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Abstract 16 

We develop here a novel hypothesis that may generate a general research framework of how autonomous 17 

robots may act as a future contingency to counteract the ongoing ecological mass extinction process. We 18 

showcase several research projects that have undertaken first steps to generate the required prerequisites 19 

for such a technology-based conservation biology approach. Our main idea is to stabilise and support 20 

broken ecosystems by introducing artificial members, robots, able to blend into the ecosystem’s 21 

regulatory feedback loops and which can modulate natural organisms’ local densities through 22 

participating in those feedback loops. These robots are able to inject information that can be gathered 23 

using technology, and to help the system in processing available information with technology. In order to 24 

understand the key principles of how these robots are capable of modulating the behaviour of large 25 

populations of living organisms based on interacting with just a few individuals, we develop novel 26 

mathematical models that focus on important behavioural feedback loops. These loops produce relevant 27 

group-level effects, allowing for robotic modulation of collective decision making in social organisms. A 28 

general understanding of such systems through mathematical models is necessary for designing future 29 

organism-interacting robots in an informed and structured way, which maximises the desired output from 30 

a minimum of intervention. Such models also help to unveil the commonalities and specificities of the 31 

individual implementations and allow predicting the outcomes of microscopic behavioural mechanisms 32 

on the ultimate macroscopic-level effects. We found that very similar models of interaction can be 33 

successfully used in multiple very different organism groups and behaviour types (honeybee aggregation, 34 

fish shoaling, plant growth). Here we also report experimental data from biohybrid systems of robots and 35 

living organisms. Our mathematical models serve as building blocks for a deep understanding of these 36 

biohybrid systems. Only if the effects of autonomous robots onto the environment can be sufficiently well 37 

predicted, can such robotic systems leave the safe space of the lab and can be applied in the wild to be 38 

able to unfold their ecosystem-stabilising potential.  39 
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1 PROBLEM STATEMENT & MOTIVATION  40 

Extinction has always been a ubiquitous and important part of biological evolution shaping the “tree of 41 

life” (Haeckel 1892) in an ever-ongoing process: Species may go extinct, while new ones emerge by 42 

speciation at an equal or higher rate in parallel. This continuous diversification process has occasionally 43 

been interrupted by global mass extinction events in the past, known as the “big five” (Twitchett 2006). 44 

During these game-changing events, significantly more species went extinct than new species emerged, 45 

thus these mass extinctions significantly pruned the tree of life, thereby creating a sort of ecological 46 

“tabula rasa” for novel, and often more innovative, life forms to emerge. The last of these “big five” 47 

events is known to many people as the extinction of the dinosaurs, when some dinosaurs were pushed into 48 

evolving into the ancestors of the modern birds, while all classical forms of dinosaurs vanished. 49 

In recent centuries, and even more in recent decades, we have been significantly interfering with this 50 

dynamic process of organismic diversification. Human technology induces changes in the environment, 51 

leading to rapid and massive ecosystem perturbations and alterations. These effects happen at a speed at 52 

which nature sometimes has problems catching up to in a compensatory way, as adaptation processes can 53 

take comparatively long timespans. Besides classical conservation efforts and tackling the problem by 54 

global policy changes, we should also look into the question of how modern technology can support the 55 

protection and repair of damaged ecosystems, to buy nature the time it needs to adapt naturally and to 56 

restabilise. One possible contingency strategy to support natural adaptation processes can be the 57 

introduction of robotic agents into natural ecosystems.  Such robotic agents could be autonomous bio-58 

mimetic and bio-inspired robots, that interact with natural organisms and blend into these ecosystems to 59 

be able to monitor and stabilise them from within, maybe even carrying out some interventions in case 60 

they seem necessary. In this paper we will define the problem and then expand on our hypothesis and 61 

describe several approaches towards implementing such robotic systems, as well as mathematical models 62 

and first empirical validations of our hypothesis. The objective of our paper is to present a general 63 

research framework of how autonomous robots interacting with ecosystems may counteract these major 64 

issues that ecosystems are suffering, and in section 2 we pose a specific hypothesis regarding the manner 65 

in which robotic actors could achieve such a function (in short: through interactions with organisms that 66 

result in the stabilisation of ecosystem dynamics). We provide support towards this hypothesis with 67 

specific methodological elements through the development of predictive models and empirical 68 

illustrations. 69 

Anthropogenic and massive ecosystem perturbations are not novel developments that are restricted to the 70 

industrial age, as human activities have changed ecosystems significantly much earlier. Early examples 71 

are the massive deforestation of Europe over the last pre-industrial centuries (Kaplan et al. 2009) or the 72 

transformation of American wildlife after the arrival of European settlers (Covington 1994). Other events 73 

that are noteworthy due to their rather sudden emergence and high impact on a global scale are large 74 

cities covered in smog (Shi et al. 2016), deforestation due to acid rain (McCormick 2013) and the hole in 75 

the ozone layer, all of which have negative effects on human health, as well as on ecosystems and global 76 

climate. While all these problems have been caused by human activity and were also a side-effect of 77 

human advances in technology, these problems are also partially solved by society via the means of 78 

science and technology. Scientific research helped us to define these problems while technology and its 79 

application provided us with solutions: For example, the hole in the Antarctic ozone layer has been in the 80 

midst of a regeneration process since 2000, after switching from harmful chemicals to ozone-friendly 81 

surrogates has been enforced by the Montreal Protocol (Solomon 2016), predicted to fully and 82 

permanently close by 2050 (Schrope 2000). The significance of these actions and an informative view on 83 

the “road not taken” is given by Prather (1996).  84 

Currently, the world is facing a massive decline in animal populations which drives even many “keystone 85 

species”' towards the threat of extinction (Barnosky et al. 2011). The numbers are so severe that scientists 86 
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are already calling this trend the 6th mass extinction event (Ceballos et al. 2015, McCallum 2015, 87 

Ceballos et al. 2017). It started with reports of honeybee collapses (Ellis et al. 2010), continued with 88 

reports of massive insect biomass losses (Hallmann et al. 2017) and was recently extended with reports 89 

about massive vertebrate losses, e.g., in birds (Ceballos et al. 2017, Ceballos et al. 2020). Other 90 

vertebrates, e.g., fish, are also in decline through water pollution, habitat change and over-harvesting 91 

(Hutchings & Reynolds 2004, McCauley et al. 2015). In contrast to the natural causes that triggered the 92 

“big five” mentioned in the beginning, the current 6th massive decline of species is most likely driven by 93 

anthropogenic influences. This massive decline in diversity is expected to have dramatic consequences on 94 

humanity, as ecosystems are known to become more fragile with decreasing diversity (Nilsson & 95 

Grelsson 1995). Thus, this decline is expected to be a self-sustaining or even a self-enhancing process.  96 

Figure 1 shows the major feedback loop that drives ecosystem decay: With each disappearance of a 97 

species from the system, all stabilising feedback loops in which this species were previously involved are 98 

lost. Even significant population declines weaken these feedback loops, promoting the chances of later 99 

extinction events. A decreased stability of ecosystems may then, in consequence, result in larger 100 

fluctuations in response to species loss, occasionally pushing more species towards extinction, forming a 101 

vicious cycle. In a fragile ecosystem, intrinsic oscillations or external disturbances are more likely to 102 

drive a species towards extinction or diminish its population size (Fig. 1f), which in turn will reduce the 103 

biomass in the ecosystem and decrease the intraspecific diversity (Fig. 1a). With lower population size, 104 

this leads to fewer and also to less diverse intraspecific interactions (i.e. interactions between individuals 105 

of the same species) (Fig. 1b) and thus reduces the effect of existing feedback loops, which are mainly 106 

stabilising feedback loops in ecosystems that were previously resilient and robust (Fig. 1c). As a 107 

consequence, the resilience and stability of the system will be reduced (Fig. 1d) which in turn amplifies 108 

future amplitudes of population disturbances and fluctuations (Fig. 1e). 109 

 110 

2 POTENTIAL ECOLOGICAL EFFECTS OF ROBOT-ORGANISM INTERACTIONS 111 

Technology, and in particular robotics, can offer open-loop solutions to better monitor, and also act on, 112 

threatened ecosystems (Grémillet et al. 2012). The approach we are proposing to counteract the observed 113 

ecosystem decay proactively is to use autonomous robots to be integrated into existing organism groups 114 

in a threatened ecosystem. This has to be done in a way that robots can interact as naturally as possible 115 

with their organismic counterparts. Every ecosystem contains species with a very high number of 116 

interspecific interactions (i.e., interactions with other species), these species are called “keystone species” 117 

(Power et al. 1996). Logically, these species are the number one candidates to interact with, as 118 

modulating their behaviour will have the maximum effect on the ecosystem they reside in. Figure 1 119 

shows how autonomous robots can play a significant role in the vicious cycle of ecosystem decay. The 120 

robots can, on one hand, proactively monitor the ecosystem by collecting data from within organism 121 

communities in which they are embedded and can alert human operators (blue boxes in Fig. 1). Robots 122 

for proactive intervention, on the other hand, are designed in a way such that they can additionally 123 

interact with a specific organism group (orange boxes in Fig. 1). They have to be able to perceive stimuli 124 

emitted by their organismic counterparts, to compute a sufficiently complex behavioural response, and 125 

then to execute this response with appropriate actuators. These stimuli, sent by robotic actuators, are 126 

perceived by the living organisms and those will, in turn, respond to these stimuli in a desired way, e.g., 127 

by showing a desired behaviour, or by modulating an already-performed behaviour. Such agents can often 128 

be bio-mimetic and mirror the living organisms they interact with, thus they try to appear as a conspecific 129 

interaction partner by the focal organism. However, they can also in principle mimic any other organism 130 

that has an ecological relationship to the relevant organism, such as predators, prey, inter-specific 131 

competitors, as well as parasites or symbionts. We would like to point out that some approaches that 132 
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would possibly work might cause ethical questions, for example, if a robot mimics a predator in order to 133 

have a repellent effect. Consequently, we exclude such approaches from our further considerations, as we 134 

restrict ourselves to technologies that do not increase the stress levels of organisms above the level of 135 

their regular, natural life. We also refrain from inducing stress from pain, threats, or other severe negative 136 

emotional states of organisms with high cognitive capabilities. 137 

So, what is the most effective way to integrate robots into natural ecosystems? Population density is a key 138 

variable in ecological relationships, as interaction patterns depend in a super-linear way on the density of 139 

the interacting organism groups, following the “mass action law”. Uneven dispersal further affects the 140 

dynamics that arise from heterogeneous density distributions across the habitat. Thus, first monitoring 141 

and then potentially inducing a modulation of local densities can regulate key aspects of ecosystem 142 

dynamics. For example, the “competitive exclusion principle” (also known as the “Gause’s law”) 143 

describes processes that are strongly affected by interaction densities and the altered resource-sharing 144 

levels that arise when animals are unevenly distributed (Hardin 1960). Ultimately, these processes are at 145 

the heart of explaining biological diversity (or lack thereof) and the ongoing niche construction and 146 

speciation that it is associated with. 147 

Our key hypothesis: Technological artifacts, e.g., autonomous robots, can integrate into organismic 

populations and animal societies, in order to modulate their key processes, such as locomotion in 

animals and growth in plants. These modulations can affect the organisms in a way that alters their 

local population densities, which then can have significant ecological and social effects. We 

hypothesise that it is possible to design these technological agents in a way that they do not control the 

organisms by force, but rather become a part of the closed-loop control that governs the collective 

organismic system, bringing information into the regulation of the system that can be collected by 

technological means and can be useful to the organisms. This way, they can use very subtle stimuli in 

the microscopic and proximate interaction patterns in order to achieve a significant ultimate effect on 

the macroscopic ecosystem level. 

 148 

To provide a detailed illustration of how our hypothesised application of robotic actors can modulate key 149 

processes in organismic populations, we develop models for three specific bio-hybrid systems and show 150 

how they predict empirically obtained results. Importantly, the models that we develop share a common 151 

form, revolving around individual and socially-mediated dynamics in each of the systems. As is 152 

extremely common in behavioural sciences, the assays considered here are formulated as a binary choice 153 

for the organisms. This provides clearly measurable outcomes in the behaviours and additionally enables 154 

the development of models that feature common elements. Before the detailed presentation of each model 155 

in Secs 3.1—3.3, we here provide an overview of their commonalities and differences. In each case, the 156 

organisms can choose to adopt one or other state and the dynamics involve switching their choice. A 157 

switch can be mediated by a collective social influence, or by individual preference. The collective result 158 

of these two “forces” can lead to different dynamics such as even distributions or biased distributions 159 

(including strong symmetry-breaking). Even though the organisms that our robotic devices interact with 160 

are dissimilar (e.g., in motion speed, scale and typical group size), a similar modelling approach is able to 161 

capture the dynamics in all three systems.  Fig 2 summarises the form of the three models and also 162 

provides the parameters used. 163 

 164 
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3 TOWARDS A PROACTIVE CONTINGENCY: ORGANISMIC AUGMENTATION 165 

We have devised the concept of “Organismic Augmentation” as a leading paradigm in our research. This 166 

concept describes guiding principles for how to create autonomous robots that can interact with keystone 167 

species of high ecological importance. These robots are designed to blend into these organisms’ 168 

communities and to affect them from within the collective without causing a disturbance of the processes 169 

that usually determine the behaviours of these agents. This can be achieved by bio-mimicking 170 

conspecifics (shown with fish here) or by altering the local environment of the organisms in a way that 171 

will also happen under favourable environmental conditions (shown with honeybees and plants here). 172 

Our studies, which we present here, focus on a few examples of specific keystone species groups, which 173 

we think are of high ecological significance. Their well-being is also highly relevant for our human 174 

society:  175 

(1) Honeybees, as they are the pollinators of plants, and thus facilitate plant growth and dispersal. Their 176 

foraging success is also a good indicator for a healthy ecosystem concerning flowering plants.  177 

(2) Fish, as they are keystone aquatic species, and water covers about 71% of the earth’s surface. Fish are 178 

also a major food source for humanity. 179 

(3) Vascular plants, as they are the trophic basis of ecosystems, serving as food and as a shelter place for 180 

many animals and also feed humanity.  181 

Social organisms already have a natural ‘interaction interface’ that is provided by their social interaction 182 

patterns. Therefore, we suggest that integrating autonomous robots into social animal communities may 183 

be the most promising approach to achieve animal-robot interaction. Thus, as an easy approach towards 184 

robot-animal integration, robots should be able to take part within the social interaction networks of their 185 

target organisms. The fact that many social animals are also keystone species in their ecosystems 186 

increases the significance of this social interaction approach. For example, honeybees and bumblebees are 187 

major pollinators, together with wasps, which are also major predators. Ants facilitate the destruction of 188 

organic materials, but also act in seed dispersal and as symbionts of aphids, which in turn interact as 189 

strongly-aggregated communities with plants. 190 

 191 

Autonomous robots can be designed in three ways to achieve a “guided locomotion” functionality, as it 192 

is suggested by (Mondada et al. 2013, Halloy et al. 2013), see Figure 3:  193 

Firstly, they can be mobile agents that locomote together with the organisms, for example in group 194 

motion patterns, see Figure 3A. The way of locomotion does not necessarily have to be identical to the 195 

locomotion of the organisms, as long as it does not disturb them in any way. Various approaches along 196 

these lines have been performed with fish robots, either with magnetic coupling or mounted on a rod 197 

(Utter & Brown 2020, Porfiri et al. 2019, Worm et al. 2017, Landgraf et al. 2016, Bonnet et al. 2017a, 198 

Donati et al. 2016, Romano et al. 2019, Faria et al. 2010), with wheeled robots interacting with cockroach 199 

communities (Halloy et al. 2007) or flocks of ducks (Vaughan et al. 2000) and with a dancing robot with 200 

honeybee foragers (Landgraf et al. 2010). In all these cases, the locomotion of the robot was achieved 201 

differently from the locomotion of the living animal counterparts, and the robots were of varying bio-202 

mimetic perfection, some just emitting the key stimuli necessary for influencing the organisms 203 

(Tinbergen 1951).  204 
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Secondly, the robots may be distributed as an array of sensor-actuator nodes that can sense and locally 205 

act, but do not themselves locomote, see Fig. 3B. We call such sensor-actuator nodes CASUs (Combined 206 

Actuator Sensor Units), as they are described in (Schmickl et al. 2013, Griparić et al. 2017).  Experiments 207 

with static arrays of CASUs were performed by modulating honeybee aggregations (e.g., Stefanec et al, 208 

2017a, Mariano et al. 2018) and by guiding plant growth (Wahby et al. 2018). In such a static array, the 209 

agents themselves cannot move, but they can emit stimulus patterns that show spatio-temporal dynamics, 210 

sometimes produced by nearest-neighbour interactions of adjacent robots in the topology, similar to how 211 

cells do in cellular automata (Wolfram 1983). It is possible that the array reconfigures itself slowly over 212 

time, similar to the array/network of under-actuated mobile units described in (Donati et al. 2017, Thenius 213 

et al. 2018), which are primarily aimed at long-term environmental monitoring but can act as a CASU 214 

with the appropriate organisms as well. For example, such long-term interactions with organisms are 215 

explored (Heinrich et al. 2019) for the prospect of creating adaptive and self-healing living architecture. 216 

Thirdly, guided locomotion can be achieved by technically augmenting single individuals by mounting 217 

autonomous devices onto living organisms in order to influence their behaviours and ultimately guide the 218 

whole social group (Butler et al. 2006, Tsang et al. 2010), see Figure 3C. This approach can raise ethical 219 

concerns, especially if social higher vertebrates are used, thus we are not further considering this 220 

approach here. In our approach we are not mounting devices on single individuals but integrate devices 221 

into social organism societies to influence the organismic groups from within (see Fig. 3B). 222 

