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ABSTRACT Harmonic balance provides steady-state solutions only and has significant shortcomings
when addressing oscillatory regimes. As a result, complementary methodologies are required both to
ensure the stability of the solution obtained and to design/simulate oscillator circuits. The complexity
of the stability analysis increases with the number of active elements and the intricacy of the topol-
ogy, so there can be uncertainties in the case of complex structures. On the other hand, as recently
demonstrated oscillators enable a compact and low-cost implementation of RFID readers and radar sys-
tems, which comes at the expense of a more complex performance, very difficult/impossible to simulate
with commercial HB. This work presents a review of recent advances on stability and oscillation anal-
ysis at circuit level and through semi-analytical formulations. At circuit level, a method for the stabil-
ity analysis of complex microwave systems is presented, based on the calculation of the characteristic
determinant, extracted from the commercial simulator through a judicious partition of the system into
simpler blocks. This determinant will be used for the first time to obtain the stability boundaries through
a contour-intersection method, able to provide multivalued and disconnected curves. At a semi-analytical
level, a realistic numerical model of the standalone oscillator, extracted from HB simulations, is introduced
in an analytical formulation that describes the oscillator interaction with other elements. Here it will be
applied to a self-injection locked radar, in which the oscillator is injected by its own signal after this signal
undergoes propagation and reflection effects. A procedure to determine the stability properties considering
the time delay of the signal envelope is presented for the first time. Using the same self-injection concept,
a new stabilization method to reduce the phase-noise of an existing oscillator with minimum impact on its
original frequency is described.

INDEX TERMS Bifurcation, injection locking, oscillator, stability.

I. INTRODUCTION

Most Microwave designers make use of the harmonic balance
method (HB) due to its efficient and accurate handling
of distributed elements [1]-[3]. However, HB provides
steady-state solutions only and has significant shortcomings
when addressing oscillatory regimes [3]-[6]. This is due
to the mathematical coexistence of the oscillation with a
non-oscillatory solution (the DC solution of a free-running
oscillator, for instance [7]) to which the error minimization

converges by default [1], [3]-[6]. To be physical, the solution
obtained with HB must be stable, which can only be ensured
with a complementary stability analysis [8]-[21]. This work
presents a review of recent methodologies for stability
[22], [23], and oscillation analysis [24]-[26] developed
at University of Cantabria. As indicated through the text,
it includes several new theoretical contributions with
respect to previous publications by the group on the two
topics.
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The stability of a steady-state solution is analyzed [1], [3],
[8] applying a small perturbation of complex frequency s.
In the presence of this perturbation, the circuit is formulated
linearizing the nonlinear devices about the steady-state solu-
tion and evaluating the passive linear elements at s [1], [3],
[13]. This provides a homogeneous system, and its natural
frequencies are given by the roots of its associated charac-
teristic determinant, depending on s. For a stable behavior, all
these roots must be in the left-hand side (LHS) of the complex
plane. To avoid dealing with complex frequencies, the Nyquist
criterion can be applied to the characteristic determinant [1],
[3], [8]. This criterion provides the difference between the
number of zeroes and poles of the determinant located in the
right-hand side (RHS) of the complex plane [27]. Thus, the
result will be inconclusive unless the number of RHS poles is
known beforehand, which is virtually impossible in practice.
When the system is explicitly formulated in terms of the Jaco-
bian matrices of the nonlinearities with respect to their control
voltages, there cannot be any poles in the RHS [1], [3], [8].
However, this formulation is only possible in in-house HB,
since, as stated, it requires access to the Jacobian matrices.
To cope with this problem, the works [9], [14] introduced
the Normalized Determinant Function (NDF), which can be
calculated in commercial HB. The NDF avoids the undesired
coexistence of RHS zeroes and poles but must be calculated
at the device intrinsic terminals. Thus, it cannot be rigorously
obtained when using black-box device models.

A fully different strategy is the one based on the pole-zero
identification of a closed-loop transfer function [15]-[19].
This powerful method relies on the fact that all the closed loop
transfer functions that can be defined in a linear system share
the same denominator [15]-[19], [27] which agrees with the
characteristic determinant. As a result, if there are no exact
pole-zero cancellations, the poles (defining the stability prop-
erties) will be the same, no matter the transfer function ana-
lyzed [15]-[19]. In practice, there can be cancellations/quasi-
cancellations of RHS zeroes and poles. This will occur if
the transfer function is calculated at nodes/branches with low
observability and controllability of the unstable loop(s). To
avoid missing instabilities several transfer functions must be
analyzed, which may become demanding in complex multi-
device structures.

Recently a new method has been introduced [23], which is
based on a definition of the characteristic determinant that, by
construction, cannot exhibit any RHS poles. Unlike [9], [14],
the calculation of this determinant does not require access to
the intrinsic device terminals. Instead, it is easily obtained
by partitioning the structure in simpler blocks that must be
stable under either open circuit (OC) or short circuit (SC)
terminations [28], [29]. Due to the small size of the blocks,
this OC/SC stability can be reliably verified with conventional
pole-zero identification applied to a closed-loop transfer func-
tion [15]-[19]. Then, the characteristic determinant is calcu-
lated at the ports defined in the partition.

A complementary (and computationally efficient) method
to avoid unstable behavior is the calculation of the stability
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FIGURE 1. Stability analysis through a circuit partition into simpler blocks.
The case of OC-stable active blocks is considered. An analogous partition
would be carried out in the case of SC-stable blocks, using an admittance
description of both the active blocks and the passive linear matrix.

boundaries [1], [3]-[6] in terms of parameters such as the bias
voltage or a relevant element value. This will also provide
insight into the effect of these parameters on the stability
properties. Here the stability boundaries will be obtained (for
the first time) applying a bifurcation condition to the newly de-
fined characteristic determinant, which will allow addressing
the full circuit structure without any observability limitations.

