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Abstract: Finding low-dimensional chaos is a relevant issue as it could allow short-term reliable
forecasting. However, the existence of chaos in shipping freight rates remains an open and out-
standing matter as previous research used methodology that can produce misleading results. Using
daily data, this paper aims to unveil the nonlinear dynamics of the Baltic Dry Index that has been
proposed as a measure of the shipping rates for certain raw materials. We tested for the existence of
nonlinearity and low-dimensional chaos. We have also examined the chaotic dynamics throughout
three sub-sampling periods, which have been determined by the volatility pattern of the series.
For this purpose, from a comprehensive view we apply several metric and topological techniques,
including the most suitable methods for noisy time series analysis. The proposed methodology
considers the characteristics of chaotic time series, such as nonlinearity, determinism, sensitivity to
initial conditions, fractal dimension and recurrence. Although there is strong evidence of a nonlinear
structure, a chaotic and, therefore, deterministic behavior cannot be assumed during the whole or
the three periods considered. Our findings indicate that the generalized autoregressive conditional
heteroscedastic (GARCH) model and exponential GARCH (EGARCH) model explain a significant
part of the nonlinear structure that is found in the dry bulk shipping freight market.

Keywords: chaos; nonlinear dynamics; correlation dimension; Lyapunov exponent; recurrence plots;
GARCH; economics; shipping; freight rate; Baltic Dry Index

1. Introduction

Since the 1960s chaos theory has played an increasingly important role in the develop-
ment of many scientific fields such as economics and finance [1–5]. Interest in nonlinear
modeling, and particularly in studying chaotic system, defined as a nonlinear deterministic
process that appears to be random and presents sensitivity to initial conditions, has risen
significantly. In fact, literature displays numerous publications searching for nonlinear and
chaotic behavior in macroeconomic and financial time series [2]. Our research is included
within this framework which aims to unveil the nonlinear dynamics in the shipping market.
Specifically, we examine the existence of nonlinearity and chaos in dry bulk shipping rates
time series.

Maritime transport plays an outstanding role in the worldwide economy, since over
90% of all world trade is transported by sea and it is the most profitable method of carrying
goods and raw materials in masse throughout the world [6]. Specifically, ocean shipping
freight rates constitute a significant proportion of the production inputs cost and determine
to some extent the final commodities’ prices in overseas consumption centers [7]. Dry bulk
freight rates are commonly represented by the Baltic Dry Index (BDI) [8] that has been
proposed to be a measure of the shipping rates for certain raw materials [9]. The BDI is
considered a global trade indicator [10] and serves as an indicator for the commodities,
currency, and equity markets [8]. Moreover, it is considered an accurate “barometer”
of economic activity and an efficient indicator for forecasting industrial production and
economic growth because it captures changes in the early stages of the global supply chain.
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In summary, as Guan et al. [11] highlighted, BDI not only reflects the evolution of the dry
bulk shipping market but can also mirror the state of the world economy and the trend in
international trade.

Given their interest, it is not surprising that, as mentioned by Chen et al. [12], knowl-
edge of freight rate dynamics has attracted a great deal of attention among researchers in
the shipping community. Stopford [13] emphasizes the great importance of forecasting
shipping prices for the stakeholders involved in the maritime industry: shipping compa-
nies, cargo owners, shipbuilders, bankers, or regulators. In addition, he points out that
forecasts can achieve a high degree of complexity and in many cases, they have had limited
success. Forecasting freight rates is a complex task because they are influenced by many
features [14], such as political, economic, and natural conditions [11]. Among the many
influences on the shipping market, Stopford [13] focused on factors affecting the demand
for sea transport (i.e., world economy, seaborne commodity trade, and random shocks) and
affecting the supply (i.e., world fleet, shipbuilding deliveries, and scrapping and freight
revenues). Zeng et al. [15] suggested that the complexity as well as the non-stationary and
nonlinear nature of freight rates series in the bulk shipping market escalate the difficulty
in forecasting freight rates. In this sense, Chen et al. [12] mentioned that the dry bulk
shipping industry is characterized as highly volatile. Moreover, Geman and Smith [16]
focused on extreme volatility in the shipping markets, particularly in freight rates, because
the inelasticity of supply to demand shocks when no inventory is available causes large
fluctuations in the change through time. For the aforementioned reasons, accurate freight
rate prediction presents an important challenge for researchers [15,17].

However only a limited number of studies that unveil the existence of nonlinearity and
chaos can be found (e.g., [17–19]). Specifically, Goulielmos and Psifia [17] found a nonlinear
behavior and low-dimensional chaos in the time charter freight rates series dynamics using
the Hurst exponent, BDS test and Lyapunov exponent. Goulielmos and Psifia [18] detected
a nonlinear behavior in the freight rates time series dynamic by applying the BDS test.
Goulielmos et al. [19] found evidence of chaos, applying techniques like rescaled range
analysis, correlation dimension and Lyapunov exponent. In conclusion, previous research
on chaos has used methods from other sciences that are not appropriate for diagnosing
chaos (for example BDS test or Hurst exponent) or that have not been adapted to take into
account the specific characteristics of financial time series like noise and the limited and
low sample size (e.g., correlation dimension method or Lyapunov exponent test). Hence,
their conclusions could be misleading [20–22]. It can be concluded that the existence of
chaos in ocean freight rates continues to be an open and important issue. Its relevance
resides in that the existence of low-dimensional chaos could enable a reliable short-run
prediction, but not in the long-run, since a chaotic system presents sensitivity on initial
conditions and therefore is unstable [23].

From an economic point of view, the existence of chaos has several important im-
plications. As Brooks [24] points out, these consequences affect aspects such as model
appropriateness, market efficiency and predictability. LeBaron [25] argues that chaos in
economics had a broad array of potential applications such as forecasting or understanding
international business cycles. The presence of chaos can also provide a potential explana-
tion for seemingly random fluctuations in the economy and financial markets [26] and a
wider range of time series behavior. Specifically, linear models may not adequately capture
the sharp movements and large fluctuations that characterize financial and economic series
and hence are not appropriate to describe economic phenomena like stock market bubbles
and crashes, depressions, and the occurrence of business cycles. On the contrary, chaotic
models may be well suited to explain these behavioral patterns [27]. Another important
implication of the presence of chaos is that controllability of the system is feasible, since
there is some deterministic structure underlying the data [28]. Interestingly, chaos also
represents a radical change of view on business cycles [28]. The traditional exogenous
approach to economic fluctuations assumes that economic equilibria are determinate and
intrinsically stable, so that in the absence of persistent exogenous shocks the economy will
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tend to a steady state, but due to stochastic shocks a stationary pattern of fluctuations is
observed. In contrast, with the new approach based on chaos theory, business cycles are
endogenously explained and are based on the marked nonlinear deterministic structure
that can characterize the economic system.

Concerning the degree of predictability of the series, if the system is completely
random, its behavior is not predictable at all, while if it exhibits chaotic behavior, we can
forecast the system in short periods of time [29]. However, when chaos exists, although
short-run forecasting may be more accurate, long-run forecasting then becomes impossible
due to the sensitivity to initial conditions. In addition, traditional linear forecasting methods
would not be successful and nonlinear models should be applied [26]. The presence of chaos
also indicates the possibility of using nonlinear trading rules and is likewise understood
as a hallmark of an inefficient market [30]. In practical terms, this implies that in financial
markets accurate short-run forecasts can be achieved and investors can make profits with
an adequate strategy, while the long-run behavior of these time series is not predictable in
any way [31].

As noted above, linear models have proven to be ill-suited for describing and fitting
many economic phenomena such as the business cycles. In contrast, the nonlinear approach
can capture the features of economic and financial series and their sudden fluctuations,
and hence plays a relevant role in economic modeling [32]. Likewise, dynamical systems
involving time delays have applications in a number of fields such as biology, population
dynamics and economics [33]. The delayed model can produce oscillating trajectories
for the solutions under certain conditions and explain the business cycles [34,35]. Delay
differential equations have derivatives depending explicitly on the value of variables
at times in the past and are adopted to represent systems with time delay. In general,
delay differential equation models can be more accurate than those based on ordinary
differential equations when it is necessary to capture oscillatory dynamics. In the last few
years, the literature on the oscillation theory of delay differential equations is growing
very quickly and among the topics studied the oscillation of solutions has been the most
extensively investigated [36]. The core of the theory lies in setting the conditions for
the existence or non-existence of oscillatory solutions. This is an area of research with
interesting applications in many fields and closely related to chaos, which is characterized
by irregular and unpredictable oscillations [37]. Hence, oscillatory behavior of the solutions
of a class of nonlinear delay differential equations is an important area for future research.

The basic aim of this research is to investigate the underlying dynamics of ocean
freight rates as measured by the BDI. By using daily closing values from January 1990 to
July 2013, we tested for the existence of nonlinearity and low-dimensional chaos. The paper
also examines other issues such as the existence and modelling of volatility clustering.
The proposed methodology considers the characteristics of chaotic time series, such as
nonlinearity, determinism, sensitivity to initial conditions, fractal dimension and recurrence.
Each characteristic is tested by the corresponding method. The existence of nonlinearities
is tested by the application of a broad set of methods (Keenan, Tsay, White and BDS). In the
same way, four methods (correlation dimension, Matilla-Garcia and Ruiz Marin (MGRM)
test [38], Lyapunov exponent test, adapted for noisy series [21], and recurrence plots) have
been applied to test for chaos. To make the conclusions of this work more robust, besides
analyzing the series over the whole period, we have also examined the chaotic behavior
over three sub-periods, which were selected by the evolution of volatility.

