
Challenges in Generating Juice Effects For Automatically Designed Games

Mads Johansen, 1 Michael Cook2

1IT University of Copenhagen
2Queen Mary University of London

madj@itu.dk, mike@possibilityspace.org

Abstract

Automated game design research is usually most concerned
with the mechanics and systems of a game, while aesthet-
ics and effects are left to a minimum, if they are considered
at all. In this project we integrate Squeezer, a tool for gen-
erating visual and audio effects (sometimes called juice) for
games, with Puck, an automated game designer. The result-
ing hybrid system can design games and then generate ap-
propriate sets of effects, making it the first automated game
design system that directly engages with ‘juiciness’ in design.
We support this work with a user study, measuring player re-
sponses to games with simple animations, effects automati-
cally designed and arranged by Puck, and effects designed
and arranged by an expert human designer. We then dissect
the engineering challenges presented by integrating the two
systems, and the new research questions raised by applying
juice through automated game design systems.

Introduction
“Good” videogames are more than just their rules and goals.
Modern game design focuses just as much on the minutiae of
how these rules and goals are expressed, interpreted and fed
back to the player as they interact with the game (Pichlmair
and Johansen 2021). Of course, a good set of rules and goals
is often vital for games to be solid, playable or challenging.
To truly keep a player engaged, however, the game’s pre-
sentation must also be equally fine-tuned and precise. This
is achieved through numerous subtle effects, such as adding
animations to a game to help the player understand the tran-
sitions between different game states; adding freeze frames,
screen flashes or sound effects to punctuate important mo-
ments; or adding feedback effects to help the player see the
game’s response to their action, whether positive or negative
(Anthropy and Clark 2014). When a game responds appro-
priately to player input, it becomes more satisfying to in-
teract with, mimicking tactile and other sensory experiences
we have with real-world objects (Norman 1988). In game
design parlance, this is often referred to as ‘juice’ (Jonasson
and Purho 2012).

Automated game design (AGD) is a relatively young sub-
field of game AI research concerned with building AI sys-
tems that can autonomously engage in designing and devel-
oping games. However, while modern game design has re-
fined the art of juice and it is now a part of everyday vocab-

(a) Falling pieces squash
and stretch as they descend.

(b) Clouds explode out of
pieces as they are destroyed.

Figure 1: Example of a generated effect in SameGame when
pieces are destroyed. This was part of a set used in our study.

ulary, AGD research has not yet tackled this topic and pri-
marily focuses on rules, goals and systems (Cook and Smith
2015). This not only misses out on a whole area of interest-
ing research questions and technical challenges in its own
right, but also limits the impact and quality of the games
they design since even an innovative and groundbreaking
game idea can fail to connect with players if it is presented
in a way that is flat, limp and lacking in feedback. Indeed,
many classic games rely on their juice to deliver their rule-
set effectively, which is why juice must not be considered
window-dressing for AGD research, but a first-class chal-
lenge for automated game designers to tackle.

In this paper, we combine Puck, an AGD system, with
Squeezer (Johansen, Pichlmair, and Risi 2020, 2021), a spe-
cialist tool for generating effects, thereby complementing
the rule/mechanics and goal generation with sets of juicy
feedback. We do this to make the game events look and
feel more significant, as well as adding feedback to input
events in order to let the player know the game acknowl-
edges their actions. This was a considerable engineering task
and revealed many new research questions, as well as pos-
ing complex technical problems that challenged our stan-
dard approach to AGD system design. To evaluate our work,
we conducted a user study with more than 100 players, in
which we compared three different sets of generated effects
(Figure 1 shows an example of a generated effect) against

a simple baseline game with basic ‘tweens’ (Reeves 1981)
and a set of effects hand-designed by the first author, an ex-
perienced designer. The designer created this hand-designed
effect set using Squeezer, utilising its user-facing GUI and
previewing options to design the effects. Our study shows
that getting AGD systems to generate effects can improve
the perception of their games, but that we still have a way to
go before we can outperform human experts. It raises sev-
eral other important questions about how we evaluate more
complex qualities of a game’s design, which has many im-
plications for the future of AGD research. Finally, we feel it
underlines how important it is to bring more practice-based
aspects of game design into AGD research and broaden the
field’s scope.

The remainder of this paper is as follows: in Background
we expand on the role of juice in game design, and the his-
tory of automated game design, as well as listing work re-
lated to this paper; in Integrating Squeezer With Puck we
describe the engineering process we went through and the
challenges we encountered; in Evaluation and Results we
report on the system’s output and our user study targeting
generated effects in games; in Future Work we outline how
future AGD systems can respond to and extend these ideas;
finally in Conclusions we summarise our work.