A different goal is the use, instead of the avoidance, of
the oscillatory solution to implement compact and low-cost
RFID readers and radar systems [30]-[35]. The self-injection
locked radar proposed in [33]-[35] enables a simple detection
of the target motion through the demodulation of the oscil-
lation frequency, and extensions for range detection using a
stepped-frequency modulation [35] have also been proposed.
The oscillator is injected by its own signal after this signal
undergoes reflection and propagation effects. However, this
operation mode often gives rise to multi-valued solutions,
virtually impossible to simulate in commercial HB. To cope
with this problem, semi-analytical formulations have been
introduced [24], [25], [36], which make use of a realistic
numerical model of the standalone oscillator, extracted from
HB, that is combined with an analytical description of the self-
injection loop. Here a new procedure to determine the stability
properties considering the time delay of the signal envelope
is presented for the first time. Using the same self-injection
concept, a new stabilization method to reduce the phase-noise
of an existing oscillator with minimum impact on its original
free-running frequency is described.

II. CIRCUIT LEVEL STABILITY ANALYSIS OF COMPLEX
STRUCTURES
A. SMALL-SIGNAL STABILITY ANALYSIS
The stability analysis proposed in [23] is based on a partition
of the structure into N active blocks (containing both active
and passive linear elements), connected through a passive
linear network (Fig. 1).

The selected N blocks must be stable either under open-
circuit (OC) or short-circuit (SC) terminations. One—port ac-
tive blocks will be considered, though the extension to a
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higher number of ports is straightforward. Initially it is as-
sumed that the N one-port active blocks are OC-stable (Fig. 1),
so they will be described with their corresponding impedance
functions Z, ,, where n = 1...N. In turn, the passive linear
network will be described with its N x N impedance matrix
[Zp]. The characteristic system is:

Ziis) 0 ... 0
0 Zya(s)--- O
: o : + Al 0
0 0 e Zan(s) =1 :
Zp11(s) ... Zpin(s) Aly 0
ZpN1(s) ... ZpNN(s)
(L

where s is the perturbation frequency and A/lj to Aly are the
current increments at the connection branches. The stability
is defined by the roots of the characteristic determinant of the
above homogeneous system:

det {[Z4(s)] + [Zp()]} =0 2

where the newly introduced matrix [Z4 (s)] is clearly identified
through comparison with (1).

Obviously, the passive linear matrix [Zp] cannot exhibit any
RHS poles. On the other hand, and because the active blocks
are stable under an OC termination, the impedances Z4 x(s),
k =1 to N, cannot exhibit any RHS poles either. This is
because Z4 x(s) agrees with the voltage-to-current closed-loop
transfer function obtained under the excitation Al;. Thus,
the determinant in (2) cannot exhibit any poles in the RHS.
As a result, there will be no uncertainties associated with
cancellations/quasi-cancellations of RHS zeroes and poles.
Note that the stability analysis of the active blocks described
with Zy 1 (s) is carried out through pole-zero identification in
internal nodes to guarantee that there are no hidden insta-
bilities. In case the blocks are SC—stable, the characteristic
determinant should be written as:

Yai(s) 0 ... 0
0 YA,z(S) R 0
. . . . +

det 0 0 ... Yan(s) =0 3)

Yp11(s) ... Ypin(s)

Ypni1(s) ... Ypan(s)

where Y4 ,, where n = 1...N, are the admittance functions
of the SC—stable active blocks and [Yp(s)] is the admittance
matrix describing the purely passive linear network (we as-
sume that this matrix is defined). In the practical stability
analysis s is replaced with j<2 in either (2) or (3). One should
calculate the N-port total impedance or admittance matrix at
the ports defined in the partition, which can be readily done
in commercial software. Then, one should obtain the deter-
minant det(j<2), with the frequency 2 going from DC to a
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very high value (ideally infinite), which will depend on the
gain response of the active devices. The determinant can be
analyzed through both the Nyquist criterion or pole-zero in-
dentification [15]-[19]. The Nyquist plot is obtained in just a
single 2 sweep (from DC to the maximum frequency consid-
ered) by tracing the imaginary part of det(j<2)versus the real
part. However, the Nyquist plot can be intricate and does not
provide the explicit values of the zeroes. In contrast, pole—zero
identification [15]-[19] does provide the numerical values of
these zeroes, but may require a partition of the frequency
band into elementary bands to ensure a sufficient accuracy.
All the analyses presented here will be based on pole-zero
identification.

As an illustrative example, a non-Foster transmission line
[37]-[39] will be considered [Fig. 2(a)]. This has been chosen
because it is prone to instability [40]-[43] and may contain
a high number of active devices. The non-Foster transmis-
sion line allows the control of the phase delay of guided-
wave devices, mostly applied for squint-free beamforming
of antenna arrays [37]-[39]. The line is periodically loaded
with negative capacitors implemented with transistor-based
negative impedance converters (NICs) [Fig. 2(b)] [44]-[46].
Note that the aim of to use this line as a test-bench of
the new analysis method. The design will be based on the
one in [37], [38], where the NIC is implemented with two
cross-coupled transistors having the capacitor to be negated,
Cheg» connected between their emitter terminals, as shown in
Fig. 2(b). This way an equivalent negative capacitor (ideally
—Cleg) is obtained (in a certain bandwidth) when analyzing
the input impedance between the terminal 7¢; and ground.
Note that a series resistor R, considered in Fig. 2(b), is often
introduced to reduce the transconductance effects and facil-
itate a stable operation, as demonstrated in [45]. The group
delay versus the excitation frequency is shown in Fig. 2(c)
[371, [38].

Two relevant parameters affecting the stability properties
are Cyg and the bias voltage Vjp. For an initial test, we have
considered Vj, = 0.85 V, and varied Cy,¢ in a wide range. The
structure in Fig. 2(a) is partitioned taking into account that the
NIC in Fig. 2(b) should be SC stable [45], [46]. This has been
verified (considering full device models) through a stability
analysis of the standalone NIC terminated in SC between T¢
and ground. Pole-zero identification has been applied (in a
conventional manner) to a closed-loop transfer function. This
is calculated inside the SC-terminated NIC, introducing a test
current / in parallel at a node and obtaining the ratio between
the node voltage and the test current Z = V/I [see Fig. 2(b)].