The ways in which autonomous robots can interact with organisms are manyfold: For example, they may 223 

take a leader role and guide the organisms in their locomotion behaviour, e.g., with swarming, flocking, 224 

herding, shoaling, schooling animals (Fig. 4A). In case that the target organisms are plants, the robots 225 

could guide them in their growth (Fig. 4D). In these cases of “guided locomotion”, the organisms may be 226 

directly led away from unfavourable or even dangerous places (pollutants, over-harvesting, predation, hot 227 

spots of pests, ...) and guided towards more favourable places. Besides direct guidance by the robots, it is 228 

also possible for robots to just give a subtle bias to the organism motion, e.g., by locally modulating 229 

environmental cues (e.g., light, temperature, ...) and exploit specific locomotion strategies of organisms 230 

this way (Fig. 4B). Such strategies might include Levy walks/flight (Viswanathan et al. 2008), klinotaxis 231 

(Izquierdo & Lockery 2010), as well as coordinated group motion (Herbert-Read 2016). Organisms often 232 

perform such motion principles in nature and even a subtle modulation of specific environmental factors 233 

or of specific interaction patterns can nonetheless lead to significant changes in the overall long-term 234 

motion of such organisms.  235 

Besides the guided motion, robots could also affect the dispersion properties of populations, which can 236 

range from strong avoidance (Fig. 4C), like in territoriality (low intra-specific contact rates), over 237 

diffusion-like random dispersal (medium intra-specific contact rates) to aggregation behaviours (high 238 

intra-specific contact rates). Thus, “guided dispersal” and “guided aggregation” strategies performed by 239 

autonomous robots can significantly affect important ecological variables. For example, the frequency of 240 

intra-specific interactions affects critical aspects of all life forms that we know:  241 

(a) Intra-specific competition imposes the most important negative feedback loop that keeps 242 

populations in balance under natural conditions and the main driving force for natural selection 243 

and thus for biological evolution. 244 

(b) For sexually reproducing organisms, mate-finding is a vital aspect for reproduction, as too low a 245 

population density can impair the success rate of finding mates for reproduction. This was shown 246 

to be the final nail in the coffin of a sexually reproducing species’ populations, a fact that is 247 

known as the "Allee effect" in ecology (Stephens & Sutherland 1999). 248 

(c) Effects of high population densities, as they occur in aggregations, can be “negative” ones for 249 

population dynamics, e.g., parasite pressure and infection rates, but “positive” effects can also 250 

occur, e.g., induced by symbionts, or information spread in the case of communicating organisms. 251 
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All these important biological aspects can be modulated by changing the dispersal patterns of organisms 252 

in their environment. Appropriately designed robots can interact with animals in a way that these motion 253 

patterns and their ultimate dispersal effects can be influenced.  254 

 255 

Depending on their design, robots can impact aspects other than the spatial organisation of members of 256 

the society. They can collaborate with the individuals of the society on specific tasks, like foraging, waste 257 

removal, control of nest conditions, and many others. Thus, such robots can affect ecological aspects or 258 

organisms and, ultimately, affect the whole ecosystem in which these organisms participate. 259 

In order to induce behavioural changes, especially for the “guided dispersal” and “guided aggregation” 260 

functionalities, the autonomous robots need to be able to perform a richer “vocabulary” than just emitting 261 

attractive signals. To be able to exert control over the organisms' spatial dispersal patterns, a set of stimuli 262 

has to be found that (a) the robot can emit and (b) the organism reacts to. For ethical reasons, we restrict 263 

ourselves here to stimuli that are (i) naturally occurring in the organism’s natural environment at a 264 

sufficiently regular rate and (ii) emitted in a strength that is also in the naturally-occurring spectrum and 265 

(iii) which have no known negative side effects on the organisms. 266 

We identified the following three basic signals or cues that are required to have sufficient effect and 267 

control of the organisms’ dispersal patterns: 268 

(A) Attractive stimulus: This stimulus should be attractive for the animals and lead to aggregations 269 

over time around the places it is emitted. This can be a direct effect on gradient-exploiting 270 

individuals (tropotaxis) or a modulation of turning probabilities (e.g., in klinotaxis) or modulation 271 

of social interaction (grouping) behaviours. Basically, it can be translated into “Come here!” 272 

(B) Repellent stimulus: This stimulus is the inverse of the aggregating stimulus, operating alongst the 273 

same mechanisms as mentioned above, however, acting in the opposite direction. It basically 274 

means “Go away!” 275 

(C) Speed modulating stimulus: This stimulus should be able to modulate the speed of animals, or 276 

the growth rate of plants. In the extreme case it should be able to stop any motion, basically 277 

meaning “Stay where you are!” 278 

These stimuli can have arbitrary shapes (e.g., binary on/off signals, continuous cues, or even a 279 

combination of both) that are spread around the robots' local environment. In addition, these stimuli can 280 

be physically similar (vision/light, vibration/sound, smell/taste, touch, etc.), meaning that the receiving 281 

organisms use the same receptor types to perceive them, but still react differently. In the case of similar 282 

stimuli inducing different behaviours in the organisms, the specific “meanings” of each signal have to be 283 

encoded in its characteristics (e.g., waveform shape, amplitude, frequency, etc.). This is nothing that can 284 

be designed arbitrarily, because it is the organisms who determine which stimuli they react to, therefore 285 

these control stimuli have to be identified by sufficiently observing and analysing the animal’s behaviour 286 

and interactions before designing the robots.  However, it might also be that these three 287 

stimuli/signals/cues (A, B, C) all reside on very different physical channels. This latter approach has the 288 

significant advantage that multiple stimuli can be emitted in parallel and, if designed correctly, with no, or 289 

negligible, interference.  On the downside, stimuli emitted through different physical channels usually 290 

have very different timescales on which they can be changed in the environment, e.g., a light signal 291 

propagates quickly in contrast to a temperature change that propagates and decays much more slowly. In 292 

our framework, we call an autonomously and free moving agent a “robot” (Fig. 5A) and groups of such 293 

agents a “robot(ic) swarm” (Fig. 5B). In contrast to that, we call technological artifacts that cannot move 294 

a CASU (Fig. 5D,F) and to a spatially distributed collection of these agents as a “CASU array” (Fig. 295 

5C,E).  296 
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 297 

In order to be efficient and effective, but also ethically correct, one has to understand the organism system 298 

first before designing the robots to be introduced into the specific community. It is also important to 299 

understand the collective biohybrid system that is created by introducing the robots. Therefore, we here 300 

focus on presenting mathematical models and simulations of animal-robot and plant-robot systems that 301 

were created under lab conditions. While some work on the robotic and experimental side of these 302 

systems has been published, there is a lack of a general understanding of these systems, of their 303 

commonalities and of their specific elements. Such a more general understanding of the system can not 304 

only inform future engineers of similar or other biohybrid systems, it can also allow us to understand the 305 

physically established system in a more general way, which is an important step to leave the lab behind 306 

and to employ these understandings into technical artifacts that unfold their potential with living 307 

organisms in the wild.  308 

Many robot-organism interaction systems are still in a “lab only” phase, for example when magnetic 309 

coupling through a fish tank’s glass wall or rods from above are used to drive fish-mimicking robots. 310 

While these setups can be very valuable for basic research of individual and collective behaviours per se, 311 

there is no way to implement such robots in the wild. For application in the field (pond, lake, river, 312 

ocean), the locomotion methods would need to be changed, for example into an undulating robot fish 313 

(Kruusmaa et al. 2014). Other technologies, like the approach to put non-mobile robots such as a CASU 314 

array into the environment, are already closer to being implemented outside of the lab. Thus, in Section 315 

3.4, we will showcase how the understanding of the honeybee-and-robot system in the lab experiments 316 

was converted into simpler devices that can affect full honeybee colonies in the natural environment, 317 

where they act as important pollinators and thus such systems could be utilized as a distributed long-term 318 

and wide-range stabiliser and supporter of ecosystems in which these bees play an important role.   319 

 320 

3.1 HONEYBEES & ROBOTS EXPERIMENTATION 321 

To investigate the capability of immobile robots to interact with honeybees, we performed a set of 322 

experiments in which the robots altered the local environment by exhibiting various stimuli. The aim was 323 

to measure the influence of the different “communication channels” of the robots on the animals’ 324 

aggregation behaviour (i.e., spatial distribution). The robotic nodes, called CASUs, used in these 325 

experiments were developed specifically to integrate themselves in groups of young honeybees by (i) 326 

being able to sense nearby bees and (ii) having the ability to exhibit the appropriate signals (as defined in 327 

Sec. 1.3) to effectively affect young bees, namely (a) temperature as an attractive stimulus, (b) vibration 328 

as speed-modulating stimulus and (c) airflow as a repellent stimulus (see Fig. 6).  329 

All these stimuli are ubiquitous in a normal honeybee hive (e.g., thermoregulation of the brood nest, 330 

various vibrational communication signals and wing fanning to produce air circulation) and the stimulus 331 

intensity that the robots could apply were within the range naturally occurring in the beehive, i.e. no 332 

abnormal stimulus was applied to guide the animals during interaction with the robotic nodes. 333 

We identified the aggregation behaviour of freshly emerged bees as a suitable test case to study 334 

organismic augmentation in honeybees because (i) the group behaviour is influenced by local 335 

environmental conditions (e.g., temperature) and (ii) simple cues could be identified to govern the 336 

aggregation behaviour (e.g., bees’ stopping times after contact with a conspecific) (Szopek at al. 2013), 337 

both of which can be exploited by the CASUs to affect the bees’ behaviour.  338 
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3.1.1 ANIMALS  339 

All experiments with honeybees (Apis mellifera L.) were performed at the Department of Biology at the 340 

Karl-Franzens-University Graz, with young bees, aged from 1 to 24 hours. At this age, the bees are not 341 

yet able to endothermically produce heat with their wing muscles (Stabentheiner et al. 2010), nor are they 342 

yet able to fly or sting. To collect the bees sealed brood combs were removed from full colonies and 343 

incubated at 35°C and 60% relative humidity. After hatching, the freshly emerged bees were brushed off 344 

the combs and housed in a ventilated box on a heating plate at 35°C and fed honey ad libitum before and 345 

after the experiments. Each bee was only tested once, and all bees were introduced into full colonies at 346 

the end of the day. 347 

3.1.2 ROBOTIC CASU-ARRAY ARENA 348 

 349 

The experimental setup consisted of a horizontal surface equipped with an array of robotic nodes which 350 

were specifically developed to integrate into groups of young honeybees (see Fig. 5C,D & Fig. 6). Each 351 

robotic node was equipped with 6 infrared sensors to detect the surrounding bees, temperature sensors 352 

and actuators to generate stimuli that bees are reacting to, including temperature, vibration and airflow. 353 

The robots were controlled by Beaglebone single-board computers which also executed the user-level 354 

controller, facilitated communication with other robots and the host PC and provided data logging.   355 

For the specific experiments discussed here only a subset of robotic nodes was used with either two or 356 

three CASUs that were enclosed by a stadium-shaped plexiglass arena to keep the bees within a certain 357 

area around them (see Fig. 6B). 358 

Above the top part of the robot, the arena floor was covered in beeswax sheets that were replaced after 359 

each repetition to get rid of any possible odour remnants that could interfere with the bees’ behaviour. All 360 

experiments were performed in IR lighting conditions with wavelengths above the bees’ sensitivity to 361 

exclude any visual stimuli and captured with a camera sensitive to IR light (Basler ac2040-25gmNIR) 362 

mounted above the arena. For a detailed description of the system see Griparić et al. (2017). 363 

3.1.3 THE MODEL OF ROBOTS & BEES 364 

The minimal model arena is composed of two sides, each containing a CASU. The dynamics of the 365 

CASUs controlling the local temperatures of each side of the arena and the number of bees on each side 366 

are modelled.  In the following, the temperatures of the arena’s right and left side are represented by 367 

𝑇𝑅(𝑡) and 𝑇𝐿(𝑡). These temperatures are modulated by the CASUs located on the two sides, which either 368 

set the local environment to a fixed temperature or set the temperature according to the locally-sensed 369 

numbers of bees.  370 

The number of bees on the right and left side are represented by 𝐵𝑅(𝑡) and 𝐵𝐿(𝑡) respectively, whereby 371 

𝐵𝑅(𝑡)  +  𝐵𝐿(𝑡)  =  𝐵𝑡𝑜𝑡𝑎𝑙. Initially they are assumed to be symmetrically split up between the two sides, 372 

thus  𝐵𝑅(0) = 𝐵𝐿(0) = 0.5 ⋅ 𝐵𝑡𝑜𝑡𝑎𝑙 each. In our model we assume that all bees move randomly and stop 373 

at bee-bee encounters and that the duration of the resting of bees after such collisions depends on the local 374 

temperature (Szopek et al. 2013), while the average speed of the bees can be affected by ground 375 

vibrations (Mariano et al. 2018). In addition, we show here that a subtle airflow can also affect the bees’ 376 

behaviour by reducing their resting time after social interactions. Therefore, these three stimuli affect the 377 

rates of change of honeybee aggregations that form around stimuli-emitting robots. Bees that leave one 378 

cluster, run randomly and eventually re-join the same cluster or join a cluster around another robotic 379 
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CASU. Our model is based on depicting the dynamics of bee aggregations resulting from the robot-380 

induced modulations of these rates of change.  381 

The overall changes in the number of bees on each side are computed by two ODEs (Equations B-1a,b) 382 

that describe the changes of bees on the left and on the right arena side, by balancing the flows of bees 383 

modelled in Equations B-2a,b and B-3a,b, as 384 

 385 

𝑑𝐵𝑅 /𝑑𝑡 =  𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑖𝑛𝑑𝑖𝑣(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐿

𝑖𝑛𝑑𝑖𝑣(𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐿

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡),  (B-1a) 386 

𝑑𝐵𝐿 /𝑑𝑡 =  𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑖𝑛𝑑𝑖𝑣(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝑅

𝑖𝑛𝑑𝑖𝑣(𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝑅

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡).  (B-1b) 387 

 388 

Those bees that are not resting on each side may move to the other side due to their random movement in 389 

a diffusion-like process, which can be nicely modelled with a mean-field approach, e.g., by systems of 390 

ODEs. A cluster of bees around one robot may grow in two different ways: 391 

Individual side switching: On the one hand, a cluster on the ipsilateral side can grow from bees joining 392 

after having left the contralateral CASU area and, after traversing the arena, spontaneously stop without 393 

any social interaction. Consequently, this process does not depend (scale) on the number of bees that are 394 

already present at the ipsilateral side, but it will change in proportion to the bees leaving the contralateral 395 

side. The stopping probability at which this happens is expressed by the constant 𝛼𝑏𝑒𝑒𝑠, which regulates 396 

the rate at which this individual spontaneous stopping happens, while the variables 𝜏𝑅(𝑡) and 𝜏𝐿(𝑡) 397 

represent the resting times that bees exhibit on either side depending on the local temperature they 398 

encounter there. The individual stopping flows can thus be modelled as 399 

 400 

𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑖𝑛𝑑𝑖𝑣(𝑡) = 𝛼𝑏𝑒𝑒𝑠 ⋅ 𝑋𝑅

𝑖𝑛𝑑𝑖𝑣(𝑡) ⋅
𝐵𝐿(𝑡)

 𝜏𝐿(𝑡)
 ,        (B-2a) 401 

𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑖𝑛𝑑𝑖𝑣(𝑡) = 𝛼𝑏𝑒𝑒𝑠 ⋅ 𝑋𝐿

𝑖𝑛𝑑𝑖𝑣(𝑡) ⋅
𝐵𝑅(𝑡)

 𝜏𝑅(𝑡)
 ,        (B-2b) 402 

 403 

where 𝑋𝑅
𝑖𝑛𝑑𝑖𝑣(𝑡) ∼ 𝑈(1 − 𝜎𝑏𝑒𝑒𝑠, 1 + 𝜎𝑏𝑒𝑒𝑠) and 𝑋𝐿

𝑖𝑛𝑑𝑖𝑣(𝑡) ∼ 𝑈(1 − 𝜎𝑏𝑒𝑒𝑠, 1 + 𝜎𝑏𝑒𝑒𝑠) are the scaled noise 404 

functions, the parameter 𝜎𝑏𝑒𝑒𝑠 ∈ [0,1] scales the noise. Equation B-2a expresses that in each time step 𝑡 a 405 

number 𝐵𝑅(𝑡) / 𝜏𝑅(𝑡) of bees will leave the cluster on the right side and with a probability of 𝛼𝑏𝑒𝑒𝑠 they 406 

will stop and thus join the cluster on the left side of the arena (and similarly for bees leaving the left side 407 

in B-2b). Thus, the number of moving bees that can stop on one (ipsilateral) side is the inverse of the 408 

waiting time of the bees on the other side ( 
1

𝜏𝐿(𝑡)
 and 

1

𝜏𝑅(𝑡)
 ). 409 

Socially induced side switching: On the other hand, bees may also leave their cluster on the contralateral 410 

side and accidentally meet with bees on the ipsilateral side in their random walk and, consequently, join 411 

the ipsilateral cluster as a socially induced event. Again, this switching is inversely related to the bees’ 412 

waiting time at their place of origin, which in this case is from the contralateral arena side. It is 413 

additionally proportional to the number of bees already present at the ipsilateral side, following the 414 

concept of mass-action-law, which is often used in modelling biological interactions, e.g., in predation, 415 
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competition or infection models. A parameter 𝛽𝑏𝑒𝑒𝑠 is used here to model the rate of the social contacts, 416 

which are a consequence of the random walk behaviour that bees often exhibit. 417 

 418 

𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑏𝑒𝑒𝑠 ⋅ 𝑋𝑅

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ⋅ 𝐵𝑅(𝑡) ⋅
𝐵𝐿(𝑡)