To this end the following methodology is applied to all time series [32]. First, to
evaluate stationarity of the BDI series, unit root tests were performed. Once it had been
established that BDI series was I(1), the analysis was carried out on daily returns computed
as first difference of the logarithmic price level. Linear dependence was then filtered
out of the data by applying autoregressive moving average (ARMA) filters based on the
Box–Jenkins methodology [39]. Next, we applied a broad array of procedures to the
residuals obtained to detect the existence of nonlinearity. If nonlinear dependence was
detected, since linear structures had already been removed using the best fit ARMA model,
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it was indicative of some type of nonlinear dependence in the returns series resulting
from a nonlinear stochastic system or a nonlinear deterministic chaotic system. Stochastic
nonlinearity could be due to the presence of a volatility cluster, i.e., large variations tend
to group together, which is a common characteristic of financial time series. In such a
case, both generalized autoregressive conditional heteroskedasticity (GARCH) [40] and
exponential (EGARCH) [41] models were fitted. Afterwards, as a distinctive feature of
proposed methodology against published methods, the existence of chaotic structure was
examined by a series of robust procedures, including those that are ideally suitable for
noisy time series analysis, e.g., Lyapunov exponent test adapted for noisy series, MGRM
test based on permutation entropy, and recurrence plots.

Furthermore, the novelty and main contribution of this study lies in the fact that,
as far as we know, it is the first time that these robust methods have been applied to
detect chaos to such a relevant variable in the world economy, the freight shipping rate.
The findings suggest that nonlinearity is present in the underlying process of the BDI
although unlike previous studies, we found no sign of chaotic structure. In terms of
the benefits of our research for both theory and practice, our results make a significant
contribution to shedding light on the underlying behavior and dynamics in shipping rates.
In general, our insights should be of great interest to all stakeholders concerned with the
shipping industry, including, among others, stevedores, charterers, shipowners, brokers
and investment banks.

The rest of the paper is organized as follows. The next section describes the method-
ological framework applied. The penultimate section presents the data sources used and
the main results. Finally, in the final section, we present some conclusions and suggest
future lines of research.

2. Methodology
2.1. Methodological Framework

The methodological framework from other research [32,42] has been adopted to study
the presence of nonlinearity and chaos. The methods employed herein are presented in
Table 1, and their main characteristics are described below.

Table 1. Techniques used.

Technique Reference Feature Tested

Augmented Dickey Fuller (ADF) [43] Stationarity (unit roots)
Phillips–Perron (PP) [44] Stationarity (unit roots)

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [45] Stationarity (unit roots)
Keenan [46] Nonlinearity

Tsay [47] Nonlinearity
White [48] Nonlinearity

Brock, Dechert and Sheinkman test-BDS [49,50] Independence (iid);
Randomness; Nonlinearity

Correlation Dimension [51] Chaos
Lyapunov Exponent [21] Chaos

MGRM [38] Chaos
Recurrence Plots [52] Chaos

Note: MGRM stands for the test proposed by Matilla-Garcia and Ruiz Marin [38]. Source: [32] and own work.

Firstly, we define linear and nonlinear series as elsewhere [32]. A stochastic process
(Xt, t ∈ T) is said to be a linear process if for every t ∈ T Xt = ∑∞

j=0 β jεt−j where a0 = 1,
εt, t ∈ T is a process of independent and identically-distributed random variables (iid)
with E[Xt] = 0, E

[
X2

t
]
= σ2 and ∑∞

j=0
∣∣β j
∣∣ < ∞. If a process does not satisfy this condition,

then is said to be nonlinear.
The methodological framework includes the following steps.

(i) Stationarity testing
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Stationarity was studied by means of three different techniques (Table 1). Specif-
ically, the Augmented Dickey Fuller test (ADF) [43], Phillips–Perron test (PP) [44] and
Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) [45] are applied to time series.

In first instance, once it was tested that each of the four series considered was not
stationary, we obtained the log-returns (from now on returns) from each series defined as
ln(Rt) = ln(Xt)− ln(Xt−1) such that Xt is the time series data at time t. This new series
called “return” has important properties such as stationarity. This property is essential,
since it is a prerequisite in a large percentage of modelling techniques and in the methods
that will be used for the analysis of nonlinearity or chaotic behavior.

(ii) Linear modelling

Next, ARMA filters were applied to remove the linear dependence present in the return
series. The specific model is chosen as the ARMA (p,q) model which presents the lowest
value according to the Schwarz information criterion [53]. Following the process described
by Barkoulas et al. [54], the residuals were studied. If the residuals were correlated, the
order of the ARMA model was increased, by increasing the magnitude of p and q. Once
the optimal linear model was determined, the residuals were extracted from it. The new
residuals were called the ARMA series.

(iii) Nonlinearity testing

We used several methods to supplement the limitations of each one. We applied
(Table 1): Keenan’s test [46], Tsay’s test [47], White’s test [48] and BDS [49,50].

Before describing the main characteristics of the methods employed in this research,
it is worth explaining the process of reconstructing the state space, as well as the concept
of attractor.

Following [54], the concept of attractor is defined as follows. Given a discrete dynamic
system of the type:

xt = F(xt−1), x ∈ Rn (1)

such that P an open subset of Rn and F : P→ Rn is a function [55]; a closed invariant set
A ⊂ P is an attracting limit set of P if there is an open neighborhood Q of A, such that the
limit set of iterates is A, ∀xεQ when t→ ∞ .

Empirically, a time series of scalar observations xt, representing the multidimensional
system of Equation (1), is usually observed. Using Takens’ embedding theorem [56] it
is feasible to recover the dynamics of the system (i.e., the original trajectory) from the
observed xt time series. An m-dimensional vector is defined from xt, and constructed
as follows:

Xm
t = (xt, · · · ., xt+m−1) =

(
g(xt)., g

(
Fm−1(xt)

))
≡ Jm (2)

where Fm−1 means that F is applied a total number of m − 1 times to itself. Thus, our goal
is to reconstruct the state dimension space by expanding the one-dimensional signal xt into
an m-dimensional phase space such that each observation in the signal xt is substituted
by the corresponding vector Xm

t in Equation (2). Takens’ embedding theorem states
that for each pair (F, g) the map Jm : Rn → Rm will be an embedding for m ≥ 2n + 1.
If the embedding dimension m is of sufficiently large size with respect to the attractor
dimension, Takens’ theorem ensures that a diffeomorphism exists between the original
and the reconstructed attractor. In summary, according to the above theorem it can be
concluded that both attractors represent the same dynamical system in different coordinate
systems if m ≥ 2n + 1.

Nonlinearity tests used in this research are well known in the literature. Thus, only
the main features of the BDS method, which has statistical power for detecting nonlinearity
and other types of data dependence [21], are presented here. Interestingly, the BDS test
can be used to test for nonlinearity if linear structure is removed from the series by fitting
an ARMA model. Indeed, if the test is performed on the residuals from a linear model
(ARMA process), rejection of the null hypothesis (iid) will denote the presence of linear
dependence in the series. The BDS test is constructed as follows [49,50]. Consider a time
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series {xt}T
t=1. According to Takens’ theorem it is possible to reconstruct the state space

from xt. The method of delays is used for reconstruction. Thus, the reconstructed state
vector or m-history is Xm

t =
(

xt, xt+τ , · · · ., xt+(m−1)τ

)
where τ is the lag or reconstruction

delay, and m is the embedding dimension of the reconstructed space. The reconstructed
trajectory, X, of N m-dimensional vectors Xm

t can be expressed as a N x m matrix with
N = T − (m− 1)τ.

Under the null hypothesis, the BDS statistic is derived using the correlation integral,
which measures how many times the temporal patterns in the data are recurrent.

V(T, m, ε) =
√

N
C(T, m, ε)− C(T, 1, ε)m

σ̂(T, m, ε)
(3)

being C(T, m, ε) the correlation integral which can be stated as:

C(T, m, ε) =
2

N(N − 1) ∑
t<s

H{ε− ||Xm
t − Xm

s || } (4)

where ‖.‖, m and H represent a norm operator, the embedding dimension and the Heaviside
function, respectively.

The correlation integral asymptotically follows a standard normal distribution. σ̂(T, m, ε)
is the standard sample deviation of C(T, m, ε)− C(T, 1, ε)m. Assuming a time series as iid,
BDS tests for the null hypothesis that C(T, m, ε) = C(T, 1, ε)m, which is tantamount to the
null hypothesis of iid versus an undefined alternative [1].

(iv) Volatility modelling

In the case of identifying the existence of nonlinear dependence in the residual series
from ARMA models, it could be due to the existence of a volatility cluster. To corroborate
this hypothesis, conditional variance is modeled by fitting ARCH-type models (GARCH
and EGARCH). The selection of the best model is carried out using the same method that
was employed for the ARMA model. Once both types of model have been estimated, their
standardized residuals are obtained from their conditional standard deviations (hereafter
GARCH and EGARCH series). The techniques for detecting the existence of nonlinearity
mentioned above are applied to these new GARCH and EGARCH series to contrast whether
all the nonlinear dependence has been removed by the process performed.

2.2. Tools to Detect Chaotic Regime

Below, we describe the main characteristics of the tools used for detecting a chaotic regime.

2.2.1. Correlation Dimension

Fractal dimension represents a measure for the level of complexity in the chaotic
attractor [1]. This measure has the property of remaining unaltered by the state space
reconstruction process. A characteristic of chaotic systems lies in the fact that the fractal
dimension is not an integer value [1]. Therefore, estimation of this parameter can be used
as a test to detect the presence of chaos. Among the various algorithms for estimating
the fractal dimension, the Grassberger and Procaccia algorithm [51] for obtaining the
correlation dimension has practical advantages due to its ease of implementation. In fact,
with this correlation dimension method, we can distinguish stochastic series from chaotic
series [29].

Analogously to the BDS test, this method is also based on the reconstruction of the state
space from the observed series and on the correlation integral. Briefly, let {xt}T

t=1 be a time
series and the sequence of N = T−m + 1 m-dimensional vectors or m-histories derived
from it, Xm

t = (xt, · · · , xt+m−1) that yields the reconstructed series. The Grassberger
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and Procaccia algorithm [51] is employed to compute the dimension of the reconstructed
attractor. The method relies on the correlation integral which is defined as follows:

C(ε) =
2

N(N − 1) ∑
t<s

H{ε− ||Xm
t − Xm

s || } (5)

where m, ‖.‖ and H represent, respectively, the embedding dimension, norm operator and
the Heaviside function.