Background - Juice
The term juice first appeared around 2005 in a blogpost by
Gray et al. (Gray et al. 2005), where they describe it as

...our wet little term for constant and bountiful user
feedback. A juicy game element will bounce and wiggle
and squirt and make a little noise when you touch it. A
juicy game feels alive and responds to everything you
do – tons of cascading action and response for mini-
mal user input. It makes the player feel powerful and in
control of the world, and it coaches them through the
rules of the game by constantly letting them know on a
per-interaction basis how they are doing.

Several practitioners have explained how they go about
adding juice and other parts of the overarching topic of game
feel to games, such as Nijman (Nijman 2013), Söderström
(Söderström 2009) and perhaps most notably the ’Juice it
or Lose it’ talk by Jonasson and Purho (Jonasson and Purho
2012), presents the various elements that can take a game
from being a flat boring prototype to something that feels
fun, exciting and alive.

In an attempt to assist game developers during their
prototyping and game jam escapades, Petterson (Petters-
son 2007) created a small sound effect synthesizer called
SFXR. This open-source tool has taken many forms over the
years but remains a stable way to quickly generate place-
holder sound effects for game developers today. SFXR al-
lows users to generate sound effects from 8 different cat-
egories [Coin/Pickup, Laser/Shoot, Explosion, Power-up,
Hit/Hurt, Jump, Blip/Select, Random], which randomises
values within different parameter presets.

However, the juice design space encompasses not only
sound effects, but time dilation, shaking both screen and

objects, animating object parameters such as position, ro-
tation and size. Additionally, leaving trails or making clouds
of particles is a big part of signalling events using juice.
Pichlmair and Johansen (Pichlmair and Johansen 2021) sur-
veyed the most common elements that go into game feel de-
sign, which includes a more thorough list of juice effects.

Squeezer
Squeezer1 (Johansen, Pichlmair, and Risi 2020, 2021) is a
conceptual successor to SFXR, expanding the effect syn-
thesis from just sounds to many of the other juice effects
described in (Jonasson and Purho 2012). Squeezer even
includes a version of SFXR for sound effect generation.
Squeezer has a GUI that allows designers to build an ef-
fect sequence as a tree of cascading effects. Additionally,
Squeezer allows a designer to “synthesize” an effect se-
quence from a category selection, just like SFXR did before
it. Squeezer includes various types of simple particle effects,
flashes, time manipulation effects, shake effects, scaling, ro-
tating and translating effects, as well as both synthesising
sound effects and playing sound files. The simple particle
systems even allow effects to be added and designed for in-
dividual particles in the same effect sequence. Each effect
is designed to expose as simple a set of parameters as pos-
sible while still allowing the designer as much flexibility as
possible.

While SFXR also allows parameters to be tweaked by the
user, it can be hard to tell how each parameter influences the
generated sound. In Squeezer, parameters are related to indi-
vidual effects. It is easy to preview either the entire sequence
or a subset of the sequence through enabling/disabling parts
of the tree. The GUI also allows setting up events that trig-
ger the effect sequences in Squeezer, which in turn works a
lot like the similar juice tool MMFeedbacks (Forestié 2018,
2019). Besides, the GUI mode Squeezer contains an API for
generating, designing and executing effects.

Background - AGD
Automated Game Design (AGD) is the design and engineer-
ing of AI systems that can take on roles in the game design
process. This most often takes the form of AI systems that
generate games, such as ANGELINA (Cook, Colton, and
Gow 2017a,b; Cook, Colton, and Pease 2012), the Game-o-
Matic (Nelson and Mateas 2008), or Gemini (Summerville
et al. 2018). These systems typically focus on the generation
of game rules and mechanics, which biases AGD research
towards certain kinds of game, and certain kinds of evalua-
tion and goals, as noted in (Cook and Smith 2015).

Related Work
AGD research stretches back into the history of games re-
search, with a prominent early example being (Pell 1992) in
which the author generates chess variants. However, the bulk
of AGD research has taken place since around 2010, with
systems such as Ludi (Browne and Maire 2010) which was

1Squeezer is available at http://github.com/pyjamads/Squeezer
and the generator is described under Effect Sequence Generator in
the README.md

an AGD system that designed abstract board games. Since
Ludi designed games that were to be played with physical
game sets, the lack of juice makes some sense (although an
AGD system that considers the weight, feel, scale and shape
of pieces is an interesting consideration for the field).