 𝜏𝐿(𝑡)
 ,       (B-3a) 419 

𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑏𝑒𝑒𝑠 ⋅ 𝑋𝐿

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ⋅ 𝐵𝐿(𝑡) ⋅
𝐵𝑅(𝑡)

 𝜏𝑅(𝑡)
,        (B-3b) 420 

 421 

where 𝑋𝑅
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ∼ 𝑈(1 − 𝜎𝑏𝑒𝑒𝑠, 1 + 𝜎𝑏𝑒𝑒𝑠) and 𝑋𝐿

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ∼ 𝑈(1 − 𝜎𝑏𝑒𝑒𝑠, 1 + 𝜎𝑏𝑒𝑒𝑠) are the scaled 422 

noise functions, the parameter 𝜎𝑏𝑒𝑒𝑠 ∈ [0,1] scales the noise, and the parameter  𝛽𝑏𝑒𝑒𝑠is a coefficient 423 

modulating the strength of the social interaction process that leads to cluster formation. By adjusting the 424 

ratio 
𝛼𝑏𝑒𝑒𝑠

𝛽𝑏𝑒𝑒𝑠
, the specific contribution of individual and social stopping behaviour to the cluster formation 425 

process can be adjusted in this system. 426 

The model is driven by the diffusion of bees in the arena and by the modulated durations of the resting 427 

time, after they stopped either individually or socially. These resting times can be modulated by three 428 

types of stimuli that can be emitted by the robots, and which affect the bees in different ways, as is 429 

incorporated in the model in the remainder of this section. 430 

As the most prominent behaviour-modulating stimulus is temperature, we model the effect of temperature 431 

on the bees’ behaviours to a larger extent than the other stimuli. This is also necessary because the 432 

thermal stimulus influences the environment for longer periods compared to the other types of used 433 

stimuli and thus requires a specific submodel. It was found that young honeybees move mostly randomly 434 

when they walk in temperature fields that are similar to the thermal conditions in a beehive and stay for 435 

some time at the place after they “bumped” into other bees (Kernbach et al. 2009, Szopek et al. 2013). 436 

The mean resting time duration after such bee-to-bee contacts was found to follow a sigmoid-shaped 437 

function of the local temperature at the place of the encounter. As both robotic CASUs modulate the local 438 

temperature in their vicinity, we model the bees’ waiting times separately for each side by using a hill 439 

function, taking the local temperatures (𝑇𝐿(𝑡) for the local temperature in the left half of the arena and 440 

𝑇𝑅(𝑡) for the right side) as their only input.  441 

𝜏𝑅(𝑡) = (1 +
𝜏Δ

𝑇Δ
∙ (𝑇𝑅(𝑡) − 𝑇𝑚𝑖𝑛) ∙ (1 − 𝜑𝑅(𝑡))) ∙ (1 + 𝜓𝑅(𝑡)) ⋅ ,     (B-4a) 442 

𝜏𝐿(𝑡) = (1 +
𝜏Δ

𝑇Δ
∙ (𝑇𝐿(𝑡) − 𝑇𝑚𝑖𝑛) ∙ (1 − 𝜑𝐿(𝑡))) ∙ (1 + 𝜓𝐿(𝑡)) ⋅ ,     (B-4b) 443 

where 𝜏𝑅(𝑡) and 𝜏𝐿(𝑡) are the resting time periods of the bees at the right and left side of the arena, using 444 

a linear function of the local temperature that approximates the sigmoid previously used to fit empirical 445 

data:  The waiting time is 1.0 sec for a temperature of 28.0 °C (our minimum ambient temperature) and 446 

scales linearly for a range 𝜏Δ = 24.0 sec over a span of 𝑇Δ = 8.0 °C of temperature increase, as we 447 

observed a waiting period of 25 sec with bees at 36 °C (which is the highest temperature used in our 448 

experiments) in Mills et al. (2015).  449 

The honeybees’ resting behaviour is also influenced by vibration and airflows, factors that are also 450 

considered in Equations 4a,b. The variables 𝜑𝐿(𝑡), 𝜑𝑅(𝑡) ∈ [0,1] represent the effect of a subtle airflow 451 
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emitted by the left or the right CASU, acting as a repellent stimulus and inducing a shortening of the 452 

bees’ resting periods around these robots. In contrast, the variables 𝜓𝐿(𝑡), 𝜓𝑅(𝑡) ∈ [0,1] represent the 453 

effect of ground-carried vibration, emitted by the left or the right CASU, acting as a speed-reducing or 454 

even as a stopping stimulus, thus inducing an increase of the bees’ resting periods around these robots. 455 

The robotic CASUs in our system have their own agency, which needs to be part of the model that should 456 

depict the overall biohybrid system. Our honeybee CASUs have sensors to detect the bees in their 457 

vicinity. The CASU actively regulates the temperature based on the number of locally detected bees, if 458 

this regulation is enabled. We assume that the CASUs detect the bees in an imperfect way, as there are 459 

several “blind spots” and also a limited sensor range around these robots. We modelled the honeybee 460 

detection as follows: 461 

For each CASU there is a given target temperature towards which it is actively controlling its local 462 

environment: 𝑇𝐿
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) for the left CASU and 𝑇𝑅

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) for the right CASU.  These target temperatures 463 

can: (a) be pre-set to constant values, or (b) follow pre-programmed time patterns, or (c) be set 464 

dynamically by the CASU’s control program in response to sensing bees with its IR sensors in its 465 

vicinity. In cases (b) and (c) a fixed-step incremental controller is used to model the heating and cooling 466 

that drives the actual temperature around CASUs towards the given target temperatures. If the actual 467 

temperature is further below the target temperatures than a given threshold 𝜀𝑡𝑒𝑚𝑝, then the CASU will 468 

heat with a fixed rate 𝜆ℎ𝑒𝑎𝑡𝑖𝑛𝑔 towards the target. Similarly, if the actual temperature is further above the 469 

target temperature than 𝜀𝑡𝑒𝑚𝑝, the CASU will cool with a fixed rate 𝜆𝑐𝑜𝑜𝑙𝑖𝑛𝑔 towards the target. Finally, 470 

passive diffusion is modelled as proportional to the difference between each CASU and the ambient 471 

temperature 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 = 28°𝐶, with coefficient 𝜆𝑝𝑎𝑠𝑠𝑖𝑣𝑒.  These factors together yield the following 472 

equations: 473 

 474 

𝑑𝑇𝑅 

𝑑𝑡
=  −𝜆𝑝𝑎𝑠𝑠𝑖𝑣𝑒−𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ⋅ (𝑇𝑅(𝑡) − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) + {

𝜆𝑎𝑐𝑡𝑖𝑣𝑒−ℎ𝑒𝑎𝑡𝑖𝑛𝑔        . . .  𝑖𝑓 (𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  − 𝑇𝑅(𝑡))  >  𝜀𝑡𝑒𝑚𝑝

 

−𝜆𝑎𝑐𝑡𝑖𝑣𝑒−𝑐𝑜𝑜𝑙𝑖𝑛𝑔    . . .  𝑖𝑓 (𝑇𝑅(𝑡)  − 𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡))  >  𝜀𝑡𝑒𝑚𝑝

   ,  (B-5a) 475 

𝑑𝑇𝐿 

𝑑𝑡
=  −𝜆𝑝𝑎𝑠𝑠𝑖𝑣𝑒−𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ⋅ (𝑇𝐿(𝑡) − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) + {

𝜆𝑎𝑐𝑡𝑖𝑣𝑒−ℎ𝑒𝑎𝑡𝑖𝑛𝑔        . . .  𝑖𝑓 (𝑇𝐿
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  − 𝑇𝐿(𝑡))  >  𝜀𝑡𝑒𝑚𝑝

 

−𝜆𝑎𝑐𝑡𝑖𝑣𝑒−𝑐𝑜𝑜𝑙𝑖𝑛𝑔    . . .  𝑖𝑓 (𝑇𝐿(𝑡)  −  𝑇𝐿
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡))  >  𝜀𝑡𝑒𝑚𝑝

    , (B-5b) 476 

where 𝑑𝑇𝑅(𝑡)/𝑑𝑡 and 𝑑𝑇𝑅(𝑡)/𝑑𝑡 define the two ODEs that model the temperature changes around the 477 

left and the right CASU areas, which feed into the waiting time curves of the bees that are defined in 478 

Equations B-4a, b. Thus, in those cases that the target temperatures of CASUs are affected by the local 479 

number of bees, the system exhibits a closed loop control between robotic CASUs and the honeybees. 480 

For specific experiments with bees, specific settings, time patterns or control programs were used for the 481 

variables   𝜓
𝑅

(𝑡), 𝜓
𝐿

(𝑡), 𝜑
𝑅

(𝑡), 𝜑
𝐿

(𝑡), 𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡), and 𝑇𝐿

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡). These specific actuation regimes of 482 

heating, cooling, vibration and airflow are described in the sections below, together with the 483 

corresponding experiments. Otherwise the default values given in Fig. 2A were used for these variables. 484 

 485 
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3.1.4 EXPERIMENTS WITH ROBOTS & BEES 486 

In this section we will detail the methodology for the four experimental sets that were performed with 487 

CASUs and honeybees. First, we establish a baseline of the natural collective behaviour of honeybees 488 

without active robotic agents. Second, we investigate how local vibration influences collective decision-489 

making processes. Third, we investigate how robotic agents affect bees with a subtle air-flow. Fourth, we 490 

investigate how honeybee decision making can be influenced by robots integrated in a closed loop 491 

producing warmth around them in reaction to higher bee densities. These empirical experiments validate 492 

our model of the biohybrid system, solved with Runge-Kutta 4th-order method with 𝛥𝑡 = 1.0 second.   493 

3.1.4.1 Experiment B1: Assessing the natural symmetry breaking in collective decision making of 494 

aggregating honeybees under non-time-varying temperature fields 495 

To investigate the natural clustering behaviour of the bees in constant thermal environments, we 496 

performed experiments with groups of bees in a stadium-shaped arena with two CASUs set to fixed 497 

temperatures. We performed experiments in two settings: (1) Runs with 28 °C on both arena sides were 498 

made with N = 14 repetitions for 20 minutes, containing groups of 𝐵𝑡𝑜𝑡𝑎𝑙 = 12 bees that were released in 499 

the centre of the arena; (2) runs with 32 °C on one side of the arena and 36 °C on the other side. This 500 

setting was tested N = 12 times for 13 minutes with 𝐵𝑡𝑜𝑡𝑎𝑙 = 15 bees each. The target temperatures 501 

remained fixed throughout the runs, with no influence from the bees or the other CASUs. 502 

 503 

In our analysis we counted the bees on each side of the arena in 30 second intervals from video 504 

recordings, which were conducted under red-light conditions, to emulate the darkness of a beehive. For 505 

comparison, and to allow the bees an initial time to settle their collective decision making, we analysed 506 

the bees’ aggregations on both sides from minute 8 to minute 13 (Fig. 7). 507 

 508 

3.1.4.2 Experiment B2: Symmetry breaking in collective decision making induced by vibration 509 

In this experiment (Mariano et al. 2018) a set of 3 CASUs aligned in a row were used, in contrast to the 510 

experiments described above which used only 2 CASUs, in order to isolate the two arena sides better 511 

from ground-carried vibrations arriving from the other side. During the first 3 minutes the bees could 512 

freely distribute themselves in the arena as no vibration was produced by the CASUs, thus 𝜓𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) =513 

𝜓𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑡) = 0.0, for 𝑡 ∈ [0,180]. Afterwards, the leftmost CASU started to emit a vibration pattern for 514 

another 3 minutes. The empirical study we validate our model against reports a set of vibration signals 515 

that were shaped by evolutionary computation algorithms to effectively slow down or even stop the bees. 516 

For 𝑡 ∈ [181,360] we set 𝜓𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = 0.1 to model the effects of the vibration pattern spreading through 517 

the arena floor locally around this CASU on the bee behaviour. In contrast, the other CASU stayed 518 

passive, i.e., 𝜓𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑡) = 0, for 𝑡 ∈ [181,360]. The parameter value 𝜓𝑎𝑐𝑡𝑖𝑣𝑒 was chosen to fit empirical 519 

data.  520 

We studied groups of 𝐵𝑡𝑜𝑡𝑎𝑙 = 12 young (1 day old) honeybees in each arena in this experiment. In order 521 

to compare the reported empirical data in this setting in our mathematical model, we again consider the 522 

two sides of the arena, attributing the bees around the leftmost CASU area fully to the left side in the 523 

model in 𝐵𝐿(𝑡), the bees around the rightmost CASU area to the right side of the model in 𝐵𝑅(𝑡), and 524 

split the population of bees around the middle CASU 50:50 amongst the two model variables 𝐵𝐿(𝑡) and 525 

𝐵𝑅(𝑡).  526 
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As Figure 8A demonstrates, the emission of a vibration stimulus leads to an aggregation of bees around 527 

the vibrating CASU, compared to the other CASU and compared to the control period. The model 528 

predicts this effect in a way very well corresponding to the empirical data. More details are given in the 529 

figure caption of Figure 8. 530 

 531 

3.1.4.3 Experiment B3: Collective decision-making modulated by airflows 532 

In this experiment 2 CASUs in a stadium-shaped arena were used. We heated the CASUs for 5 minutes to 533 

different temperature levels: One CASU was heated to 𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 36 °C, ∀t, further referred to as the 534 

global optimum, since young bees prefer to locate at this temperature, as seen already in experiment B1. 535 

The other CASU was heated to 𝑇𝐿
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 32 °C, ∀t, providing a local optimum for the bees.  536 

We observed groups of 𝐵𝑡𝑜𝑡𝑎𝑙 = 15 young (1 day old) honeybees, which were initially released at the 537 

centre of the arena. After the bees had stably aggregated at the global optimum after 13-15 minutes of 538 

experimental runtime (𝑡𝑎𝑖𝑟𝑓𝑙𝑜𝑤), an airflow stimulus was emitted by the CASU at the global optimum, 539 

𝜑𝑅(𝑡 ≥ 𝑡𝑎𝑖𝑟𝑓𝑙𝑜𝑤)  = 0.6, until the end of the experiment whose total runtime was 20 minutes. The control 540 

experiments used the same settings, but without turning on the airflow stimulus during the whole runtime. 541 

To evaluate the effect of the airflow on the honeybee collective, we counted the bees in the two sides of 542 

the arena from video recordings. 543 

As shown in Figure 8B, bees cluster mainly around the warmer CASU before the airflow stimulus is set. 544 

After initialising the airflow stimulus, the initial decision-making is reversed, and the bees start to cluster 545 

around the cooler CASU. Our model’s predictions compare well to the empirical data. Additional details 546 

are given in the caption of Figure 8. 547 

 548 

3.1.4.4 Experiment B4: The effect of robot-induced feedback on the symmetry breaking in 549 

collective decision making  550 

This experiment used a pair of CASUs enclosed by a stadium-shaped arena. In contrast to experiment B1, 551 

which showed how bees interact without active robot influence, here the robots were programmed in a 552 

way that they create an additional feedback loop in the system that can enhance or suppress the natural 553 

symmetry-breaking capabilities of the bees (Stefanec et al. 2017a). To achieve this, each CASU used its 554 

local IR sensors to estimate the local bee density around it and regulated its local temperature in a positive 555 

or in a negative correlation to this estimate (detailed below). The estimated numbers of bees around the 556 

left and the right CASU (𝐵𝐿
𝑜𝑏𝑠(𝑡),  𝐵𝑅

𝑜𝑏𝑠(𝑡)) are modelled assuming that the robots' IR sensors 557 

underestimate the true number of bees (e.g., due to occlusion, blind spots), thus we model the noise-558 

affected sensor values as  559 

 560 

𝐵𝑅
𝑜𝑏𝑠(𝑡) = 𝐵𝑅(𝑡) ⋅ (1 − 𝜎𝑏𝑒𝑒𝐶𝐴𝑆𝑈 ⋅ 𝑋𝑅

𝑜𝑏𝑠(𝑡)) , 𝑋𝑅
𝑜𝑏𝑠(𝑡) ∼ 𝑈(0,1),     (B-6a) 561 

𝐵𝐿
𝑜𝑏𝑠(𝑡) = 𝐵𝐿(𝑡) ⋅ (1 − 𝜎𝑏𝑒𝑒𝐶𝐴𝑆𝑈 ⋅ 𝑋𝐿

𝑜𝑏𝑠(𝑡)) , 𝑋𝐿
𝑜𝑏𝑠(𝑡) ∼ 𝑈(0,1),     (B-6b) 562 

 563 
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where 𝜎𝑏𝑒𝑒𝐶𝐴𝑆𝑈 is the scaling factor for the observation noise 𝑋𝑅
𝑜𝑏𝑠(𝑡), 𝑋𝐿

𝑜𝑏𝑠(𝑡), assumed to be uniformly 564 

distributed. The noise can only lead to underestimation of the number of bees (no false positives in the 565 

observation). The CASUs use a gliding average (throughout 30 seconds), 𝐵𝑅

𝑜𝑏𝑠
(𝑡) 𝑎𝑛𝑑 𝐵𝐿

𝑜𝑏𝑠
(𝑡), of the 566 

noise-affected sensor values, as can be seen in the following equations (B7a, b and B8a, b). 567 

Positive feedback experiments: A positive feedback means that the CASUs will act to enhance the natural 568 

symmetry-breaking behaviour of the bees. To create such a CASU control algorithm, the gliding average 569 

number of bees around the ipsilateral CASU was subtracted from the gliding average number of bees 570 

around the contralateral CASU to yield the net observed difference. The ipsilateral target temperature had 571 

a step-increase (decrease) applied when the observed net difference was positive (negative), see 572 

Equations B-7a,b. This led to the effect that the more bees a CASU sensed, the warmer its vicinity got, 573 

while at the same time the other CASU became colder (i.e. they exhibited a reciprocal cross-inhibition).  574 

𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  = 𝑚𝑖𝑛 (36.0, 𝑚𝑎𝑥 (28.0,  𝑇𝑅(𝑡) +  {

 
 
 

𝛥𝑡𝑒𝑚𝑝  . . .  𝑖𝑓 𝐵𝑅

𝑜𝑏𝑠
(𝑡)  > 𝐵𝐿

𝑜𝑏𝑠
(𝑡)

−𝛥𝑡𝑒𝑚𝑝  . . .  𝑒𝑙𝑠𝑒
)),  (B-7a) 575 

𝑇𝐿
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  = 𝑚𝑖𝑛 (36.0, 𝑚𝑎𝑥 (28.0,  𝑇𝐿(𝑡) + {

 
 
 

𝛥𝑡𝑒𝑚𝑝  . . .  𝑖𝑓 𝐵𝑅

𝑜𝑏𝑠
(𝑡) < 𝐵𝐿

𝑜𝑏𝑠
(𝑡)

−𝛥𝑡𝑒𝑚𝑝  . . .  𝑒𝑙𝑠𝑒
 )).  (B-7b) 576 

Negative feedback experiments: A negative feedback means that the CASUs will act in a way that 577 

reduces or even suppresses the natural symmetry breaking behaviour of the bees. To create such a CASU 578 

control algorithm, the same observed net difference was calculated but used inversely.  Specifically, the 579 

ipsilateral target temperature had a step decrease (increase) applied when the observed net difference was 580 

positive (negative), see Equations B-8a,b. Accordingly, the more bees a CASU sensed the colder its 581 

vicinity got, while simultaneously the other CASU became warmer.  582 

 583 

𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  = 𝑚𝑖𝑛 (36.0, 𝑚𝑎𝑥 (28.0,  𝑇𝑅(𝑡) + {

 
 
 

𝛥𝑡𝑒𝑚𝑝  . . .  𝑖𝑓 𝐵𝑅

𝑜𝑏𝑠
(𝑡) < 𝐵𝐿

𝑜𝑏𝑠
(𝑡)

−𝛥𝑡𝑒𝑚𝑝  . . .  𝑒𝑙𝑠𝑒
)),  (B-8a) 584 

𝑇𝐿
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  = 𝑚𝑖𝑛 (36.0, 𝑚𝑎𝑥 (28.0, 𝑇𝐿(𝑡) + {

 
 
 

𝛥𝑡𝑒𝑚𝑝  . . .  𝑖𝑓 𝐵𝑅

𝑜𝑏𝑠
(𝑡) > 𝐵𝐿

𝑜𝑏𝑠
(𝑡)

−𝛥𝑡𝑒𝑚𝑝  . . .  𝑒𝑙𝑠𝑒
 )).  (B-8a) 585 

 586 

Control experiments: For comparison, experiments without any reinforcement were conducted, the CASU 587 

target temperatures were set to a fixed value of 𝑇𝑅
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  = 𝑇𝐿

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 28 °𝐶 on each side, with no 588 

influence, neither from bees nor from other CASUs.   589 

All experiments were performed with groups of 𝐵𝑡𝑜𝑡𝑎𝑙 = 12 bees each, which were released at the centre 590 

of the arena. Each run lasted for 20 minutes and we made N = 14 repetitions.  In our analysis we counted 591 

the bees on each side of the arena in 30 second intervals from video recordings, which were conducted 592 

under red-light conditions, to emulate the darkness of a beehive. 593 
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Figure 8C compares a modelled closed loop to empirical data. In both cases a robot-mediated feedback 594 

loop enhanced (positive feedback) or weakened (negative feedback) the natural symmetry-breaking of 595 

honeybees compared to the control experiments. Our model’s predictions correspond well to observed 596 

empirical data concerning the centrality metric (median), however the variances within and between 597 

model prediction runs are rather small compared to empirical observations, likely due to the simplicity of 598 

the model, having many factors abstracted away from the system. Further details are described in the 599 

caption of Figure 8.  600 

 601 

3.2 FISH & ROBOTS EXPERIMENTATION 602 

To investigate the capability of mobile robots to interact with zebrafish, we performed experiments in 603 

which biomimetic robots used their motion patterns to exert an influence on the group dynamics of the 604 

natural fish. The fish robot consists of two parts: a miniature wheeled robot below the tank that steers a 605 

lure residing inside the tank (Fig. 9A).  The two parts are coupled by magnets and the partitioning enables 606 

continuous power and dry operating conditions for the electro-mechanical devices. 607 

Zebrafish are a social species of fish that exhibit collective behaviours such as shoaling (Spence et al. 608 

2008). The zebrafish was selected as it is a very common model of vertebrates, used in various research 609 

fields, and in particular in behavioural biology (Norton & Bally-Cuif, 2010). Since visual stimuli are very 610 

important in zebrafish interactions, certain aspects of the robot are crucial for the natural fish to interact 611 

with the robots and accept them in their decision making. These include the shape and size ratio of the 612 

lure, as well as the speed and acceleration of the robot (Bonnet et al. 2018).  These robot-generated 613 

stimuli were all within the natural ranges of the fish.   614 

Our experiments aimed to verify that a fish robot could influence the group dynamics in two distinct 615 

modes: to exert an influence in the swimming direction of the group, 1) where the robot choice decided 616 

exogenously (e.g., fixed direction, predetermined pattern, or by the experimenter); and 2) in a closed-loop 617 

where the fish robot direction was chosen to reinforce the current fish group decision. 618 

We selected the fish group size to exhibit some shoaling but also allow for synthetic influence when 619 

introducing a small number of robotic agents; the experiments here used a total of 6 agents (6 fish, 3 fish 620 

+ 3 robots, or 5 fish + 1 robot). 621 

The zebrafish used in the studies here were approved by the state ethical board for animal experiments 622 

under authorization number 2778 from the DCVA of Canton de Vaud, Switzerland. As described in 623 

(Bonnet et al. 2019) we used 100 wild-type, short-fin zebrafish (Danio rerio Hamilton 1822) with 624 

average length 4 cm, sourced from Qualipet (Crissier, Switzerland). Each fish could be used in a 625 

maximum of one experiment per day, and all fish used were returned to their main tank at the end of the 626 

day, meaning that the same individuals could appear in multiple replicates of the studies presented here.  627 

 628 

3.2.1 THE MODEL OF ROBOTS & FISH 629 

The basic principle of the fish & robot model is similar to the concept of the honeybees & robots model. 630 

We have a certain number of fish 𝐹𝑡𝑜𝑡𝑎𝑙, which can either swim in the arena ring in clockwise direction 631 

𝐹𝐶𝑊(𝑡)or in counter-clockwise direction 𝐹𝐶𝐶𝑊(𝑡). Initially they are assumed to be symmetrically split up, 632 

https://en.wikipedia.org/wiki/Francis_Buchanan-Hamilton
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thus 𝐹𝐶𝑊(0) = 𝐹𝐶𝐶𝑊(0). 1 Our model, like in the honeybee case, obeys conservation of mass, thus 633 

𝐹𝐶𝑊(0) + 𝐹𝐶𝐶𝑊(0) = 𝐹𝑡𝑜𝑡𝑎𝑙. 634 

The fish have a natural behaviour that determines when they switch their locomotion direction, which can 635 

happen either as an individual spontaneous event or be triggered by social interaction, within which the 636 

fish robot can also participate and exert thus some control over the group of fish. The change between the 637 

two groups of fish aligned in each direction is expressed as 638 

 639 

 𝑑𝐹𝐶𝑊 /𝑑𝑡 =  𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑖𝑛𝑑𝑖𝑣(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊

𝑖𝑛𝑑𝑖𝑣(𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡),  (F-1a) 640 

𝑑𝐹𝐶𝐶𝑊 /𝑑𝑡 =  𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑖𝑛𝑑𝑖𝑣(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊

𝑖𝑛𝑑𝑖𝑣(𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡),  (F-1b) 641 

  642 

where  𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑖𝑛𝑑𝑖𝑣(𝑡) represents the number of fish individually switching from CCW to CW direction, 643 

and 𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑖𝑛𝑑𝑖𝑣(𝑡) models the individual process of switching into the opposite direction. The variables 644 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) express fish that switch to CW direction triggered by a social interaction, while 645 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) expresses the opposite socially-induced switching of direction.  646 

Individual direction switching: On the one hand, the direction-changing process can happen 647 

spontaneously without any triggering event. We assume that this happens with a certain rate 𝛼𝑓𝑖𝑠ℎ 648 

whenever a fish is alone in the tank, thus has no other fish (or fish robot) in sight that can socially 649 

influence it. The fraction of the fish population that is predicted to be alone is modelled as 650 

 651 

𝑝𝑎𝑙𝑜𝑛𝑒
 = 1 − 𝑝𝑔𝑟𝑜𝑢𝑝,           (F-2a) 652 

𝑝𝑔𝑟𝑜𝑢𝑝
 = 𝑚𝑖𝑛 (1.0,

 𝐹𝑡𝑜𝑡𝑎𝑙 ⋅ 𝐴𝑠𝑖𝑔ℎ𝑡 

𝐴𝑎𝑟𝑒𝑛𝑎
),          (F-2b) 653 

 654 

where 𝐴𝑎𝑟𝑒𝑛𝑎 represents the area of the ring-shaped arena and 𝐴𝑠𝑖𝑔ℎ𝑡 represents the area of the cone of 655 

sight of a single fish in this arena shape. Geometrical considerations show that the field of perception of a 656 

fish covers roughly between 
1

3
 (if the fish is close to the outer arena wall) and 

1

7
 (if the fish is close to the 657 

inner wall) of 𝐴𝑎𝑟𝑒𝑛𝑎, thus we assume an average coverage of approximately 
1

5
 of this area for 𝐴𝑠𝑖𝑔ℎ𝑡. We 658 

further assume, in our mean-field model, that at a given number of fish in the arena, no fish will ever be 659 

alone. With a given probability of  𝛼𝑓𝑖𝑠ℎ, a fish that is alone will switch to swimming in the opposite 660 

direction, as is expressed by 661 

 662 

 

1
 In a mean-field model, like this ODE model, the model expresses the mean time budgets of fish 

swimming in either direction, so fractional quantities are not unrealistic. 
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𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑖𝑛𝑑𝑖𝑣(𝑡) = 𝛼𝑓𝑖𝑠ℎ ⋅ 𝑝𝑎𝑙𝑜𝑛𝑒 ⋅  𝐹𝐶𝐶𝑊(𝑡),        (F-3a) 663 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑖𝑛𝑑𝑖𝑣(𝑡) = 𝛼𝑓𝑖𝑠ℎ ⋅ 𝑝𝑎𝑙𝑜𝑛𝑒 ⋅  𝐹𝐶𝑊(𝑡).        (F-3b) 664 

 665 

Socially induced direction switching: On the other hand, fish can also switch to the opposite direction 666 

because they see other fish and want to align to their motion direction. This is modelled, similar to the 667 

previous honeybee model, with a mass-action-law–like equation, modulated by a coefficient 𝛽𝑓𝑖𝑠ℎwhich 668 

determines the strength of this socially-induced direction switching (Eq. F-6a,b). 669 

We assume that each fish has an imperfect perception of the direction of the other fish it sees, thus it only 670 

has an erroneous estimation of the number of fish swimming aligned with it or in the opposite direction. 671 

For a fish that is currently swimming CW, the estimated number of other fish also swimming CW is 672 

modelled by 𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡), and the estimation for swimming CCW is modelled by 𝐹𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡). These 673 

variables are computed as 674 

 675 

𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝐹𝐶𝑊(𝑡) + 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡) −  𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡),       (F-4a) 676 

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝐹𝐶𝐶𝑊(𝑡) − 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡) + 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡),       (F-4b) 677 

 678 

where 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) is the number of fish swimming in the same direction (CW) but erroneously perceived 679 

by the CW swimming fish as being swimming in CCW direction. 𝐸𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡)is the number of fish 680 

swimming in the opposite direction (CCW) but erroneously perceived by the CW-swimming fish as being 681 

aligned with them (CW). These errors in the fish observation are modelled as 682 

 683 

𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅  (𝐹𝐶𝑊(𝑡) − 1) ⋅ 𝑋𝐶𝑊(𝑡),       (F-5a) 684 

𝐸𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅ 𝐹𝐶𝐶𝑊(𝑡) ⋅ 𝑋𝐶𝐶𝑊(𝑡),        (F-5b) 685 

 686 

where 𝑋𝐶𝑊(𝑡) ∼ 𝑈(0,1) and 𝑋𝐶𝐶𝑊(𝑡) ∼ 𝑈(0,1) are the noise parameters and 𝜎𝑓𝑖𝑠ℎis a scaling coefficient 687 

for the perception error. A similar computation holds for the variables 𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) and 𝐹𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) as the 688 

erroneous observations made by the fish swimming CCW concerning the other fish they see, as 689 

 690 

𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝐹𝐶𝑊(𝑡) + 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) − 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡),       (F-4c) 691 

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝐹𝐶𝐶𝑊(𝑡) − 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) +  𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡),      (F-4d) 692 

𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅  𝐹𝐶𝑊(𝑡) ⋅ 𝑋𝐶𝑊(𝑡),        (F-5c) 693 

𝐸𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅ (𝐹𝐶𝐶𝑊(𝑡) − 1) ⋅ 𝑋𝐶𝐶𝑊(𝑡),       (F-5d) 694 
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 695 

where the noise variables are modelled as 𝑋𝐶𝑊(𝑡) ∼ 𝑈(0,1) and 𝑋𝐶𝐶𝑊(𝑡) ∼ 𝑈(0,1). 696 

For the fish switching direction due to social effects, our model assumes the following social alignment 697 

behaviour for each focal fish: If a large proportion of others swim aligned with it, the tendency for 698 

switching is low. If a large proportion is swimming in the opposite direction, the fish tends to switch its 699 

own direction. This behaviour is again modelled following the mass action law, as was also the case in 700 

the honeybee model. The number of fish in CCW switching to CW depends on the number of fish in 701 

CCW and a function of their erroneous observations they make concerning other fish they meet 702 

(𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) and 𝐹𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡)). Thus, the social switching functions are directly correlated to their 703 

estimated number for CW swimming fish, 𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡), and inversely correlated to their estimated number 704 

for CCW swimming fish, 𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) + 1. The +1 in the equation refers to each focal fish. The following 705 

equations show the model for switching to CW and CCW respectively: 706 

 707 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑓𝑖𝑠ℎ ⋅ 𝑝𝑔𝑟𝑜𝑢𝑝 ⋅ 𝐹𝐶𝐶𝑊(𝑡) ⋅

 𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡)

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡)+1

  ,      (F-6a) 708 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑓𝑖𝑠ℎ ⋅ 𝑝𝑔𝑟𝑜𝑢𝑝 ⋅ 𝐹𝐶𝑊(𝑡) ⋅

 𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡)

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡)+1

  .      (F-6b) 709 

 710 

In our experiments we also introduced one or more fish robots that mimicked real fish. We assume that 711 

the living fish perceived the fish robot as conspecific, but perhaps not to the full extent. Thus, we define a 712 

coefficient 𝛾𝑓𝑖𝑠ℎ ∈ [0,1] expressing how often (in all instances of encounters) the fish robot was 713 

interpreted by the living fish as a conspecific. This presence of a robotic fish surrogate needs to be 714 

considered in the model, requiring a reformulation of Equation F-2a,b into 715 

 716 

𝑝𝑎𝑙𝑜𝑛𝑒
 = 1 − 𝑝𝑔𝑟𝑜𝑢𝑝,           (F-2c) 717 

𝑝𝑔𝑟𝑜𝑢𝑝
 = 𝑚𝑖𝑛 (1.0,

(𝐹𝑡𝑜𝑡𝑎𝑙+𝛾𝑓𝑖𝑠ℎ)⋅𝐴𝑠𝑖𝑔ℎ𝑡 

𝐴𝑎𝑟𝑒𝑛𝑎
),         (F-2d) 718 

 719 

which will have a small effect on the spontaneous direction switching behaviour expressed in the 720 

Equations F-3a,b and also on the socially-induced direction switching behaviour, as expressed by 721 

Equations F-4a,b. 722 

 Further beyond the mere presence of another fish-like agent, its direction can have profound effects on 723 

the socially induced direction switching behaviour of the fish. Thus, we express the fish-robot as a 724 

variable 𝑅𝐶𝑊(𝑡) ∈ [0,1] expressing how much of the modelled fish-robot into CW direction, time-budget 725 

wise. Consequently, 𝑅𝐶𝐶𝑊(𝑡) = 1 −  𝑅𝐶𝑊(𝑡) and 𝑅𝐶𝑊(𝑡) + 𝑅𝐶𝐶𝑊(𝑡) = 1. This requires the alteration of 726 

Equations F-4a,b,c,d to also consider the social effect of the fish-robot, as  727 

 728 



 Social integrating robots suggest mitigation strategies for ecosystem decay 

20 

 

𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝐹𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝑊(𝑡) + 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡) − 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡),     (F-4e) 729 

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝐹𝐶𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝐶𝑊(𝑡) − 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡) + 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡),    (F-4f) 730 

𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝐹𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝑊(𝑡) + 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) − 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡),    (F-4g) 731 

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝐹𝐶𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝐶𝑊(𝑡) − 𝐸𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) + 𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡).    (F-4h) 732 

 733 

In addition, the erroneous perception of fish, as described in Equations F-5a,b,c,d has to be adapted to 734 

model also the effect of the fish-robot, which can also be erroneously perceived, as  735 

 736 

𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅ (𝐹𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝑊(𝑡) − 1) ⋅ 𝑋𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡),     (F-5e) 737 

𝐸𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅ (𝐹𝐶𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝐶𝑊(𝑡)) ⋅ 𝑋𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡),     (F-5f) 738 

𝐸𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅ (𝐹𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝑊(𝑡)) ⋅ 𝑋𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡),     (F-5g) 739 

