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Abstract— This work presents new frequency-domain methods
for the analysis and simulation of circuits based on a nonlinear
resonator, with operation ranges delimited by turning points.
Insightful analytical conditions fulfilled at these turning points
are derived, which will enable an identification of the effect
of each circuit element on their location in the solution curve.
The cusp points, or co-dimension two bifurcations at which two
turning points merge into one, thus delimiting the multivalued
intervals, are directly calculated for the first time to our knowl-
edge. In addition, a new numerical method, compatible with the
use of commercial harmonic balance, is presented for the straight-
forward tracing of the multivalued solution curves, together with
a new procedure to determine the locus of turning points in terms
of any two analysis parameters. This relies on the use of a new
mathematical condition to obtain a surface of turning points in
the space defined by the two parameters and the input power. The
methods have been applied to a wireless power-transfer system
based on a recently proposed configuration, obtaining very good
agreement with the experimental results.

Index Terms— Bifurcation, harmonic balance (HB), nonlinear
circuit analysis, nonlinear resonator, spiral inductors.

I. INTRODUCTION

RECENTLY, interesting applications of nonlinear res-
onators to improve the behavior of energy harvesters and

wireless power-transfer systems have been proposed [1]–[7].
In a nonlinear resonator, the oscillation frequency depends
on the amplitude [8], [9], and when excited with a forcing
signal, there is a folding of the resonance curve that typically
exhibits two turning points (TPs), or infinite-slope points.
As a result of this folding, the response exhibits a broader
frequency bandwidth (BW) in comparison with that of a linear
resonator (see Fig. 1(a), reproduced from [6]). The works [1]
and [6] propose the application of this BW enhancement
in RF energy harvesters. This is because the high voltage
levels required for a proper rectification can be achieved with
improved tolerance to the frequency detuning [6] caused by
aging, coupling effects, etc. In the case of Fig. 1(a) [1], [6],
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Fig. 1. Multivalued response of a nonlinear resonator [6]. The turning points
at which physical jumps are obtained when varying input signal are indicated.
(a) Variation of the output amplitude versus the input frequency. (b) Variation
of the output amplitude versus the input amplitude.

the higher-amplitude turning point (TP2) [10] determines the
maximum operation frequency, since when reaching this point
(with an infinite slope) a (discontinuous) physical jump takes
place to the lower-amplitude section of the multivalued curve.

When varying the excitation amplitude at a constant fre-
quency, one obtains a significantly flat higher-amplitude sec-
tion [Fig. 1(b)]. As demonstrated in [5] and [7], this is
useful in near-field resonant-based wireless power-transfer
systems [11], [12]. In those systems, the power entering the
second resonator is highly dependent on the coupling factor,
which, in turn, varies with the distance between the trans-
mission and reception coils and/or misalignments. As demon-
strated in [3]–[7], the sensitivity to the coil positions can be
reduced by taking advantage of the flattened response of the
nonlinear resonator [Fig. 1(b)], delimited by the turning point
(TP2).

The objective of this work is the development of new
frequency-domain methods to facilitate the design and simula-
tion of circuits based on a nonlinear resonator. Attention will
be paid to the turning points [8], [10], [13] (corresponding
to D-type bifurcations [14], [15]), as they delimit their usable
ranges. We will consider two illustrative cases: a single nonlin-
ear resonator, as in the RF energy harvester of [1] and [6], and
a linear resonator coupled to a nonlinear one, as in the wireless
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power-transfer system of [7]. Insightful analytical conditions
fulfilled at the turning points will be derived, which will enable
an identification of the effect of each circuit element on their
location in the solution curve. The turning point condition can
be used for a direct prediction of the multivalued interval in
terms of an analysis parameter, such as input frequency, power,
or distance. On the other hand, the cusp points [8], [10], [13],
or co-dimension two bifurcations at which the two turning
points of the solution curve merge into one, provide the limit
of the multivalued interval. Here these cusp points will be
directly calculated for the first time to our knowledge.

Besides the analytical investigation, a novel numerical
methodology, compatible with the use of commercial harmonic
balance (HB), will be proposed for the straightforward tracing
of the solution curves and turning point loci. Note that an
ordinary parameter sweep is unable to pass through the turning
points, as these are singular points of the HB system [14]–[17].
There can be a loss of convergence in its neighborhood or
a discontinuous jump to another section of the multivalued
curve, so the empirical estimation of the turning points based
on these jumps is unreliable, in general. In commercial HB,
one way to pass through the turning points is to introduce
an auxiliary generator (optimized to fulfill a nonperturbation
condition) and change manually the sweep parameter when
convergence fails, as the turning point is approached [16]–[19].
However, this manual parameter switch becomes demanding
when numerous tests are required. For a more efficient analy-
sis, a contour-tracing method has been recently proposed [20],
[21], which involves a two-step procedure. The first step is
the scattering-parameter simulation of the input network to
calculate its Norton equivalent at the fundamental frequency.
The second step is the calculation of a nonlinear current
function with the aid of an auxiliary generator [16], [17].
To trace the solution curve, one must combine the results of
the two independent analyses, which can be demanding and
prevent the quick feedback required in the design/optimization
process.

Here, a new analysis method is presented, which allows
obtaining the solution curves and turning points loci in a single
simulation with the aid of some equations easily introduced in
commercial HB. The method is extended to obtain, for the first
time to our knowledge, the locus of turning points versus any
pair of arbitrary parameters without optimization/continuation
procedures. This relies on the use of a new mathematical con-
dition to obtain a surface of turning points in the space defined
by the two analysis parameters η1, η2 and the input power Pin.
Then, the intersection of this surface with planes defined by
distinct Pin values will provide the corresponding turning point
loci in terms of η1 and η2. This turning point surface enables
an exhaustive calculation of the family of turning point loci
resulting from the variation of the input power. The new
analytical and numerical methods are expected to be useful to
researchers on novel interesting applications of circuits based
on a nonlinear resonators, such as those in [1]–[7].

This article is organized as follows. Section II presents the
analytical investigation of a single nonlinear resonator with
emphasis on the turning point mechanism. Section III presents
an analogous investigation in the case of a linear resonator

Fig. 2. Single nonlinear resonator with the element values: R = 500 �,
L = 3.2 μH, Q(V ) = CV + Q3V 3, C = 55 pF, and Q3 = −2×10−12 C/V3.

coupled to a nonlinear one. Finally, Section IV presents the
new numerical methods to obtain the multivalued solution
curves, as well as the locus of turning points in terms of any
two analysis parameters.

