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Designing controllers for agents of a collective system is
challenging. The challenge lies in the nonlinearity between
the behavior of the individuals and the emerging patterns in
the collective. A branch of ongoing research in collective
systems, e.g., in swarm robotics, concerns with discovering
mechanisms that lead to specific collective behaviors indi-
rectly, i.e., the effects of incentives in the emergence of inter-
esting collective patterns. Various intrinsic motivations have
been suggested as the drivers of pattern development in nat-
ural and artificial collective systems. An example is the de-
velopment of pathways to provide easier access to currents
that flow through a system (Bejan and Zane, 2012; Zaha-
dat, 2019). Another example is the emergence of collective
motion as a result of intrinsic motivation for maximization
of potential future states (Charlesworth and Turner, 2019).
By getting inspiration from the principle of free energy min-
imization in biological systems (Friston et al., 2010), pre-
dictability of the future states have also been used as an in-
trinsic motivation, resulting in a number of collective for-
mations. It demonstrated the tendency of agents to locate
themselves in the positions that are less prone to changes in
their surrounding (Zahadat et al., 2015; Kaiser and Hamann,
2019). The current paper presents early investigations of the
agents’ incentive for avoiding the surrounding environment
by locating themselves between their peers, i.e., an incentive
for self-protection. The swarm behavior resulted from this
intrinsic motivation leads to formation of aggregates with
high mobility of agents within them (Fig. 2A)1. The behav-
ior is loosely similar to the huddling behavior of emperor
penguins (Waters et al., 2012), where the birds self-organize
to take turn in locating themselves inside the crowd to stay
protected from the wind. The behavior appears to show a
relatively low sensitivity to the swarm density.

Setup
Agents model The collective system contains N = 50
agents in a toroidal area of size 1000 × 780 pixels. Fig-
ure 1A-B, depicts an agent and its related parameters. An
agent has a radius of ra and eight sensors all around. The

1See a video at https://vimeo.com/523444449

Figure 1: Setup of the collective system: A) actions, B) sen-
sors, C) structure of the ANN controller.

sensors visibility distance is rf . The sensor’s output is 2, 1,
and 0, respectively for detecting something in a close vicin-
ity (< rc), farther away (≥ rc), or no detection. In every
time step, each agent performs one of the five possible ac-
tions: stand still, move forward with normal speed (v = v0),
move forward fast (v = 2v0), turn left, or turn right with an-
gle ∆θ = ∆θ0 (Fig. 1A). The agents are controlled by iden-
tical artificial neural networks (ANNs). The inputs of the
ANNs are the current and previous values of the sensors and
the speed and rotation of the agent according to their previ-
ous actions (Fig. 1C). The ANNs are feed-forward with two
hidden layers of size 20 and 10 nodes. Softmax classifier is
used for the output layer to choose one of the five actions
and other layers use ReLU activation function.

Evolutionary setup The identical controllers of agents are
designed by evolving a population of 50 ANNs for 200
generations. A genetic algorithm was used with elitism of
one genome and a mutation of the others with a stepsize
N (0, 0.2). Every evolutionary experiment is repeated for
10 independent runs. The fitness is evaluated after 1000
time-steps. To evaluate controllers for the incentive for self-
protection, a protection level is defined for every agent i as
Pi = 1

|S| arg maxt |Snear(t)|, tc − τ ≤ t ≤ tc
where S is the set of all sensors, Snear(t) is the set of sen-
sors that detect a near neighbor at time-step t, tc is the cur-
rent time-step, and τ = 50 is the validity period of protec-
tion. The function yields the maximum number of closely



Figure 2: A) Agents’ traces in a given time period in an ex-
ample aggregate. The black line indicates the trace of a focal
agent moving through the aggregate, the blue lines represent
the traces of the other agents. The solid blue lines outside
the aggregate are manually highlighted for better visibility.
B) Agents’ mobility at the end of the experiments.