Many videogame-based AGD systems emerged concur-
rently with Ludi or soon after. Some, like ANGELINA 1,
focused purely on ruleset generation with little or no con-
sideration for aesthetics. Others took different approaches;
for example, the Game-o-Matic allowed users to apply vi-
sual theming to games as a co-creative activity, while the
system described in (Nelson and Mateas 2007) uses natural
language processing to connect input prompts to an existing
corpus of game art. In all cases, the AGD system’s respon-
sibility only extends to choosing assets for individual game
elements. No attempt is made to add visual effects for em-
phasis or feedback, and juice or user experience is not mod-
elled in any other way.

Some AGD systems do produce juicy games. However,
this is almost exclusively due to the system’s designers
adding juice to the templates used by the AGD system.
The best example of this is Variations Forever which is a
juicy and engaging game that redesigns its rulesets using
constraint-based programming (Smith and Mateas 2010).
The system’s developers added the juice, so although the
AGD system does not control it, the resulting generated
games benefit from it. A possible exception can also be
found in ANGELINA 3, which dynamically sources sound
effects and includes them in game when triggered by certain
actions (Cook, Colton, and Pease 2012).

Puck
Pumuckl is an AGD system currently under development.
It uses an Entity-Component System to describe its games,
commonly used in popular game development tools such as
Unity. This allows Puck to be easily configured by adding,
removing and shaping the components it has available to de-
sign with, which makes the system useful both as an au-
tonomous research tool, as well as a co-creative tool guided
by a designer. The design of Puck draws inspiration from
the open-source AGD system Bluecap2, as well as recent re-
search into how AGD systems can be more tailored towards
industry applications (Cook 2020).

We are yet to publish a full report on Puck, but for the
purposes of this paper, the system represents a fairly ordi-
nary AGD system prior to its integration with Squeezer. It
generates candidate game designs using sets of components
and then plays those designs with AI agents to gather data
on the game. This data is then used to filter the games and
select promising games to extend, perform more playtest-
ing on, or release. Importantly, at the commencement of this
work, Puck’s game model was separated from any code re-
lating to interactivity or visualisation. This was to facilitate
simple testing of the games using AI agents without ren-
dering or user interaction. When presenting one of Puck’s
games for a human player, we use a separate visualiser that
can display the game state on the screen, and a game man-

2Available at https://github.com/possibilityspace/Bluecap

ager for handling input. Prior to the work described in this
paper, the visualiser was called after each player action, ren-
dering the current game state on the screen with no visual
effects or animation.

Integrating Squeezer With Puck
We aimed to augment Puck with the ability to generate a
set of effects for a given game and then load and execute
these effects in a standalone build of a generated game. We
intended to use Squeezer’s existing templates and categories
to help guide generation, connected with Puck’s internal sys-
tem with fixed game events that can reliably be listened for.
Nevertheless, this integration was more challenging than an-
ticipated and raised interesting engineering questions and
problems for Squeezer and Puck.

Generation and Storage
Puck operates by running several different processes in se-
quence to build and evaluate a game design, from sketching
a ruleset through to testing variations of the game with dif-
ferent agents. In order to integrate Squeezer into this, we
added a new process to the end of the design phase, which
takes a partial game design and generates a set of effects for
it. It does this by extracting a list of all the possible events the
game can trigger and then generating an effect for any event
that has a matching appropriate Squeezer recipe (for exam-
ple, the event DestroyPiece and the Squeezer recipe Ex-
plode). We decided on appropriate event/category pairings
because randomly generated recipes describe huge genera-
tive spaces of effects.

The question of where to store these effects was not
straightforward. One reason for this is that ontologically
speaking, up until now Puck had considered two games with
the same ruleset to be identical. This was to help it search the
space more effectively by avoiding testing the same game
twice. However, two games with the same ruleset but dif-
ferent visual effects should be considered as different. This
happens both during a game’s development, in playtesting,
and after release – games such as Tetris have been remade
countless times with variations of their presentation, juice
and game feel3.