Fig. 3(a) presents the variation of the real part of the dom-
inant poles versus Cp,, when the test current is introduced
at the collector node of one of the two transistors. Because
of the small size of the block, the same result is obtained at
other nodes. As gathered from Fig. 3(a), this loaded NIC is
SC-stable for all the Cy, values. Thus, the stability analysis
of the entire structure will be based on the calculation of the
determinant (3), where Yy, is the input admittance of the
NICs [Fig. 2(a)].
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FIGURE 2. Non-foster transmission line, as proposed in [37], [38]. (a)
Schematic with N = 3 cells. (b) SC-stable NIC. (c) Variation of the phase
delay versus frequency, with measurement points [37], [38].

The results obtained when identifying the characteristic de-
terminant of a transmission line containing N = 3 NIC stages
are shown in Fig. 3(b). Note that now the stability information
is in the zeroes. For the bias voltage Vj, = 0.85 V, there are
two distinct pairs of complex-conjugate zeroes crossing to the
RHS at Cpeq = 5.99 pF and Cpee = 11.43 pF, respectively.
The first pair of zeroes returns to the LHS at Cppp = 11.43
pF. This result will be compared with the one obtained with
conventional pole-zero identification, applied to a closed-loop
transfer function. Fig. 3(c) presents the variation of the real
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FIGURE 3. Non-foster transmission line with N = 3 cells. (a) SC-stability
analysis of the terminated NIC through conventional pole-zero
identification applied to a closed-loop transfer function. The stability
information is in the poles, traced with “x". (b) Stability analysis of the
transmission line versus Cpeg for Vp, = 0.85 V through the identification of
the characteristic determinant in (3). The stability information is in the
zeroes, traced with “0”. (c) The same analysis through conventional
pole-zero identification of a closed-loop transfer function at Node 1. The
stability information is in the poles, traced with “x”. (d) At Node 2.

part of the dominant poles when this function is calculated at
Node 1. The analysis is not able to predict the first crossing to
the RHS, which delimits the stable Cy,, interval. When calcu-
lating the closed-loop transfer function at Node 2 [Fig. 3(d)],
the results are coincident with those obtained with the charac-
teristic determinant.

The newly defined determinant accounts for the whole
structure without any uncertainties associated with the cancel-
lation/near cancellation of RHS zeroes and poles. Note, how-
ever, that the conventional pole-zero identification (applied to
a closed-loop transfer function) [15]-[19] is used to verify the
stability of the blocks considered in the partition. Moreover,
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the identification of the determinant is based on the rigorous
procedures developed in [15]-[19].

B. STABILITY BOUNDARIES

A bifurcation is a qualitative change of the solution stabil-
ity properties when a parameter 1 is varied continuously
[47], [48]. The most common one from a DC solution is the
Hopf bifurcation, at which a pair of complex-conjugate poles
o =+ j cross the imaginary axis at ng. This will give rise
to the onset/extinction of an oscillation at & with amplitude
tending to zero [1], [3]. All the previous works [4]-[6] on bi-
furcation detection (in combination with commercial HB) rely
on the calculation of the total admittance Y (in small-signal
conditions) at an observation node. To obtain the bifurcation
points, both € and 5 are optimized to fulfill Y(2,ny) = O.
Because the admittance is calculated in small signal, the ng
value(s) fulfilling Y(€2,ny) = 0 will be the at the edge(s) of
the oscillation interval, thus providing the stability limit. How-
ever, in a manner like pole-zero identification, this method
may suffer from insufficient observability in large structures.
To overcome this limitation, the bifurcation detection method
presented here relies on the use (for the first time) of the
characteristic determinant defined in the Section A.

At the Hopf bifurcation, the determinant (2) (or its alter-
native admittance version) will exhibit roots at s = £j<2, as
corresponds to a pair of complex-conjugate poles crossing
through the imaginary axis. Thus, the parameter value(s) at
which the Hopf bifurcations take place is calculated replacing
s = jQ into (2) and solving the following complex equation
for Q and ngy:

det [Z7(2, np)] =

ZaG) 0 ... 0
0 Zpp(jR2)--- 0
. . .. . +
det 0 0 ... Zan(Q) -0 4

Zp11(j2) ... Zpin(j2)

Zpn1(j2) ... Zpnn(jS2)

Note that €2 is always an unknown, since the generated
oscillation is autonomous and, thus, its frequency (even for
amplitude tending to zero) varies with the parameter. In most
cases one is interested on obtaining the stability boundaries in
terms of two parameters 7; and 7. This is done by sweeping
one of the parameters (11) and solving the bifurcation con-
dition in terms of €2 and the other parameter (12). Prior to
the works [24], [49]-[52], this was done through continuation
methods [53], which use the solution point 7 as initial guess
for the point n+41, as well as parameter switching [3] to cir-
cumvent the possible turning points. However, these methods
are inherently local and will not be able to provide boundaries
composed by several disconnected curves. In [24], [49]-[52],
this problem has been addressed using contour-intersection
methods, applied so far to obtain the zeroes of Y(£2,n1,12).
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FIGURE 4. Contours det,[Z7 (2, ,)] = 0(blue solid line) and

det;[Z7 (2, 12)] = 0(red dashed line) obtained for N = 5 cells and

m = Vpp = 0.925V, traced in the plane defined by 7, = C,eg and . There
are five intersection points, corresponding to four disconnected Hopf-locus
curves [see Fig. 5(b)].

However, the use of an admittance function calculated at a
particular location may suffer from insufficient observability
in complex structures.