𝐸𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡) = 𝜎𝑓𝑖𝑠ℎ ⋅ (𝐹𝐶𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝐶𝑊(𝑡) − 1) ⋅ 𝑋𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊(𝑡),    (F-5h) 740 

 741 

where 𝑋𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡),  𝑋𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝑊(𝑡),  𝑋𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊,  𝑋𝐶𝐶𝑊

𝑜𝑏𝑠𝐶𝐶𝑊 ∼ 𝑈(0,1). 742 

 743 

Ultimately, these components all affect the social behaviour of the fish, thus requiring the adaptation of 744 

Equations F-6a,b to 745 

 746 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑓𝑖𝑠ℎ ⋅ 𝑝𝑔𝑟𝑜𝑢𝑝 ⋅ (𝐹𝐶𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝐶𝑊(𝑡)) ⋅

 𝐹𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡)

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝐶𝑊(𝑡)+1

 ,   (F-6c) 747 

𝑠𝑤𝑖𝑡𝑐ℎ𝐶𝐶𝑊
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑓𝑖𝑠ℎ ⋅ 𝑝𝑔𝑟𝑜𝑢𝑝 ⋅ (𝐹𝐶𝑊(𝑡) + 𝛾𝑓𝑖𝑠ℎ ⋅ 𝑅𝐶𝑊(𝑡) ) ⋅

 𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡)

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝐶𝑊(𝑡)+1

.    (F-6d) 748 

 749 

In the following we describe three distinct experiments, in which the fish-robots were performing 750 

different types of behaviour. In the first two experiments, the robots acted independently, without being 751 

affected by the fish, allowing us to study the fish reaction to this external visual stimulus. In the third 752 

experiment the fish-robot was trying to socially integrate into the fish group by aligning with the fish, 753 

thus closing the behavioural feedback loop between the fish and the fish-robot. The default parameters for 754 

the model are defined in Fig. 2B. 755 

 756 
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3.2.2 EXPERIMENTS WITH ROBOTS & FISH 757 

Inside a 100 x 100 x 25 cm aquarium covered with white Teflon sheets, the experimental setup used a 758 

circular corridor for the fish and robot-controlled lure to move in (Fig. 9B,C).  The water was filled to a 759 

level of 6cm and maintained at 26 °C. The arena was lit by three 110 W fluorescent lamps, and 760 

continuously observed by an overhead camera at 15 Hz. The video stream fed an online blob detector that 761 

continuously determined the position of each fish and robot, thereby providing the sensory information 762 

used to determine the robot motion (Bonnet et al. 2017b).  Post-hoc analysis of the videos used idTracker 763 

(Peréz-Escudero et al. 2014) and provided individual tracking as well as lower-error position information. 764 

For a detailed description of the setup and robot controller please refer to Bonnet et al. (2018). 765 

 766 

3.2.2.1 Experiment F1: Fish group behaviour in pure groups and mixed groups with constant 767 

robotic influence  768 

To investigate the natural grouping behaviour of the fish without robotic influence, we tested groups of 769 

six zebrafish in the arena (Bonnet et al. 2018).  As a first comparison we tested mixed groups of three fish 770 

and three fish-robots, where the fish-robots swam in the same direction for each of the N = 8     771 

experiments that lasted for 30 minutes.  Figure 10A shows empirical results and how the model 772 

reproduces the key dynamics in both cases. It shows that fish were influenced to swim with the robots 773 

when the robots swam constantly in one direction, in contrast to the unbiased swimming direction with 774 

pure fish groups. The empirical result is well captured by our model. 775 

 776 

3.2.2.2 Experiment F2: Mixed fish and robot groups, with independent fish robot motion 777 

In this experiment, we constructed mixed groups of 5 fish and 1 robot (Bonnet et al. 2019).  In contrast to 778 

experiment F1 the robot exhibited various direction changes, which were specified independently from 779 

the swimming direction of the fish group (changing direction with a frequency of 0.014  0.006 per 780 

timestep).  The experiments lasted 30 mins and we conducted N = 24 repetitions.  To govern the fish 781 

robot direction in the model, we used a simple two-state machine that switched direction with probability 782 

0.014 in each timestep. Figure 10B shows the relationship between the fish group choice and the robot 783 

swimming direction, which is positively correlated with a wide distribution. The model reproduces these 784 

dynamics (Fig. 10C). 785 

 786 

3.2.2.3 Experiment F3: Fish robot in “social integration” mode, a closed-loop setting with the fish 787 

group behaviour 788 

In a manner similar to experiment B4, the robots in this experiment form a closed loop with the animal 789 

behaviour, aiming to reinforce the current decision of the animal group.  We used 5 fish and 1 robot that 790 

swam in the majority direction of the fish group. We conducted N = 22 repetitions of 30-min long 791 

experiments. The fish are modelled as per the previous experiments, responding to their environmental 792 

cues including the robot. However, here the model must also consider how the robot responds to the fish 793 

locomotion, as elaborated below. 794 

To decide on the swimming direction of the robotic fish, the robot controller computes the proportion of 795 

the fish observed in each direction for 15 frames in every second. It then averages these values and 796 
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decides on its future direction based on this calculated time budget. Since we use a time step of 𝛥𝑡 =797 

1second in our model, the modelled controller computes a single proportion in every second.  798 

The robot’s decision is modelled as 799 

𝑅𝐶𝑊
 (𝑡)  = {

1
 −1

 . . .  𝑖𝑓 𝐹𝐶𝑊
 𝑜𝑏𝑠𝑅(𝑡)  >  0.5

. . .  𝑖𝑓 𝐹𝐶𝑊
 𝑜𝑏𝑠𝑅(𝑡)  <  0.5

 ,        (F-7a) 800 

𝑅𝐶𝐶𝑊
 (𝑡)  = 1 −  𝑅𝐶𝑊

 (𝑡),          (F-7b) 801 

 802 

where 𝐹𝐶𝑊
𝑜𝑏𝑠𝑅(𝑡) and  𝐹𝐶𝐶𝑊

𝑜𝑏𝑠𝑅(𝑡) are the gliding averages in CW and CCW directions correspondingly. If 803 

there is a tie between the two possible directions, a random direction is chosen by the robotic fish CASU. 804 

In order to compute the proportions to make the gliding averages, the number of fish in each direction 805 

observed by the detection software is divided by the total number of fish. The online fish detection 806 

software (CATS, Bonnet et al. 2017b) that informs the controller of the robotic fish is imperfect in 807 

detecting directions. The erroneous observed proportions of the number of fish are modelled as the true 808 

number of fish in each direction (𝐹𝐶𝑊(𝑡), 𝐹𝐶𝐶𝑊(𝑡)), plus the error (𝑅𝐶𝑊
𝑒𝑟𝑟𝑜𝑟(𝑡), 𝑅𝐶𝐶𝑊

𝑒𝑟𝑟𝑜𝑟(𝑡)), divided by the 809 

total number of fish, in order to normalise for the given fish size. 810 

𝐹𝐶𝑊
𝑜𝑏𝑠𝑅(𝑡)  =

𝐹𝐶𝑊(𝑡)+𝑅𝐶𝑊
𝑒𝑟𝑟𝑜𝑟(𝑡)

 𝐹𝑡𝑜𝑡𝑎𝑙
 ,          (F-8a) 811 

𝐹𝐶𝐶𝑊
𝑜𝑏𝑠𝑅(𝑡)  =

𝐹𝐶𝐶𝑊(𝑡)+𝑅𝐶𝐶𝑊
𝑒𝑟𝑟𝑜𝑟(𝑡)

𝐹𝑡𝑜𝑡𝑎𝑙
 ,         (F-8b) 812 

 813 

where 𝑅𝐶𝑊
𝑒𝑟𝑟𝑜𝑟(𝑡)is the error in the observed number of fish swimming in CW direction, and  𝑅𝐶𝐶𝑊

𝑒𝑟𝑟𝑜𝑟(𝑡)is 814 

the error in the observed number of fish in CCW direction made by the software that observes the real 815 

fish to drive the robot. This error is modelled as 816 

 817 

𝑅𝐶𝑊
𝑒𝑟𝑟𝑜𝑟(𝑡) = 𝜎𝑓𝑖𝑠ℎ𝑅𝑜𝑏𝑜𝑡 ⋅ 𝑋𝐶𝐶𝑊(𝑡) ⋅ 𝐹𝐶𝐶𝑊(𝑡) − 𝜎𝑓𝑖𝑠ℎ𝑅𝑜𝑏𝑜𝑡 ⋅ 𝑋𝐶𝑊(𝑡) ⋅ 𝐹𝐶𝑊(𝑡),   (F-9a) 818 

𝑅𝐶𝐶𝑊
𝑒𝑟𝑟𝑜𝑟(𝑡)  =  −𝑅𝐶𝑊

𝑒𝑟𝑟𝑜𝑟(𝑡) ,          (F-9b) 819 

 820 

where the random noise variables were modelled as 𝑋𝐶𝑊(𝑡) ∼ 𝑈(0,1) and 𝑋𝐶𝐶𝑊(𝑡) ∼ 𝑈(0,1) with 821 

uniform distribution, and 𝜎𝑓𝑖𝑠ℎ𝑅𝑜𝑏𝑜𝑡 is the scaling factor for the observation noise. In this model, the 822 

number of fish swimming in CW direction but mistakenly counted as CCW direction is modelled as 823 

𝜎𝑓𝑖𝑠ℎ𝑅𝑜𝑏𝑜𝑡 ⋅ 𝑋𝐶𝑊(𝑡) ⋅ 𝐹𝐶𝑊(𝑡) and the number of fish swimming in CCW but mistakenly counted as CW 824 

direction is 𝜎𝑓𝑖𝑠ℎ𝑅𝑜𝑏𝑜𝑡 ⋅ 𝑋𝐶𝐶𝑊(𝑡) ⋅ 𝐹𝐶𝐶𝑊(𝑡). 825 

Figures 10D,E show the dynamics of this closed-loop system, exhibiting a high correlation between the 826 

robot and fish group choices in this closed-loop system (cf. especially Fig. 10B,C). 827 

 828 
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3.3 PLANT & ROBOTS EXPERIMENTATION 829 

We focus here on the capability of robots to interact with growing plant shoots (here the common bean, 830 

Phaseolus vulgaris L.). CASU nodes (i) detected the presence of plants and (ii) altered the local 831 

environment by providing light stimuli. The young bean shoots bend and favour their growth toward the 832 

strongest incident light in a process called phototropism (see e.g., Christie & Murphy 2013). This allows 833 

for feedback loops between the CASUs’ and plants’ behaviours to be constructed. 834 

Two general approaches were followed, different in scale (in space and time) and precision. (1) A system 835 

consisting of a single board computer with a camera and control over two light sources together with a 836 

single freshly sprouted bean plant was used to guide the growing shoots to multiple targets in space using 837 

image detection and machine learning (detailed in Hofstadler et al. 2017). In these experiments, it 838 

typically took the bean shoot 2-3 days to grow out of the space monitored by the camera, corresponding 839 

to ~50 cm of bean shoot. We showcase the model laid out below by simulating such a system. (2) A 840 

decentralized group of plant CASUs were attached to a scaffold that allowed the plants to climb vertically 841 

(Fig. 5E). These CASUs can detect plants that are still below them via IR-distance sensors and they can 842 

attract these plant shoots to grow towards them with a set of strong LEDs. In this setting many individual 843 

plants grow up the scaffold across multiple layers of robots during the course of ~2 months. A detailed 844 

account is given in Wahby et al. (2018). 845 

3.3.1 THE MODEL OF ROBOTS & PLANTS 846 

Plant shoots grow upward by producing new cells at the tip (Wang et al. 2018). Below the tip, cells 847 

elongate and mature. This upper zone of a growing stem (roughly the top 10 cm in beans) is flexible and 848 

rotates around the central stem-axis autonomously, a process called “circumnutation” (Stolarz 2009, 849 

Mugnai et al. 2015). The plant co-opts and overrides this basic behaviour to quickly react to 850 

environmental cues. If, for example, light suddenly comes from a different angle, the flexible zone will 851 

quickly bend toward it (by elongating cells on the far side). On a whole-plant level, multiple growing tips 852 

generated via branching (Barbier et al. 2019) strongly influence each other’s growth capacity (see e.g., 853 

Bennett et al. 2016, Zahadat & Hofstadler 2019). But here the focus lies solely on the growth and motion 854 

of a single plant tip under the influence of light stimuli. 855 

The presented model describes the dynamics of the flexible part of a single bean stem 𝑃 
𝑓𝑙𝑒𝑥(𝑡) growing 856 

through the system (the biomass of the mature, stiff stem is not considered). Like in the honeybee model 857 

shown before, space is divided in left and right regions that may contain flexible plant mass. In the 858 

following, the subscripts ‘L’ and ‘R’ refer to the left and right side respectively, e.g., 𝑃𝐿
𝑓𝑙𝑒𝑥(𝑡) indicates 859 

the flexible plant mass on the left side at time t. In contrast to the bee model, space here has an additional 860 

implicit vertical component: flexible plant mass enters the system via growth through a central stock 861 

𝑃 
𝑠𝑡𝑒𝑚(𝑡), from where it is divided among 𝑃𝐿

𝑓𝑙𝑒𝑥(𝑡) and 𝑃𝑅
𝑓𝑙𝑒𝑥

(𝑡). From there on, flexible plant mass may 862 

switch sides or leave the system. Switching sides in the model corresponds to bending of the plant stem. 863 

An equal distribution of mass between left and right means that the plant has grown a perfectly upright 864 

stem. 865 

CASUs above each lateral compartment detect plants below themselves and adjust light emissions 866 

accordingly, thereby influencing the lateral movements of the plant tips. These CASUs are not explicitly 867 

modelled; instead, the variable 𝛬(𝑡) models the ratio between the two light intensities. The outgrowth 868 

terms correspond to the amounts of plant biomass that grows out of our model’s reference frame over 869 
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time. Consequently, the plant biomass changes in the three modelled state variables are given by 870 

balancing the flows between them in a system of three difference equations2, as is expressed by: 871 

 872 

Δ𝑃 
𝑠𝑡𝑒𝑚

Δ𝑡
 = 𝑖𝑛𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) − 𝑔𝑟𝑜𝑤𝑡ℎ𝑅

 (𝑡) − 𝑔𝑟𝑜𝑤𝑡ℎ𝐿
 (𝑡),       (P-1a) 873 

𝛥𝑃𝑅
𝑓𝑙𝑒𝑥

𝛥𝑡
=  𝑔𝑟𝑜𝑤𝑡ℎ𝑅

 (𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑖𝑛𝑑𝑖𝑣(𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝑅

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) −  874 

     𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑖𝑛𝑑𝑖𝑣(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝐿

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) − 𝑜𝑢𝑡𝑔𝑟𝑜𝑤𝑡ℎ𝑅
 (𝑡),     (P-1b) 875 

𝛥𝑃𝐿
𝑓𝑙𝑒𝑥

𝛥𝑡
=  𝑔𝑟𝑜𝑤𝑡ℎ𝐿

 (𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑖𝑛𝑑𝑖𝑣(𝑡) + 𝑠𝑤𝑖𝑡𝑐ℎ𝐿

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) −  876 

       𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑖𝑛𝑑𝑖𝑣(𝑡) − 𝑠𝑤𝑖𝑡𝑐ℎ𝑅

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) − 𝑜𝑢𝑡𝑔𝑟𝑜𝑤𝑡ℎ𝐿
 (𝑡).     (P-1c) 877 

 878 

The individual flows of equations P-1a,b,c are detailed in the following equations. Plant mass enters the 879 

system exclusively via a constant growth rate adding to the system variable 𝑃𝑠𝑡𝑒𝑚(𝑡): 880 

 881 

𝑖𝑛𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) = 𝜌𝑖𝑛,           (P-2) 882 

 883 

where 𝜌𝑖𝑛 is the growth rate determining the influx into the system. Next, the already-existing plant 884 

biomass in 𝑃𝑠𝑡𝑒𝑚(𝑡) grows further upwards and is split into additions to the system variables that model 885 

plant biomass on the left and right side:  886 

 887 

𝑔𝑟𝑜𝑤𝑡ℎ𝑅
 (𝑡) = 𝑃 

𝑠𝑡𝑒𝑚(𝑡) / 2,          (P-3a) 888 

𝑔𝑟𝑜𝑤𝑡ℎ𝐿
 (𝑡) = 𝑃𝑠𝑡𝑒𝑚(𝑡) / 2.          (P-3b) 889 

 890 

Plant mass can switch between these two sides via two basic mechanisms: with or without interactions 891 

with plant mass on the contralateral side. The individual phototropic movement toward the light is 892 

modelled as  893 

 894 

 

2 We used the forward Euler integration method instead of the Runge-Kutta method to solve equations P-1a,b,c, thus, for the 

plant model, we use difference equation notation, instead of the differential equation notation that was used for the bee and the 

fish model. Runge-Kutta integration was precluded by the non-differentiable binary switching of the lights. 
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𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑖𝑛𝑑𝑖𝑣(𝑡) = 𝛼𝑝𝑙𝑎𝑛𝑡 ⋅ 𝑋𝑅

𝑖𝑛𝑑𝑖𝑣(𝑡) ⋅ 𝑃𝐿
𝑓𝑙𝑒𝑥

(𝑡) ⋅ 𝛬(𝑡) and      (P-4a) 895 

𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑖𝑛𝑑𝑖𝑣(𝑡) = 𝛼𝑝𝑙𝑎𝑛𝑡 ⋅ 𝑋𝐿

𝑖𝑛𝑑𝑖𝑣(𝑡) ⋅ 𝑃𝑅
𝑓𝑙𝑒𝑥

(𝑡) ⋅ (1 − 𝛬(𝑡)),      (P-4b) 896 

 897 

where 𝛼𝑝𝑙𝑎𝑛𝑡 is a constant parameter controlling the rate (limited by the bean kinetics of circumnutation 898 

and phototropism) and two independent, normally distributed noise functions 𝑋𝑖𝑛𝑑𝑖𝑣(𝑡) ∼ 𝑁(𝜇 = 1, 𝜎 =899 