We took a compromise solution, where games are still
considered unique for the purposes of generation and evalu-
ation, but effect sets can be generated and stored separately.
This allows multiple sets of effects to be saved for the same
game and loaded dynamically using unique tags. When an
effect set is generated, it is saved to the filesystem with a
filename that combines the game’s name, the targeted ef-
fect’s name, and a suffix indicating the set it belongs to. For
example, SameGame-DestroyPiece-A is an effect for
a game called SameGame, which is designed to activate in
response to the DestroyPiece effect and is from the ‘A’ set
of effects (which in this case means it was the first effect
set saved for this game. In Puck’s normal execution, it will
currently only generated a single set for a game since the
system has no way of preferring one effect set over another.

3Examples include NES Tetris, Tetris 99 and Tetris Effect

However, our user study makes use of this notation to store
multiple effect sets for a single game.

Rendering and Execution
As is common with many AGD systems, Puck’s game model
is separate from its rendering and view code. This is for two
reasons: first, so that we can use AI agents to playtest games
rapidly without rendering or player interaction; and second,
so that renderers/visualisers could be changed out (indeed,
to facilitate research such as this). This poses a problem be-
cause Squeezer’s effects require the renderer to have specific
code to setup, configure and execute effects (for example, it
must keep track of objects so that an explosion effect is ap-
plied to the right game object).

We resolved this by creating a specialised renderer for
Puck’s games. It searches the file system when the game be-
gins for the appropriate effect set, adding any effects it finds
and matching them to events based on the filename (as de-
scribed above). It then listens for events from the game and
fires effects as required. This means that using a different
renderer for the game will result in a playable game but with
no effects, thus arguably making it a partial experience of
the fully designed game.

From Human Users To AI
After integrating Squeezer and using its recipe templates to
generate random effects, we realised that the full scope of ef-
fects Squeezer could generate, while useful for a human user
who can rapidly filter and curate, were inappropriate for an
AGD system that does not experience the effects in the same
way as a human user. For example, Squeezer could generate
effects that resulted in game pieces becoming invisible at the
end of the effect. AI players can still interact with the game
board and play, but a human player cannot - even if the game
is still theoretically interactive.

A human using Squeezer could easily spot such errors and
fix them – or have the awareness to use them effectively
(many games temporarily make game objects invisible for
specific effects). An AI system needs to be given an under-
standing of such issues, however. We added filters to the
effect design mode to ensure it avoided certain worst-case
combinations of parameters. However, we wanted to avoid
being too restrictive here and allowed it enough freedom to
create effect sets that were bad or unusual (such as rotat-
ing/colouring a game object’s sprite or permanently making
it too big or small). This ensures as much expressivity as
possible while also ensuring that situations that render the
game completely unplayable are avoided.

Evaluation - User Study
In order to evaluate our system, we conducted a user study in
which participants rate several games based on their visual
and audio effects. More specifically, we designed the study
to test two hypotheses:
• Automatically generating and applying juice effects to a

game improves the user’s perception of the game.
• Hand-designed juice effects by expert designers are pre-

ferred over automatically generated juice effects.

Although juice is designed to improve the user experi-
ence, it is not obvious that automatically generated effects
will have the same impact on the user. Our first hypothe-
sis seeks to establish whether automated systems can gen-
erate and use juice effectively. Well-designed effects go be-
yond the use of simple templates and event matching, though
– they cohere with the overall game design and match the
theme, tone and cadence of gameplay. Our second hypoth-
esis seeks to establish that although our automated effects
improve the user experience, there is still a gap between our
approach and high-level human design intuition.

We chose two games to use in our study: SameGame (see
Fig. 1), an existing classic game design, and Antitrust, a new
game designed by Puck, both described below. Our moti-
vation behind this was to test our hypotheses both on well-
known and novel game designs, thus accounting for situa-
tions where both our participants and our expert designer
would be familiar with the underlying game and the con-
verse. For each game, we built five versions, one baseline
tween version, one version with effects designed by a human
expert, and three versions with generated effect sets. The
baseline and generated versions also had their background
and sprite art randomly chosen from sets curated by a non-
expert. In contrast, the human-designed version had the ex-
pert select background and sprite art from the same pool. We
describe the baseline and expert setups in more detail below.

Participants were presented with the baseline version, the
human-designed version, and a randomly selected generated
version for each of the two games. Both the order of the two
games and the order of the three versions of each game were
randomised to correct for presentation order bias (the games
were not interleaved, however – the player sees all versions
of one game, then all versions of another). The participants
filled out a form where they rated each game version they
played on their ‘aesthetics and visuals’ (with no further defi-
nition, to allow for subjective interpretation), on a scale from
1-10 where one is ”Very bad” and ten is ”Excellent”. The
participants could fill in the form as they played each ver-
sion of the game, and at the end, we noted that they were
allowed to readjust their ratings. This way, each participant
could give an initial rating as they went along and adjust
the ratings when they had played all three versions. We did
this in the hope that participants rate each version differently
and provide a relative ranking of the three versions they saw.
Evaluations of the two games were separate, and as a re-
sult, a small number of participants only completed one of
the halves of the study. Our survey was advertised primarily
through social media. We did not collect demographic data
on our participants, and participants did not need to com-
plete the games in order to rate them.