Here the contour-intersection method will be applied for the
first time to the characteristic determinant calculated as shown
in Section II. For each 5, a double sweep is carried out in
2 and 7, which provides the functions det,[Z7 (2, 12)] and
det;[Z7 (2, n2)], where the subscripts indicate real and imag-
inary parts, respectively. The above two functions constitute
surfaces in their respective spaces €2, 12, det,and 2, n;, det;.
Their respective intersections with the planes of zero value
yield the two following contours:

det, [Z7 (€2, n2)] = 0; det; [Z7 (£2,12)] = 0 ®)

Finally, the intersections between the contours in (5) pro-
vide all the distinct bifurcation points, in terms of €2 and 73,
coexisting for each value of ;.

The above method will be applied to obtain the Hopf-
bifurcation boundaries in the case of the non-Foster transmis-
sion line of Fig. 2. Note that this is the first time that these
stability boundaries are obtained using the purely numerical
characteristic determinant defined in Section II. The previous
work [22] described the structure in terms of a numerical ma-
trix and an analytical matrix, the latter depending on the load
elements Cy., and R, which, together with €2, were unknowns
of the complex equation det = 0 for each value of ;. As a re-
sult, it was virtually impossible to obtain the bifurcation locus
in terms of 11 and a second additional arbitrary parameter 7.
Moreover, the method did not allow numerical descriptions
of the load elements, as might be required when considering
parasitic effects.

The parameters considered in the new procedure are
n = Vp and 12 = Cyue. To illustrate the proce-
dure, Fig. 4 presents the contours det.[Z7 (2, n2)] =
O, det,'[ZT(Q, 7]2)] =0 for ny = Vbb =0925Vand N =5
cells. They are traced in the plane defined by 7y = Cyeg
and the frequency 2. As explained, all the Hopf bifurcations
occurring (for a particular ;) in terms of 77, contained in the
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FIGURE 5. Non-Foster transmission line. Bifurcation loci in the plane
defined by Vi and Ceq for different numbers of cells. The white region
corresponds to stable behavior. (a) N = 3 cells. (b) 5 cells. (c) 10 cells.

exploration intervals (of 1, and 2), are given by the intersec-
tions between the two contours. For | = Vpp = 0.925 V there
are five intersection points belonging to four disconnected
Hopf-locus curves shown in Fig. 5(b). In fact, Fig. 5 presents
the Hopf bifurcation loci for different numbers of cells. These
Hopf loci are simultaneously obtained by sweeping 1, and
representing, at each sweep step, the intersection points in
the plane defined by 11 = Vj, and 12 = Cjeg, With € as an
implicit variable. See the correspondence between the inter-
section points obtained for V;, = 0.925 V in Fig. 4 and the
loci points at this Vpp, value in Fig. 5(b), for N = 5 cells.

As gathered from Fig. 5, the Hopf bifurcations give rise to
several disconnected curves, whose number increases with the
number of stages. The stable region, in white color, decreases
with N. For N = 3 stages, the loci predictions at Vj;, = 0.85 V
are in full agreement with those obtained through the iden-
tification of the characteristic determinant in Fig. 3(b) and
conventional pole-zero identification applied to a closed-loop
transfer function at Node 2 in Fig. 3(d). For N = 5 stages
the identification of the determinant at Vp, = 0.85 V pro-
vides the results in Fig. 6(a). Again, the results obtained with
conventional pole-zero identification depend on the location
at which the closed-loop transfer function is calculated [see

768

o
k=
®
Qo
©
Q
o -10%0 % oo | Determinant identificationl b
5 10 15 20 25
Capacitance (pF)
(a)
o
k=
2 o
3 X to
14 Pole-zero identification |
-100% ;
x\<\)2< Location 1

10 15 20 25
Capacitance (pF)

Real part (s™)
o

+ "2 e identificati
-1OG§|_+ =5 ++ | ole—zero identification ]

) Llocation 2 i o
5 10 15 20 25
Capacitance (pF)
(©

FIGURE 6. Validation of the stability predictions of the bifurcation loci in
Fig. 5(b), with N = 5 cells, through a stability analysis versus Cpeq, at
constant Vp, = 0.85 V. (a) Pole-zero identification of the newly defined
characteristic determinant. The stability information is in the zeroes, traced
with “o". (b) Conventional pole-zero identification of a closed-loop transfer
function calculated at Node 1. The stability information is in the poles,
traced with “x". (c) The same at Node 2.

Fig. 6(b) and Fig. 6(c)]. At Node 2, these results agree with
those obtained through the identification of the characteristic
determinant. Finally, Fig. 7 presents an experimental valida-
tion of the stability boundaries for N = 3 stages, considering
two Vp, values before and after crossing this boundary at
Creg = 5.6 pF.

In [23] the stability analysis in Section A was extended to
large-signal operation and applied to a system of three Class-E
amplifiers subject to coupling at their output ports, as may
happen due to antenna cross talk. The large-signal analysis is
carried out through a linearization of the HB equations about
the periodic steady-state solution at w, with NH harmonic
terms. The blocks considered in the partition must be stable
under OC or SC terminations at the sideband frequencies
kw,~+S2 arising under a small perturbation at €2, which must
be verified without affecting the steady-state solution at kw,,.
Both this stability verification (based on conventional pole-
zero identification) and the calculation of the characteristic de-
terminant are carried out with the conversion-matrix approach
[11, [3]. The implementation on commercial software is more
demanding than in the small-signal case. As explained in [23],
the verification of the SC/OC stability of the blocks is carried
out with the aid of ideal filters, plus conventional pole-zero
identification inside the blocks. On the other hand, the user
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FIGURE 7. Experimental validation of the stability boundaries in the case
of N = 3 stages for C,eq = 5.6 pF. (a) Vpp = 0.8 V. (b) Vpp = 0.85 V.

calculation of the conversion matrix at the partition ports re-
quires the sequential introduction of a small-signal excitation
source at each port and sideband frequency, in the presence of
the ideal filters. The templates and a detailed description are
provided in [23].