Figure 3: Number of aggregates vs. number of agents in the
largest aggregate.

occupied sensors in the past τ time-steps. τ allows the
agents to take turns in their relative positionings. The over-
all fitness is calculated by averaging the protection level
of the agents in the swarm, as FIncentive = 1

N

∑N
i=0 Pi,

where N is the swarm size. To get a quantitive evalua-
tion of the behavior, we compare the results with ANN con-
trollers directly evolved for an aggregation behavior. The
fitness function for the aggregation experiments is defined
as FAggregation = L/N , where L is the size of the largest
aggregate normalized by N (swarm size). All the other evo-
lutionary parameters are identical to the above experiments.

Results
In the following, the behavior of the best controllers evolved
for the Incentive and Aggregation are investigated. In each

Figure 4: RAS in different swarm sizes.

experiment, the state of the swarm after 5000 time-steps is
observed. The experiments are repeated for 10 independent
runs. Figure 3 represents the number of aggregates vs. the
size of the largest aggregate. The values are shown for both
Incentive and Aggregation experiments, as well as 10 ran-
domly generated ANN controllers. A statistical evaluation
(Student’s t-test) indicates that the aggregation formation in
the Incentive experiment is significantly different than ran-
dom (p < 0.01). Figure 2B compares the mobility of the
agents for the Incentive and Aggregation experiments. As
the figure indicates, the behavior resulted from evolution for
Aggregation leads to relatively immobile agents, while the
evolution for Incentive results in dynamic aggregates with
agents that move within the aggregate. Figure 2A depicts
example traces of agents. The agents swirl within the aggre-
gate and occasionally relocate between the inside and border
regions. The solid blue lines in the figure indicate that the
agents move relatively straight once outside the aggregates.
As stated above, the controllers are evolved with a swarm
size of N = 50. Here we use the same controllers in smaller
and larger swarms and observe the resulted aggregates. Fig-
ure 4 compares the Relative Aggregate Size (RAS) formed
by the controllers of Incentive and Aggregation experiments
for three different swarm sizes. RAS is defined as the size of
the largest aggregate normalized by the swarm size. As the
figure represents, for swarm size N = 50, the aggregation-
based controller leads to RAS ' 1, meaning that a single
aggregate is formed consisting of the whole swarm, whereas
with the incentive-based controller, RAS is closer to 0.5
meaning that the swarm is split into, presumably two, local
aggregates. For a larger swarm where the agent density is
high, RAS drops for both the Incentive and Aggregation ex-
periments, indicating the formation of more local aggregates
in both cases. For a smaller swarm,RAS drops significantly
for Aggregation controller, while it shows a big raise up to 1
for the Incentive controller. It suggests that the aggregation
formation behavior resulted as a side effect of the incentive
for self-protection is less sensitive to the swarm density.



References
Bejan, A. and Zane, J. (2012). Design in Nature: How the Con-

structal Law Governs Evolution in Biology, Physics, Technol-
ogy, and Social Organization. Doubleday.

Charlesworth, H. J. and Turner, M. S. (2019). Intrinsically
motivated collective motion. Proceedings of the National
Academy of Sciences, 116(31):15362–15367.

Friston, K. J., Daunizeau, J., Kilner, J., and Kiebel, S. J. (2010).
Action and behavior: a free-energy formulation. Biological
Cybernetics, 102(3):227–260.

Kaiser, T. K. and Hamann, H. (2019). Self-assembly in pat-
terns with minimal surprise: Engineered self-organization
and adaptation to the environment. In Correll, N., Schwager,
M., and Otte, M., editors, Distributed Autonomous Robotic
Systems, pages 183–195, Cham. Springer International Pub-
lishing.

Waters, A., Blanchette, F., and Kim, A. D. (2012). Modeling hud-
dling penguins. PLOS ONE, 7(11):1–8.

Zahadat, P., H. D. (2019). Toward a theory of collective resource
distribution: a study of a dynamic morphogenesis controller.
Swarm Intelligence, 13:347–380.

Zahadat, P., Hamann, H., and Schmickl, T. (2015). Evolv-
ing diverse collective behaviors independent of swarm den-
sity. In Workshop Evolving Collective Behaviors in Robotics,
GECCO ’15, pages 1245–1246. ACM.