𝜎𝑝𝑙𝑎𝑛𝑡) with the deviation 𝜎𝑝𝑙𝑎𝑛𝑡 ∈ [0,1]. The variable 𝛬(𝑡) ∈ [0,1] models the ratio between the light 900 

intensities on the left and on the right side, with the value 0.0 corresponding to all light on the left side. 901 

More specifically, the definition of 𝛬(𝑡) depends on the capabilities of the used CASUs and the algorithm 902 

running on them (see Equations P-7 to P-9). 903 

Several studies and models (see e.g., Mugnai et al. 2015) attribute the observable circumnutation to the 904 

fact that within the growing shoot, cells on opposing sides interact via physical (mechanical) forces. Cells 905 

on one side of the elongation zone sometimes grow stronger than those on the opposing side. This 906 

asymmetrical growth bends the tip toward the opposing side. However, bending is limited to some extent 907 

by the mechanical integrity of the plant: it is expected to be easier for the plant to go from a relaxed 908 

(balanced) state to a bent state than to bend even more when already bent. In consequence, we model 909 

circumnutation as the social part (which involves interactions of biomass from both sides) of the flows 910 

between the sides as 911 

 912 

𝑠𝑤𝑖𝑡𝑐ℎ𝑅
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑝𝑙𝑎𝑛𝑡 ⋅ 𝑋𝑅

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ⋅ 𝑃𝐿
𝑓𝑙𝑒𝑥

(𝑡) ⋅ 𝑃𝑅
𝑓𝑙𝑒𝑥

(𝑡),      (P-5a) 913 

𝑠𝑤𝑖𝑡𝑐ℎ𝐿
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝛽𝑝𝑙𝑎𝑛𝑡 ⋅ 𝑋𝐿

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ⋅ 𝑃𝐿
𝑓𝑙𝑒𝑥

(𝑡) ⋅ 𝑃𝑅
𝑓𝑙𝑒𝑥

(𝑡).      (P-5b) 914 

 915 

Circumnutation is expressed by a normally distributed noise term 𝑋𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) ∼ 𝑁(𝜇 = 1, 𝜎 = 𝜎𝑝𝑙𝑎𝑛𝑡), 916 

which scales a mass-action-law term (𝑃𝐿
𝑓𝑙𝑒𝑥

(𝑡) ⋅ 𝑃𝑅
𝑓𝑙𝑒𝑥

(𝑡)) to consider the interaction between groups of 917 

cells on opposing sides of the plant. This scales the noise amplitude in a way that more change is assumed 918 

to arise under balanced conditions and less in already unbalanced configurations. The constant 𝛽𝑝𝑙𝑎𝑛𝑡 919 

scales this process in proportion to the light-following process, which is weighted by the coefficient 920 

𝛼𝑝𝑙𝑎𝑛𝑡 (in Equations P-4a,b). Finally, plant biomass leaves the system by growing out at the top on each 921 

side, which is modelled as 922 

 923 

𝑜𝑢𝑡𝑔𝑟𝑜𝑤𝑡ℎ𝑅
 (𝑡) = 𝜌𝑜𝑢𝑡 ⋅ 𝑃𝑅

𝑓𝑙𝑒𝑥
(𝑡),         (P-6a) 924 

𝑜𝑢𝑡𝑔𝑟𝑜𝑤𝑡ℎ𝐿
 (𝑡) = 𝜌𝑜𝑢𝑡 ⋅ 𝑃𝐿

𝑓𝑙𝑒𝑥
(𝑡),         (P-6b) 925 

 926 

with 𝜌𝑜𝑢𝑡 expressing a constant growth rate coefficient. 927 
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The light ratio variable 𝛬(𝑡) ∈ [0,1] models the combined light output of the two robots in a single 928 

dimensionless variable, that states where light is focused on the horizontal axis of the system. Physical 929 

quantities of light are not explicitly modelled: When both robots output the same amount of light (even 930 

none), 𝛬(𝑡) = 0.5. Values smaller (larger) than 0.5 model indicate shifts to the left (right). The function 931 

generating this value defines the CASU’s capabilities and how they are employed to enable feedback 932 

loops in the system. 933 

We define a plant inhomogeneity metric 𝛶(𝑡) to express the imbalance between plant biomass on both 934 

sides 935 

 936 

𝛶(𝑡) = 0.5 ∙ (
𝑃𝑅

𝑓𝑙𝑒𝑥
(𝑡) − 𝑃𝐿

𝑓𝑙𝑒𝑥
(𝑡)

𝑃𝑅
𝑓𝑙𝑒𝑥

(𝑡) + 𝑃𝐿
𝑓𝑙𝑒𝑥

(𝑡) + 1
+ 1).        (P-7) 937 

 938 

This inhomogeneity has similar properties as the light ratio 𝛬(𝑡), i.e., 𝛶(𝑡) ∈ (0,1), with 0.5 939 

corresponding to an equal distribution of plant mass between the two sides. The division term computes 940 

the relative difference between plants on both sides. However, because of the “+1” in the denominator, 941 

the extreme values 0.0 and 1.0 will never be produced, hence the open interval. Very small amounts of 942 

total plant mass in the system will produce values close to the centre, analogous to freshly germinated 943 

shoots, which are physically unable to move away far from the centre due to their short stem. Increasing 944 

plant mass allows for a greater reach of the tip. 945 

We can also interpret the metric 𝛶(𝑡) as a result of the combined plant detection of the two CASUs, 946 

allowing us to model simple CASU behaviours that impose positive or negative feedback loops onto the 947 

biohybrid system. For example, to model CASUs that emit more light when they detect more plants, a 948 

positive feedback function for the light ratio 𝛬𝑝𝑜𝑠𝐹𝐵(𝑡) can be defined: 949 

 950 

𝛬𝑝𝑜𝑠𝐹𝐵(𝑡) = 𝛶(𝑡)  + 𝑋𝑑𝑒𝑡𝑒𝑐𝑡(𝑡),         (P-8) 951 

 952 

with a normally distributed noise function 𝑋𝑑𝑒𝑡𝑒𝑐𝑡(𝑡) ∼ 𝑁(𝜇 = 0, 𝜎 = 𝜎𝑝𝑙𝑎𝑛𝑡𝐶𝐴𝑆𝑈) that accounts for 953 

imperfect plant detection by the CASUs. Systems with a light ratio computed this way will only fluctuate 954 

shortly (due to the random noise in plant mass movements and plant detection), before concentrating all 955 

plant mass on one side. Similarly, the negative feedback function 𝛬𝑛𝑒𝑔𝐹𝐵(𝑡) can be modelled by simply 956 

mirroring the plant ratio 𝛶(𝑡): 957 

 958 

𝛬𝑛𝑒𝑔𝐹𝐵(𝑡) = 1 − 𝛶(𝑡)  +  𝑋𝑑𝑒𝑡𝑒𝑐𝑡(𝑡),        (P-9) 959 

 960 

Here, detected plant mass decreases the light output of a robot. This leads to systems where plant mass is 961 

equally distributed between both sides in the long run, with deviations from a perfectly adequate light 962 
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ratio only due to the detection noise 𝑋𝑑𝑒𝑡𝑒𝑐𝑡(𝑡). Noise in plant motion (𝑋𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) and 𝑋𝑖𝑛𝑑𝑖𝑣(𝑡)) causes 963 

additional fluctuations around an equal distribution of plant mass. 964 

A value of 𝛬(𝑡) other than 0.0, 0.5 or 1.0 does not necessarily mean that the CASUs need to be able to 965 

modify the intensity of the light they emit, but can also be understood as the ratio between the relative 966 

times each CASU was switched on within the time window corresponding to a single time step in our 967 

model. Conversely, binary functions (that return either zero or one) for a given time step can be defined 968 

just as well. Such a binary function is utilized in the experiment described in the next section (Equation P-969 

10). 970 

3.3.2 EXPERIMENTS WITH ROBOTS & PLANTS 971 

We showcase the model mimicking the behaviour of the closed-loop bean tip controllers artificially 972 

evolved in Hofstadler et al. 2017 (Fig. 11). The task is to guide a single growing and nutating tip through 973 

specific targets on the 2D plane of the camera projection during its (growth-)journey through the image. 974 

The two light sources in the system are both binary (either on or off) and mutually exclusive (one and 975 

only one is on at any given time). The plant tip is detected continually by image processing, and its 976 

position - along with the current target position - is passed to an artificial neural network that decides 977 

which side to light up. The light-emitting behaviour of the CASU control software that was retrieved by 978 

artificial evolution is simple: If the plant tip below is detected left of the current target, then turn on the 979 

right light and vice versa. Here we directly implement this rule in the definition of the light ratio 𝛬(𝑡). 980 

 981 

To scale the model to the dimensions of the experiment, we first interpret the time-axis as an 982 

approximation of the vertical position of the bean tip (assuming a constant growth rate and ignoring 983 

geometrical constraints caused by bean stems curved in 3D space). Second, we treat the inhomogeneity 984 

metric of flexible plant mass 𝛶(𝑡), as defined in Equation P-7, as the current horizontal position of the tip.  985 

The target’s horizontal position 𝛤(𝑡) is defined in the scale of the plant inhomogeneity metric 𝛶(𝑡) ∈986 

(0,1) and then mapped to the time-axis (in minutes) such that 𝛤(𝑡) = 0.85 while 0 ≤ 𝑡 ≤ 640, 𝛤(𝑡) =987 

0.2 while 641 ≤ 𝑡 ≤ 880 and 𝛤(𝑡) = 0.5 while 881 ≤ 𝑡 ≤ 1200. To mimic the behaviour of the 988 

artificially evolved tip-guiding controller we define the light ratio function 𝛬(𝑡) as 989 

 990 

𝛬(𝑡) = {
1
0

 
 
…   𝑖𝑓 𝛶(𝑡) < 𝛤(𝑡)

… 𝑒𝑙𝑠𝑒
.         (P-10) 991 

 992 

If the plant tip (𝛶(𝑡)) is left of the target’s horizontal position 𝛤(𝑡), switch on the right light and vice 993 

versa. We do not include a term for the detection error 𝑋𝑑𝑒𝑡𝑒𝑐𝑡(𝑡), because in the experiments modelled 994 

here, the tip detection via image processing worked almost perfectly. 995 

The simulation starts with all system variables empty (i.e., 𝑃 
𝑠𝑡𝑒𝑚(0) = 𝑃𝐿

𝑓𝑙𝑒𝑥
(0) = 𝑃𝑅

𝑓𝑙𝑒𝑥
(0) = 0.0) and 996 

runs until time step 𝑡 = 1200. 997 

An exemplary run of the simulation (with the parameters given in Fig. 2C) is shown in Figure 11 next to 998 

the recorded history of a bean plant controlled by a neural network artificially evolved in Hofstadler et al. 999 
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(2017). The model successfully produces trajectories closely resembling those of real plants in the 1000 

showcased scenario, with larger variations in horizontal tip position, when the target is located centrally. 1001 

 1002 

3.4 THE NEXT STEP: LEAVING THE LAB AND BRINGING THE ROBOTS INTO THE 1003 

WILD 1004 

To achieve our goal of stabilising ecosystems, the robots will have to leave the controlled laboratory 1005 

conditions and interact with ecological keystone species in natural environments. The stimuli that were 1006 

tested under laboratory conditions can serve as a starting point to allow the robots to interact with the 1007 

animals. However, we assume that these stimuli patterns will then need to be further optimised to work in 1008 

this out-of-the-lab context. Here we show that influencing the decision-making of an entire colony of 1009 

honeybees is also possible outside of laboratory conditions. We take advantage of the dual nature of 1010 

managed honeybee colonies: On the one hand, the western honeybee is a farm animal, bred for economic 1011 

purposes and cannot be considered a completely wild animal. Thus, many aspects of the colonies' lives 1012 

are already highly controlled by humans (e.g., hive location, hive volume, and materials of the beehive); 1013 

on the other hand, the animals live very self-sufficiently compared to other farm animals and organise and 1014 

control themselves to a large extent autonomously (e.g., foraging location, foraging plant, internal hive 1015 

organisation, …). Therefore, we work with animals outside of laboratory conditions that have access to a 1016 

natural habitat and interact with wild plants and animals, but still under relatively controlled conditions. 1017 

The experiments described in this section show how subtle physical cues generated by technical means 1018 

can alter the hive-internal behaviour, while maintaining the free access of the colony to a natural 1019 

environment and foraging in the wild. Influencing certain hive-internal behaviours can directly modulate 1020 

the colony’s interaction with the ecosystem. For example, foraging side information transfer by dance 1021 

communication can be inhibited by introducing artificial dance recordings, reducing the recruitment of 1022 

new foraging bees (Kirchner 1993), or honeybee flight activity can be suppressed all together by 1023 

introducing artificial substrate vibrations (Spangler 1969). 1024 

These experiments pose new challenges: The autonomous technical artifacts not only have to deliver 1025 

precise stimuli to the animals, they must also evaluate the behaviour of the animals under difficult 1026 

conditions and moreover, must be integrated into the environment in such a way that the regular 1027 

organismic processes are not disturbed. For actively intervening in a honeybee colony, a more integrated 1028 

form of “robot” is required. These robots have to be so pervasive in the colony that the whole honeycomb 1029 

becomes a bio-hybrid robot. In order to achieve such a biohybrid system, we placed sensors and actuators 1030 

in-between the areas accessible for bees (the comb surface). The airflow (900 - 950 cm³/s) is generated 1031 

outside the hive and is introduced into the colony through a pipe (diameter = 4mm), the used vibration 1032 

stimulus patterns (sine wave, frequency = 1000Hz) are generated by thin piezo elements embedded in the 1033 

wax comb and temperature stimuli (energy input = 2W / comb, power density = 0.0053 W/cm²) are 1034 

achieved by flat thermal elements in combination with small temperature sensors also embedded in the 1035 

comb. More detailed diagrams of the experimental setups and additional information are given in Figure 1036 

12A-D. Figures 13A-I show the observed effects of these three stimulus types on an augmented 1037 

honeycomb in a full honeybee colony. The airflow stimulus shows to temporarily displace bees from 1038 

certain locations on the honeycomb; the vibration stimulus shows to influence the honeybees' movement 1039 

activity; and artificial energy input at certain positions of the comb show to influence the brood nest 1040 

position. This system could allow to interrupt the dancing behaviour (by airflow or vibration stimuli) and 1041 

thus alter the transfer of various sources of environmental information from outside the hive to the 1042 

colony. Inhibiting certain behaviours could also lead to the increase of forager recruitment, in-turn 1043 

increasing pollination flights. The queen can also be prevented from laying eggs in the short-term or at a 1044 

specific location (either by airflow or vibration stimuli), or egg laying can be influenced in the long-term 1045 

by influencing in-hive temperatures. This in-turn can modulate the growth of the bee colony.  1046 
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These experiments show that, as a first step towards ecosystem stabilisation, in a full honeybee colony, 1047 

outside of laboratory conditions, artificial stimuli can be used to influence certain behaviours of 1048 

individual bees (through airflow or vibration stimuli) and of the colony as a whole (through artificial 1049 

energy input). These influenceable behaviours are related to the honeybee interactions with their 1050 

ecosystem. 1051 

 1052 

4 Discussion 1053 

Human well-being crucially depends on strong, healthy and diverse ecosystems. The services that 1054 

ecosystems offer us range from providing food from primary producers and from higher trophic layers, to 1055 

protecting our soils and cleaning our waters. They provide us with pharmaceuticals, energy, waste 1056 

decomposition, climate regulation, pest and disease control. And, not to forget, they give us joy and 1057 

inspiration, which we get from experiencing them all around us, inspiring us to arts and even science 1058 

itself. For a sophisticated overview of dependencies between human society and ecosystem services, see 1059 

Corvalan et al. (2005).  1060 

In this paper we described the severe problem of today’s ecosystem decay and we identified central 1061 

processes that are coupled in a vicious-cycle-type feedback loop that likely makes this problem auto-1062 

catalysing (Fig. 1) as our key motivation to develop the hypothesis that autonomous robots could play an 1063 

active role in slowing down or even reversing this decay in the future. In order to act in such a role, these 1064 

robots will need to interact with living organisms in a way that allows them to influence the behaviour of 1065 

groups or even populations of their living counterparts in a desired way. Thus, in some sense these robots 1066 

need to exert control over their organismic counterparts. We identified that social interaction might be 1067 

one of the key factors here, as social systems tend to be self-organising systems where modest modulation 1068 

of a few actors (Halloy et al. 2007, Bonnet et al. 2018) or of some small-scale local environment (Bonnet 1069 

et al. 2019) can already change the collective local densities, which is known to be a fundamental factor 1070 

in ecological interactions: It is a long-established fact that systems like predator-prey systems (Lotka 1071 

1925, Volterra 1926), host-parasite systems (Anderson & May 1978), epidemic spread dynamics 1072 

(Kermack & McKendrick 1927), intra-specific competition (Verhulst 1845) and inter-specific 1073 

competition (Smale 1976) are strongly driven by local population densities, not only affecting population 1074 

dynamics but also relevant for their future configuration through natural selection (Hardin 1960). In short, 1075 

there is no ecologically-relevant interaction amongst organisms that is not affected by the local density 1076 

distributions of organisms. Recently, the field of robot-animal interaction studies has bloomed, also 1077 

highlighting that robots are capable of affecting especially this factor, either by modulating aggregations 1078 

or dispersal, or by directly influencing an organism’s motion behaviour.  1079 

Importantly, this characterisation highlights interesting pivotal points for novel types of intervention. We 1080 

outlined how technological systems (autonomous robots, CASU arrays) interacting with biological 1081 

collectives (swarms, societies, communities) are able to influence specific natural processes 1082 