II. SINGLE NONLINEAR RESONATOR

A. Turning Point Condition

Let the single nonlinear resonator in Fig. 2 be considered.
The nonlinear capacitor is represented with the describing

function Q(V ) associated with its instantaneous charge q(v),
where v(t) is the excitation voltage. Applying Kirchoff’s laws
at the excitation frequency ω, one obtains

HT(V , φ) =
�

G − j

Lω

�
V + jωQ(V ) − Ige jφ

= H (V , ω) − Ige jφ = 0 (1)

where φ is the opposite of the phase shift (acting as a state
variable) between the node voltage and the input current Ig,
and V is the voltage amplitude. On the other hand, H (V , ω)
is a nonlinear function that compactly describes the circuit
response to the voltage amplitude V at the frequency ω at the
analysis node. In the presence of the input source Ig at ω,
the circuit solutions must fulfill H (V , ω) − Ige jφ = 0. This
complex equation is composed of two real equations in the
two variables V and φ. At the turning points, the Jacobian
matrix associated with (1) becomes singular, which is also the
condition for a bifurcation of D type [14]–[17]. This Jacobian
matrix is calculated with respect to the two state variables
of (1), given by V and φ

det

⎡
⎢⎢⎣

∂ H r
T

∂V

∂ H r
T

∂φ
∂ H i

T

∂V

∂ H i
T

∂φ

⎤
⎥⎥⎦ = det

⎡
⎢⎣

∂ H r

∂V
Ig sin φ

∂ H i

∂V
−Ig cos φ

⎤
⎥⎦ = 0 (2)

where the superscripts r and i indicate real and imaginary
parts. One can also solve for Ig sin φ and −Ig cos φ using (1),
which provides

det

⎡
⎢⎣

∂ H r

∂V
H i

∂ H i

∂V
−H r

⎤
⎥⎦ = ∂[(H r)2 + (H i)2]

∂V
= 0. (3)

Note that the above condition only depends on the excitation
amplitude V and frequency ω. Using the definition of H given
in (1), the above determinant can be written as

det(V , ω) = G2V +
�

ωQ(V ) − V

Lω

��
ω

∂ Q

∂V
− 1

Lω

�
= 0.

(4)
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To obtain the locus of turning points in the plane defined
by ω and V , one should solve the scalar equation (4) in terms
of the voltage amplitude V for each ω, which will provide
the turning points denoted as VT. Using (1), the input-current
amplitude at each turning point is simply calculated from

Ig,T = |H (VT, ω)|. (5)

To distinguish the nonlinear effects from the linear ones,
the charge describing function Q(V ) will be expressed in
terms of a linear term CV and a purely nonlinear function
QNL(V )

Q(V ) = CV + QNL(V ). (6)

Replacing (6) into (4) and separating the terms associated
with the linear resonance of C and L (under the conductance
G) from the nonlinear ones, one obtains the singularity
condition

det(V , ω) = V



G2 +

�
Cω − 1

Lω

�2
�

+ ω

�
Cω − 1

Lω

�

×
�

QNL(V ) + V
∂ QNL(V )

∂V

�

+ ω2 QNL(V )
∂ QNL(V )

∂V
= 0. (7)

Note that V is an amplitude, so V > 0. The above turning
point condition is composed of three terms. The first term,
purely linear, can only be positive, so the zero-value condition
requires a negative contribution. If the nonlinear component
of the charge function QNL(V ) and its voltage derivative
∂ QNL/∂V have the same sign for all V , the third term will also
be positive. In these conditions, only the second term can be
negative, and the folding to either higher or lower frequencies
than the linear resonance frequency ωo = 1/

√
LC will

depend on the sign of QNL(V ) and ∂ QNL/∂V . If their sign is
positive (negative) for all V , all the nonlinear-resonance curves
will fold leftwards (rightwards), that is, toward lower (higher)
ω values, which will be due to the dominant contribution
of −1/(Lω) (the dominant contribution of Cω). From the
inspection of (7), both for a larger resistive effect (higher G)
and a larger detuning with respect to ωo, one will have a larger
positive first term and, thus, will need a stronger negative effect
of the nonlinearity to get det(V , ω) = 0.

B. Polynomial Approximation

As shown in [3]–[7], when limiting the Taylor series expan-
sion of the junction capacitance to the second order, the charge
of two antiseries diodes can be described as q(t) = Cov(t)/2+
q3v

3(t), where Co is the zero-bias junction capacitance of the
individual diodes and q3 may be positive or negative, depend-
ing on the diode characteristics. The associated describing
function is given by

Q(V ) = Co

2
V + 3

4
q3V 3 = CV + Q3V 3

QNL(V ) = Q3V 3. (8)

For q3 < 0, one has QNL(V ) < 0 and ∂ QNL/∂V < 0
for all V. In these conditions, and taking (7) into account,

the resonance curves will fold rightwards (to ω > ωo),
as this provides a negative value of the second term. This
result, in agreement with [4], has been validated with a
numerical example based on the diode SMV1470-004LF. The
back-to-back connection of two of these diodes has been
approximately modeled with the coefficients C = 55 pF and
Q3 = −2 × 10−12 C/V3. The rest of element values are
shown in the caption of Fig. 2. The solution curves calculated
through (1) for different input-current amplitudes, in terms
of V versus ω, are shown in Fig. 3(a). As expected, all
the curves fold rightwards. For the highest input current,
the analytical results have been compared with default HB
simulations performed by sweeping the input frequency ω.
Because the aim is to validate the analytical results (based on
the describing function), only the fundamental frequency is
considered. Because these default HB simulations are unable
to circumvent the turning points, a discontinuous jump to the
lower section of the curve is obtained at the first turning point.
The rest of the two curves are overlapped. Note that Fig. 3(a)
also includes the curves obtained with the HB-based method
in Section IV, able to pass through the two turning points.
Instead of directly addressing the circuit with its input current
source at a particular value Igo, this method is based on the
calculation of the nonlinear function H (V , ω) with the aid
of an auxiliary generator introduced in commercial HB. Once
the function H (V , ω) is available, the solution curve for any
Ig is given by the corresponding contour level of the surface
|H (V , ω)|. Thus, we can obtain a whole family of solution
curves (for distinct Ig values) from the same function H (V , ω).
The contours can have any shape, so they naturally provide
multivalued curves versus ω, with no need for continuation
methods such as parameter switching [17], [20]. Section IV
provides the necessary implementation details. The resulting
numerical curves are fully overlapped.

Fig. 3(b) presents the resonance curves obtained for
R = 1/G = 1 k�, at different input-current amplitudes.
In agreement with the analytical derivations, the curve folding
is observed from a frequency closer to the original resonance
one ωo = 1/

√
LC of 12 MHz, and the required input ampli-

tudes are smaller than those in the curve family of Fig. 3(a).
For the highest input current, the analytical results have been
compared with default HB simulations. The curve family has
also been compared with that obtained with HB-based method
in Section IV and the results are overlapped.