Game Versions
Baseline When we initially planned the user study, our
most basic visualiser simply showed the current game state,
with no animations between the states. However, we quickly
realised that with no animations many games become con-
fusing, such as Match-3 games or any games where pieces
move, are destroyed, or change state. Even knowing the
rules, we would sometimes be confused during testing. In

order to avoid that confusion, especially for generated games
that players have probably never played before, we decided
to add a minimalist set of tween effects (Reeves 1981; Pen-
ner 2002), we added smooth translation when moving pieces
around the board, a scale-in tween for spawning and a scale-
out tween for destroying pieces. The scale-in/out tweens
simply scales the piece in from or out to a size of zero. All
rules the game generator can create boil down to spawn,
move and destroy. The games do notify the visualiser of
other events, such as game start, gain score and end turn,
but they are unused by the tween visualiser. These games
have the ‘-Base’ suffix in our result section.

Expert Human We decided on making a designed effect
set, using the same tool as the game generator, to compare
the generated effects with effects designed by a human. We
limited ourselves time-wise because it would otherwise be a
very unfair comparison. The generator, once running, could
potentially generate hundreds of different effect sets in sec-
onds or minutes. However, implementing the juice generator
did take a few days, which users of Squeezer would not need
to wait for. So we decided to allow the expert designer a day
making an effect set for each game. The designed effect sets
include effects for game start and gain score events that the
juice generator did not have any good preset options for gen-
erating. Apart from that the both the designed and generated
effects generate an effect set for tapping, spawning, moving4

and destroying. These games have the ‘-Expert’ suffix in our
result section.

Generated The generated effect sets were produced
through the method described in the previous section. For
each game, the system identifies which messages are in its
ruleset and generates an effect for each message according to
a preset set of recipes (that is, a DestroyPiece effect will
always use the ‘explode’ recipe template, regardless of the
game it is generating for). The system uses the default inten-
sity. The generated effect sets were not curated in any way;
we generated exactly three effect sets and used them as-is.
These games have the ‘-Gen1/2/3’ suffix in our result sec-
tion. The effect sets were generated uniquely for each game
– that is to say, SameGame-Gen1 does not use the same set
as Antitrust-Gen1.

Studied Games
SameGame SameGame is a popular arcade game origi-
nally designed in 1985 and ported to many different plat-
forms. The game takes place on a grid that is randomly filled
with coloured tokens. Tapping on a coloured token will de-
stroy it and all tokens of the same colour in a contiguous re-
gion, as long as the region is above a certain size (in our im-
plementation, three or more). The player scores more points
the larger the region is, thus making the challenge both ef-
ficiently clearing the board and maximising the size of the
cleared regions. SameGame is particularly popular as a we-
bgame due to its simplicity and accessibility. One of our mo-
tivations for including this game was that it is such a well-

4Moving is only implemented for SameGame, as Antitrust does
not include a moving mechanic.

SameGame Base Generated Expert
Gen1 4.11 ∼ 4.06 ∼ 4.49
Gen2 4.33 < 5.36 ∼ 5.31
Gen3 4.17 < 5.23 ∼ 5.63

Antitrust Base Generated Expert
Gen1 4.69 ∼ 5.31 < 6.54
Gen2 3.95 ∼ 3.39 < 5.08
Gen3 4.42 ∼ 4.24 < 5.24

Table 1: Average ratings given to each build. Ratings are
grouped by which generated build participants were shown,
indicated by the row. Symbols between columns show sig-
nificant orderings, or ∼ for cases where significance could
not be established.

known casual game, and such games are prone to excessive
use of juice (Juul and Begy 2016). It serves as an example
where players expect emphasis of their interactions to make
them feel fun to keep doing.