To determine the correlation dimension, it is necessary to determine how C (ε) varies
as ε varies. As the value ε rises, the value of C (ε) increases due to the greater number of
nearby points to include. Grassberger and Procaccia [51] proved that in the case where ε is
small enough, C (ε) may be well-approximated by C (ε) ∼ εv. In other words, when ε→0,
C (ε) grows at rate v. The estimate of v when m→ ∞ , provides the correlation dimension
(CD). In practice, the CD of a dynamic system is determined by estimating the slope of the
regression of ln C (ε) versus log ε and an intercept for small values of ε, and depends on
the chosen embedding dimension.

In the case where the data are purely stochastic, the value of the correlation dimension
will be equal to m for all values of m. If the series is deterministic in nature, the estimated
slope will plateau at a point, not rising as m rises. This level of “saturation” of the slope is
precisely equal to the estimated correlation dimension for the underlying process.

2.2.2. Lyapunov Exponent

Sensitivity to initial conditions is widely recognized as a core feature of chaos. A
checkable quantitative criterion for the sensitivity to initial conditions can be given by
the so-called Lyapunov exponents [57]. They calculate the rate of divergence of closely
spaced trajectories whose initial conditions only diverge in an infinitesimal amount. LE
is one of the most widely used methods to investigate the existence of chaos in time
series [23]. The largest Lyapunov exponent can be employed to gauge the separating
rate of nearby trajectories and estimate the level of chaotic structure that is present in a
nonlinear dynamic system [58]. Under certain conditions, the sign of the coefficient or
exponent is a signal of the presence of chaos in the studied series [57]. Specifically, our
attention is restricted to systems with bounded metrics, or closed, bounded invariant
subsets of unbounded systems. For systems with bounded fluctuations, if the Lyapunov
exponent is positive, the orbit exhibits sensitive dependence on initial conditions, and this
is a necessary condition of chaotic behaviour [59]. In summary, as Nychka et al. [60] and
Bask et al. [61] pointed out, a bounded system with a positive Lyapunov exponent is an
operational definition of chaotic behavior in nonlinear dynamic systems that appear to
have random and unpredictable behavior.

There are many algorithms in the literature for the estimation of this coefficient. The
algorithm proposed by BenSaïda and Litimi [21] is followed in this research. Specifically, it
has been empirically proven that this methodology to determine the Lyapunov exponent
(λ) is the one that behaves best for noisy series [62]. Indeed, literature shows that there are
two main types of technique, which are founded on the reconstruction of the spatial state
by means of delay coordinate embedding approaches, to estimate λ from experimental
data. Direct methods are based on the computation of the divergence growth rate between
two trajectories with an infinitesimal difference in their initial conditions [63]. One of the
relevant limitations of this method is that it is sensitive to both sample size and level of noise
in the data [64]. By contrast, the Jacobian-based approach can provide robust estimates
of Lyapunov exponents despite the existence of noise [65,66]. The Jacobian method relies
on non-parametric regression to estimating the Jacobians and λ. However, as for a scalar
time series, the map that triggers the process is generally not known; the Jacobian matrix
cannot be obtained and, therefore, the Lyapunov exponent cannot be determined. To do
so, it is necessary to approach the unknown chaotic map by means of a given function.
McCaffrey et al. [65] compared the results of various approaches: radial basis functions,
neural networks, thin-plate splines, and projection search. On the basis of their simulations,
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neural network behaved as the best regression method for the case of chaotic systems with
noise. In this line, Bailey et al. [66] suggested a regression method that involves using
neural networks. Simulation results for a Henon system containing noise showed that
neural network regression method provides accurate estimates for the Lyapunov exponent.

Following [21], the methodology comprises the following steps: consider a time series
{xt}T

t=1. A noisy chaotic system can be expressed as follows:

Xt = f (xt−τ , xt−2τ , · · · , xt−mτ) + εt (6)

where t is the time script and m, τ, εt and f represent the embedding dimension, the time
delay, noise added to the series and an unknown chaotic map, respectively. The Lyapunov
exponent (LE) is set as:

λ̂ =
1

2M
ln(v1) (7)

where M ≤ T is the “block-length” or number of equally spaced evaluation points that
are used to calculate the Lyapunov exponent and v1 is the largest eigenvalue of the matrix
(TMU0)

′(TMU0), being TM = ∏M−1
t=1 JM−t, Jt the Jacobian matrix of the chaotic map and

U0 = (1, 0, · · · , 0)′. Since we usually do not know the chaotic map F, the Jacobian matrix
could not be estimated. Therefore, it is necessary to approximate the unknown chaotic map
by the appropriate function.

As in [18], a neural network function, with a q-dimensional hidden layer and a
hyperbolic tangent function as the activation function, is adopted. It is estimated by the
nonlinear least squares method, varying m from 1 to 8, in order to subsequently compute
the LE spectrum. Thus, the chaotic process is estimated by using the equation below:

xt ≈ α0 +
q

∑
j=1

αj tan h

(
βo,j +

m

∑
i=1

βi,jxt−iτ

)
+ εt (8)

The triplet (τ, m, q) defines the complexity associated with the process and is selected
as the one that determines the largest value for λ. Then, from the asymptotic distribution
of λ, the test for the presence of chaos is constructed [63].

2.2.3. Matilla-Garcia and Ruiz Marin (MGRM) Test

The MGRM Test [38] is a test for the deterministic process as opposed to the stochastic
one which is rooted in symbolic dynamics and entropy. In particular, the concept of
permutation entropy, which has its origin in symbolic dynamics, is the foundation of the
MGRM test. The basic idea of symbolic dynamics consists of partitioning the phase space
into a finite set of regions and to assign an alphabetic symbol to each region. A relevant
property of symbolic dynamics is that essential features of the underlying dynamics,
namely deterministic or stochastic nature or complexity, are preserved. Likewise, entropy
provides an insight into the unpredictability of the system under study, which is a key
feature of complex systems.

In the first instance the notation is introduced: let {xt}t∈T be a stationary time series,
{xt}t∈I an observation with I = {1, · · · , T} and m the embedding dimension with m ≥ 2.
We will define the ordinal patterns for “m”. As we already know, the scalar time series can be
embedded in an m-dimensional space as follows: xm(t) =

(
xt, xt+1, · · · , xt+(m−1)

)
for t ∈ T.

For a given time value t, the ordinal pattern corresponding to embedding dimension m is
set to be the unique permutation πm(t) ≡ (r0 r1 · · · · · · rm−1) of the set {0, 1, . . ., m− 1}
that satisfies:

xt+r0 ≤ xt+r1 ≤ · · · ≤ xt+rm−1 (9)

rs−1 < rs if x = xt+rs (10)

By means of Equation (9) it is guaranteed that the permutation defined by Equation
(10) is unique. Therefore, the vector or m-history Xm(t) is transformed into a unique
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symbol πm(t). In fact, πm(t) shows us how the ordering of the times: t + 0 < t + 1 <
· · · < t + (m− 1) becomes the order of the correspondent values being analyzed. The core
point is to split the state space in which the dynamical process unfolds into a finite number
of sets exploiting the time dependent information held in the m-history Xm(t) ∈ Rm.
According to the above definition, the partitions depend on how the ordinal structure
corresponds to the m-history is. In particular, πm(t) = πm(s), s 6= t, if and only if for all
k, I ε {0, 1, · · · , m− 1} with k 6= I it holds that xt+1 ≤ xt+k ↔ xs+1 ≤ xs+k.

In general, given a time series {xt}t∈T , all m! permutations of order m are taken as
potential order types of m distinct numbers. Then, for an embedding dimension parameter
m, the relative frequency or unconditional success probability p(π) of each symbol or
permutation π can be set as:

p(π) =
card{t | 0 ≤ t ≤ T − (m− 1), Ym(t) has type π }

T −m + 1
(11)

Given an embedding dimension m ≥ 2, Shannon entropy that stands for the m!
distinct symbols, is defined as follows:

h(m) = −
m!

∑
i=1

p(πi) log p(πi) (12)

The test is constructed as follows: Let m be embedding dimension and T be the number of ob-
servations and fix w, k ∈ N such that w = m!

k . Next, the subsets Wj that must verify W1 ⊆W2 ⊆
· · · ⊆Wn in the following way Wj = Wj−1 ∪

{
w symbols chosen at random in Sm \Wj−1

}
for

j = 2, . . . , k are constructed.
Subsequently the next permutation entropy’s function is calculated as:

hWj(m) = − ∑
πj∈wj

p(π) log p(π) (13)

When analyzing the permutation entropy’s function values, it is possible to distinguish
and identify deterministic systems. In this process no additional information is obtained by
an increase in the number of symbols considered. In contrast, in non-deterministic process,
this information or complexity is increased.

This latter property is tested in the following way: Let dhWj(m) be the hWj(m) slope:

dhWj(m) =
hWj+1(m)− hWj(m)

log
(

j+1
j

) (14)

When considering random process, the numerical slope of permutation entropy will
rise with log(jw), while this will not be the case for chaotic or regular processes.

The property described above that identifies deterministic systems hWj(m) is tested
by carrying out the following regression:

dhWj(m) = α0 + α1 j + ε j f or j = 1, 2, · · · , k− 1 (15)

where ε j is white noise. As a result, the estimated parameter α̂1 can be employed to assess
how dhWj(m) scales with j. In mathematic notation, the test is the following one:

H0 ≡ α1 = 0
H1 ≡ α1 > 0

(16)

Indeed, regression (15) can be considered as a simple symbol-trend model. The same
as for the basic time-trend model, the ordinary least squares estimate α̂1 is such that the
standard t-test of H0: α̂1 = 0 is asymptotically valid. If the coefficient obtained is null, then
the series is deterministic; otherwise (greater than 0), it is stochastic [38].
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2.2.4. Recurrence Plots

A recurrence plot (RP) reveals the existence of recurrent and intermittent patterns
in time series. First proposed by Ekmann et al. [52,67], it has been widely applied in the
characterization of dynamic systems. This topological method shows the hidden structures
of time series from a qualitative perspective. The plots are constructed by assuming
mutual distances that belong to the same path in the reconstructed state space [42]. The
construction is done as follows.