(coordination, aggregation, growth, activity levels) which ultimately affect ecosystem dynamics and 1083 

stability. Thus, these technological artifacts may act upon the causal loop of ecosystem stability or decay. 1084 

We outlined general approaches for bio-hybrid systems’ design, as well as the state of the art in the 1085 

relevant scientific and technological progress. While we have not shown robots that actually repair 1086 

ecosystems in the field in this study, we have been investigating the main prerequisites here to support 1087 

our key hypothesis of possible robotic ecosystem stabilisation.  1088 

We demonstrated that robotic agents can modulate key organismic behaviours in a way that our family of 1089 

models can predict concerning the collective dynamics across several empirical studies involving diverse 1090 
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species. Importantly, all three models share the same core structure to describe changes in decision-1091 

making, comprising individual and social processes. This commonality amongst the models indicates the 1092 

feasibility of a more general application of such an organismic augmentation of natural societies with 1093 

robotic agents in as-yet unexamined species, provided analogous social dynamics and generatable signals 1094 

can be identified. Additionally, the preliminary work towards modulating “wilder”3 systems lends support 1095 

to the technical feasibility of short or long-term animal-robotic interaction outside of laboratory 1096 

environments, which could also be used as a bridge to exchange information between various ecosystems 1097 

(Bonnet et al. 2019). Together, these prerequisites begin to form the foundations of a technology to allow 1098 

us to test our key hypothesis: Autonomous robotic agents can take a vital role in the preservation and 1099 

stabilisation and maybe even in the repair of our precious ecosystems. 1100 

The first logical step towards rescuing ecosystems is not, of course, to just throw some robots at the 1101 

problem. Instead, as many studies suggest the first contingency policy must be altering human behaviour 1102 

and collecting insights into the relevant ecosystems, and also into the relevant socio-economic systems 1103 

that affect these ecosystems (Corvalan et al. 2005). For both, mathematical modelling, simulation and 1104 

complexity science are important fields to understand these systems. Using automatic robotic probes for 1105 

environmental monitoring (Thenius et al. 2018, Schofield et al 2010, Whitehead et al 2014) and 1106 

population estimation (Le Maho et al. 2014, Vas et al. 2015) can be the first line of a robotics-based 1107 

defence. 1108 

Robotic technologies have already been applied in ecological concerns, ranging from application of 1109 

commercial drones (e.g., Vas et al. 2015) to special-purpose robot swarms (e.g., Thenius et al. 2018). In 1110 

the latter, a swarm of (100+) autonomous robots was developed as a novel tool to observe large lagoon 1111 

areas, even urban ones like the Venice lagoon. In this system, each robot is capable of reacting to its past 1112 

measurements and potentially repositioning the swarm towards more interesting locations. These robots 1113 

interact with microbial life forms in order to generate the required energy, thus are self-sustained for long 1114 

operational times in an environmentally friendly way (Thenius et al. 2018, Donati et al. 2017). Using mud 1115 

as an energy source enabled autonomous operation for several months (Kumar et al. 2018), a very 1116 

interesting and eco-friendly power supply method for robots in the context we discuss here. 1117 

However, just monitoring and analysing might not be enough. At some point, intervention might be a 1118 

necessary step in the contingency. There are alternatives to using autonomous robots, however the most 1119 

often discussed ones are not unproblematic: Genetic alteration of existing species is one contingency 1120 

often discussed, but also often criticized due to the dangers that come with it (Marvier 2001, Devlin et al. 1121 

2015). Sometimes ecosystem restructuring is discussed (and partially already done) by bringing specific 1122 

species from other habitats in order to achieve desired effects, for example in “biological pest control” 1123 

(Hajek & Eilenberg 2018). However, as we have learned from a rich history of problems that occurred 1124 

with invasive species, also this contingency strategy is a dangerous path to go (Henneman & Memmott 1125 

2001, Simberloff & Stiling 1996). One imminent threat is that in both of these cases the “ecological 1126 

agents” are capable of reproducing and adapting, and thus they are capable of spreading in an 1127 

uncontrolled manner and, in parallel, of altering their original properties in the novel environment over 1128 

time. This is a risk that does not exist in robotics, as the production of these devices can be centralised in 1129 

contrast to decentralised self-reproduction of organisms, and updates can be deployed rapidly in the field 1130 

via GSM or other technology, eliminating mal-adaptations as soon as they are detected. However, it will 1131 

require solving other problems: First, relating to long-term robotics in the field (Yang et al. 2018), such as 1132 

material recycling, self-repair (Kriegman et al. 2019) and self-healing (Terryn et al. 2017) which aim to 1133 

 

3 We discriminate between “in the lab” experiments, which we analyzed and modelled here and “in the wild” applications, 

which we target in our current research tracks, based on the results that the previously-conducted laboratory experiments 

yielded. 
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maintain functionality even if failures occur or reduce the risks of failure while deployed, sources and 1134 

storage of energy (Kumar et al. 2018), and in principle a more environmentally friendly and sustainable 1135 

set of materials and technology. In this last respect, advances in manufacturing and materials sciences 1136 

such as the use of organic substrates in semiconductors (Torsi et al. 2013) and computing elements (van 1137 

de Burgt et al. 2018), and recent techniques combining 3D printing of ceramics and moulding of more 1138 

biocompatible materials (Puppi and Chiellini 2020) are all promising directions. Second, relating to 1139 

biocompatibility, which is essential for the robotic agents to successfully intervene in an ecosystem 1140 

(Baumgartner et al. 2020). Third, focusing on one keystone species, as we have argued, is the natural 1141 

place to start, but more complex networks of biology and technology are likely necessary.  1142 

Even though a robotic ecological agent does not suffer from the same issues as the biological 1143 

interventions discussed above, the use of technology in ecology raises several ethical concerns. It is thus 1144 

essential to be clear about the methods to be used. Measuring stress levels and welfare in animals is a 1145 

non-trivial task (Stamp-Dawkins 2004), and although it is certainly on the mind of some designers of bio-1146 

interacting robots (e.g., Vas et al. 2015, Le Maho et al. 2014), systemic ethical treatments are rare as they 1147 

are still in their infancy (Donhauser et al. 2020). We have argued above for robots to only emit stimuli 1148 

types and intensities that occur in the organism’s natural environment and that have no known negative 1149 

side-effects on the organisms. This limitation is based on ethical considerations, but also on ecological 1150 

ones. Using stimuli that are outside this natural range would potentially be incompatible with the 1151 

perception and response capabilities of the individual, and could potentially bring the society into a state 1152 

that is unknown and not coherent with its ecosystem, which is exactly what we try to avoid. 1153 

As soon as the plan is to leave the controlled environment, e.g., the lab, and to take the robots out into the 1154 

wild, more ethical considerations must be made. There are questions regarding who is responsible in the 1155 

case of a system failure (Gremillet et al. 2012) or for maintaining technology that supports an ecosystem 1156 

(Donhauser et al. 2020).  Moreover, the potential disturbance caused by robotic devices during their 1157 

operation (Le Maho et al. 2014) and after a system failure (Borrelle & Fletcher 2017) are important 1158 

concerns, which may be partially addressed through biocompatible design and biodegradable material 1159 

choices, as noted above. There are some valuable lessons from the retrieval of bio-sensors after 1160 

deployment (see e.g., Fossette et al. 2016). More generally, self-monitoring and identification of system 1161 

degradation could be used to trigger a retrieval of the robot before failures result in unrecoverable devices 1162 

polluting the environment intended to be supported. Although a robot’s ability to integrate into biological 1163 

societies is usually emphasised (e.g., Papaspyros et al. 2019), a mode in which the reverse is emphasised, 1164 

i.e., a non-influencing mode could be employed to depart an animal collective with minimal disruption. 1165 

Even more fundamental questions have to be asked and answered in future research: Do we understand 1166 

enough about the effects that populations, modulated by robots, will have in the environment? Can we 1167 

observe what is going on, in order to monitor the efficiency of the new biohybrid system and to detect 1168 

potential side-effects? Can the system be restored to full self-sufficiency and if so, what is the exit 1169 

strategy? Else, how can we avoid the development – and possibly evolution – of a deepening dependency 1170 

of the natural system on the robots? Is there a sufficient benefit to justify robotic intervention in the 1171 

ecosystem, compared to the risks mentioned above that this intervention could induce on the ecosystem? 1172 

For answering these questions, a profound knowledge of the modulated species and their ecological 1173 

interaction partners is crucial, demanding sophisticated basic research on the physiology and ecology of 1174 

these species and their interaction partners.  1175 

Social interaction offers an easy entry point for robots that they can exploit to engage with natural 1176 

organisms. By modulating these social interactions, ecological key variables can very easily be affected, 1177 

most prominently population densities, which in turn affect competition rates, mate-finding rates but also 1178 

the spreading of parasites or infectious diseases. Each of these issues has received attention but much is 1179 
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left to be done. Thus, modelling the modulation of social interactions by autonomous robotic systems is a 1180 

key aspect to understand and predict such biohybrid interaction systems. 1181 

All three models that we have developed for predicting the dynamics emerging in the investigated 1182 

biohybrid systems of robots associated with bees, fish and plants have significant similarities amongst 1183 

them, suggesting a sort of “common core” mechanism across this very diverse spectrum of organisms. 1184 

Abstract ODE models of such systems have been used only rarely in the past, e.g. for describing a bio-1185 

hybrid setup of cockroaches and robots (Halloy et al. 2007), however, our models presented here are 1186 

significantly simpler given their level of non-linearity and the number of parameters to describe the 1187 

animals’ behaviours, mainly describing a sort of homeostasis-like regulated system of diffusion of 1188 

organisms. Despite some organism-specific differences, the striking similarity between all three models 1189 

suggests that we have encapsulated a core principle of organismic population density control that can be 1190 

used to allow robots to manipulate local organism densities. 1191 

Simplicity and wide application: Besides being all systems of ODEs that are numerically solved (see 1192 

Figure 2E) that describe collective binary decision making (bees left vs. bees right, fish CW vs. fish 1193 

CCW, plants left vs. plants right, see Figure 2A,B,C,F), our three models all ensure conservation of mass 1194 

within the reference frame they describe. The bee model and the fish model are both totally closed 1195 

systems and the plant model has one defined entry (source) and two defined exit points (sinks), and full 1196 

mass conservation between these processes. When applied to larger populations on the long term, there 1197 

will surely be a need to extend these models to allow additional biomass influx (reproduction) and outflux 1198 

(death) in respect to the modelled systems. The basic model structure (Figure 2F) allows for separating 1199 

specific ecologically-relevant behavioural processes within the natural organism populations. For 1200 

example, by adjusting the ratio of 𝛼: 𝛽, the specific contribution of individual (𝛼) and social behaviour 1201 

(𝛽) can be adjusted in the systems in all modelled species. These parameters govern the weight of terms 1202 

that are modelling natural processes that are affected by noise and the relevant stimuli (see Figure 2D,F). 1203 

In each of the social interaction equations of the different organism groups (equations B-3, F-6, P-5), 1204 

there are two constant parameters which define the ratio of exploitative (𝛽) and explorative behavioural 1205 

components (𝜎). Adjusting the ratios of 𝛽: 𝜎 allows the model to capture the exploitation-exploration 1206 

trade-off of specific organism groups or species. In consequence, by varying the ratio of all three 1207 

parameters together 𝛼: 𝛽: 𝜎, the model can predict the ultimate macroscopic effects of a rich set of 1208 

microscopic behavioural repertoires in a rather simple system of ODEs, including the modelling of the 1209 

effect of robotic actors within the system. These striking similarities between all three models suggests 1210 

that we have encapsulated a core principle of organismic population density control that can be used to 1211 

allow robots to manipulate local organism densities. The simplicity of the modelling approach is also 1212 

valuable because it can guide what factors robots should modulate and in which direction. For example, a 1213 

mechanism for guided aggregation will adjust the social switching parameter, while guided locomotion 1214 

could affect the 𝛽: 𝜎 ratio. 1215 

Downsides of simplicity: The simple approach to modelling naturally yields some limitations in how 1216 

much of the dynamics can be captured.  As is the case with most ODE models, no population structure is 1217 

modelled, i.e., it is considered as freely mixed for example concerning age, sex, health and other 1218 

physiological states.  The broad trends are well captured but the variability that typifies organismic 1219 

behaviour is not present in the model results presented above. We consider this to be one of the main 1220 

reasons why our model predicts a significant lower variance in local population dynamics than observed 1221 

in the empirical experiments. Typical for ODE models, agents are modelled as infinitesimally small, thus 1222 

effects like traffic jams cannot occur if not explicitly modelled into the equations.  Also typical for ODE 1223 

models, interaction and sensing of the modelled entities is not limited per-se to a limited range, again 1224 

allowing more coherent action and thus lower variations. 1225 
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Elsewhere we have employed individual-based modelling for some of these bio-hybrid systems that 1226 

shows more variability (e.g., Mills et al. 2015, Stefanec et al. 2017a), but at the cost of generality. 1227 

The lack of observable variance predicted in converged situations of the described systems can also be 1228 

due to the simplicity of our model approach. On the one hand the model might exhibit a larger variance if 1229 

it contained a third stock variable representing the undecided, thus more diffusing organisms, like it was 1230 

modelled in (Schmickl et al. 2009a, Schmickl et al. 2009b, Kernbach et al. 2009). On the other hand, even 1231 

such an extended model can still exhibit a low variance in its predictions, due to the implicit base 1232 

assumptions of ODE models in principle, such as the assumption of optimal mixing and distribution of 1233 

the modelled agents in space within the areas modelled by each system variable. In this case a step to 1234 

spatially explicit individual-based models and spatially more heterogeneous models, like cellular 1235 

automata (Szopek at al. 2017) or multi-agent models (Stefanec et al. 2017b) might be more suitable to 1236 

capture the effects of higher variances that are often observed in natural, and thus physically manifested, 1237 

systems.  1238 

Actionability: We went beyond the usual benefits of mere modelling and beyond the three specific 1239 

biohybrid systems that we touched in this article. In our methodologic approach, mathematical models of 1240 

biohybrid systems serve a significantly deeper purpose: The predictions and analyses of such 1241 

mathematical models allowed us to identify which natural reactions of the organism are the best to be 1242 

utilized as “social interaction hooks”, most likely allowing the robots to blend into the natural organismic 1243 

system. Thus, these models suggest promising robot design directives by indicating how the principles of 1244 

guided aggregation and guided locomotion can be implemented as a set of microscopic mechanisms of 1245 

the robots in order to exert the desired control of specific macroscopic key variables of the collective 1246 

system, e.g., local density or group motility. These variables are known to have significant effects on 1247 

many important ecological processes, such as competition, reproduction, parasitism and mutual 1248 

reciprocity (symbiosis). We found that the type of mathematical models that we present here, which are 1249 

rather simple and thus abstract, already prove quite helpful, as they sufficiently predict the macroscopic 1250 

group-level dynamics emerging from individual microscopic actions that are executed in parallel and in a 1251 

distributed manner. Thus, even such simple models already inform us which variables to adjust in the 1252 

individual robots’ behaviours in order to exploit the appropriate set of cues in the system to ultimately 1253 

achieve the desired group level dynamics and system properties. 1254 

Scalability: In our article we have first described small-scale experiments that were conducted in the form 1255 

of binary decisions. This is the smallest relevant system, as its state space can be compressed into 1 bit of 1256 

information in order to sufficiently describe it. These small-scale experimental models allowed us to 1257 

generate small-scale mathematical models that were sufficiently accurate in predicting the systems final 1258 

state and the time dynamics of state changes. These building blocks can then be used to find out which 1259 

physical properties have relevant effects that will potentially also operate on the larger scale. This scaling-1260 

up prediction can be derived from using our simple systems of ODEs to construct larger systems of 1261 

ODEs. Such a model would take a “system of systems” perspective of a larger space.  For example, the 1262 

model could arrange the ODE-based building blocks into a lattice where each node in the lattice is one 1263 

small-scale ODE system that is interacting with its local neighbour systems via diffusion flows. These 1264 

flows can represent the motion (taxis or tropisms) of the modelled organisms. After finding appropriate 1265 

robotic regimes for the desired pattern formation induced within the organismic population, these 1266 

principles can be tested under laboratory conditions by larger robot swarms or arrays to see if they also 1267 

work as expected in a larger-scale physical implementation. Finally, such systems can be applied with 1268 

organisms that interact with other organisms “in the wild”, as we demonstrated with honeybees as a proof 1269 

of principle in section 3.4. Figure 14 gives an overview of a 10+ years research track that we started with 1270 

simple honeybee experiments with young baby bees in laboratory conditions with two fixed heat lamp 1271 

spots or with two simple vibration motors taken from cell phones (Fig. 14A, diverse other setups not 1272 
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shown here, see for example Scheiner et al. 2013), via a robot that can emit such stimuli autonomously 1273 

and with exhibiting its own agency (Fig. 14B), to a model of two such robots (Fig. 14C), to a scaled up 1274 

model depicting the dynamics across larger areas (Fig.14D), to a full array of 64 autonomously acting 1275 

robots (Fig. 14E), to finally be implemented on combs of a full-fledged honeybee colony that successfully 1276 

forages for pollen and nectar in the environment being affected via a comb-embedded system of such 1277 

stimuli-emitters and sensors (Fig. 14F, G). 1278 

 1279 

Having such autonomous robots weaving additional and controllable interaction threads into the fabric of 1280 

natural ecosystems might, in the future, allow the stabilisation of endangered ecosystems that lost their 1281 

intrinsic resilience due to anthropogenic influences like global warming, industrial pollution, over-1282 

harvesting or massive farming. To get such biohybrid systems operational and exhibiting the desired 1283 

ecological effect without a human in the loop curating the system will be an extremely challenging task. It 1284 

will require important progress in robotic biocompatibility, autonomy, flexibility, energetic efficiency, as 1285 

well as towards robotic robustness and resilience. In contrast to almost all technical artifacts that we know 1286 

of today, natural organisms can heal, reproduce and adapt. All these features help them to survive in the 1287 

wild and are thus crucial for spreading and covering large habitats. The state of the art in autonomous 1288 

robotics in these domains is far from a level of sophistication that would allow us to spread robots without 1289 

human intervention and curation on a comparable long-term and on a large scale. Ultimately, the creation 1290 

of such ecosystem-stabilising robotic systems is a far-reaching goal, that we all hope not to be needed in 1291 

the end, as we hopefully manage to stabilise and repair our earth’s ecosystems with more conventional 1292 

methods. However, if we will need such a technology to save or support our ecosystems, the relevant 1293 

research is just in its beginning stages and producing effective robots might take decades of research. To 1294 

operate such systems safely for humans and for nature, we think that much research on organisms, robots 1295 

and algorithms is still required. In our opinion, research in these topics must expand now, in the context 1296 

of allowing robots to operate in natural habitats, for us to be ready to employ them in case we might need 1297 

them in our future. 1298 
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 1598 

