
Squeezer - A Mixed-Initiative Tool for Designing Juice Effects
Mads Johansen

madj@itu.dk
Center for Computer Games Research

IT University of Copenhagen
Denmark

Martin Pichlmair
mpic@itu.dk

Center for Computer Games Research
IT University of Copenhagen

Denmark

Sebastian Risi
sebr@itu.dk

Center for Computer Games Research
IT University of Copenhagen

Denmark

ABSTRACT
This paper presents a Mixed-Initiative version of Squeezer, a tool
for designing juice effects in the Unity game engine. Drawing upon
sound synthesizers and game description languages, Squeezer can
synthesize common types of juice effects by combining simple
building blocks into sequences. Additionally, Squeezer offers effect
generation based on predefined recipes as well as an interface
for interactively evolving effect sequences. We conducted a user
study with five experts to verify the functionality and interest
among game designers. By applying generative and evolutionary
strategies to juice effect design, Squeezer allows game designers
and researchers using games in their work to explore adding juice
effects to their games and frameworks.

Squeezer is available at: https://github.com/pyjamads/Squeezer

CCS CONCEPTS
•Applied computing→Computer games; •Human-centered
computing → Graphical user interfaces; Usability testing.

KEYWORDS
Game Development, Game Design, Juice Effects, Interaction Feed-
back, Toolkit, Prototyping, Generator, Interactive Evolution, Mixed-
Initiative

1 INTRODUCTION
Game designers regularly create prototypes as part of their practice.
Their purpose is to explore a design space, communicate game
mechanics, and collect player feedback on game mechanics. While
prototypes often require little to no juice – a game design term for
visual and audible feedback and effects, see [24] – to verify if a rule
or mechanic works, there are many cases where they depend on
placeholder effects to provide enough feedback to make a game
mechanic understandable by the player. In all cases, prototypes
should be fast to make, which can be supported by tools.

Squeezer [18] assist game designers in prototyping by enhancing
game feel [32] through simplifying the process of adding juice [19].
Squeezer can generate and link various juice effects to sequences.
This way, designers can quickly and efficiently create rich feedback
during the prototyping stage of game development.

In this paper, we expand upon the preliminary version of Squeezer
by implementing category-based effect tree generation, mutation
of effect trees, and adding an interface for the interactive evolution
of effects. Interactive evolutionary computation [33] or interactive
evolution builds on an AI-assisted creation loop. An interactive
evolution system presents different artifacts to the user, who se-
lects the artifacts they prefer among the selection. The system then
generates a new set of artifacts through crossover and mutation.

This next generation of artifacts is subsequently presented to the
user, and so on. In practice, the user plays the part of the fitness
function in the evolutionary process.

In our experiment, we explore if adding interactive evolution to
Squeezer is beneficial for assisting designers in the exploration and
design of effects for their game prototypes. Interactive evolution
has been used to generate sonic and visual artifacts before, in tools
such as Picbreeder [28], Endless Forms [7], MaestroGenesis [15],
DrawCompileEvolve [36], ZzSsprite [9], or more recently in combi-
nation with deep generative methods [2]. It has not been applied
to game feel design. In this paper, we present the results of testing
two assumptions about the introduction of interactive evolution to
Squeezer:

• Adding interactive evolution makes it easier for new users
to get acquainted with Squeezer. It provides an alternative
introduction to the possibilities of Squeezer1 by letting users
explore effect sequences interactively, based on examples, as
opposed to manually testing individual effects one by one
or familiarisation through documentation or code.

• Interactive evolution assists users in exploring the design
space and in discovering new ideas for effects.

In summary, we show how generative and evolutionary strate-
gies can assist designers and even surprise them by revealing un-
explored areas of the design space when applied to juice effect
design.