Let m be the embedding dimension and Xm
t the vector m-dimensional in the recon-

structed state space at time t ranging from 1 to k. The recurrence matrix is generated
by comparing each embedded vector Xm

i with the other Xm
j . A point is drawn if this

comparison is less than a value ε for a specific distance. That is, if the condition is met:
||Xm

i − Xm
j || < ε. Recurrence of a state between t = i and t = j occurs when Xm

j is close
enough to Xm

i . The RP can, therefore, show which vectors are close together and which are
far apart.

The diagonal structures of the RP define the extent to which one part of the path is
relatively near to another at a distinct time. For the case of a deterministic chaos system,
short lines parallel to the main diagonal are visible. However, in stochastic systems, short
line segments are missing, and uniformly distributed points are displayed.

This technique is independent of some constraints such as sample size, noise, and
stationarity [1]. It also provides additional information about the structure of the attractor,
since the plot preserves the temporal order of the series, allowing the place and periodicity
of the periodic orbits to be known.

3. Empirical Results

Applying the methodological framework described above, the main results obtained
are shown below.

3.1. Data

The data set corresponds to daily observations of the BDI comprising the period
between 1 January 1990 until 1 July 2013 and was obtained from the Bloomberg (http:
//www.bloomberg.com/ (accessed on 26 May 2014) and Baltic Exchange Web sites (http:
//www.balticexchange.com/ (accessed on 26 May 2014)). In addition, as a complement to
the above and after checking that the initial series had periods of different volatility, it was
decided to divide the original series into three new series, taking into account the following
sub-periods: (i) BDI1 series (from 1 January 1990 until 31 December 2002); (ii) BDI2 series
(from 1 January 2003 until 31 December 2007) and (iii) BDI3 series (from 1 January 2008
until 1 July 2013).

Figure 1 shows that the BDI remained relatively stable, following a course lacking in
significant shocks until 2003. Then, there was a dramatic increase in volatility, adopting a
behavior that mimics financial bubbles. After the ocean freight boom (2005–2006 period),
on 20 May 2008, the BDI attained its maximum value (11,793) since its introduction in 1985.
However, it immediately decreased 94% during the period of May to December 2008, in the
midst of the complete turmoil of the financial crisis. It was not until 5 December 2008, that
it registered a value of 663 points, corresponding to its minimum value since 1985. This
decrease is partially related to the reduction in demand for global goods that translated
into a fall in the demand for transportation and coincides with an increase in the supply
due to the deliveries of new ships ordered during the boom period of the global economy.

http://www.bloomberg.com/
http://www.bloomberg.com/
http://www.balticexchange.com/
http://www.balticexchange.com/
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Figure 1. Plot of four Baltic Dry Index (BDI) series. Time points (year) are on x-axis and observations are on y-axis.

Table 2 presents the main descriptive statistics of the four series studied. All series
show a positive skewness coefficient. Moreover, it can be concluded that the data do not
come from a normal distribution, as reflected by the Jarque–Bera test (p-value < 0.05).

3.2. Returns

To evaluate the stationarity of the BDI series, unit root tests are performed [68,69].
Specifically, we examine the stationary property by applying the Augmented Dickey–Fuller
test [43], the Phillips–Perron test [44] and the Kwiatkowski–Phillips–Schmidt–Shin con-
trast [45]. After testing that the four series are not stationary (see Table 3), the returns from
each series were obtained by considering the logarithms of the ratio of two consecutives
prices. Figure 2 shows the time development of the returns. The peak in 1999 matches
with the methodological change implemented in the index definition. Return series shows
a negative skewness coefficient, that is, the distribution is left-skewed, implying that up-
ward jumps of larger size are less frequent than downward jumps of smaller size, as do
financial time series [70]. It is worth noting the high value of the kurtosis coefficient, which
implies that large jumps are more likely to happen more frequently than in the normal
distribution. This result is not altogether surprising because the BDI series presents similar
characteristics to financial series, as previously stated [71].

In the evolution of the return series corresponding to each of the three sub-periods,
two peaks corresponding to the 1997 Asian crisis (BDI1 returns series) and the 2008 world
recession (BDI3 returns series) are displayed. The three series present a positive skewness
coefficient and an excess of kurtosis, with the latter reaching a greater magnitude in the
third series (BDI3 returns series). According to the results from the Augmented Dickey–
Fuller, Philips–Perron and KPSS tests, all the three returns series are stationary (Table 3).

3.3. Linear Dependence

As some methodology (for example the BDS test) is not robust for the presence of
linear relationships, the linear dependence was removed using ARMA models. Following
the criterion described by [54], the best ARMA model was selected for each series (Table 4).
The selected fitted models for each of the series (ARMA(9,0); ARMA(5,0); ARMA(3,0) and
ARMA(7,0)), for the series BDI, BDI1, BDI2 and BDI3 respectively, are shown in Table 4
that displays all the models fitted in this research. Details of each model are presented in
Appendix A (Tables A1, A4, A7 and A10). According to the results from the Augmented
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Dickey–Fuller, Philips–Perron and KPSS tests applied on the residuals of the selected
model, and shown in Table 3, all the residuals series (ARMA) are stationary.

Table 2. Descriptive statistics.

BDI Series

Original Series Returns ARMA(9,0) GARCH(1,2) EGARCH(2,3)

Mean 2283.77 −7.2 × 10−5 4.26 × 10−11 0.0150 0.0078
Standard Deviation 1909 0.0148 0.0084 0.9723 1.0030

Median 1531 −9.3 × 10−5 −0.0001 −0.0191 −0.0282
Minimum 647 −0.1200 −0.0783 −5.8461 −5.4268
Maximum 11,793 0.1400 0.0978 12.6105 7.1285

Skewness Coefficient 2.41 −0.0600 0.3766 1.1198 0.4531
Kurtosis Coefficient 9.21 12.8000 18.5728 15.1364 6.8089

Jarque–Bera Test 14,634.4 * 22,759.8 * 57,559.1 * 36,065.6 * 3629.8 *
N 5692 5691 5683 5683 5683

BDI1 Series

Original Series Returns ARMA(5,0) GARCH(1,1) EGARCH(3,1)

Mean 1360.46 2.7 × 10−5 −3 × 10−11 −0.0051 0.0147
Standard Deviation 314.98 0.0072 0.0042 0.9634 1.0022

Median 1353 −0.0006 −0.0001 −0.0399 −0.0152
Minimum 776.00 −0.0390 0.0385 −4.9043 −4.7600
Maximum 2352 0.0430 −0.0280 8.5857 7.1635

Skewness Coefficient 0.4906 0.5870 0.7382 0.6285 0.4990
Kurtosis Coefficient 3.1099 5.9019 11.6736 8.1090 6.8966

Jarque–Bera Test 124.23 * 1248.6 * 9847.4 * 3521.2 * 2058.2 *
N 3059 3058 3053 3053 3053

BDI2 Series

Original Series Returns ARMA(3,0) GARCH(1,1) EGARCH(1,1)

Mean 4157.69 0.0013 3.2 × 10−12 −0.0490 −0.0235
Standard Deviation 2028.52 0.0134 0.0066 0.9611 0.9997

Median 4038.50 0.0017 −0.0002 −0.0885 −0.0668
Minimum 1530 −0.1200 −0.0444 −5.3013 −4.9095
Maximum 11,793 −0.1400 0.0855 4.2758 4.1532

Skewness Coefficient 1.4447 0.2819 1.5200 0.0166 0.0341
Kurtosis Coefficient 5.2447 4.3000 29.8387 4.9490 4.6545

Jarque–Bera Test 690.58 * 100.91 * 37,632 196.0 141.44
N 1238 1238 1238 1238 1238

BDI3 Series

Original Series Returns ARMA(7,0) GARCH(1,1) EGARCH(1,1)

Mean 2645.20 −0.0015 −8.90 × 10−11 0.0036 0.0066
Standard Deviation 2427.37 0.0251 0.0142 0.9649 1.0004

Median 1817.50 −0.0019 −0.0006 −0.0603 −0.0600
Minimum 647 −0.1200 −0.0767 −4.3534 −4.5133
Maximum 11,793 0.1370 0.0986 5.8011 6.2652

Skewness Coefficient 1.8980 0.0120 0.2360 0.6857 0.6806
Kurtosis Coefficient 5.9415 6.0840 7.7169 7.1488 7.2499

Jarque–Bera Test 1341.42 * 553.2 * 1307.1 1110.58 1158.3
N 1396 1396 1396 1396 1396

Note: Statistics for the considered time series: original series, return series, residuals of autoregressive moving average (ARMA) process, as
well as standardized residuals from generalized autoregressive conditional heteroscedastic (GARCH) model and exponential GARCH
(EGARCH) process. Skewness corresponds to Fisher’s skewness coefficient. *: Asterisk denotes significance at the 5% level. N is the
number of observations. Source: Own work.
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Table 3. Stationarity analysis.