Antitrust Antitrust is a two-player game designed by
Puck. Players take turns placing tokens of their assigned
colour on a 5x5 board. If a player makes a line of four tokens
in any direction, those tokens are removed from the board at
the start of the opposing player’s turn. When the board is
full, the game ends, and the player with the most tokens on
the board wins. The game plays like a combination of Con-
nect 4 and Gomoku, where players must balance taking over
the board, forcing the opponent into making mistakes, and
avoiding bad moves which limit their future options. For our
study, Antitrust is useful as it is an example of a game both
users and the authors are unfamiliar with. There are no ex-
isting examples of how to design effects for this game, and
therefore it represents the kind of challenge an automated
game designer might encounter regularly.

Results
In total, our survey attracted 113 participants. Seven partici-
pants failed to complete the form for Antitrust, possibly be-
cause the game took longer to play than SameGame, leaving
us with 106 participants for the Antitrust games. One partic-
ipant mistakenly entered data for SameGame in such a way
that their ratings were not recoverable, leaving 112 partic-
ipant records for SameGame. The average ratings for each
build along with significance comparisons, are shown in Ta-
ble 1. Results are broken down according to which version
of Gen each participant saw.

Generated Versus Baseline As stated earlier, our first hy-
pothesis is that generated effect sets improves the user’s
perception of the game. We compared the ratings for the
Gen1, Gen2 and Gen3 builds with the Baseline build and
ran Welch’s t-test to reject the null hypothesis that the av-
erage rating for the Base game is not distinguishable from
each of the generated builds.

For SameGame, Gen1 is inconclusive, but Gen2 and Gen3
reject the null hypothesis (p <0.05), suggesting they are
significantly preferred over the baseline. For Antitrust, the

mean differences are not significant for Gen1, Gen2 or
Gen3. Out of six generated builds, two were significantly
preferred over the baseline, and four were not significant
enough to conclude either way. We discuss these results later
in this section, especially with respect to the difference be-
tween SameGame and Antitrust.

Expert Versus Generated Our second hypothesis was
that hand-designed effect sets would be preferred over au-
tomatically generated juice effects. Again, we compared the
averages for the three generated builds against the average
ratings for the expert build, running Welch’s t-test to reject
similar null hypotheses.

For SameGame, the expert build was not significantly pre-
ferred over Gen1, Gen2 or Gen3. For Antitrust, however,
the expert build was significantly preferred over Gen1, Gen2
and Gen3 (p <0.05). For completeness, we also tested that
the expert build was preferred over the baseline, which it was
in both cases, with very high significance (p <0.001).

Results Discussion
From these results, there is evidence to cautiously support
both of our hypotheses, with caveats. One-third of our gen-
erated effect sets were significantly preferred over the base-
line, and none were significantly less preferred, supporting
our first hypothesis, while our expert designs were signifi-
cantly preferred over half of our generated effect sets, sup-
porting our second hypothesis. However, some results were
not significant enough to draw conclusions from.

We believe our first hypothesis is supported, especially
when considering the context of this research within auto-
mated game design. An automated game designer using our
baseline would use the same effects for every game it de-
signed, whereas Puck, augmented with Squeezer, can pro-
duce varied and different effect sets for each game it pro-
duces. Even if some games are no better than the baseline,
over time, it will maintain variation while the baseline be-
comes familiar, which is important both from the perspective
of automated game design, as well as computational creativ-
ity (Liapis, Yannakakis, and Togelius 2014).

We also believe our second hypothesis is well-supported.
While we are delighted that Puck was able to be competi-
tive with our expert builds in three of the six builds, it failed
to be significantly preferred in all six. That the expert build
comfortably outperformed both baselines, with significance,
is also evidence that good expert design adds something to
the perception of a game, reaffirming the importance of this
line of research.

Given that some of our participants did not complete
the evaluation of Antitrust and none of the generated An-
titrust sets was preferred over the baseline, we believe An-
titrust itself may have been a less enjoyable game expe-
rience than SameGame, resulting in more generally nega-
tive ratings from more flashy effects. Tuning the difficulty
of the AI player prior to release was difficult, compared to
SameGame which naturally tends towards a conclusion af-
ter a few turns and cannot really be ‘lost’ in a meaningful
sense. It is also possible that players prefer fewer effects in
an adversarial game, with more tension and focus, compared

to SameGame’s casual, lighter mood. This only serves to un-
derline the importance of the relationship between aesthetics
and mechanics, and why AGD research should consider this
interplay more prominently.

This user study is not intended to be the final word on the
applications of juice to automated game design. Rather, we
see this as a jumping-off point. We have clearly shown that
simple automatically generated juice can improve the per-
ception of an automatically designed game, but also under-
lined that even manually designed juice improves the perfor-
mance of automated game design systems. We hope that this
is evidence enough to both encourage AGD researchers to
add juice to their systems and to stimulate more research into
how AGD systems can understand, model and apply juice to
its full potential.