2 BACKGROUND
2.1 Game feel and Juice
Juice is the game design term for abundant feedback that ampli-
fies interactions related to input and in-game events. The concept
has gained a lot of traction over the last decade. Originally mostly
discussed in the indie game community [19, 21], and in relation
to prototyping [12], juice is nowadays being examined by a host
of researchers [14, 20, 24]. Juice is superfluous from a strictly me-
chanical perspective but makes interacting with the system more
pleasurable. Juice helps to sell the illusion that the game world has
realistic properties, just as exaggeration in cartoons creates the
illusion of life [34]. Hunicke states that “Juiciness can be applied to
abstract forms and elements and it is a way of embodying arbitrarily
defined objects and giving them some aliveness, some qua, some thing,
some tenderness.” [16]

Juice is but one facet of ‘Game Feel’, a term that encompasses
different kinds of polish of interaction design in games, a concept we
reviewed thoroughly in [24]. The term itself was coined by Swink,
who first wrote an article [31], and later a book [32] about this
1Further supported by a small suite of demo scenes, with effects already implemented,
that new users can poke and prod at.

Johansen, et al.

Figure 1: The effect tree generator interface featuring a drop-downmenu for selecting a category and a slider for determining
the intensity. The mutate and regenerate buttons respect locked parts of the effect tree.

topic. Fullerton describes polishing as “the impression of physicality
created by layering of reactive motion, proactive motion, sounds, and
effects, and the synergy between those layers” [11], an observation
remarkably in line with Hunicke’s description of ‘juiciness’.

Both game feel, and juiciness have been widely discussed in the
game development community [24, 30]. Developers like Jonasson &
Purho [19] as well as Nijman [21] examine juice and game feel from
their respective points of view, offering insights into how crucial
this aspect of game design is to practitioners. Swink’s book, and the
talks by Jonasson & Purho and Nijman, are the primary sources for
introducing the concepts of game feel and juiciness. Although all
three had excellent demos available when they were released, these
resources have unfortunately since deteriorated or disappeared.

New projects, such as MMFeedbacks2 [10] and Game Maker’s
Toolkit [3, 4], continue to offer practical and analytical tools for
designing game feel. MMFeedbacks is an expert tool for adding
juiciness to Unity games. MMFeedbacks handles triggering, delay-
ing, and sequencing effects yet subsidizes designing some of them
to various existing subsystems in Unity. For instance, the user still
needs to understand the Unity particle system and create the desired
effect with that system before integrating it into MMFeedbacks.
This design choice makes sense for MMFeedbacks as an expert tool
because the Unity subsystems (e.g., Particle system, Cinemachine,
Timeline, and Animator) are well suited for their specific purposes.
However, an inexperienced user or a designer sketching out part of
a game might not have the skills or the time to use MMFeedbacks
meaningfully.

2.2 Procedural Content Generation
Procedural Content Generation (PCG) is a collection of methods to
automate content generation for games [29]. Instead of manually
designing game elements, PCG systems implement design rules for
their automatic creation. PCG can be found in a wide variety of
areas of asset production. Hendrikx et al. [13] map the field in their

2https://feedbacks.moremountains.com/

survey paper and provide an overview of common applications.
Modern game engines like Unity support some procedural content
generation systems out of the box (for example, terrain generation),
but most PCG systems have to be either acquired or custom-built for
each game. It is important to note that there are run-time and design
time (offline) applications of procedural content generation. Often
resource-intensive algorithms are run at design time. If curation is a
part of the design process, the system also needs to be run at design
time. An example of a tool working like this is SFXR, a sound effect
tool [23].

SFXR has been used for a long time to lift the appeal of prototypes
and game jam games [12] via “good enough” placeholder sound
effects. Pettersson originally developed SFXR in 2007 for game jam
participants to “provide a simple means of getting basic sound effects
into a game for those people who were working hard to get their entries
done within the 48 hours.” [23]

SFXR is a procedural content generator also known as a syn-
thesizer. It is operated simply by clicking a button with a category
name and pressing it repeatedly until the user hears a desirable
sound effect. Apart from the sound generation, the user can also
manually tune each of the more than twenty different parameters or
mutate all parameters. The categories read as follows: [Coin/Pickup,
Laser/Shoot, Explosion, Power-up, Hit/Hurt, Jump, Blip/Select, Ran-
dom]. The categories act as presets, explicitly setting some parame-
ters, limiting other parameters to specified ranges, and randomizing
the rest. The sounds generated by SFXR can then be inserted as
placeholders in a game or prototype until it is mature enough to get
a sound designer involved or a sound pack integrated. For a game
designer, applying placeholders can often reveal which mechanics
they can build on and which they should remove. Designers often
have to generate and try out 10-20 different versions to arrive at a
sound effect that works in a particular situation. An interface that
supports rapid iteration can thus speed up design significantly.