BDI Original Series Return Series

1. Augmented Dickey–Fuller Test

Constant −3.3632 (0.0124) −18.5200 (0.0000)
Constant and Linear Trend −3.4880 (0.0407) −18.5215 (0.0000)

2. Phillips–Perron Test

Constant −2.7104 (0.0723) −23.4660 (0.0000)
Constant and Linear Trend −2.7660 (0.2101) −23.4661 (0.0000)

3. Kwiatkowski–Phillips–Schmidt–Shin Test

Constant 2.0704 0.0510
Constant and Linear Trend 0.5854 0.0385

BDI1 Original Series Return Series

1. Augmented Dickey–Fuller Test

Constant −2.7328 (0.0686) −16.0082 (0.0000)
Constant and Linear Trend −2.6569 (0.2549) −16.0196 (0.0000)

2. Phillips–Perron Test

Constant −2.2710 (0.1816) −18.3371 (0.0000)
Constant and Linear Trend −2.1487 (0.5176) −18.3492 (0.0000)

3. Kwiatkowski–Phillips–Schmidt–Shin Test

Constant 0.8911 0.0892
Constant and Linear Trend 0.2590 0.0593

BDI2 Original Series Return Series

1. Augmented Dickey–Fuller Test

Constant −0.0856 (0.9491) −13.1635 (0.0000)
Constant and Linear Trend −0.7875 (0.9653) −13.1591 (0.0000)

2. Phillips–Perron Test

Constant −0.2200 (0.9334) −8.5187 (0.0000)
Constant and Linear Trend −0.9141 (0.9528) −8.5131 (0.0000)

3. Kwiatkowski–Phillips–Schmidt–Shin Test

Constant 1.6140 0.1329
Constant and Linear Trend 0.5925 0.1274

BDI3 Original Series Return series

1. Augmented Dickey–Fuller Test

Constant −2.5787 (0.0976) −14.5984 (0.0000)
Constant and Linear Trend −2.3326 (0.4154) −14.6130 (0.0000)

2. Phillips–Perron Test

Constant −2.6358 (0.0860) −12.2124 (0.0000)
Constant and Linear Trend −2.6044 (0.2784) −12.2111 (0.0000)

3. Kwiatkowski–Phillips–Schmidt–Shin Test

Constant 2.3457 0.0690
Constant and Linear Trend 0.3092 0.0385

Note: Augmented Dickey–Fuller p-values correspond to [72] one-sided p-values. For the Phillips–Perron test, lags were based on bandwidth
Newey–West using the Bartlett kernel. Critical values for the Kwiatkowski, Phillips, Schmidt and Shin test are 0.463 and 0.146, respectively,
for the constant and linear plus linear trend model. Significant values at the 95% confidence level are in bold.
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Figure 2. Evolution of BDI returns.

Table 4. Classes of models applied to each series.

Series
Linear Model Nonlinear Model

[ARMA] [GARCH] [EGARCH]

BDI ARMA(9,0) GARCH(1,2) EGARCH(2,3)
BDI1 ARMA(5,0) GARCH(1,1) EGARCH(3,1)
BDI2 ARMA(3,0) GARCH(1,1) EGARCH(1,1)
BDI3 ARMA(7,0) GARCH(1,1) EGARCH(1,1)

3.4. Nonlinear Dependence

Next, Keenan, Tsay, White and BDS methods were used to study nonlinearity. The
principal advantage of using a broad set of instruments is to obtain the most information
possible about the nature of the series, since to date none of the methods has proved
successful in detecting all types of dependence. Nevertheless, some tests, such as the BDS
or White are more efficient in detecting dependency [3]. Results by applying Keenan, Tsay
and White methods are exhibited in Appendix B (Tables A13 and A14).

The BDS test was applied once the linear dependence was eliminated, as previously
suggested by [73]. In this way the BDS test served as an indirect method of analyzing
nonlinearity: if it rejected the null hypothesis, then the series was proven to be nonlinear.
This procedure is theoretically feasible, since the calculations on the residuals of an au-
toregressive model do not lose the relevant information derived from the original series
if the latter comes from a nonlinear chaotic system [73]. The BDS test is applied taking
into account different embedding dimensions (range: 2–9). The results are presented in
Appendix B (Tables A15 and A26).

Table 5 presents a summary of results for the nonlinear analysis. Results from all
procedures suggest the existence of nonlinearity in all the four returns series. Likewise,
if the results of the tests with the highest power are considered (White and BDS), all
ARMA series seem to present some type of dependence. In particular, the BDS test shows
significant results in all ARMA series for the different embedding dimensions and ε values
being considered.
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Table 5. Summary of results for the nonlinear analysis.

BDI Series

Test Ho Returns ARMA(9,0) GARCH(1,2) EGARCH(2,3)

Keenan La R NR NR NR
Tsay La R NR NR NR

White La R R R R
BDS Lb - R Mixture R

BDI1 Series

Test Ho Returns ARMA(5,0) GARCH(1,1) EGARCH(3,1)

Keenan La R NR NR NR
Tsay La R R NR NR

White La R R R NR
BDS Lb - R NR NR

BDI2 Series

Test Ho Returns ARMA(3,0) GARCH(1,1) EGARCH(1,1)

Keenan La R NR NR NR
Tsay La R NR NR NR

White La R R NR R
BDS Lb - R NR NR

BDI3 Series

Test Ho Returns ARMA(7,0) GARCH(1,1) EGARCH(1,1)

Keenan La R NR NR NR
Tsay La R NR NR NR

White La R R R R
BDS Lb - R R R

Ho: Null hypothesis. La: Linear in mean. Lb: This test can be applied as a linear test once the linear dependence
has been eliminated. R represents that null hypothesis is rejected; NR represents that null hypothesis is not
rejected. Mixture represents that the test reported no clear results.

3.5. Volatility Clustering

The next step consists of modelling the conditional variance by fitting ARCH family
models (GARCH and EGARCH). In first instance, the best GARCH (p,q) model was se-
lected so as to adhere to the previously described criterion [54]. After fitting each model,
standardized residuals were obtained (from now on GARCH and EGARCH series). Unlike
GARCH models, EGARCH models can be used to estimate conditional variance, taking
into consideration the sign of the past period’s innovation. The asymmetric response in the
conditional variance is successfully captured by this class of model and, therefore, they are
well suited candidates for modeling financial series. The chosen models were EGARCH
(2,3) and EGARCH (3,1) for BDI and BDI1 series, respectively, and EGARCH (1,1) for
both BDI2 and BDI3 series (Table 4). Details of each model are presented in Appendix A
(Tables A2–A9, A11 and A12). The standardized residuals of all the series are less leptokur-
tic than those obtained from ARMA models (Table 2).

Since nonlinearity is a necessary, but not sufficient, condition for chaotic behavior,
its existence was first analyzed in residuals of the volatility models (Tables 5 and A13,
Tables A14–A26 in Appendix B). In general, linear hypothesis is not rejected, but non-
linearity was found in some cases. Indeed, both the White and BDS tests show some
remaining dependence in the BDI series, which is compatible with the existence of chaos in
the EGARCH model residuals. Almost all tests do not reject linearity for the BDI1 series in
both the GARCH and EGARCH models. Likewise, almost all tests do not reject linearity
for the BDI2 series in both the GARCH and EGARCH models. Finally, for the BDI3 series,
both the White and BDS tests show some remaining dependence, which is compatible with
the existence of chaos in both the GARCH and EGARCH model residuals.
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3.6. Chaotic Behavior Analysis

The following methods were used to test the presence of chaotic behavior. Results are
presented in Appendix C.

3.6.1. Correlation Dimension

The correlation dimension (CD) [51] quantifies the degree of complexity of a system
and distinguishes a deterministic system from a stochastic one. The CD has been calculated
for both the residuals from linear filters and the residuals from nonlinear models, consid-
ering different dimensions of embedding (m = 1, 2, . . . , 8). Likewise, for its analysis, the
optimal value of the delay time has been considered, according to the criterion of minimum
mutual information [74].

The results for the BDI series are shown in Appendix C (Table A27) and suggest that
the correlation dimension generally grows as the embedding dimension rises. However,
values of the CD, both for the return series and for the ARMA(9,0) and GARCH(1,1) series,
do not converge to a fixed value, suggesting the absence of saturation, even though the
increase of the CD is less than one. In the case of the EGARCH(2,3) series, this increase is
greater than one, suggesting a stochastic behavior of the series. In the three subseries (BDI1,
BDI2 and BDI3) analyzed, a similar result is observed: CD increases as the embedding
dimension increases, being this increase greater for the case of nonlinear models. In short,
the results suggest that in all cases there is sufficient evidence against the existence of a
strange attractor.

3.6.2. Lyapunov Exponent

Lyapunov exponents (LE) are used to determine the sensitivity to initial conditions,
a feature of chaotic processes. They calculate the rate of divergence of closely spaced
trajectories whose initial conditions only diverge in an infinitesimal amount. Under certain
conditions, a system is defined as chaotic when the associated LE is positive.

We calculated the maximum LE as described by [21] because this technique is able
to deal with noisy data. Although we considered different values for the parameters of
the neural network, negative significant Lyapunov exponents were obtained in all cases
(Table A28 in Appendix C). Hence, we do not find evidence for the presence of chaotic
structure. For all the series studied, the null hypothesis of existence of chaotic dynamic is
strongly rejected at a significance level of 5% (p-values < 0.000).

3.6.3. MGRM Test

Subsequently, the MGRM test [38] has been applied to the series obtained in the
nonlinear models. This test does not need to reconstruct the attractor of the system as
a previous step and the analysis is done directly, using the data. The test is constructed
as follows. First, the Shannon entropy values are calculated. Then, the information or
complexity is estimated by a linear regression that used the entropies as the explanatory
variable. The coefficient from the entropies is then analyzed, as in deterministic series the
complexity derived from the entropy of permutation does not increase when the number of
symbols increases, once the saturation point is reached. To conduct the test, the parameters
were fixed such that m = 4, k = 2, and w = 12. The results were positive in all the cases
(Table A29). Thus, the hypothesis of determinism is rejected.