When considering the charge function Q(V ) = CV +Q3V 3,
one can explicitly obtain the locus of turning points by
replacing (8) into (4) and solving for V in terms of ω. This
leads to the following expression for the voltage amplitude at
the turning points:

V 2
T = −2

�
Cω − 1

Lω


 ±
��

Cω − 1
Lω


2 − 3G2

3Q3ω
. (9)

From the inspection of (9), there are two turning points
at each ω, except at the cusp point where the radicand
becomes zero. The turning point locus given by (9) has been
superimposed on the solution curves of Fig. 3(a) and (b) in
solid black line. This locus is the curve that passes
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Fig. 3. Analysis of the nonlinear resonator in Fig. 2. (a) Nonlinear resonance
curves for different values of the input-current amplitude, in terms of V versus
ω, for G = 1/500 = 2 mS. Default HB simulations are superimposed for
Ig = 9 mA. HB results obtained with the numerical method in Section IV
are also presented for comparison. The locus of turning points obtained
through (9) is superimposed and the cusp resulting from (11) and (12) is
indicated. (b) Same for G = 1/103 = 1 mS. Default HB simulations are
superimposed for Ig = 4.5 mA. (c) Evolution of the turning locus when
varying the conductance G . The dashed line provides the evolution of the cusp.

through all the infinite-slope points of the nonlinear-resonance
curves obtained when varying the input-current amplitude Ig.
As stated, the locus is given by (9). The sign of the first
term in the numerator must be negative for Q3 < 0 since
only positive values of the expression in (9) are valid, so the
turning points necessarily occur for ω > ωo. The negative
sign of the square root in (9) provides the turning points in
the upper section of the nonlinear-resonance curves, which,
when increasing the input frequency, give rise to a downward
jump to the lower section. The positive sign of the square root
provides the turning points in the lower section, which, when
reducing the input frequency, give rise to an upward jump to
the upper section. When the input current Ig decreases and
approaches the value for which the cusp point is obtained,
the downward and upward jumps occur at progressively closer
frequency values, which degenerate to the same value at the

cusp point. In the curves obtained for lower input currents
than the one corresponding to the cusp, there are no turning
points, and thus no physical jumps. Note that in the case
Q3 > 0, the sign of the first term in the numerator of (9)
must be positive, so the turning points will necessarily occur
for ω < ωo. The positive (negative) sign of the square root
will provide the turning points in the upper (lower) section of
the nonlinear-resonance curves.

As gathered from (9), the amplitudes VT scale down with√|Q3|, that is, they decrease for a more nonlinear Q(V ).
For a higher G (lower quality factor), the turning points
will start from a larger frequency detuning, required for a
positive radicand. Note that each turning point, given by ω
and VT, is obtained for a different input current, which will
be calculated replacing (9) into (5). This provides

I 2
g,T = (GVT)2 +

�
ωQ(VT) − 1

Lω
VT

�2

= (GVT)2 +
��

Cω − 1

Lω

�
VT + Q3V 3

T

�2

. (10)

Thus, one can easily obtain the locus of turning points in
the plane defined by ω, Ig,T .

As stated, the radicand of (9) becomes zero at the cusp
point, which is obtained for the frequency

ωc =
�

1

LC
+ 3G2

4C2
+

√
3 G

2C
, Q3 < 0

ωc =
�

1

LC
+ 3G2

4C2
−

√
3 G

2C
, Q3 > 0. (11)

In this limit case, the upper and lower turning points of
the solution curve merge into one, corresponding to a cusp.
This is a co-dimension two bifurcation [8], [10], requiring the
fine tuning of two parameters, so, in practice, the circuit can
only operate in the neighborhood of the cusp. This cusp has
a relevant meaning since for Q3 < 0 (Q3 > 0) it provides
the minimum (maximum) frequency at which the resonance
curves exhibit folding [see Fig. 3(a)]. For ω < ωc (ω > ωc),
there are no turning points. For ω > ωc (ω < ωc), there
will be two turning points, each for a different VT (and thus,
a different input current). As gathered from (11), the frequency
of the cusp is independent of the nonlinearity. On the other
hand, the detuning of ωc with respect to ωo will be larger for
a higher ratio G/C .

The voltage amplitude at the cusp points is

V 2
T,cusp =

−2
�

Cωc − 1
Lωc

�
3Q3ωc

= − 2

3Q3

�
C − 1

Lω2
c

�
. (12)

This voltage will be higher for a larger detuning of ωc

with respect to ωo. The cusp resulting from (11) and (12)
is indicated in Fig. 3(a) and (b). Finally, Fig. 3(c) presents the
evolution of the turning points loci when varying the conduc-
tance G at constant C . The evolution of cusp when sweeping
G, taken as an implicit parameter, is traced with a dashed line.

III. LINEAR RESONATOR COUPLED TO A NONLINEAR ONE

The next analytical investigation tackles the case of a
series linear resonator coupled to a nonlinear parallel one,
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Fig. 4. Circuit composed of a series linear resonator coupled to a nonlinear
parallel one, proposed in [7]. The element values are: Rs = 50 �, Cp =
41.5 pF, Lp = Ls = 3.2 μH, Q(V ) = CV + Q3V 3, C = 55 pF, Q3 =
−2 × 10−12 C/V3, and RL = 1.5 k�.

as proposed in [7] for wireless power transfer. The schematic
is shown in Fig. 4. Note that a low-power system has been
implemented here since the focus of this work is the demon-
stration of the new analysis and simulation methods, instead
of the system performance.

A. Equation System

Applying Kirchoff’s laws at the excitation frequency ω, one
obtains the following set of four complex equations in the four
complex unknowns V1, V2, I1, and I2:

Ege j0 =
�

Rs − j

Cpω

�
I1 + V1 (13)

V1 = jωLp I1 + jωM I2 (14)

V2 = jωLs I2 + jωM I1 (15)

I2 + jωQ(V2) + GLV2 = 0 (16)

where Eg is the input-voltage amplitude, Rs is the source
resistor, Lp and Ls are the primary and secondary inductors,
respectively, M is the mutual inductance M = k(Lp Ls)

1/2,
Q(V2) is the nonlinear charge, and GL = 1/RL is the output
conductance. The first three equations (13)–(15) are linear with
the unknowns I1, V1, I2, V2, and are easily solved for I2 in
terms of V2 and Eg. Replacing the resulting expression for
I2(V2, Eg) in (16) one obtains a complex equation depending
on V2 only, which can be expressed on terms of the magnitude
|V2| and the opposite of the phase shift between V2 and Eg,
given by φ. This final complex equation is the following:

A1(ω)Ege jφ = A2(ω)|V2| + jωQ(|V2|) (17)

where φ is the opposite of the voltage phase shift with respect
to the input source, and A1(ω) and A2(ω) are passive linear
coefficients depending on ω only, whose explicit expressions
are shown in (18). Both |V2| and φ are the unknowns of the
complex equation (17), which, in an explicit manner, is given
by

k Ege jφ

Rs + 1
jωCp

+ jω
�
1 − k2



Lp

�
Lp

Ls

=
⎡
⎢⎣ 1

1− k2 jωLp

Rs+ 1
jωCp

+ jωLs

�
1

jωLs

�
+GL

⎤
⎥⎦|V2|+ jωQ(|V2|). (18)

The inspection of the above expression evidences the com-
bined action of two resonators. For k = 0, the secondary

resonator becomes isolated, with the only solution |V2| = 0
and the primary becomes an ordinary series resonator at
ωp = 1/(LpCp)

1/2. For 0 < k < 1, the signal from the input
source Eg reaches the nonlinear parallel resonator through the
coupling effects.