Figure captions 1599 

Figure 1. Causal loop diagram of the self-enhancing feedback loop of structural ecosystem decay, that is 1600 

the likely cause of the current massive decline of biodiversity. We indicate - with background colours - 1601 

the system components that can be influenced positively by autonomous technological artifacts (robots), 1602 

ultimately facilitating a technology-based stabilisation of fragile ecosystems. Blue boxes: Autonomous 1603 

robotic probes can measure, observe and monitor these significant properties and dynamics after being 1604 

integrated into organism groups. Orange boxes: Autonomous robotic agents can modulate these 1605 

significant processes after being integrated into the relevant organism groups. Green boxes: Natural 1606 

variables in ecosystems that are targeted by our proposed contingency strategy. At the causal link arrows, 1607 

“+” indicates positively correlated causations between system variables and “-” indicates negative 1608 

correlated causations. 1609 
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 1610 

Figure 2. Summarizing fact sheet of our models of bees, fish, plants and robots. (A) Basic structure and 1611 

model parameters of the bees-and-robots model. (B) Basic structure and model parameters of the fish-1612 

and-robots model. (C) Basic structure and model parameters of the plants-and-robots model. (D) 1613 

Overview of the modelled stimuli, the timing scale (how fast can they be emitted, how fast can they be 1614 

removed from the system, how persistent do they stay in the environment?), as well as the reaction they 1615 

trigger. (E) Overview of the used numerical solver method, time step size and used dimensions of time. 1616 

(F) Commonalities of the models: Overview showing the basic concept of all three modelling approaches 1617 

with a social and an individual component, and indicating which parameters and variables affect which of 1618 

these processes. 1619 

 1620 

Figure 3.  Augmentation of organismic populations may be implemented in three main forms (Mondada 1621 

et al. 2013). (A) By introducing mobile devices into the ecosystem. These agents are able to interact with 1622 

the natural organisms using specifically designed stimuli. (B) By adding fixed devices in the 1623 

environment. These devices exhibit agency and can create environmental conditions that have an impact 1624 

on the ecosystem, and specifically on the organisms that are addressed with the system. (C) By mounting 1625 

devices directly on the individuals and impacting their behaviour by an interaction that takes place 1626 

directly on their body. This way the animals become biohybrid agents themselves. 1627 

 1628 

Figure 4. Different types of setup in which robots can be used to interact with living organisms. (A) A 1629 

mobile robot can lead the organisms by emitting an attractive stimulus/exhibiting an attractive behaviour. 1630 

(C) A mobile robot can herd the organisms in a desired direction by emitting a repellent stimulus. (B, D) 1631 

An array of sensor-actuator nodes (CASUs) can exhibit patterns (either in time or space or both 1632 

simultaneously) of repellent and/or attractive stimuli to guide organisms (animals (B) or plants (D)) to a 1633 

desired place or in a desired direction. 1634 

 1635 

Figure 5. Examples of mobile robots (red frame) and immobile artifacts (blue frame) that can interact 1636 

with animals or plants by emitting various stimuli. (A)  Free moving fish robot with an active (tail-1637 

beating) lure that was developed in the project ASSISIbf for interacting with zebrafish. (B) Closeup of a 1638 

mixed swarm of fish robots (only coupled lures visible) and zebrafish. (C) Horizontal array of CASUs 1639 

that was developed in the project ASSISIbf for interacting with honeybees. (D) Closeup of one CASU 1640 

surrounded by honeybees. (E) Vertical array of CASUs, developed in the project flora robotica to guide 1641 

plant growth; inset frame shows a plant tip approaching the top-most robot (Figure “Main result; 1642 

predefined-pattern experiment”:  from Wahby at al. 2018 licensed under CC BY 4.0, colours modified). 1643 

(F) Closeup of a CASU to guide plant growth, surrounded by plants. 1644 

 1645 

Figure 6. Combined Actuator Sensor Unit (CASU) for bees developed in the project ASSISIbf and 1646 

experimental setups. (A) CASUs with surrounding honeybees: Above the arena floor, which is covered 1647 

with beeswax sheets, is the cylindrical top part that houses the 6 infrared sensors for bee detection 1648 

(sensing radius approx. 2cm) and the airflow nozzles. Below the arena floor is the bottom part of the 1649 

CASU with the heat-exchange and vibration devices and the air pipes (single-board computers connected 1650 

to the CASUs not shown). (B) Experimental setup for testing (B1) the natural symmetry breaking in 1651 
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collective decision making of bees in constant temperature fields, (B2) symmetry breaking in collective 1652 

decision making induced by vibration, (B3) collective decision-making modulated by airflows  and (B4) 1653 

the effect of robot-induced feedbacks on the symmetry breaking in collective decision-making. Solid 1654 

white line represents the evaluation area for counting the bees, divided by the dashed line (left side and 1655 

right side). 1656 

 1657 

Figure 7. Honeybee group decision-making in fixed environments, from empirical study and ODE model 1658 

as described in the text.  Two scenarios are considered: (1) a homogeneous environment, where the two 1659 

choices are equal at 28 °C, with N = 14 repetitions; (2) a heterogeneous environment, with one global 1660 

optimum of 36 °C and one local optimum of 32 °C, with N = 12 repetitions.  We measured the number of 1661 

bees on the side with the majority for the period 8 mins to 13 mins.  Since the group size differed between 1662 

the two experimental settings, we report in fraction of the total group. We also display the distributions of 1663 

fractions on the minority side. In setting (2) each bee group makes substantially stronger decisions than in 1664 

setting (1), where there is no environmental difference to select on.  Despite this, their social preference 1665 

means that in setting (1) we still observe bees forming aggregations on one or other side to some degree.  1666 

In both settings the model generates a lower variance but otherwise predicts the aggregation effect 1667 

corresponding to the empirical data. 1668 

 1669 

Figure 8. Effects of vibration, airflow stimulation and temperature on honeybee groups in empirical 1670 

experiments and in our mathematical model. (A) Vibrational patterns were used to guide aggregation by 1671 

moving the bees from an even distribution around the robots to an uneven distribution (N = 17    1672 

independent repetitions). The duration of the active vibration is indicated in the diagrams by the grey 1673 

background: 𝜓𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = 0.1 for 𝑡 ∈ [181,360]). In the first half of the experiment (𝜓𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = 0 for 𝑡 ∈1674 
[0,180]), the bees move around freely and do not show any preference for one side of the arena. After the 1675 

activation of the vibration (at time 𝑡 = 181), there are more bees on the vibrating side in both the 1676 

empirical experiments as well as in the mathematical model. (B) In this experiment an airflow stimulus 1677 

was used to reverse initial decision-making of honeybees in a temperature field containing a global 1678 

optimum temperature (36 °C at the ‘activated side’ of the arena) and a local optimum (32 °C, ‘passive 1679 

side’ of the arena), with N = 12 repetitions. The airflow was switched on at the robot on the warmer side 1680 

to guide dispersal, which happened in the empirical experiments at different times between minute 13 and 1681 

minute 15 as indicated by the grey background.  This airflow stimulus remained active for the rest of the 1682 

experiment. In the first phase of the experiment, more bees clustered around the warmer robot, while after 1683 

activation of the airflow stimulus at this robot, bees increasingly dispersed and then aggregated around 1684 

the other, cooler robot without airflow stimulus. These dynamics are replicated in the model results 1685 

(lower sub-panel). (C) Honeybee group decisions in modelling a robot-mediated thermal environment 1686 

with closed loop control and how this agrees with empirical data (empirical experiments, reported in 1687 

Stefanec et al. 2017a), and how the modelling results agree with empirical trends. N = 14 independent 1688 

repetitions in each setting. Since the binary choice offered to the bee groups is not a priori biased for one 1689 

side or the other, we report the number of bees on the majority and minority side within each repetition, 1690 

the analysis covers the last 5 mins. Three variants of the robot controller, as described in the text, lead to 1691 

qualitatively different collective decisions by the honeybee group. Specifically, with positive feedback 1692 

linking the local temperature to the local bee density causes strong decision-making; negative feedback 1693 

between bee density and temperature prevents aggregations building up; while the control runs with 1694 

constant 28 °C temperatures throughout are in between and with more variable distributions. The main 1695 

differences in how strong decision making occurs are reproduced by the model, although once again we 1696 
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see that the variance of distributions from the model are substantially reduced in comparison to the 1697 

empirical results. 1698 

 1699 

Figure 9: Experimental setup created to study the interactions in mixed groups composed of fish and one 1700 

or multiple robots. (A) (a) Experimental arena composed of two circular walls forming a circular corridor 1701 

to condition the behaviour of the agents (see also Fig. 9B). (b) Zebrafish moving inside the corridor. (c) 1702 

The fish-robot is composed of a miniature mobile robot (FishBot) and a lure, which is magnetically 1703 

coupled with the FishBot. (d) Support in which the FishBots are moving which provides the powering of 1704 

the system for long-duration experiments. (e) Top camera which captures the images that are used to 1705 

determine the position of the agents in real-time. (f) Bottom camera which captures the images to 1706 

determine the position of the FishBot. (g) Computer running the CATS software for tracking and closed-1707 

loop control of the robots in real-time. (B, C) The arena is composed of two circular walls of 19 cm and 1708 

29 cm radius respectively, which forms a circular corridor of 10cm width in which the zebrafish (h,j) can 1709 

move with the robot (i,k). With this configuration, the zebrafish either shoal in the CW or CCW direction, 1710 

and we can use one or several biomimetic robots to blend in with the shoal and influence the swimming 1711 

direction. Figure 9B shows the top view from the top camera that is used to process the positions of the 1712 

agents. 1713 

 1714 

Figure 10. Results of model and empirical data from experiments with robots and fish groups, 1715 

experiments F1-F3. (A) Comparing group-level direction choices between six fish (left) and a mixed 1716 

group of three fish with three robots that constantly swam in the same direction (right shows the whole 1717 

group, middle shows data for the three fish in the context of robots). Trends in the empirical data, from 1718 

N = 8 repetitions (Bonnet et al. 2018) are reflected in the model output. (B) Experiments with 5 fish and 1719 

1 fish robot that had an exogenously defined motion, switching direction in 1.4% of the timesteps, reveals 1720 

a correlation between the swimming direction of the fish group and the robot (empirical data from Bonnet 1721 

et al. 2019 with N = 24 repetitions). (D) Experiments with 5 fish and 1 fish robot that acted to reinforce 1722 

the swimming direction of the fish group (empirical data from Bonnet et al. 2019 with N = 22 1723 

repetitions).  The relationship between the fish robot direction and fish group decision is tighter in this 1724 

closed-loop setting than for the open-loop setting above. (C), (E) Equivalent output from our model for 1725 

experiments F2 and F3, showing the same trends as the empirical results. 1726 

 1727 

Figure 11: Plant experiment and simulation of binary-light-control guiding a plant tip to hit three targets 1728 

(shown with red crosses) during growth. (A) The image is compiled from five different timesteps of an 1729 

experiment reported in Hofstadler et al. 2017. For each timestep shown, the bean is mapped to a different 1730 

colour; the tip’s trajectory through the 2D projection plane of the images throughout the experiment is 1731 

overlaid (in yellow when the light comes from the left and blue otherwise). The emerging seedling is 1732 

shown in yellow (bottom-centre). In magenta, we see the bean when the plant tip was first detected. This 1733 

marks the beginning of phase I, where light mainly comes from the right side in order to keep the bean 1734 

below the first target (at a height of 9 cm and 4 cm to the right) until it is reached (red bean). In phase II, 1735 

the bean is guided to the second target (height = 12 cm, 3.5 cm to the left) on the left. Note the fast 1736 

reaction (~15 minutes) indicated by the yellow curve of the trajectory from the first target toward the left 1737 

side, when the light regime changes. Thereafter, phase II is again characterised by the typical oscillations 1738 

(due to circumnutation) below the target until it is reached (blue bean). In phase III, the target is located 1739 

centrally (height = 17 cm), leading to frequent light switching and larger horizontal movements of the tip. 1740 

The bean drawn in green has reached this final target. (B) A simulation run of the plant model (with 1741 
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parameters according to Fig. 2C). The vertical axis represents time (at one-minute resolution), instead of 1742 

the actual position projected onto the image plane. The targets have been placed according to the 1743 

simplification of a linear conversion of time into height (ignoring geometrical constraints and assuming a 1744 

constant growth rate). This implies that no downward motion of the tip is to be expected, since time 1745 

progresses linearly in our model. Our model aims to describe a plant tip’s behaviour from germination 1746 

onwards, while in the experiments with real plants, tip-detection only kicked in at a height of ~3.5 cm. 1747 

There is thus no basis for a comparison for these early timesteps. Furthermore, the model’s parameters are 1748 

not tuned to accurately represent this very early phase of growth. During phases I-III, behaviour very 1749 

similar (qualitatively) to the real plants can be observed. Keeping the tip below targets far from the 1750 

central axis requires light from the according direction most of the time. The final and central target 1751 

allows for larger horizontal motion and requires frequent shifts in light direction to keep the tip in 1752 

position, as observed in the real plants in (A). 1753 

 1754 

Figure 12. Setup diagrams of three stimulus types used to influence the decision-making of honeybees in 1755 

a full colony. (A) setup for guided dispersal through airflow; a) camera, b) observation hive with airflow 1756 

inlet, c) compressor (B) setup for activity modulation by vibration signals; a) camera, d) observation hive 1757 

equipped with piezo transducer, e) stimulus generator, f) amplifier (C) setup for influencing clustering 1758 

behaviour through temperature signals; a) camera, g) observation hive equipped with heating elements, h) 1759 

laboratory power supply (D) idealized stimulus time plot of i) airflow, j) vibration and k) energy input, 1760 

actuation duration for airflow and vibration was 10s, for heating 6 months. 1761 

 1762 

Figure 13. Effects of three stimulus types, which were first investigated on honeybees under laboratory 1763 

conditions, now employed in the context of a full beehive in the wild. Subfigures show the effect of these 1764 

stimuli in a "before/after" type comparison. (A-C) show the guided dispersal through airflow: (A) shows 1765 

the distribution of bees before the stimulus, (B) shows how the bees react to the stimulus (the arrow 1766 

shows the location of the airflow) and (C) shows the bee redistribution after the stimulus has ended. 1767 

(D,E) show the activity modulation by vibration signals, visualizing the movement on the honeycomb 1768 

over three points in time (with a difference of approx. 2 seconds). Each colour channel (red, green, blue) 1769 

represents the bee positions at one point in time. A lot of movement results in a colourful picture, little 1770 

movement in a dark picture. (D) shows normal movement on the honeycomb over a time span of 4 1771 

seconds, no artificial vibrational signal, (E) shows a 1000 Hz vibration signal that leads to significantly 1772 

less movement over 4 seconds. (F-G) show influencing behaviour through temperature signals: (F) shows 1773 

the bee distribution on a comb without active heat supply (day 0), bees are distributed over the entire 1774 

honeycomb, (G) the distribution of the brood nest area, bright spots indicate capped brood cells 1775 

containing larvae, distributed over the entire honeycomb (day 150). (H) shows the bee distribution on a 1776 

comb with active heat supply on the left side (marked red, day 150), bees are mainly on the left 1777 

honeycomb side, (I) shows the distribution of the brood nest area after active heat supply on the left side, 1778 

bright spots indicate capped brood cells, predominantly on the left side of the comb (day 60). For (G) and 1779 

(I), cells were made visible by background extraction of a stack of comb photos. 1780 

 1781 

Figure 14. Summary of the work process that we suggest for developing ecologically relevant 1782 

autonomous robotics. (A) Observing the interaction patterns of organisms. (B) Studying their reactions to 1783 

stimuli emitted by robots and also the robot’s sensing capabilities for relevant environmental 1784 

configurations. (C) Describing these interactions in small-scale specific models to identify relevant core 1785 

principles that can be used for larger-scale pattern formation. (D) Scaling these models up to larger, thus 1786 



 Social integrating robots suggest mitigation strategies for ecosystem decay 

47 

 

more relevant, sizes. (E) Testing scaled-up pattern formation in specific hardware equipment under 1787 

laboratory conditions in order to test the validity of the scaled models. Finally applying the behavioural 1788 

modulation on the targeted size- and time-range (in our case a full honeybee comb over weeks or months) 1789 

to employ specific stimuli patterns to be used to interact with the target organism population, e.g., comb 1790 

vibration (F) or temperature distributions (G). 1791 

 1792 