Future Work
This work represents a starting point for research into juice
generation for automated game design. A key area of future
work from an automated game design perspective is to use
data from automated playtesting of games to influence the
juice generation process. Many automated game designers
use AI agents for playtesting games and gathering data on
balance, difficulty and other factors. We believe the same
data can be used to identify ways to juice the game - for ex-
ample, by identifying player actions that are rewarding, rare
or significant. We believe this would greatly focus the juice
generation and result in more unique and distinct games.

We propose that effect evaluation is another key area fu-
ture research, that poses a hard challenge for automated
game design systems. One way to get around this issue, is
to allow the system to make “A/B tests” comparing two sets
of generated effects for the same game, through user play
testing. By allowing users to rank two variations, the system
could potentially find the best option out of a set of gener-
ated effects, and in time it might be possible to improve the
generation process based on the gathered data.

Additionally, both Squeezer and Puck would benefit from
many small additional features to expand their capabilities
for this task. Extending Squeezer with a broader range of
generator options would give Puck more expressivity in the
effects it can generate – in particular, Squeezer lacked a
specialised recipe for some common puzzle effects such as
pieces being added to the board. Giving Puck an understand-
ing of other key design skills such as basic colour theory and
the selection of colour schemes would allow it to augment its
effects, backgrounds and sprite selections to cohere together.

Conclusions
In this paper, we reported on the integration of Squeezer,
a tool for generating juicy effects for games, and Puck, an
automated game designer – the first example, to our knowl-
edge, of an automated game designer that incorporates juice
into its model. We discussed the importance of juice in game
design and the challenges we encountered in integrating
juice into an automated game design workflow and argued
for its importance in light of expanding AGD research. We
reported on a user study where over 100 participants gave

feedback on their perception of several games, which ev-
idenced that juice can add to the player’s perception of a
game and that there is still much work to be done before
juice generation can match up to human-level design.

Juice and game feel are vital parts of modern game de-
velopment. Including these disciplines in the scope of AGD
research is crucial for the field to grow and properly ex-
plore the breadth of game design as a practice. At the same
time, researchers interested in building tools like Squeezer,
investigating co-creativity and supporting game developers
in adding juice to their games will also benefit from work-
ing with AGD systems. AGD research helps challenge us to
create formal models of juice design and test theories about
juice generation at a large scale. We hope this paper is a
starting point for much additional research in this area.

Acknowledgements
The authors thank the reviewers for their enthusiastic feed-
back which improved the paper. The second author was sup-
ported by the Royal Academy of Engineering under the Re-
search Fellowship scheme.

References
Anthropy, A.; and Clark, N. 2014. A Game Design Vocab-
ulary: Exploring the Foundational Principles behind Good
Game Design. Addison-Wesley Professional, 1st edition.
ISBN 0-321-88692-5.

Browne, C.; and Maire, F. 2010. Evolutionary Game Design.
IEEE Trans. Comput. Intell. AI Games 2(1): 1–16.

Cook, M. 2020. Software Engineering For Automated
Game Design. In 2020 IEEE Conference on Games (CoG),
487–494. ISSN 2325-4289. doi:10.1109/CoG47356.2020.
9231750.

Cook, M.; Colton, S.; and Gow, J. 2017a. The ANGELINA
Videogame Design System—Part I. IEEE Transactions on
Computational Intelligence and AI in Games 9(2): 192–203.
ISSN 1943-068X. doi:10.1109/TCIAIG.2016.2520256.

Cook, M.; Colton, S.; and Gow, J. 2017b. The ANGELINA
Videogame Design System—Part II. IEEE Transactions on
Computational Intelligence and AI in Games 9(3): 254–266.
ISSN 1943-068X. doi:10.1109/TCIAIG.2016.2520305.

Cook, M.; Colton, S.; and Pease, A. 2012. Aesthetic Consid-
erations for Automated Platformer Design. In Proceedings
of the Eighth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE-12, Stanford, Cal-
ifornia, USA, October 8-12, 2012.

Cook, M.; and Smith, G. 2015. Formalizing Non-
Formalism: Breaking the Rules of Automated Game Design.
In Proceedings of the 10th International Conference on the
Foundations of Digital Games (FDG 2015), 5. FDG.