The new methodologies can be of interest for the stability
analysis of any system containing multiple active devices and
under the risk of exhibiting several unstable loops.

11Il. SEMI-ANALYTICAL FORMULATIONS FOR
OSCILLATOR-BASED SYSTEMS

The HB analysis of free-running oscillations is generally car-
ried out with various kinds of probes that prevent the un-
desired HB convergence towards the default non-oscillatory
solution [1], [3], [54]. However, this circuit-level analysis may
become demanding when the oscillator interacts with other
elements. This section presents a semi-analytical formulation
of this interaction, compatible with the use of commercial HB.
In this formulation [24], [25], [36], the oscillator is repre-
sented with a realistic numerical model, extracted from HB
and introduced into an analytical description of the complete
system. This has two advantages: it avoids the convergence
problems often encountered in HB and provides insight into
the dependence of the oscillator solution on the external ele-
ments and parameters.

As an example, this section presents a general analysis of
self-injection locked oscillators. This is the operation mode
of the Doppler radar proposed in [33]-[35] for the detection
of vital signs. For the first time we will present a stability
analysis based on a semi-analytical formulation that considers
the effect of the propagation delay on the signal envelope.
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FIGURE 8. Doppler-radar system for the detection of vital signs using a
self-injection locked oscillator, as proposed in [25], [33]-[35]. (a)
Operation with a single antenna. (b) Standalone oscillator circuit.
Extraction of the oscillator model from HB by applying finite differences to
an auxiliary generator optimized to fulfill Y (V,, wo) = 0.

Self-injection locking can also be used to reduce the phase
noise of an existing oscillator through its connection to a delay
line [55], [56] or a slow-wave structure [57], [58]. Here a
method to reduce the phase-noise spectral density with min-
imum impact on the original oscillation frequency will be
described for the first time.

A. SELF-INJECTION LOCKED OSCILLATOR

The total admittance function of a free-running oscillator is
equal to zero at all its nodes [7], and, in particular, at its output
node, the one connected to an antenna or to any external
element. Thus, the oscillator in standalone conditions fulfills:
Y (V,, w,) = 0 at this output node, where V,, and w, are the
steady-state amplitude and frequency. Under self-injection
conditions [Fig. 8(a)], there will be a variation of the equiv-
alent output load. Its increment with respect to the original
value Y, (usually Y, = 0.02 Q1) will be Y.—Y, =y/(w, L),
where [ is a set of external parameters. In most cases, the self-
injection will only give rise to small amplitude and frequency
variations of the oscillation signal, so it will be possible to
linearize the admittance function Y about the free funning
point. Thus, under self-injection conditions one can write:

Yr (V,o) =Yy (V = Vo) + Yo (@ — wo) + yi(w, 1) =0 (6)

where Yy and Y,, are the amplitude and frequency derivatives
of the oscillator admittance, calculated in standalone opera-
tion at V,, w,. Note that y;(w, fi) is not linearized due to
the pronounced frequency variations often exhibited by this
equivalent load under relevant delay effects. The derivatives
Yy and Y, can be obtained through finite differences by ana-
lyzing the standalone oscillator with an auxiliary generator
(AG), introduced in commercial HB [4], [5]. The AG is a
voltage source with amplitude V,, at the frequency w, in se-
ries with a bandpass filter at the same frequency [Fig. 8(b)].
It is optimized to fulfill the steady-state oscillation condi-
tion, given by the zero value of its current-to-voltage ra-
tio: Y(V,, w,) = 0. This constitutes an outer-tier equation,
whereas the pure HB system (with all the harmonic content)
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constitutes the inner tier [3]. Then the derivative Yy is calcu-
lated by setting the AG frequency to the steady-state value w,
and performing a small sweep in V, as shown in Fig. 8(b). An
analogous procedure is applied to calculate Y,,. Splitting (6)
into real and imaginary parts yields:

YV,r V=V, + Ya),r (0 — w,) + yl,r(wa a)=0
YV,i V=V, + Ya),i (w0 — wy) + yl,i(a)v a)=0 @)

Eliminating (V — V,,) one obtains a scalar equation in w:

Yy, Yyi

w=w,— —y i @0)+—

o detoyz,l( i) det,

where det, = Yy .Y, ; — Yv.;Ys, . To obtain the solution curve

in terms of a given parameter w; contained in ji, one may per-

form a double sweep in w; and w, and calculate the zero-value
contour [59] of the scalar function:

yi,r(@, fi) (®)

Yy i
deto)’l,r(w’ i)
)

The contour H(w, i) = 0 provides the function w(u;).
Once the frequency is known, the oscillator output amplitude
is directly calculated replacing w(u;) in (12).

The formulation (11)-(12) can be applied to obtain the so-
lution curves of a self-injection locked radar [33]-[35] versus
the distance to the target d [Fig. 8(a)]. Note that the frequency
modulation due to the target movement is analyzed in Sec-
tion D. The oscillator signal is transmitted by the antenna,
reflected by the target at the distance d, and received back by
the antenna, with a certain attenuation and phase shift. In fact,
the reflection coefficient for transmit and receive antenna gain
G; and G, and distance to the target d [Fig. 1(b)] is expressed

as [60]:
G;Go)\? _.
N(G.d, w) = | ~222 it
(4 )’ d*

where o is the radar cross section and c is the speed of
light. The corresponding admittance, looking into the antenna
terminals, will be: Y; = Y,(1—-I")/(14+I"). For the usual at-
tenuation values, it will be possible to approach Y;, with its
first-order Taylor expansion about I' = 0, which provides:
Y, =Y,(1-2T"). And the admittance increment y; with respect
to Y, is:

h V,r
H@nm)=w—ww+g—wﬂuuﬂ—
et,

(10)

c Gir0 _ :2d /G~ o
yl(a)a ﬁ)z——z fot e_./T(U:_n 2t0te_j7w
wR.d 47 wd

1D
where the parameter n has been introduced. In the case of a
single antenna, one will have \/G;,, = G. Replacing (14) into
(11), one obtains the following relationship:

Y| nG . (2dow
——sin | —
det, wd?