B. Frequency Response in Linear Conditions

To get some insight into the frequency response of the
circuit in Fig. 4, we will initially replace the nonlinear charge
Q(|V2|) in (18) with a linear function Q(|V2|) = C|V2|.
The results of this linear analysis will serve as a comparison
reference for the nonlinear case, treated in Section III-C. After
replacing Q(|V2|) = C|V2| in (18), the linear transfer function
from Eg to V2, in terms of the complex frequency s, is given
by

HL(s) = Cpk
�

Ls Lps2�
(C Lss2+GL Lss+1)(Cp Lps2+Cp Rss + 1)
− k2 Ls LpCp(Cs4 + GLs3)

� (19)

where the denominator is the characteristic polynomial [22]
of the coupled circuit. In this polynomial the terms depending
on k have been separated from the rest, which is expressed
explicitly as a product of the characteristic polynomials of the
two individual resonators in the absence of coupling (k = 0).
We will now analyze the evolution versus the coupling factor
k of the poles of HL(s), given by the roots of the denominator

(C Lss
2 + GL Lss + 1)(Cp Lps2 + Cp Rss + 1)

− k2 Ls LpCp(Cs4 + GLs3) = 0. (20)

A relevant case is the one in which Lp = Ls = L and
Cp = C , and, prior to the coupling, the two resonators have
the same resonance frequency ωo = 1/

√
LC . For sufficiently

low GL and Rs at k = 0, the circuit exhibits two pairs of
complex-conjugate poles with near identical imaginary parts
and different real parts depending on GL and Rs, respectively.
This is shown in Fig. 5(a), corresponding to Lp = Ls =
3.2 μH and Cp = C = 55 pF. When k increases, the two
pairs of complex-conjugate poles approach each other and,
at a given coupling factor kc, they fold in opposite directions.
From kc the frequency originally associated with the primary
(secondary) resonator decreases (increases).

The results of the pole analysis are consistent with the
variation of the magnitude of HL( jω) represented versus
frequency in Fig. 5(b). The results obtained with the analytical
expression (19) are overlapped with those resulting from a
numerical linear analysis in commercial HB. In agreement
with [11] and [12], two maxima are obtained as k increases.
As predicted by the pole analysis in Fig. 5(a), the upper (lower)
resonance shifts rightwards (leftwards), and the upper reso-
nance shift is more pronounced than the lower one. Because
the higher-frequency poles move away from the imaginary
axis, the resonance becomes less pronounced, as seen in
Fig. 5(b). On the other hand, the lower frequency poles
slightly approach the imaginary axis, and the resonance keeps
pronounced. Note that for k = 1, the characteristic polynomial
becomes

C LsCp Rss
3 + (C Ls + Cp Lp + GL LsCp Rs)s

2

+(GL Ls + Cp Rs)s + 1 = 0. (21)
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Fig. 5. Linear operation of the two coupled resonators in Fig. 4. (a) Evolution
of the circuit poles in the complex plane for Lp = Ls = 3.2 μH and Cp = C =
55 pF. (b) Evolution of |HL( jω)| versus k for the same values. (c) Variation
of the imaginary part of the poles versus k for the same values and for Lp =
Ls = L = 1.6 μH and Cp = C = 83 pF. (d) Evolution of |HL( jω)| versus k
for Lp = Ls = L = 3.2 μH, Cp = 41.5 pF, and C = 55 pF.

Thus, one of the resonances disappears, as shown
in Fig. 5(b). For a higher ratio between Cp = C and Lp =
Ls = L (at the same resonance frequency ωo = 1/

√
LC),

the value of kc increases, as shown in Fig. 5(c). In Fig. 5(c),

the imaginary part of the dominant complex-conjugate poles
has been represented versus k for two sets of element values:
the ones considered in Fig. 5(a) and Lp = Ls = 1.6 μH
and Cp = C = 83 pF. Finally, for different capacitor values
Cp �= C , the resonance frequencies are different even at
k = 0, so from very low k two maxima can be distinguished
in the magnitude |HL( jω)| when traced versus frequency,
as shown in Fig. 5(d), where the values Lp = Ls = 3.2 μH,
Cp = 41.5 pF and C = 55 pF have been considered.

C. Nonlinear Operation

The complex equation (17), describing the linear resonator
coupled to a nonlinear one, can be expressed in terms of a
compact nonlinear function H (|V2|, ω) by dividing both terms
of this equation by A1(ω). This provides

Ege jφ = A2(ω)

A1(ω)
|V2| + jω

A1(ω)
Q(|V2|) = H (|V2|, ω). (22)

This way the circuit is formally described in the same way
as the single nonlinear resonator of Section II [see (1)]. For
a given input amplitude Ego, the nonlinear resonance curve
versus the frequency ω is calculated obtaining the absolute
value of H (|V2|, ω) and, thus, making the phase shift φ
disappear

Ego = |H (|V2|, ω)| =
���� A2(ω)

A1(ω)
|V2| + jω

A1(ω)
Q(|V2|)

����. (23)

At each ω, the real equation (23) provides one or more
solutions in terms of |V2|. Note that for each pair of values
ω, |V2| there will be a different phase shift φ that can be
calculated replacing these values in (22).

A very simple way to get a whole family of resonance
curves for as many Eg values as desired is to perform a double
sweep in |V2|, ω and obtain the surface |H (|V2|, ω)|. Then,
the nonlinear resonance curve for any Eg = Ego is given by the
contour level |H (|V2|, ω)| = Ego of the surface |H (|V2|, ω)|.
This is the procedure followed in the HB method described
in Section IV, though in the HB calculation one can consider
any number NH of harmonic terms.

Fig. 6(a) and (b) presents the family of output-power curves
of the circuit in Fig. 4, obtained versus ω for different values
of input power Pin = E2

g/(8Rs), at the constant coupling
coefficient k = 0.15 for Lp = Ls = 3.2 μH and Cp =
C = 55 pF, in Fig. 6(a), and for Lp = Ls = 3.2 μH,
Cp = 41.5 pF and C = 55 pF, in Fig. 6(b), which are the
two sets of circuit-element values considered in Section II-B.
The results are compared with HB simulations, through the
numerical method in Section IV, based on the calculation of
|H (|V2|, ω)| in commercial HB, plus the tracing of contour
levels. The locus of turning points calculated in Section III-D
is also superimposed. Note the significant BW enhancement
and flattening of the resonance curves in comparison with the
linear case of Fig. 5(c) for the same k value. This is due to the
broadening of the lower-frequency resonance and the folding
of the upper-frequency one.