3.6.4. Recurrence Plots

Visual recurrence analysis is based on Eckmann’s [52] definition of a recurrence
plot. The degree of complexity and the existence of chaos is analyzed by generating
the recurrence plots. This kind of analysis can capture the recurrence property of states,
one of the essential properties observed in chaotic systems. The points above the main
diagonal, representing the distance between the same vector and each embedded vector in
the phase space and, therefore, segments parallel to the diagonal, would indicate a chaotic
behavior [54].
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Figures 3–6 show the recurrence plots for the four series considered (BDI, BDI1,
BDI2 and BDI3). For their elaboration, the optimal values of the two parameters, m—the
embedding dimension and τ—the considered delay, as previously described, have been
considered. They were estimated using the mutual information criterion and the false
neighbours method, respectively [55,74].

Figure 3. (A) Recurrence plot for the returns and ARMA series from the BDI series; (B) Recurrence plot for the GARCH and
EGARCH series from the BDI series.

The recurrence plots (RPs) for the different series considered are shown in Figures 3–6,
for the BDI, BDI1, BDI2 and BDI3 series, respectively. For its elaboration, the Euclidean
distance has been chosen and the radius cut-off point (ε) is set as 10% of the largest distance
across all points in the reconstructed state space. This value is adopted in several works,
for example in [54].

The RPs corresponding to BDI series (Figure 3) do not exhibit any lines parallel to
the main diagonal, which could suggest chaotic behavior [54]. Moreover, more intense
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horizontal and vertical lines are found in the uppermost right corner, indicating dynamic
alteration periods, most likely due to the last worldwide economic crisis. In the nonlinear
models a randomly distributed pattern of points that is characteristic of stochastic series
is observed.

All RPs corresponding to BDI1 series (Figure 4) show a string of vertical and hori-
zontal lines, located slightly to the right of the middle of the sample period, coinciding
with the 1997 Asian crisis. Neither is there any indication of a chaotic component, since the
previously described characteristic is not observed. The general pattern of all RPs corre-
sponding to BDI2 series (Figure 5) is similar to the previous ones, with no lines parallel
to the main diagonal. However, in this case, a greater number of horizontal and vertical
lines are observed than in the previous cases. All RPs of BDI3 series (Figure 6) display
the existence of time periods characterized by a prolonged dynamic alteration, especially
at the beginning of the sample space and which is probably due to the last worldwide
financial crisis.

Figure 4. (A) Recurrence plot for the returns and ARMA series from the BDI1 series; (B) Recurrence plot for the GARCH
and EGARCH series from the BDI1 series.
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Figure 5. (A) Recurrence plot for the returns and ARMA series from the BDI2 series; (B) Recurrence plot for the GARCH
and EGARCH series from the BDI2 series.
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Figure 6. (A) Recurrence plot for the returns and ARMA series from the BDI3 series; (B) Recurrence plot for the GARCH
and EGARCH series from the BDI3 series.

4. Conclusions

This paper analyzes the underlying dynamics of dry bulk shipping rates using daily
data from the Baltic Dry Index. The entire sample has been divided into three periods,
chosen according to the volatility behavior of the series, to make the conclusions of this
empirical work more robust. Specifically, we tested for the existence of a chaotic regime
in the shipping market by applying metric, topological and permutation entropy-based
approaches. From a comprehensive view a great number of methods have been used (four
for nonlinear analysis and four for chaotic behavior analysis) including the most suitable
for noisy time series. The adopted methodology is based on each method checking one
of the properties that characterize chaotic behavior. Our results support the existence of
nonlinearity, which is not consistent with chaos, as measured by the four indications of
chaotic behavior, throughout all investigated periods. Specifically, the underlying system is
of high dimensionality does not present sensitive dependence on initial conditions, as well
as not being characterized by recurrent states and by deterministic nonlinear structures.
In addition, we show that GARCH/EGARCH models explain a significant part of the
nonlinear structure that is found in the dry bulk shipping freight market. Our findings
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are in accordance with the conclusions of other researchers who use novel and suitable
procedures for noisy series to detect chaos in other financial time series (e.g., [21,54]). On
the other hand, our conclusion contradicts the findings of previous studies that found
evidence of low dimensional chaos in shipping market but using a number of techniques
that are not suitable for detecting chaos (e.g., the Hurst coefficient) or that do not account
for noise (e.g., [19]). Thus, their findings might be biased.

Regarding the benefits of our research for both theory and practice, results significantly
contribute to illustrate the behavior and underlying dynamics of the maritime transport
price. In general, our findings should be of great relevance to all stakeholders concerned
with the maritime sector, such as institutional agencies, investors, charterers, shipowners,
stevedores, and brokers. Important managerial insights can be drawn from analytical
results. In particular, knowledge and forecasting of freight rates dynamics have a relevant
role to improve the formulation of financial strategies, such as the pricing of derivatives and
hedging instruments. Likewise, due to the volatile nature of freight rates to improve our
volatility, forecasting accuracy is a major feature in successful risk management. Finally,
since the BDI not only informs about the evolution of dry cargo shipping market but
can also mirror the trends in international trade and consequently, the state of the world
economy [11], it could be considered an accurate “barometer” of the economic activity and
an efficient indicator for forecasting industrial production and economic growth. Hence,
our findings are useful for the design of optimal macroeconomic policies.

Further research on the nature and forecasting of shipping rates is still an outstanding
issue, as a limited number of studies are available. Future research is needed to examine
whether other types of nonlinear model, both parametric and non-parametric, might be
able to account for the remaining nonlinear dependence in the series. Also, studying the
existence of nonlinearity and chaos in the volatility series would help to complete this
work. Finally, a new investigation could consist of studying the effects of the COVID−19
outbreak on the dynamics of the analyzed series, as well as specifically investigating how
this phenomenon could have modified the results of this research.
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Appendix A. Details of Models Applied to the Series

Appendix A.1. BDI Series

Table A1. ARMA(9,0) Model for the BDI series.

Coefficient Standard
Deviation T Statistic p-Value

C −8.71 × 10−5 0.0006 −0.1365 0.8915
AR(1) 0.9695 0.0133 73.0417 0.0000
AR(2) −0.1791 0.0185 −9.6853 0.0000
AR(3) −0.0546 0.0186 −2.9323 0.0034
AR(4) 0.0689 0.0187 3.6954 0.0002
AR(5) −0.0459 0.0187 −2.4601 0.0139
AR(6) −0.0012 0.0187 −0.0647 0.9484
AR(7) 0.0330 0.0186 1.7718 0.0765
AR(8) 0.0114 0.0185 0.6155 0.5382
AR(9) 0.0241 0.0133 1.8126 0.0699

Table A2. GARCH(1,2) model for the BDI series.

Coefficient Standard
Deviation T Statistic p-Value

C 6.97 × 10−6 3.62 × 10−7 19.2551 0.0000
RESID(−1)2 0.6010 0.0258 23.2663 0.0000
GARCH(−1) 0.1638 0.0257 6.3814 0.0000
GARCH(−2) 0.2473 0.0181 13.6303 0.0000

The linear model has been previously presented.

Table A3. EGARCH (2,3) model for the BDI series.

Coefficient Standard
Deviation T Statistic p-Value

C(1) −0.0163 0.0021 −7.8149 0.0000
C(2) 0.4959 0.0160 30.9642 0.0000
C(3) −0.4772 0.0156 −30.5252 0.0000
C(4) −0.0063 0.0010 −6.2697 0.0000
C(5) 1.4776 0.0087 170.1538 0.0000
C(6) −0.2187 0.0003 −675.2090 0.0000
C(7) −0.2592 0.0084 −30.8526 0.0000

The linear model has been previously presented.

Appendix A.2. BDI1 Series

Table A4. ARMA(5,0) model for the BDI1 series.

Coefficient Standard
Deviation T Statistic p-Value

C 9.98 × 10−6 0.0004 0.0248 0.9802
AR(1) 0.7416 0.0181 40.9841 0.0000
AR(2) 0.0749 0.0225 3.3237 0.0009
AR(3) 0.0232 0.0226 1.0277 0.3042
AR(4) 0.0123 0.0225 0.5750 0.5654
AR(5) −0.0439 0.0181 −2.4287 0.0152
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Table A5. GARCH(1,1) model for the BDI1 series.

Coefficient Standard
Deviation T Statistic p-Value

C 1.46 × 10−6 2.06 × 10−7 7.07427 0.0000
RESID(−1)2 0.2435 0.0139 17.5775 0.0000
GARCH(−1) 0.7246 0.0111 65.5549 0.0000

The linear model has been previously presented.

Table A6. EGARCH(3,1) model for the BDI1 series.

Coefficient Standard
Deviation T Statistic p-Value

C(1) −0.1837 0.0213 −8.6396 0.0000
C(2) 0.4100 0.0235 17.4340 0.0000
C(3) −0.2875 0.0324 −8.8699 0.0000
C(4) 0.0061 0.0248 0.2441 0.8072
C(5) −0.0223 0.0053 −4.2008 0.0000
C(6) 0.9919 0.0016 602.1425 0.0000

The linear model has been previously presented.

Appendix A.3. BDI2

Table A7. ARMA(3,0) model for BDI2 series.

Coefficient Standard Error T Statistic p-Value

C 0.0013 0.0009 1.4432 0.1492
AR(1) 1.0485 0.0282 37.1806 0.0000
AR(2) −0.1129 0.0409 −2.7589 0.0059
AR(3) −0.1367 0.0282 −4.8422 0.0000

Table A8. GARCH(1,1) model for BDI2 series.

Coefficient Standard
Deviation T Statistic p-Value

C 6.1 × 10−6 8.67 × 10−7 6.9744 0.0000
RESID(−1)2 0.5065 0.0440 11.4983 0.0000
GARCH(−1) 0.4587 0.0289 15.8957 0.0000

The linear model has been previously presented.

Table A9. EGARCH(1,1) model for BDI2 series.

Coefficient Standard
Deviation T Statistic p-Value

C(5) −1.8485 0.2025 −9.1301 0.0000
C(6) 0.5542 0.0346 16.0138 0.0000
C(7) −0.0221 0.0235 −0.9397 0.3474
C(8) 0.8631 0.0183 47.1652 0.0000

The linear model has been previously presented.
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Appendix A.4. BDI3 Series

Table A10. ARMA(7,0) model for BDI3 series.