As gathered from (15), the distance values at which the

oscillation frequency agrees with the free-running one are
spaced in A/4, that is, d,,+1 — d, = A /4.

Hw)=w-—w, —

+av) =0 (12)
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FIGURE 9. Self-injection locked radar. Variation of the oscillation
frequency versus the distance d calculated with (8) for three antenna-gain
values, G = 3.0 dB, G = 6 dB and G =10 dB. Full circuit-level HB
simulations for G = 6 dB are superimposed. Measurements for G = 10 dB
are shown.

As an application example, the Doppler radar for the detec-
tion of vital signs proposed in [33]-[35] has been considered.
The system is sketched in Fig. 8. The oscillator is based on the
FET NE3210S01 [25] and built on Rogers 4003C substrate
[Fig. 8(b)]. The considered radar cross section is ¢ = 0.5 m?.
Fig. 9 presents the variation of the oscillation frequency versus
the distance d for three antenna-gain values, G = 3.0dB, G =
6 dB and G =10 dB. Full circuit-level HB simulations for
G = 6 dB are superimposed. The excellent agreement con-
firms the validity of the linearization of Y(V,w), as well as the
whole semi-analytical formulation (7). As gathered from the
figure, the frequency excursion is larger when increasing the
antenna gain, which will enable a higher sensitivity to the in-
stantaneous target movement (see the slope at the free-running
frequency). However, when increasing the gain, the solution
curve becomes multi-valued in a small d interval (for G = 10
dB), with no HB convergence, and undesired physical jumps
between distinct curve sections. For all the gain values, the
oscillation frequency agrees with the free-running one when
sin(2dw/c + o) = 0.

B. STABILITY ANALYSIS

The following stability analysis of self-injection locked oscil-
lators will consider the time delay of the signal envelope. The
load admittance will be expressed as:

yi(w, @) = —F(w, i)e /T (13)

where 7 is the time delay. For the stability analysis of a given
steady state solution (V, w), a small-amplitude perturbation
will be introduced in system (6), so the oscillator ampli-
tude and phase become V + §v(¢) and §¢(¢), respectively.
Then, the phasor of the perturbed solution can be expressed
as X(t) =V 4 6X(t), where 6X(¢t) = jVép(t) + 8V (¢). The
frequency domain equation corresponding to the phasor X (£2)
is given by:

Y (V+8V(Q), 0+ Q)

—F(w+ Q, e /D) x(Q) =0 (14)
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where Y(V,0)=Yy(V =V,)+Y,(w —w,) and X(2) =
V(0) + 6X(€2). Now, equation (14) will be translated to the
envelope domain by applying the inverse Fourier transform
and neglecting second order terms in the perturbation compo-
nents:

Y(jV8¢p +8V) + Yy VSV — jY,(jVSd +8V)
+ yi(w, @)(jVda + 6Vy)

+ jFup(@, e T (jVda + 8Vy) =0 (15)

where Y = Y (V, w) and the time-delayed terms §¢g = 5o (t —
t)and §V; = 6V (¢ — ) arise naturally when applying the in-
verse Fourier transform S_I{e_jQ’X(Q)} = X(t — 7). Note
that a first-order Taylor-series expansion has been carried out
in the amplitude term F(w + €2), with less pronounced fre-
quency variation than the complex exponential e/, Now,
to obtain the poles of linear system (15), the perturbation
components will be expressed as 8V = Uye* and §¢p = Upe”,
yielding:

(Y +yi(o, e + WV —j(Y, — Fylw, R)e /7@ )s)
Uv + (jY + jyi(o, p)e™*"

+(Yy — Fy(, @) 7™ “)s) Uy = 0 (16)

Splitting (16) into real and imaginary parts, an homo-
geneous equation A(s, 7)J =0 is obtained, where U =
[Uy U¢]’. Then, in a manner like the analysis in Section II,
the stability properties are defined by the zeroes s = A(7)
of the characteristic determinant detA(s, ). Note that ex-
panding the term e¢~*F in (16) in a power series produces
p(s, T) = O(s), since the steady state terms cancel each other
as Y + y;(w, 1) = 0. Then, one of the zeroes is A(t) =0
as expected due to the system autonomy. For convenience,
this root can be removed from the characteristic determinant
considering detA(s, t)/s.

The above analysis has been applied to the self-injection
locked radar considered in Fig. 8, with the time delay is t =
2d/c. The antenna gain is G = 10 dB. The dominant poles
have been calculated identifying the function detA(s, t)/s,
in a manner like what was done in Section II. The identi-
fication has been carried out in Matlab R2021a, using the
System Identification toolbox. This requires the preselection
of the identification order, which has been set to n = 20 to
get a percent fit to estimation data greater than 99.03% for
all distance values. Fig. 10(a) presents the variation of the
real part of the dominant roots of detA(s, 7)/s versus d. For
most of the d values there is a dominant real root that crosses
from the LHS to the RHS at d = 0.451 m and then back
to the LHS at d = 0.4511 m. The crossing of a real root
through zero gives rise to a singularity of the Jacobian matrix
of the steady-state system, so the solution curve exhibits an
infinite slope at these crossing points, also known as turning
points. For G = 10 dB in Fig. 10, the solution is unstable
in the small d interval comprised between the two turning
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FIGURE 10. Self-injection locked radar. (a) Stability analysis versus the
distance d. For most of the d values there is a dominant real root and
several additional real and complex roots, resulting from the delay effect.
(b) Detection of the possible Hopf bifurcations. Contours of the real and
imaginary parts of detA(j<, 7)/j<, traced in the plane defined by d and .
There are no intersections for d > 0.4 m, so no Hopf bifurcations are
obtained in this distance range for G = 10 dB (or smaller values).

points. Although the unstable interval is small, there will be
an undesired discontinuous jump when reaching any of the
two turning points (when either increasing or decreasing d).