The solution curve at a constant input frequency ω is
obtained by simply sweeping |V2| and calculating Eg from
the absolute value |H (|V2|, ω)| [see (22)]. This has been done
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Fig. 6. Linear resonator coupled to a nonlinear one with a simplified
diode model. The coupling factor is k = 0.15. (a) Cp = 55 pF. Family
of nonlinear resonance curves obtained for input power comprised between
4.39 and 13.5 dBm. The turning point locus is superimposed. The analytical
results are compared with HB simulations using the method in Section IV.
(b) Same for Cp = 41.5 pF. (c) Power-transfer curves for Cp = 41.5 pF
considering three different input frequencies. The default HB is unable to
pass through the turning points. Simulations using the numerical method in
Section IV are superimposed. (d) Power-transfer curve for Cp = 41.5 pF and
f = 14.99 MHz, with a very small multivalued region.

Fig. 7. Linear resonator coupled to a nonlinear one with a simplified
diode model. Variation of the output power versus the coupling factor k for
Cp = 41.5 pF and different values of the input power. The turning point loci
obtained with the method described in Section III-D are superimposed. (a) At
the constant input frequency 15 MHz. (b) At 14 MHz.

in Fig. 6(c) for Cp = 41.5 pF, considering the coupling
factor k = 0.15 and three different excitation frequencies 15,
15.5, and 16 MHz. The analytical results are compared with
those obtained with the HB method of Section IV and with
default HB simulations. Because the default HB simulations
are unable to circumvent the turning points, a discontinuous
jump is obtained at the first turning point. The rest of the
default-HB curve is overlapped in all cases. Fig. 6(d) presents
the power-transfer curve when the input power at the two turn-
ing points is similar, so the multivalued interval is very small.

Fig. 7(a) presents the variation of the output power versus
the coupling factor k for Cp = 41.5 pF and different values
of input power at the constant input frequency 15 MHz. The
locus of turning points calculated in Section III-D has been
superimposed. Fig. 7(b) presents the same analysis at the input
frequency 14 MHz, with a smaller size of the locus of turning
points, exhibiting a cusp at a lower k. As gathered from the
above results, both the input frequency and input power have
a significant influence on the shape of the nonlinear-resonance
curves, strongly affected by the location of the turning points.
Thus, the capability to directly obtain the locus of turning
points will be valuable for an efficient prediction of the overall
circuit behavior. This will be the object of Section III-D.

D. Mechanism for the Turning Point

To obtain the turning points, we will split (22) into real
and imaginary parts and calculate the Jacobian matrix of
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the resulting two real equations with respect to |V2| and φ.
This matrix should be singular at the turning points, and the
singularity condition is formally identical to the one in (3)

det

⎡
⎢⎢⎣

∂ H r

∂|V2| H i

∂ H i

∂|V2| −H r

⎤
⎥⎥⎦ = ∂

�
(H r)2 + (H i)2

�
∂|V2| = 0 (24)

where the superscripts indicate real and imaginary parts.
As done in Section II, to get insight into the turning point
mechanism, the charge Q(|V2|) will be decomposed into
a linear term and a purely nonlinear contribution, that is,
Q(|V2|) = C|V2| + QNL(|V2|). Calculating the derivative
∂|H |2/∂|V2| appearing in (24), one obtains

det(|V2|, ω) = |V2|T1(ω) + QNL
d QNL

d|V2| T2(ω)

+
�

QNL + |V2|d QNL

d|V2|
�

T3(ω) = 0 (25)

where the frequency dependent terms T1(ω), T2(ω), T3(ω) are

T1(ω) = F3(E2 + C E1)
2 + (F1 − C F2)

2

T2(ω) = E2
1 F3 + F2

2

T3(ω) = E1 F3(E2 + C E1) − F2(F1 − C F2). (26)

And the following frequency-dependent components have
been defined:

E1(ω) = k2 − 1

k
ω2

�
Lp Ls + Ls

kCp
�

Lp Ls

E2(ω) = Lp RL + Ls Rs

k
�

Lp Ls RL
− 1

kCp
�

Lp Lsω2

F1(ω) = (k2 − 1)ω2Cp Lp Ls + Cp RL Rs + Ls

F2(ω) = ω2Cp Ls RL Rs

F3(ω) = k2ω2(Cp RL)2 Lp Ls. (27)

Note that (25) has the same structure as (6). From the
inspection of (26) and (27), the term T1(ω), associated with
the linear contribution C|V2|, and the term T2(ω), affecting
QNL(d QNL/d|V2|), are always positive. Under an equal sign of
QNL and d QNL/d|V2|, the only possible negative contribution
[capable to provide roots of (25)] is the one associated with
T3(ω), affecting QNL + |V2|(d QNL/d|V2|). This situation is
analogous to the one obtained in the case of the single
nonlinear resonator of Section II, where the term affecting
QNL + |V2|(d QNL/d|V2|) is the only one that can lead the
determinant in (7) to a zero value. For a more in-depth
analysis of T3(ω), the common case of two equal inductors
Lp = Ls = L will be assumed, so this term becomes

T3(ω) = −L R2
L
ω4

ω4
o

�
1 − ω2

o

ω2

��
1 − k2 − ω2

o

ω2

�

+ L R2
L

ω6

ω4
oω

2
V

�
1 − k2 − ω2

o

ω2

�2

+ (RL RS)
2 ω2

ω2
o

�
C

ω2

ω2
o

− Cp

�
(28)

where ωo = 1/
�

LCp and ωV = 1/
√

LC . The frequency
variation of T3 for different k values is shown in Fig. 8. For

low ω, the first and third terms of T3(ω) are negative and
will dominate the whole expression. For high ω, the second
positive term will dominate. If both QNL and d QNL/d|V2| are
positive (negative) for all |V2|, one can expect to obtain turning
points at lower (higher) frequencies than ωo. However, one
must also note that, from certain k, there are three crossings
through zero of T3(ω) and four sections with different signs,
which can give rise to more than one turning point locus.
For instance, in the case considered here having QNL(|V2|) <
0 and ∂ QNL(|V2|)/∂|V2| < 0, the turning point condition
[singularity of (22)] requires T3(ω) > 0 which is obtained in
two frequency intervals. As a result, there can be a coexistence
of turning point loci that will be demonstrated here both
theoretically and experimentally.

Using the same charge model Q(V ) = CV + Q3V 3

considered in Section II-B, (25) particularizes to

det(|V2|, ω) = 3Q2
3|V2|4T2(k, ω)

+ 4Q3|V2|2T3(k, ω) + T1(k, ω) = 0. (29)

And solving for |V2|2, one obtains the turning point voltage

|V2,T (k, ω)|2 =
−2T3(k, ω)±

�
4T 2

3 (k, ω)−3T2(k, ω)T1(k, ω)

3Q3T2(k, ω)
.