Coefficient Standard
Deviation T Statistic p-Value

C −0.0015 0.0021 −0.7293 0.4659
AR(1) 0.9964 0.0267 37.293 0.0000
AR(2) −0.2434 0.0378 −6.4411 0.0000
AR(3) −0.0436 0.0383 −1.1376 0.2555
AR(4) 0.0909 0.0383 2.3751 0.0177
AR(5) −0.0394 0.0384 −1.0263 0.3049
AR(6) −0.0394 0.0378 −1.0408 0.2982
AR(7) 0.0965 0.0267 3.6085 0.0003

Table A11. GARCH(1,1) model for BDI3 series.

Coefficient Standard
Deviation T Statistic p-Value

C 4.83 × 10−5 3.85 × 10−6 12.5413 0.0000
RESID(−1) 2 0.3962 0.0296 13.4044 0.0000
GARCH(−1) 0.4545 0.0301 15.1062 0.0000

The linear model has been previously presented.

Table A12. EGARCH model (1,1) for BDI3 series.

Coefficient Standard
Deviation T Statistic p-Value

C(1) −3.1877 0.2500 −12.7520 0.0000
C(2) 0.5820 0.0365 15.9424 0.0000
C(3) 0.0454 0.0241 1.8861 0.0593
C(4) 0.6813 0.0270 25.3200 0.0000

The linear model has been previously presented.

Appendix B. Results of Nonlinearity Tests

Appendix B.1. Results for Keenan, Tsay and White Tests

Table A13. Nonlinearity tests (BDI series).

BDI

Test Returns ARMA(9,0) GARCH(1,2) EGARCH(2,3)

Keenan
21.3281 [9] 0.0009 [0] 1.8963 [1] 0.4427 [0]

3.956 × 10−6 0.9766 0.1685 0.5058

Tsay 5.354 [9] 0.0296 [0] 3.013 [1] 1.4550 [0]

7.235 × 10−28 0.9932 0.0826 0.2249

White
70.4337 132.4288 15.2346 32.896

5.551 × 10−16 <2.2 × 10−16 0.0005 7.583 × 10−8

The first row shows the statistic associated with the test and in brackets, if necessary, the dimension of the model
chosen to carry out the corresponding test. The second row shows the p-value. In bold, those values with a
p-value < 0.05.
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Table A14. Nonlinearity tests (subsamples).

BDI1

Test Returns ARMA(5,0) GARCH(1,1) EGARCH(3,1)

Keenan
11.3067 [5] 2.8761 [26] 2.3620 [5] 0.1159 [0]

0.0008 0.0901 0.1244 0.7336

Tsay 5.8340 [5] 2.5410 [26] 0.7093 [5] 0.1371 [0]

4.519 × 10−12 2.978 × 10−39 0.7775 0.9379

White
137.7620 19.134 18.3153 5.1852

<2.2 × 10−16 7 × 10−5 0.00011 0.07483

BDI2

Test Returns ARMA(3,0) GARCH(1,1) EGARCH(1,1)

Keenan
6.2973 [3] 0.3993 [0] 1.0558 1.4827

0.0122 0.5276 0.3044 0.2236

Tsay 7.4420 [3] 0.0887 1.2910 [5] 1.349 [5]
7.631 × 10−8 0.9663 0.1999 0.1653

White
46.4004 155.3275 3.8903 5.8127

8.4 × 10−11 <2.2 × 10−16 0.1430 0.0547

BDI3

Test Returns ARMA(7,0) GARCH(1,1) EGARCH(1,1)

Keenan
8.8210 [7] 0.0006 [0] 0.0158 [0] 0.0011 [0]

0.0030 0.9806 0.9001 0.9736

Tsay 2.4470 [7] 0.1001 [0] 0.1445 [0] 0.2253
4.16 × 105 0.9599 0.9332 0.8788

White
20.9735 42.7376 14.3453 9.373

2.79 × 10−5 5.2 × 10−10 0.0008 0.0092

Note: The first row shows the statistic associated with the test and in brackets, if necessary, the dimension of the
model chosen to carry out the corresponding test. The second row shows the p-value.

Appendix B.2. Results of BDS Test

Appendix B.2.1. BDI Series

Table A15. BDS test results for ARMA(9,0) series.

ε
m

0.5 σ 1.5σ 2σ

2
34.5547 36.2656 34.4998 31.6277
0.0000 0.0000 0.0000 0.0000

3
44.8132 42.6536 38.6800 34.5903
0.0000 0.0000 0.0000 0.0000

4
55.4024 47.5911 41.0281 35.6805
0.0000 0.0000 0.0000 0.0000

5
69.2478 52.7536 43.2854 36.6743
0.0000 0.0000 0.0000 0.0000

6
88.9560 58.5848 45.3847 37.4547
0.0000 0.0000 0.0000 0.0000

7
116.3227 65.4426 47.5975 38.2830

0.0000 0.0000 0.0000 0.0000

8
155.9435 73.6903 49.9559 39.1370

0.0000 0.0000 0.0000 0.0000
Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.
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Table A16. BDS test results for GARCH(1,2) series.

ε
m

0.5σ σ 1.5σ 2σ

2
0.3935 0.6491 0.2717 −0.4000
0.6939 0.5163 0.7858 0.6891

3
2.7572 2.6768 1.9576 0.9089
0.0058 0.0074 0.0503 0.3634

4
3.3252 3.1852 2.2457 0.9689
0.0009 0.0014 0.0247 0.3326

5
4.5027 4.1190 2.8631 1.3183
0.0000 0.0000 0.0042 0.1874

6
5.7009 4.9818 3.2556 1.4138
0.0000 0.0000 0.0011 0.1574

7
7.1800 5.8674 3.7291 1.6037
0.0000 0.0000 0.0002 0.1088

8
9.0922 6.8478 4.2720 1.8624
0.0000 0.0000 0.0000 0.0625

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5–2)*σ.

Table A17. BDS test results for EGARCH(2,3) series.

ε
m

0.5σ σ 1.5σ 2σ

2
2.5457 3.0959 3.2182 2.6562
0.0109 0.0020 0.0013 0.0079

3
3.0470 3.6883 3.7721 3.1753
0.0023 0.0002 0.0002 0.0015

4
2.6107 3.4351 3.4530 2.9061
0.0090 0.0006 0.0006 0.0037

5
2.7139 3.4367 3.3606 2.8156
0.0066 0.0006 0.0008 0.0049

6
2.8467 3.4401 3.2364 2.6656
0.0044 0.0006 0.0012 0.0077

7
2.6044 3.3420 3.0751 2.4991
0.0092 0.0008 0.0021 0.0125

8
3.1909 3.2643 2.9028 2.3941
0.0014 0.0011 0.0037 0.0167

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5–2)*σ.
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Appendix B.2.2. BDI1 Series

Table A18. BDS test results for ARMA(5,0) series.

ε
m

0.5σ σ 1.5σ 2σ

2
0.7586 0.8973 0.8976 0.5702
0.0000 0.0000 0.0000 0.0000

3
1.8268 1.8194 1.6749 1.1824
0.0000 0.0000 0.0000 0.0000

4
1.7420 1.9256 1.8692 1.3868
0.0000 0.0000 0.0000 0.0000

5
1.8758 2.2496 2.1912 1.6989
0.0000 0.0000 0.0000 0.0000

6
2.0473 2.5956 2.4954 1.9694
0.0000 0.0000 0.0000 0.0000

7
1.9352 2.7204 2.5835 2.0280
0.0000 0.0000 0.0000 0.0000

8
1.6852 2.8417 2.6866 2.1696
0.0000 0.0000 0.0000 0.0000

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.

Table A19. BDS test results for GARCH(1,1) series.

ε
m

0.5σ σ 1.5σ 2σ

2
2.3760 1.7526 0.9885 0.4798
0.0175 0.0797 0.3229 0.6314

3
1.8435 1.0115 −0.0020 −0.6092
0.0653 0.3118 0.9984 0.5424

4
0.9405 0.1396 −0.8142 −1.3817
0.3470 0.8890 0.4155 0.1671

5
0.6708 −0.2501 −1.1556 −1.6043
0.5023 0.8025 0.2479 0.1086

6
0.5129 −0.2912 −1.1979 −1.6699
0.6080 0.7709 0.2310 0.0949

7
0.6479 −0.3585 −1.3044 −1.7888
0.5170 0.7200 0.1921 0.0737

8
0.8758 −0.3120 −1.2992 −1.7707
0.3811 0.7550 0.1939 0.0766

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5–2)*σ.
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Table A20. BDS test results for EGARCH(3,1) series.

ε
m

0.5σ σ 1.5σ 2σ

2
0.7586 0.8973 0.8976 0.5702
0.4481 0.3696 0.3694 0.5685

3
1.8268 1.8194 1.6749 1.1824
0.0677 0.0689 0.0940 0.2370

4
1.7420 1.9256 1.8692 1.3868
0.0815 0.0542 0.0616 0.1655

5
1.8758 2.2496 2.1912 1.6989
0.0607 0.0245 0.0284 0.0893

6
2.0473 2.5956 2.4954 1.9694
0.0406 0.0094 0.0126 0.0489

7
1.9352 2.7204 2.5835 2.0280
0.0530 0.0065 0.0098 0.0426

8
1.6852 2.8417 2.6866 2.1696
0.0919 0.0045 0.0072 0.0300

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.

Appendix B.2.3. BDI2 Series

Table A21. BDS test results for ARMA(3,0) series.