Forestié, R. 2018. Best Practices for Fast Game Design in
Unity. https://www.youtube.com/watch?v=NU29QKag8a0.
Accessed: 2020-04-17.

Forestié, R. 2019. How to Design with Feedback and Game
Feel in Mind - Shake It ’til You Make It. https://www.

youtube.com/watch?v=yCKI9T3sSv0. Accessed: 2020-04-
17.

Gray, K.; Gabler, K.; Shodhan, S.; and Kunic, M.
2005. How to Prototype a Game in Under 7 Days.
https://www.gamasutra.com/view/feature/130848/
how to prototype a game in under 7 .php. Accessed:
2019-10-27.

Johansen, M.; Pichlmair, M.; and Risi, S. 2020. Squeezer
- A Tool for Designing Juicy Effects. In Extended Ab-
stracts of the 2020 Annual Symposium on Computer-Human
Interaction in Play, CHI PLAY ’20, 282–286. New York,
NY, USA: Association for Computing Machinery. ISBN
978-1-4503-7587-0. doi:10.1145/3383668.3419862. https:
//doi.org/10.1145/3383668.3419862.

Johansen, M.; Pichlmair, M.; and Risi, S. 2021. Squeezer -
A Mixed-Initiative Tool for Designing Juice Effects. In Pro-
ceedings of the Foundations of Digital Games Conference
(FDG 2021), 11. Online.

Jonasson, M.; and Purho, P. 2012. Juice It or Lose It. https:
//www.youtube.com/watch?v=Fy0aCDmgnxg. Accessed:
2019-02-27.

Juul, J.; and Begy, J. S. 2016. Good Feedback for Bad
Players? A Preliminary Study of ‘Juicy’ Interface Feedback.
In Proceedings of First Joint FDG/DiGRA Conference, vol-
ume Proceedings of first joint FDG/DiGRA Conference, 2.
Dundee: DiGRA. https://www.jesperjuul.net/text/juiciness.
pdf.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. Com-
putational Game Creativity. In ICCC, 8.

Nelson, M.; and Mateas, M. 2007. Towards Automated
Game Design. In Proceedings of the 10th Congress of the
Italian Association for Artificial Intelligence.

Nelson, M. J.; and Mateas, M. 2008. An Interactive Game-
Design Assistant. In Proceedings of the 13th International
Conference on Intelligent User Interfaces - IUI ’08, 90.
Gran Canaria, Spain: ACM Press. ISBN 978-1-59593-987-
6. doi:10.1145/1378773.1378786. http://portal.acm.org/
citation.cfm?doid=1378773.1378786.

Nijman, J. W. 2013. The Art of Screenshake. https://www.
youtube.com/watch?v=AJdEqssNZ-U. Accessed: 2021-04-
22.

Norman, D. 1988. The Design Of Everyday Things. Basic
Books.

Pell, B. 1992. METAGAME in Symmetric Chess-Like
Games. In Heuristic Programming in Artificial Intelligence
3 – The Third Computer Olympiad.

Penner, R. 2002. Robert Penner’s Programming Macrome-
dia Flash MX. New York: McGraw-Hill/Osborne. ISBN
978-0-07-222356-9.

Pettersson, T. D. 2007. SFXR. http://www.drpetter.se/
project sfxr.html. Accessed: 2020-07-11.

Pichlmair, M.; and Johansen, M. 2021. Designing Game
Feel. A Survey. IEEE Transactions on Games IEEE Trans-
actions on Games (Early Access)(IEEE Transactions on

Games (Early Access)): 1–20. ISSN 2475-1510. doi:
10.1109/TG.2021.3072241.
Reeves, W. T. 1981. Inbetweening for Computer Anima-
tion Utilizing Moving Point Constraints. In Proceedings
of the 8th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH ’81, 263–269. Dal-
las, Texas, United States: ACM Press. ISBN 978-0-89791-
045-3. doi:10.1145/800224.806814. http://portal.acm.org/
citation.cfm?doid=800224.806814.
Smith, A.; and Mateas, M. 2010. Variations Forever: Flex-
ibly generating rulesets from a sculptable design space of
mini-games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games.
Söderström, J. 2009. The Four-Hour Game Design by Cac-
tus. https://www.gdcvault.com/play/1243/(304)-The-Four-
Hour-Game. Accessed: 2020-07-11.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: Bidi-
rectional Generation and Analysis of Games via ASP.
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment 14(1): 123–
129. ISSN 2334-0924. https://ojs.aaai.org/index.php/
AIIDE/article/view/13013.

