||!state.armed || 
state.system_status!=4); 

Fig. 6. Implementation of the uc_drone_gps_fly() function. 

In lines 1-3 the necessary message structures are defined 
and in line 4 the guided flight mode is indicated. In line 5, a 
frequency of 10Hz has been defined to be used when looping 
to send and receive messages. Then, a loop is started from line 
6 to line 27, repeating as long as the drone is not flying in 
guided mode. Lines 7, 11, 17 and 24 correspond to the ROS 
statement used to update the values of subscriptions. In the 
loop of line 8 the mode is changed (line 9), continuing with 
the execution when this change is confirmed. 

In lines 13-18 the drone is armed, looping if the drone 
status remains unarmed. On line 19 taking off is requested. 
The operation will be completed when the drone state changes 
to 4. Finally, in line 26 there is a waiting loop, which is 
responsible for waiting while the expected height is reached. 

Eventually, if the flight mode is changed or the drone is 
disarmed, the loop will exit to start over. 

IV. PERFORMANCE ANALYSIS OF ROBOT-BASED SERVICES 

A. C++ and ‘roscpp’ code 
Functional code in S3D (e.g. C++) can be associated to 

constant execution times and energy using the ‘uc_add_times” 
function, or be simulated using native simulation which would 
provide much more accurate estimation of performance 
figures. 

When dealing with ‘roscpp’ code, the C++ code is 
managed exactly the same way but each time a ROS function 
is found, the methodology in the next section is applied. Recall 
that doing nothing would correspond to an estimated time and 
energy of ‘0’ which, in fact, would imply a certain error. The 
goal of the methodology proposed is to decrease this error. 

B. ROS methods 
The proposed method consists in adding a predefined 

workload each time a ROS function is called. These 
workloads have been estimated for each function using 
POSIX process clocks, measuring the time elapsed by the 
function itself and all the involved ROS threads running in 
background on a certain node, in a sufficiently large sample. 
These times are influenced by two main factors: the 
processor’s frequency and its architecture. Measures have 
been performed on a PC (Intel i5-3470 x86_64) and on an 
embedded platform (Raspberry Pi 4, with an ARM Cortex-
A72 ARMv8). For frequency scaling, first assumption was to 
consider a model with an ideal, lineal relationship between 
core frequency and elapsed time to compute a certain load. 
However, error measured using this model was unacceptable. 
For a more precise estimation, times have been obtained at two 
different frequencies for each processor: 

• Intel: 1600MHz and 3000MHz 
• ARM: 600MHz and 1500MHz 

This set of architectures and frequency combinations 
allows us to cover a large set of scenarios. If nodes run on a 
PC/Server it will likely be an Intel, and in the case of 
embedded platforms, ARM is the dominant processor. 

Among the complete set of ROS library functions, the 
most frequently used, have been analyzed. The proposed 
technique could be applied to the rest of functions as well. 

Service calls have not been considered as the corresponding 
execution time is negligible with respect the service execution 
time itself. Regarding its execution time behavior, ROS 
functions can be divided in two main groups: functions whose 
execution time has a dependency with an external variable ‘x’ 
and functions which exhibit an execution time which only 
depends on frequency F. 

1) Dependent functions 
These functions show an elapsed time which can be 

mathematically expressed using linear dependency with the 
‘x’ variable: 

#Time (ns) = A·x+B 

Both factors A and B show a linear dependency with 
frequency F: 

A = a·f(MHz)+b 
B = c·f(MHz)+d 

As a consequence, the final equation is: 

#Time (ns) = (a·f(MHz)+b)·x+(c·f(MHz)+d)    (1) 

Let us measure these parameters for the two dependent 
functions. 

a) Publish 
Sending messages from a publisher to a subscriber node is 

carried out calling the “ros::Publisher::publish” function. As 
described in [22], publishing is performed as point-to-point 
communication between the publisher and each subscriber. 
Thus, publishing elapsed time is directly proportional with the 
number of subscribers on a specific topic. Results are shown 
in Fig. 3. This lineal behavior is observed for all the scenarios. 