(30)

To obtain |V2,T (k, ω)|2 > 0, the elements T3 and Q3

must have opposite signs and the radicand must be positive
or equal to zero (at the cusp), which requires a sufficiently
large magnitude of T3 in comparison with T1 and T2. In this
situation, for given k and ω, two turning points are obtained,
except at the cusp, where the radicand is zero. In the case
Q3 < 0 considered here, the negative sign of the square root
in (30) provides the turning points in the upper section of the
nonlinear-resonance curves, which, when increasing the input
frequency, give rise to a downward jump to the lower section.
In turn, the positive sign provides the turning points in the
lower section, which, when reducing the input frequency, give
rise to an upward jump to the upper section.

Note that for each k (or ω) there can be one or more ω
(or k) fulfilling the turning point condition. As in the case
of the single resonator, the voltage amplitude at the turning
points is scaled with

√|Q3|. Note that each |V2,T | resulting
from (30) corresponds to a different input power, which is
directly obtained by replacing |V2,T | in (23).

The turning point loci provided by (30) has been superim-
posed on the curve families in Fig. 6(a) and (b), providing
the output power versus ω for two capacitor values, and
in Fig. 7(a) and (b), providing the output power versus k for
two ω values. They accurately pass through all the tuning
points of the solution curves, corresponding to different Pin

values.
To obtain the locus of turning points in the plane defined

by k, ω, one should perform a double sweep in these two
parameters, calculate |V2,T (k, ω)| from (30) and Pin,T from
(23). This will produce one or more surfaces of turning points
Pin,T(|V2,T |, ω)in the space defined by k, ω, and Pin. To sum-
marize, the surfaces Pin,T (|V2,T |, ω) are obtained through the
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Fig. 8. Frequency variation of the term T3(ω) in (28) for different k values.

following three-step calculation:
|V2,T (k, ω)|2

=
−2T3(k, ω) ±

�
4T 2

3 (k, ω) − 3T2(k, ω)T1(k, ω)

3Q3T2(k, ω)

Eg,T = |H (|V2,T |, ω)| =
���� A2(ω)

A1(ω)
|V2,T | + jω

A1(ω)
Q(|V2,T |)

����
Pin,T (|V2,T |, ω) = E2

g,T

8Rs
. (31)

Note that though the parameters ω, k have been considered
in (31), the surfaces can equally be calculated in terms of any
two arbitrary parameters η1 and η2.

When applying the new method to the circuit in Fig. 4,
considering η1 = k and η1 = ω, and one obtains the two
surfaces in Fig. 9(a). From these turning point surfaces one
can obtain the family of turning point loci resulting from the
variation of the input power. In fact, the locus of turning points
for a particular input power, denoted as Pin,o, is given by the
contour plot of the surface(s) corresponding to Pin,o. This can
be seen in Fig. 9(b), which shows the family of turning point
loci (obtained for different Pin values) in the plane defined by
ω and k resulting from the surfaces in Fig. 9(a). A relevant
advantage of this method over continuation-based ones used in
in-house software [14]–[17] is that it can predict disconnected
loci sections. This is because it exhaustively provides all the
loci points contained in the exploration intervals considered
when calculating the surface.

As previously explained, the existence of two distinct turn-
ing point loci in the circuit of Fig. 4 loci can be understood
from the form of variation of the term T3(k, ω), exhibiting four
sign changes as shown in Fig. 8. The upper sections of the
loci in Fig. 9(b), obtained for k > 0.5, correspond to a very
small distance between the inductors. Thus, we will focus on
the lower sections, with an expanded view in Fig. 9(c). The
loci points are in total consistency with the curves shown
in Figs. 6 and 7. This can be gathered by comparing, for
instance, the frequency values at the turning points in Fig. 6(b)
with the locus predictions for k = 0.15 and Pin = 7.4, 10.96,
and 13.52 dBm. A horizontal axis at k = 0.15 has been
traced to facilitate the comparison. One can also compare the
turning points in Fig. 7(a) and (b), with the locus predictions
at f = 14 and 15 MHz) for the power values Pin = 7.4,
10.96, and 13.52 dBm. Two vertical axes at the respective
frequencies have been traced to facilitate the comparison.

Fig. 9. Calculation of the turning point locus in terms of ω and k for
different Pin values. (a) Newly defined turning point surfaces in terms of the
analysis parameters ω, k, and Pin. The envelope of cusp points defined by
(32) is shown in dash-dotted line. (b) Family of turning point loci in the plane
defined by ω and k for different input powers. The envelope of cusp points
is superimposed. (c) Expanded view of the turning point loci obtained for the
lower k values.

From the inspection of the loci family, one can understand the
extremely small multivalued interval obtained for k = 0.15 and
14.99 MHz in Fig. 6(d). Note that the turning points in Figs.
6 and 7 had been validated with HB, which also constitutes a
validation of the results in Fig. 9.

The loci provide at a glance an entire characterization of
the multivalued regions of the nonlinear-resonance curves and
thus, valuable global information on the geometry of these
curves. Thus, they provide the evolution (versus any relevant
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parameters) of the first turning point that gives rise to the
upward jump from which the flattening is observed. From
the inspection of Fig. 9(c), at a given input power, to obtain
this turning point at a lower k (and, thus, a larger distance
between the coils), one should reduce the input frequency.
This agrees with the results of Fig. 7. As seen in Fig. 9(c),
the turning points are obtained for lower k when using a higher
input power. One can also gather that the multivalued region
(comprised between the lower and upper point of the locus)
decreases with the excitation frequency and increases with the
input power.

As stated, at the cusp points the radicand of (30) is equal
to zero, so they are given by the condition

4T 2
3 (kc, ωc) − 3T2(kc, ωc)T1(kc, ωc) = 0. (32)

The voltage amplitudes are calculated from��V2,T,cusp(kc, ωc)
��2 = −2T3(kc, ωc)

3Q3
(33)

and scale with
√|Q3|. Condition (32) defines one or more

curves in the plane kc, ωc, which are independent of the non-
linearity. They have been represented in Fig. 9 and accurately
pass through the cusps of all the turning point loci. When
approaching the cusp point the multivalued interval decreases,
in consistency with Fig. 6(b) and (c), and as also gathered
from the comparison of Fig. 7(a) and (b). As seen in Fig. 9(c)
to obtain the cusp point at low k one needs a higher input
power. On the other hand, as the input power decreases the
locus becomes narrower and approaches the envelope of cusp
points (cusp trend).

IV. NEW HB METHOD AND EXPERIMENTAL

CHARACTERIZATION OF THE NONLINEAR-RESONATOR

CIRCUIT

The new HB method relies on the same concepts used in
the analytical studies of Sections II and III. Instead of using
ordinary sweeps (as in a default simulation in commercial
HB) or parameter-switching techniques (for instance, when
optimizing an auxiliary generator [17]), the new methods are
based on the calculation of the nonlinear function H (V , ω).
This provides the response to a voltage amplitude V at the
frequency ω at the analysis node. With HB, the function
H (V , ω) will be calculated in a realistic manner, using detailed
models of the circuit elements (including parasitic effects)
and as many harmonic components as desired. The results
of the new HB method will be validated with default HB
simulations and through an experimental characterization of
the linear resonator coupled to a nonlinear one.