As in Section II, possible Hopf bifurcations would fulfill
detA(j2, t)/j2 = 0. Fig. 10(b) presents the contours of the
real and imaginary parts of det A(j<2, 7)/j2 = 0 in the plane
defined by d and 2. As can be seen there are no intersections
for d > 0.4 m, so no Hopf bifurcations are obtained in this
distance range for G = 10 dB (or smaller values). Note that the
Hopf bifurcations would require significant delay effects for
the exponential ¢~* to have an impact on the stability prop-
erties. This implies large d values at which the self-injection
signal is too attenuated to cause incommensurate oscillations.
However, it is interesting to note how the contours of the
real and imaginary parts of the function detA(j<2, t)/jQ2 =0
[Fig. 10(b)] are closer for smaller d.

C. ANALYSIS UNDER MODULATED CONDITIONS

The target movement will give rise to a time-varying distance

2d + 2x(t) where x(f) << d that will produce a modulation

of the oscillation amplitude and frequency (V, ). Under this

modulation, the oscillator solution can be expressed as:
X(1) = (V + 8V (t))el 008 =y 1)/ (17)

where dw(t) = w(t) — w and X (¢) is the time-varying ampli-
tude. The dynamics of the components of X (r) are governed
by equation (15). Since x(¢) < c, the time variation of the
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FIGURE 11. Analysis under modulated conditions with G = 10 dB. Three
different operation points have been considered: d = 0.4815 m (Case 1),
corresponding to the original free-running frequency, d = 0.5 m (Case 2)
and d = 0.451 m (Case 3), between the two turning points. (a) Modulated
frequency versus the time varying distance projected over the »(d) curve.
(b) Waveforms demodulated using a frequency discriminator. Time is
normalized to the modulation period T,,,. The theoretical (solid line) and
experimental (dotted line) signals are compared.

phasor X(¢) is too slow to be affected by the time delay
T = (2d + x(t))/c, so one can approach X (t — t) >~ X(¢). On
the other hand, through the inspection of Fig. 10(a), we will
choose a stable operation point with dominant zeroes that,
in comparison with other points, are far from the imaginary
axis. The aim is to have a negligible effect of the circuit nat-
ural frequencies. Consequently, the modulated signal varies
slowly in comparison with the time constants of the perturbed
system. Under these circumstances, the modulated solution
(V(t), w(t)) can be obtained from the quasi-static equation:

Y (V(1), (1))

=0 (18)

2(d
— F(o(1), ﬁ)exp <_]w(t)w>

This equation has been applied to calculate the modulated
solution resulting from the periodic motion of metal plate with
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an amplitude excursion of 1 cm at the frequency 2.7 Hz, which
has been implemented in the experiment using a motor. As
shown in Fig. 8(a), the modulation signal is extracted with a
phase discriminator that includes an amplifier. A gain G = 10
dB and three different (central) distance values have been
considered: d = 0.4815 m (Case 1), corresponding to the
original free-running frequency, d = 0.5 m (Case 2) and d
= 0.451 m (Case 3), between the two turning points.

In Fig. 11(a) the modulated frequency is traced versus the
time-varying distance in the three cases, showing the respec-
tive excursions along the oscillation-frequency curve versus
the distance d. Fig. 11(b) compares the demodulated theo-
retical and experimental waveforms. Case 1 provides a sinu-
soidal signal; Case 2 gives rise to some distortion and Case 3
provides a near-square output voltage in consistency with the
infinite-slope points in static conditions. Very good agreement
between simulation and measurements is obtained in the three
cases.

D. PHASE-NOISE REDUCTION WITH A

SLOW-WAVE STRUCTURE

To get insight into the phase noise of a self-injection locked
system, we will perform this noise analysis assuming a single
dominant real pole, which will be valid in most of the stable
operation regions [Fig. 10(a)]. The analysis under a single
real pole is carried out approaching F(jw + s)e /(@97 =
F(jw)e /T — jy,,(jw)s, where y,,, is the frequency deriva-
tive of y;. Under this approach and in the presence of an
equivalent noise current i,(¢) at the analysis node, one obtains
the perturbation equation:

Jjou()

o

i)
= (19)

o

Yydv(r) + (Yo + Yiw) (— +5</>(t)>
Note that the term on the left-hand side is directly derived
from (15) when applying the mentioned approach. The phase
noise spectrum is obtained [7] by (i) splitting (16) into real and
imaginary parts, (ii) applying the Fourier transform, (iii) con-
sidering that the real and imaginary parts of the white-noise
contribution are uncorrelated, and (iv) solving for [8¢(2)|?:

Yortyiw? 1,(2)%
(le|2+| w | Qz)2| g/{)z)\

[deto + YV,rYlw,i - YV,iyla),r]zgz2 + 94%#

"(20)
where det, = Yy Y, ;i — Yv,iY, . The dominant real pole [4],
[7] of a stable standalone oscillator is proportional is —det,P,
where P is a positive quantity. Thus, we will have det, > 0.
The equivalent noise current i,(¢) is estimated with the oscil-
lator in standalone free-running operation. Its value is fitted
so that the phase-noise spectrum obtained with (20) in stan-
dalone conditions (y; = 0) matches the one obtained with a
circuit-level analysis, using the conversion-matrix approach
[61], [62]. The upconverted flicker noise can be also consid-
ered when performing this fitting.

18¢(2)1* =
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FIGURE 12. Self-injection locked oscillator for phase noise reduction. (a)
Long cable considered in the theoretical analysis [55], [56]. (b) Slow-wave
structure based on a unit cell made up of a Schiffman section and an
open-ended stub [57].