Fig. 7. Observed execution time for the ‘publish’ ROS function. 

From the equations shown in Fig. 3, the following 
expressions are obtained, being nSubs the number of 
subscribers to a certain topic: 

#Time_Publish(Intel) = 
(-7, 78·f(MHz)+51020)·nSubs + 
(1,959·f(MHz)+197717)  ns 

#Time_Publish(ARM) = 
(-22,656·f(MHz)+85844)·nSubs + 
(-128,46·f(MHz)+254162) ns  
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It is worth mentioning that this results would degrade its 
accuracy outside the range of frequencies considered in each 
CPU. Additionally, several tests were made varying publish 
rate, message size and buffers size. However, no meaningful 
change was detected on the obtained results. 

b) Sleep 
ROS sleep functions are called from two main classes: 

ros::Rate and ros::Duration. The first performs a sleep of a 
certain period given a rate or frequency in hertzs, while the 
second receives a duration in seconds. These functions 
operate by polling, checking if the current wall-clock time has 
reached the desired value. Thus, there is a direct dependency 
between the sleeping time and the load generated on the 
processor. Internally, the sleep function of ros::Rate calls the 
sleep function of ros::Duration after converting rate to 
seconds, so the load has been assumed to be the same for both 
of them after being verified experimentally. 

 

Fig. 8. Observed execution time for the ‘sleep’ ROS function. 

From the equations shown in Fig. 4, the following 
expressions are obtained, being T the SleepTime time in 
microseconds: 

#Time_Sleep (Intel)= 
(-0,33·f(MHz)+2,0925) ·T + 
(-1,498·f(MHz)+22697) ns 

#Time_Sleep (ARM) = 
(-0,996·f(MHz)+2,1587)·nSubs + 
(-27,51·f(MHz)+57231) ns 

2) Non-dependent functions 
In these functions, equation (1) is still valid but without 

dependency from any ‘x’ factor (a=b=0):  

#Time (ns) = c·f(MHz)+d   (2) 

The following are the functions under this behavior. 

a) Spin 
Messages published on a topic are received by the 

subscriber through a callback function, which is sent as an 
argument during the subscription. When a message is 
received, the callback function is not called directly, but rather 
the request it is queued until ros::spinOnce function is called. 

This allows, for instance, receiving messages at a desired rate 
so the node processing capacity is not exceeded.  

Although this function is not dependent on external 
factors, it has been observed that the first time it is called by a 
node it takes longer. Results are shown in Table 1. 

TABLE I.  EXECUTION TIMES FOR THE ‘SPIN’ FUNCTION. 

 
b) Initialization and registration 

This set is mainly formed by those functions, which are 
usually called one single time at node’s creation. Since no 
dependency has been detected, best estimation consists in 
averaging the times obtained for a large set of executions. 

TABLE II.  EXECUTION TIMES FOR INITIALIZATION AND 
REGISTRATION FUNCTIONS. 

Function 

Avg. time(ns) 
Intel 

@1600MHz 

Avg. time (ns) 
Intel 

@3000MHz 

Avg. Time (ns) 
ARM 

@600MHz 

Avg. time (ns) 
ARM 

@1500MHz 

init  433,923 30,0054 18,795,260 16,195,670 

NodeHandle 4,137,052 2,322,393 5,583,100 4,885,054 

serviceClient 58,706 47,143 78,275 68,099 

advertise 316,862 195,434 591,091 525,178 

suscribe 1,078,574 731,497 1,445,835 1,360,615 

advertiseServer 142,290 121,073 189,720 24,403 

V. EXPERIMENTAL RESULTS 
In this section, performance simulation results are 

presented. The application example used consists in a last mile 
drone-based delivery service, described above. The drone’s 
autopilot is Arducopter and receives orders from the drone 
controller, which is a ROS node modelled using ‘roscpp’. A 
MAVROS node has been instantiated to establish 
communication between the drone controller and the 
Arducopter. 