A. New HB Method

As stated, the new HB method is based on the calculation
of H (V , ω), instead of directly addressing the circuit with its
input source included. Once the function H (V , ω) is available,
one will obtain the solution curves by means of the complex
equation Ege jφ = H (V , ω), in a manner like what was done
in Section III. To obtain the function H (V , ω) in commercial
HB one must carry out a single (simultaneous) simulation of

Fig. 10. Sketch of the analysis procedure to obtain the solution curves and
turning point loci of the linear resonator coupled to a nonlinear one. Note that
the two circuits are analyzed in a single simulation. (a) Circuit with Eg = 0 is
used to calculate the total nonlinear admittance function Y (V, ω) at Node 2.
(b) Circuit is used to obtain the linear function F(ω) that relates the Norton
equivalent current of the input network with the input source Eg.

two circuits. The sketch of this simulation, presenting the two
circuits that are analyzed at once, is shown in Fig. 10. In the
first circuit, we set the input source to zero and make use,
instead, of an auxiliary generator. This is a voltage source with
the amplitude V at the frequency ω, in series with an ideal
bandpass filter at ω [17]. The auxiliary generator is connected
in parallel between the upper node of the antiseries diodes
(Node 2) and ground, so the amplitude V agrees with |V2|.
The circuit with the auxiliary generator is used to obtain
the total nonlinear admittance function Y (V , ω) at Node 2,
so V = |V2|. The function Y (V , ω) is calculated through a
double sweep in ω and V , with the pure HB system acting
as an inner tier. The second circuit, also shown in Fig. 10,
is used to obtain the Norton equivalent of the linear input
network at Node 2. A voltage source with the dummy value
Eg1 = 1 V is introduced in this linear circuit, and a function
F(ω) is calculated through the relationship

F(ω) = −I �
2

Eg1
. (34)

The two circuits in Fig. 10 are simulated simultaneously
to obtain Y (V , ω), from the first circuit, and F(ω), from
the second circuit. Once the two functions Y (V , ω) and F(ω)
are available one can calculate the desired nonlinear function
H (V , ω). To obtain this function, one must consider that the
circuit solutions should fulfill the combined system

Y (V , ω)V e− jφ = I e jϕ

I e jϕ = F(ω)Eg (35)

where I e jϕ is the complex Norton-equivalent current at the
analysis node and −φ is the phase of the node voltage. The
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two relationships in (35) can be compacted in the following
single complex equation:

Ege jφ = Y (V , ω)

F(ω)
V = H (V , ω). (36)

Thus, by performing a double sweep in ω and V , and
carrying out the simultaneous HB simulation of the two
circuits in Fig. 10, one can obtain H (V , ω) as

H (V , ω) = Y (V , ω)

F(ω)
V . (37)

Note that in this calculation the number NH of harmonic
terms can be as high as desired, since Y (V , ω) is, in fact,
an outer-tier function: for each pair of excitation values ω and
V , the pure HB system acts as an inner tier. Once the function
H (V , ω) is available, one can obtain all the solution curves V
versus ω at arbitrary Eg values from the corresponding contour
levels of the surface |H (V , ω)|. On the other hand, the locus
of turning points is given the contour level of zero value
of ∂|H (V , ω)|2/∂V , easily obtained in the output window
of the commercial software using a differentiation function.
If, instead of ω, a different parameter η is used, one should
perform a double in sweep η and V to calculate the function
H (V , η) and then obtain the solution curves in terms of V
versus η at different Eg values from the corresponding contour
levels of the surface |H (V , η)|.

To calculate the turning point locus in the plane defined by
any two arbitrary parameters η1, η2, we will apply the same
three-step procedure of (31). We will perform a sweep in η1

and, at each point of the sweep, we will obtain the turning
point locus in terms of V and η2, given by the condition:
∂|H (V , η2)|2/∂V = 0. To translate this turning point locus to
the plane defined by η2, Pin, one should calculate the input
power at each locus point VT, η2, by applying

Eg,T = |H (VT, η2)|
PinT = E2

g,T /(8RS). (38)

The collection of turning point loci resulting from the sweep
in η1 provides a turning point surface in the space η1, η2, Pin.
Then the turning point locus at any desired Pin value is directly
obtained from the corresponding contour level of the turning
point surface.

B. Simulations and Measurement Results

The design of the coupled inductors has been carried out
using Wheeler’s equation [23], [24]. The prototypes have been
manufactured on FR4 (h = 62 mil) substrate, while the
supports for the coils have been machined through computer
numerical control (CNC) on extruded acrylic clear plastic
sheets (4 mm thickness). Several inductor pairs were manufac-
tured to ensure the actual inductance values were closer to the
ones used in the circuit simulation. The final implementation
parameters are given in Table I.

The measurement set up is shown in Fig. 11.
A WW2572 waveform generator (Tabor Electronics,
Nesher, Israel) has been used as the input source. The voltage
at the output node has been measured using a DSO6034A

TABLE I

DESIGN PARAMETERS FOR COUPLED INDUCTORS

Fig. 11. Experimental setup. The primary and secondary resonators have been
manufactured using FR4 (h = 62 mil) substrate. Coils have been mounted
on supports machined from acrylic clear plastic sheets using AWG 18 copper
wire. A WW2572 waveform generator (Tabor Electronics) has been connected
to the linear resonator and the voltage waveforms have been measured using
a DSO6034A oscilloscope (Agilent Technologies.)

oscilloscope (Agilent Technologies, Santa Clara, CA, USA).
For a more accurate acquisition, the output voltage waveforms
are averaged, and, for the channel measuring the voltage
at the load resistor, the BW limit option of the digital
storage oscilloscope (DSO) has been enabled. This allows a
more accurate estimation of the voltage at the fundamental
frequency while the higher harmonic terms are filtered. The
automated acquisition measurement is primarily based on an
increasing input-voltage sweep for each test frequency and
fixed separation of the coupled coils. When a discontinuity is
detected due to a jump caused by the lower-section turning
point, a decreasing sweep in the input voltage is also carried
out to complete the upper section of the solution curves.