ε
m

0.5σ σ 1.5σ 2σ

2
9.7412 11.1485 11.6118 12.0367
0.0000 0.0000 0.0000 0.0000

3
13.0013 13.6132 13.3890 13.2809
0.0000 0.0000 0.0000 0.0000

4
15.9321 15.0253 14.0476 13.5862
0.0000 0.0000 0.0000 0.0000

5
20.0477 16.5847 14.5524 13.7261
0.0000 0.0000 0.0000 0.0000

6
25.6057 18.3556 14.8436 13.6048
0.0000 0.0000 0.0000 0.0000

7
33.5346 20.7009 15.2351 13.4274
0.0000 0.0000 0.0000 0.0000

8
43.3104 23.2924 15.5258 13.1658
0.0000 0.0000 0.0000 0.0000

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.
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Table A22. BDS test results for GARCH(1,1) series.

ε
m

0.5σ σ 1.5σ 2σ

2
−1.2666 −1.7295 −1.3671 −0.9377
0.2053 0.0837 0.1716 0.3484

3
−0.9555 −1.5514 −1.3344 −1.0348
0.3393 0.1208 0.1821 0.3008

4
−0.6801 −1.1087 −1.2029 −1.0970
0.4964 0.2676 0.2290 0.2726

5
−0.1696 −0.6867 −0.9729 −0.9113
0.8653 0.4922 0.3306 0.3621

6
0.7995 −0.2071 −0.8367 −0.9386
0.4240 0.8359 0.4028 0.3480

7
2.0972 0.3694 −0.4836 −0.7133
0.0360 0.7118 0.6287 0.4757

8
3.1021 0.6057 −0.3686 −0.6972
0.0019 0.5447 0.7124 0.4857

Note: The first row shows the statistic associated with the test. The second row shows the p-value. m is
the embedding dimension and ε is the distance expressed by the number of standard deviations of the data:
(0.5−2)*σ.

Table A23. BDS test results for EGARCH(1,1) series.

ε
m

0.5σ σ 1.5σ 2σ

2
−0.2853 −0.0412 0.3600 0.7764
0.7754 0.9671 0.7188 0.4375

3
−0.1681 −0.0720 0.2817 0.6315
0.8665 0.9426 0.7781 0.5277

4
−0.2056 −0.1042 0.1241 0.3303
0.8371 0.9170 0.9013 0.7412

5
−0.1537 −0.1343 −0.0169 0.2078
0.8778 0.8932 0.9865 0.8354

6
−0.0883 0.0099 −0.1771 −0.0278
0.9296 0.9921 0.8594 0.9778

7
0.7119 0.1617 −0.1412 −0.0612
0.4765 0.8715 0.8877 0.9512

8
0.4997 0.0522 −0.3087 −0.2840
0.6173 0.9583 0.7576 0.7764

Note: The first row shows the statistic associated with the test. The second row shows the p-value. m is
the embedding dimension and ε is the distance expressed by the number of standard deviations of the data:
(0.5−2)*σ.
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Appendix B.2.4. BDI3 Series

Table A24. BDS test results for ARMA(7,0) series.

ε
m

0.5σ σ 1.5σ 2σ

2
13.9544 12.8282 11.4300 9.3409
0.0000 0.0000 0.0000 0.0000

3
17.6245 15.0417 13.0426 10.7543
0.0000 0.0000 0.0000 0.0000

4
20.8731 16.2533 13.6895 11.4360
0.0000 0.0000 0.0000 0.0000

5
25.4524 17.7364 14.0975 11.5748
0.0000 0.0000 0.0000 0.0000

6
31.7086 19.4922 14.5333 11.5911
0.0000 0.0000 0.0000 0.0000

7
39.9391 21.3644 15.0322 11.6788
0.0000 0.0000 0.0000 0.0000

8
53.2592 23.5235 15.5799 11.7950
0.0000 0.0000 0.0000 0.0000

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.

Table A25. BDS test results for GARCH(1,1) series.

ε
m

0.5σ σ 1.5σ 2σ

2
4.0030 3.4370 2.3817 1.0449
0.0001 0.0006 0.0172 0.2961

3
5.0459 3.6373 2.2001 0.6671
0.0000 0.0003 0.0278 0.5047

4
5.8426 3.7381 2.0631 0.4807
0.0000 0.0002 0.0391 0.6307

5
6.8134 3.9653 2.0693 0.3062
0.0000 0.0001 0.0385 0.7595

6
7.8271 4.2609 2.0409 0.1319
0.0000 0.0000 0.0413 0.8950

7
8.6832 4.5107 2.0855 0.1126
0.0000 0.0000 0.0370 0.9104

8
10.4940 4.8570 2.1255 0.1413
0.0000 0.0000 0.0335 0.8876

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.
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Table A26. BDS test results for EGARCH(1,1) series.

ε
m

0.5σ σ 1.5σ 2σ

2
3.6584 3.3261 2.2337 0.8868
0.0003 0.0009 0.0255 0.3752

3
4.2227 3.5075 2.3168 0.8348
0.0000 0.0005 0.0205 0.4038

4
4.6801 3.6679 2.4175 1.0168
0.0000 0.0002 0.0156 0.3092

5
5.6338 4.0064 2.5585 1.0689
0.0000 0.0001 0.0105 0.2851

6
6.8257 4.3979 2.6516 1.0627
0.0000 0.0000 0.0080 0.2879

7
7.4175 4.6802 2.7816 1.1140
0.0000 0.0000 0.0054 0.2653

8
8.8002 5.0099 2.8932 1.2049
0.0000 0.0000 0.0038 0.2282

Note: The first row shows the statistic associated with the test. The second row shows the p-value. Values with
a p-value less than the significance level 0.05 are shown in bold. m is the embedding dimension and ε is the
distance expressed by the number of standard deviations of the data: (0.5−2)*σ.

Appendix C. Chaotic Component Study

Appendix C.1. Correlation Dimension Results

Table A27. Correlation dimension estimates.

BDI

m Returns 1 ARMA(9,0) 5 GARCH(1,2) 3 EGARCH(2,3) 1

1 0.86 0.74 0.91 0.96
2 1.31 1.38 1.81 1.92
3 1.67 1.96 2.70 2.88
4 2.00 2.49 3.59 3.85
5 2.31 3.00 4.45 4.82
6 2.88 3.47 5.31 5.79
7 3.15 3.93 6.12 7.06
8 3.42 4.37 6.95 8.95

BDI1

m Returns 12 ARMA(5,0) 5 GARCH(1,1) 2 EGARCH(3,1) 3

1 0.97 0.92 0.95 0.97
2 1.93 1.82 1.91 1.93
3 2.88 2.72 2.89 2.91
4 3.81 3.59 3.86 3.83
5 4.78 4.43 4.83 4.76
6 5.39 5.21 5.83 5.71
7 5.65 6.03 6.68 6.43
8 5.58 6.83 6.93 8.21

BDI2

m Returns 6 ARMA(3,0) 3 GARCH(1,1) 2 EGARCH(1,1) 1

1 0.99 0.85 0.97 0.98
2 1.98 1.66 1.93 1.97
3 3.03 2.4 2.84 2.93
4 4.05 3.09 3.72 4.13
5 5.45 3.71 4.8 4.99
6 6.04 4.24 5.69 5.63
7 4.48 4.66 5.58 4.70
8 4.32 5.19 8.72 6.81

BDI3

m Returns 5 ARMA(7,0) 4 GARCH(1,1) 2 EGARCH(1,1) 1

1 0.94 0.97 0.97 0.97
2 1.86 1.93 1.93 1.94
3 2.76 2.89 2.90 2.89
4 3.73 3.87 3.84 3.85
5 4.73 4.78 4.66 4.89
6 5.77 5.76 5.89 5.68
7 6.83 7.68 7.58 6.44
8 7.12 7.47 6.90 6.46

Next to each applied model, the optimal value of the delay time according to the criterion of minimum information
is indicated as a superscript; m is the embedding dimension.
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Appendix C.2. Lyapunov Test Results

Table A28. Estimates of the Lyapunov exponents.

(L,m,q) Lyapunov
Exponents p-Value * Hypothesis

BDI

Returns (1,6,1) −0.1701 2.3 × 10−183 H1
ARMA(9,0) (1,6,1) −0.4954 1.2 × 10−46 H1

GARCH(1,2) (5,6,3) −0.6163 0.000 H1
EGARCH(2,3) (3,6,4) −0.6902 1.6 × 10−28 H1

BDI1

Returns (1,3,2) −0.1725 0.0000 H1
ARMA(5,0) (2,6,5) −0.4111 0.0000 H1

GARCH(1,1) (5,6,4) −0.4968 7.6 × 10−108 H1
EGARCH(3,1) (5,6,4) −0.5705 6.8 × 10−128 H1

BDI2

Returns (1,1,1) −0.1415 3.3 × 10−12 H1
ARMA(3,0) (1,6,2) −0.4072 2.9 × 10−203 H1

GARCH(1,1) (4,6,5) −0.4643 1.2 × 10−26 H1
EGARCH(1,1) (1,6,5) −0.4012 8.7 × 10−98 H1

BDI3

Returns (1,6,1) −0.1675 2.1 × 10−33 H1
ARMA(7,0) (1,6,4) −0.4417 2.2 × 10−62 H1

GARCH(1,1) (3,6,5) −0,4763 6.0 × 10−147 H1
EGARCH (1,1) (3,5,5) −0.4970 1.1 × 10−54 H1

Notes: * At 5% significance level, the null hypothesis of the existence of a chaotic component is rejected for those
p-values less than 0.05. L is the time delay, m is the embedding dimension and q is the number of hidden units in
the single-layer feedforward neural network.

Appendix C.3. MGRM Test Results

Table A29. MGRM test results.

Series Exponent (α) Standard Deviation

BDI

GARCH(1,2) 0.2730 0.0094
EGARCH(2,3) 0.3034 0.0123

BDI1

GARCH(1,1) 0.2260 0.0054
EGARCH(3,1) 0.2537 0.0077

BDI2

GARCH(1,1) 0.2456 0.0091
EGARCH(1,3) 0.2290 0.0089

BDI3

GARCH(1,1) 0.2300 0.0102
EGARCH(1,1) 0.2450 0.0089
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