In our case, we are interested in performance estimation of 
the drone controller ROS node. To verify the correctness of 
the ROS annotation, the simulated code has not been 
dynamically analyzed   using native simulation techniques, so 
the ROS function calls are the only load considered. In this 
way we can directly handle the ROS impact without the 
interference from the rest of code. 

The use case has first been simulated using the 
methodology described in Section I. These estimated 
execution times are now compared with the actual figures 
measured on the target, by dynamically measuring and 
accumulating the real processor time of the ROS functions 
with POSIX clocks. TABLE III presents the results obtained. 
As expected, there is a relevant error in the estimated time. 
This error is caused by several factors related with the global, 
high-level approximation to the problem. As the host where 
the measures are taken is an Intel CPU, the error is lower when 
the target is also an Intel. Since the error is lower than 100% 
in all scenarios the total error on a complete, annotated 

Processor 
Avg. time of the first 

execution (ns) 
Avg. time of the rest of 

executions (ns) 

Intel @ 1600MHz 21,500 6,377 

Intel @ 3000MHz 20,380 6,270 

ARM @ 600MHz 54,381 21,860 

ARM @ 1500MHz 24,403 9,048 
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example is reduced as the alternative of not considering any 
(i.e., ROS execution time considered negligible) would imply 
a 100% error. 

TABLE III.  ESTIMATED VS REAL EXECUTION TIMES OF THE ROS 
INFRASTRUCTURE. 

  TIME (ns)  

 FREQUENCY ESTIMATED MEASURED DIFF (%) 

INTEL 
1600 485,873,399 582,581,163 16.60 

3000 318,626,359 461,462,380 30.95 

ARM 
600 521,466,358 904,953,908 42.38 

1500 233,965,058 398,265,784 41.25 

This impact will depend on the percentage of ROS code in a 
given application. If ROS code (rc) where 0% of the total 
application code (tac), the error in the estimation (tae) would 
be that of native simulation (nse, typically in the range 10-
25%). If ROS code where 100% of the application code (ac) 
the error would be that of the proposed methodology (ree, in 
the range 15-45%). In general, the error would be in between 
both extremes following the equation: 

tae = %ns.nse + %rc.ree 

The following table brings these figures to the use case 
used in the paper:  

TABLE IV.  IMPACT OF THE ERROR IN THE ROS EXECUTION TIME. 

 

FREQUENCY 

Total 
Application 

(tac)(ms) 

%ROS 
code 

(%rc) 

Impact of 
ROS 

estimation 
error (%) 

Impact of 
no 

estimation Improvement 

INTEL 
1600 22,875 2.55 0.42 2.55 83.5% 

3000 22,018 2.10 0.65 2.10 69.0% 

ARM 
600 213,446 0.42 0.18 0.42 57.1% 

1500 87,688 0.45 0.19 0.45 57.8% 

As shown, the impact of the error in the estimation of the ROS 
execution time is small and, in any case, smaller than doing 
nothing by considering that the execution time of the ROS 
code is 0. The methodology achieves an improvement in the 
ROS execution time estimation which can be as high as 83% 
when the percentage of ROS code is small. 

VI. CONCLUSIONS 
In this paper, MDD is proposed for modeling, simulation 

and performance analysis of SW intensive robot-based 
services. A first interesting result is that if the MDD modeling 
methodology is general enough, no extension is needed being 
enough to identify which components make use of ROS. In 
that case, the ROS infrastructure can be automatically 
integrated in the system. For certain kind of robots with many 
similar functions, like drones, a common list of methods can 
be defined so that the same code is valid for all of them just 
by associating the functions with the appropriate code. An 
additional advantage of the common language is a strong 
reduction in the programming effort which can be reduced 
around 10 times. 

A methodology for rough estimation of execution time of 
the ROS code has been proposed. Although the error can be 
as high as 45%, the impact is small as the ROS code will be 
only a fraction of the total executable. In any case, an 
improvement over not annotating any execution time for ROS 

is achieved and this improvement is higher when it is more 
needed, that is, when the percentage of ROS code is higher. 
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