C. Validation With Experimental Results

In the following analyses, the varactor diodes SMV1470-
004LF are described with their full manufacturer models,
including all the parasitic elements. When considering these
full diode models, the circuit element values have been slightly
varied for an optimized response. The most relevant modifi-
cations are the change of the output resistor to RL = 2.5 k�
and the capacitor Cp to 39 pF. All the simulations through
the new method are carried out using NH = 7 harmonic
terms. Fig. 12(a) presents the power-transfer curves obtained
for k = 0.15 at the input frequencies 14, 15, 16, and 17 MHz.
The results are compared with those provided by the analytical
formulation of Section III. The charge polynomial model has
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Fig. 12. Linear resonator coupled to a nonlinear one when describing
the varactor diodes with realistic models. Power-transfer curve for different
values of input frequency at k = 0.15 (d = 7.1 cm). (a) Comparison
with the results obtained with the analytical formulation using the charge
model Q(V ) = CV + Q3V 3. (b) Default HB simulation in commercial
software, evidencing serious convergence difficulties. (c) Simulation with the
new method and default HB with measurements superimposed at the input
frequency 14 MHz. (d) Same for 15 MHz. (e) Same for 16 MHz. (f) Same
for 17 MHz.

been slightly modified for a better match in the presence of full
diode models and is now given by C = 55 pF and Q3 = −5.8
C/V3. As can be seen, there is quite a good agreement.
Fig. 12(b), showing the same simulation with default HB
in commercial software, evidences the serious convergence
difficulties of this simulation. There is a large input-voltage
interval with no convergence (and, therefore, no solutions),
which prevents the accurate prediction of the power-transfer
curve Fig. 12(c)–(f) compared with the power-transfer curves
obtained through the numerical method with experimental
measurements at the respective input frequencies 14, 15, 16,
and 17 MHz. For these measurements, which are based on the
setup of Fig. 11, the coupling factor has been experimentally
characterized versus the distance between the coils. From
this characterization, the value considered in simulation, k =
0.15, approximately corresponds to the distance d = 7.1 cm
between the coils. In Fig. 12(c)–(f), the accuracy of the new
method is also validated with default HB simulations (unable
to pass though the turning points).

Fig. 13(a) presents the variation of the voltage amplitude
|V2| versus the input frequency for different input powers
at k = 0.15. Experimental measurements are superimposed.
As can be seen, there are two distinct turning point loci,
giving rise to two different folding effects, at lower frequencies
(though higher than ωo), for the smaller Pin values, and at

Fig. 13. Linear resonator coupled to a nonlinear one when describing the
varactor diodes with realistic models. Variation of the voltage amplitude |V2|
versus the input frequency at k = 0.15 (d = 7.1 cm), when varying the
input power. (a) New HB-based method with accurate diode models. There
are two turning point loci. Measurements are superimposed. (b) Analytical
formulation, when describing the diodes with the model Q(V ) = CV +Q3V 3.
Measurements are superimposed. (c) Exhaustive experimental characterization
of the circuit response versus the input frequency when considering the input
power interval Pin = −2.26 dBm to Pin = 7.5 dBm.

higher frequencies, for the higher Pin values. This is explained
from the resonance analysis in Section III-B. As the input
power increases, the first resonance folds rightwards, then it
is the second resonance the one that folds rightwards.

For better insight into the mechanisms giving rise to the
two loci, the same analysis has been carried out with the
analytical model, which provides the results in Fig. 13(b), with
experimental measurements superimposed. As can be seen,
two loci are also obtained with the analytical formulation,
in which the back-to-back diodes are described with the same
cubic-polynomial model considered in the single resonator
analysis of Section II. Thus, the existence of the two loci is
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Fig. 14. Linear resonator coupled to a nonlinear one when describing the
varactor diodes with realistic models. Variation of the power-transfer efficiency
Eff versus the coupling factor k (upper axis) for 15 MHz and Pin = 5.1 dBm.
The results are compared with those obtained with the analytical formulation.
Experimental curves versus the distance d between the coils (lower axis) are
also presented.

due to the frequency dependence of linear circuitry, which is
more complex than the one in a single nonlinear resonator.
This was anticipated in Section III from the analysis of the
frequency variation of the term T3(ω) of the singularity con-
dition (25), shown in Fig. 8. Fig. 13(c) presents an exhaustive
experimental characterization of the circuit response versus
the input frequency when considering the input power interval
Pin = −2.26 dBm to Pin = 7.5 dBm. This characterization
has been carried out through a fine frequency sweep. The
envelopes of the jump points (experimental turning point loci)
are superimposed.

Several factors may cause the discrepancies between the
simulation and experimental results. Tests were carried out
considering variations of the package parasitics within rea-
sonable tolerance limits and we observed that slight variations
gave rise to nonnegligible discrepancies between the resulting
solution curves. On the other hand, the spiral inductors were
manufactured following Wheeler’s equations [23] for planar
coils. As shown in [24], these equations have an estimation
error up to 20%, depending on different factors (e.g., number
of turns, spacing, etc.). The measured self-resonance frequency
of the inductors is about 30 MHz, and parasitic effects were
present in the operation frequency range (11–17 MHz).

Fig. 14 presents the efficiency curve versus the coupling
factor k (lower axis) at the input frequency fin = 15 MHz and
power Pin = 5.1 dBm, where the results are compared with
those obtained with the analytical formulation. Experimental
measurements versus the distance d between the coils for the
same input frequency and several Pin values are also shown.
To avoid the impact of any inaccuracies in the estimation of
the relationship between the coupling factor and the distance,
an additional upper axis indicating this distance has been intro-
duced in Fig. 14. Note that the objective of this work is not to
obtain a demonstrator of a very performant power-transfer sys-
tem, but to derive new simulation methodologies that should
facilitate the design and optimization of these systems. Thus,
no effort has been devoted to optimizing the inductor coupling
and or modifying the nonlinear capacitance to maximize the
flattening of the response.

Finally, Fig. 15 presents the turning point loci obtained
for Pin values comprised between 1.5 and 6 dBm through a

Fig. 15. Linear resonator coupled to a nonlinear one when describing the
varactor diodes with realistic models. The analysis parameters are η1 = k,
η2 = ω. Family of turning point loci obtained for input powers comprised
between 1.5 and 6 dBm. It accurately predicts the two different folding effects.

previous calculation of a turning point surface. They accurately
predict the two different folding effects at lower input fre-
quency (for lower input power) and at higher input frequency
(for higher input power). A horizontal axis at k = 0.15
has been introduced to facilitate the comparison of the loci
predictions with the turning points in the curves of Fig. 13(a)
traced versus frequency for different Pin values. A vertical
axis at 15 MHz has also been introduced to facilitate the
comparison of the loci predictions with the turning points in
the numerical curve of Fig. 14 traced versus k.

V. CONCLUSION

A detailed frequency-domain analysis of circuits based on
a nonlinear resonator has been presented, illustrated through
its application to two configurations recently proposed in the
literature for energy harvesting and wireless power transfer.
In the two cases and considering a describing-function repre-
sentation of the nonlinear charge, explicit expressions of the
turning points that give rise to the folding of the resonance
curves have been derived. These expressions provide insight
into the turning point mechanism and its dependence on the
circuit elements and parameters. The mathematical condition
fulfilled by the cusp points, from which the solution curves are
no longer multivalued, has also been derived. For a realistic
prediction of the behavior, a new single-step method to obtain
the multivalued solution curves in commercial HB has been
provided, together with a new procedure to determine the locus
of turning points in terms of any two analysis parameters. This
is done through the calculation of a turning point surface in
the space defined by the two parameters and the input power.
The methods have been applied to a practical wireless power-
transfer system at 15 MHz, obtaining a very good agreement
with the experimental results.
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