Initially we will consider the case [54]-[55] of an oscillator
loaded with a circulator having a long cable with the delay ©
and an attenuator connected between the circulator ports 2 and
3 [Fig. 12(a)]. The admittance increment due to the pulling
effects is:

1 —T'(w)
1+ ()

X1 -2[(w)Y, —Y,=—2pe /7Y,

yi(w) =Y,

o

21

where the approximation valid for relatively high attenuation
effects (as expected in these applications) has been consid-
ered. Replacing this expression in (12), the oscillation fre-
quency is:

20Y,
det,

where ay is the angle of Yy. Thus, the oscillation frequency
agrees with the free-running one at 7, = (nwr — ay)/w,,
where 7 is an integer.

Replacing the frequency derivative of (21) in (20) and ne-
glecting higher order terms in €2 one obtains:

H=w-w,+

|Yy | sin(wt +ay) =0 22)

Ly(2)?
20y Pl

156(Q2)1* =

23
[det, + 2p(T)Y,7 |Yy | cos(wT + ay)]*$2 23)

Local minima and maxima of the phase noise will be ob-
tained when cos(wt, + ay) = £1. The minima, correspond-
ing to the positive sign, tend to be lower for higher . How-
ever, one must keep in mind that p decreases with t. At the
values of the local minima, denoted as 1y,, the oscillation
frequency agrees with the one obtained in standalone oper-
ation. In the absence of self-injection locking (7) the phase
noise in (23) agrees with the one obtained in free-running
conditions, having the denominator det(,2522. For a higher
det,? (as obtained for a large quality factor of the standalone
oscillator), a higher t is required to obtain a significant phase
noise reduction.
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FIGURE 13. Phase-noise reduction using a slow-wave structure with a
minimum impact on the original free-running frequency w,. (a) Variation of
the oscillation frequency versus the transversal length W of the Schiffman
section with measurements superimposed. (b) Variation of the error
function H as well as the term det in (26) versus W. (c) Phase-noise spectra
at three consecutive W values providing the oscillation frequency », and
high positive values of det.

For a compact implementation, one can use a slow-wave
structure [57], [58] instead of a long cable. The configuration
considered in this work is shown in Fig. 12(b). The oscillator
is terminated with a load network that contains a slow-wave
structure based on a unit cell made up of a Schiffman section
[57] and an open-ended stub. The augmented oscillator is
governed by the equations (7) and (8). The variation of the
oscillation frequency versus the transversal length W is shown
in Fig. 13(a), where experimental measurements are superim-
posed. As gathered from this figure, a possible drawback of
the self-injection topology is the impact of the load network
on the oscillation frequency, which may undergo an undesired

shift from the standalone value w,. To have w = w,, the
following condition must be fulfilled:
YV,ryl,i(a)m ) — YV,iyl,r(wOs a)=0 (24)
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where y; is the input admittance Y7, of the slow-wave structure
(Fig. 12) minus Y,. The amplitude increment is:

VoV — Y,r(@o, B) _ Y1,i(@o, )
Yy, Yy,

(25)

In general, due to the attenuation of the self-injection sig-
nal, the amplitude increment will be small. Nevertheless, this
increment can be monitored using equation (25). If it is too
large, the linearization will be invalid, and a different op-
eration point must be chosen. To minimize the phase-noise
spectral density at w,, one should maximize:

det = det, + YV,rylw,i(Ms o) — YV,iylw,r(Mv o)

= det, + Yy | Y10l sin (ang(yi,) — av) (26)

Improving the spectral purity of a lower phase-noise oscil-
lator (with a high det,) is more demanding and will require a
higher quality factor of the slow-wave structure.

Note that the derivative of the admittance increment yy,,
is evaluated at w,. The function (26), under the fulfilment
of (24), can be maximized analyzing the slow-wave struc-
ture only. This is done by introducing the error function H
in (22) as well as the determinant in (26) as user equa-
tions in the simulation of the passive linear slow-wave struc-
ture. Note that both depend on the constant values of the
derivatives of the standalone oscillation Yy and Y,, ob-
tained at an earlier stage (when extracting the oscillator
model from HB). More specifically, the simulation of the
slow-wave structure provides Y7 (w) from which the admit-
tance increment is obtained as y;(w) = Y.(w) — Y,. Then,
the derivative y;, (@) is calculated with a simple frequency
differentiation.

Fig. 13(b) shows the variation of the error function H as
well as the term det in (26) versus the transversal length W
of the slow-wave structure. The oscillation frequency of the
augmented oscillator agrees with the free running one at the
points where H = 0. To minimize the impact of the slow-wave
structure on w, one of these points should be selected. The
magnitude of det increases with W, which should lead to a
higher phase noise reduction. In agreement with the demon-
stration in (21)-(23), considering a simple delay line, the max-
ima, and minima of det alternate. As Wincreases, the extremes
of det become closer to the W values yielding @ = w,. The
phase-noise spectra obtained at three consecutive W, which
provide @ = w, and high positive values of det are shown
in Fig. 13(c). As shown in the expanded view, the maximum
phase-noise reduction is obtained for the higher transversal
length W = 10.8 mm.

IV. CONCLUSION

Recent advances in stability analysis, at circuit level, and
oscillator analysis, through semi-analytical formulations, have
been presented. The stability analysis, intended for large cir-
cuits containing multiple devices, is based on a calculation
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of the characteristic determinant that, by construction, can-
not exhibit any poles in the right-hand side of the complex
plane. Then, a method to obtain the stability boundaries in
multi-device circuits using the newly defined characteristic
determinant has been presented for the first time. It has been
illustrated through its application to a non-Foster transmis-
sion line considering up-to ten negative impedance convert-
ers. The semi-analytical formulations have been illustrated
through their application to a self-injection locked radar,
where the effect on the stability properties of the time de-
lay in the signal envelope has been considered for the first
time. Self-injection locked oscillators for phase-noise reduc-
tion have also been investigated, and a new semi-analytical
method to reduce the impact of the self-injection loop
on the original free-running oscillation frequency has been
presented.
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