Squeezer supports rapid iteration by combining generative prop-
erties like those exhibited by SFXR, the simplicity of effect design

Squeezer - A Mixed-Initiative Tool for Designing Juice Effects

such as in Particle FX Designer3, and the universality of a feedback
system like MMFeedbacks. Additionally, mutation and interactive
evolution allow Squeezer to function as an effect sequence explo-
ration tool.

3 IMPLEMENTATION
Prototyping is the phase of game development where iteration
happens the fastest. The game modeled in the prototype is usually
small – a single game mechanic, rule, or interaction. Prototyping is
part of the exploration phase of design and is used to gain insights
into the design space. Squeezer supports this exploration with the
assistance of interactive evolution. This mechanism can be used
to narrow down the possible design solutions or to arrive at new
ideas. Squeezer has the power to surprise the user and lead them
to design inspiration.

To encourage practical application and get access to high-quality
test cases, Squeezer works with the widely used Unity4 game engine.
Unity lets users quickly develop and integrate custom tools to
extend their editor. These tools are also sold commercially via the
Unity Asset Store5. Users are accustomed to adding extra libraries
to their projects to extend the functionality of the game engine
and its editor. By developing Squeezer for Unity, we increase the
probability of real-world applications and the number of potential
users. However, the core functionality of Squeezer does not require
Unity, and the underlying open source project can be adapted to
other game engines.

3.1 Core Functionality
The three core elements of Squeezer are (1) triggering effects, (2)
effect sequencing, and (3) effect execution. Effects are triggered by
a simple event system that ties into the prototype’s code or game
events. The section about integration describes how to achieve that.

Effects are sequenced by structuring them into a tree and by
using relative time offsets (delays) as seen in Fig. 3. Each node in
the tree will execute all child nodes upon completion. The tree is
displayed in its collapsed form, similar to the description language
VGDL [27], to increase readability and simplicity. Effect nodes can
be expanded to view and adjust their properties. They can also
be mutated randomly to explore alternate variations of an effect
quickly.

The executor manages the execution of effects and is in charge
of scheduling and continuously updating active effects after they
are triggered. Effects track their progress internally, letting the
executor know when they finish and can be removed from active
effects. When an effect ends, it will clean up after itself and queue
all subsequent effects with the executor.

The executor is implemented like a simple tweening [5, 25]
system, designed to handle one-shot as well as durational effects.
Tweening systems are commonly used to drive simple animations
and effects within game projects. Most tweening system implemen-
tations leave the interpolation to the individual tween classes, like
Squeezers executor, which calls the active tweens on every update.

3https://codemanu.itch.io/particle-fx-designer
4https://unity.com/
5https://assetstore.unity.com/

Yet Squeezer is more than a tweening system: the effect sequence
descriptions allow run-timemanipulation and fast iteration on ideas.
The interactive evolution interface allows exploration of the range
of possible effects and combinations with very little knowledge of
how the system works. The more advanced Inspector UI (see Fig.
3 and 1) can be used manually or in conjunction with interactive
evolution, providing additional control and manual manipulation
of values. Additionally, with the export and import of full or partial
descriptions, users can easily create a library of effect sequences
and apply them widely in a project or between projects. Squeezer
also includes complex effects such as the SFXR6 [23] audio synth.

3.2 Integration
In addition to the core elements, Squeezer provides several layers
of user interfaces and code interfaces (Application Programming
Interfaces or APIs) that allow designers and game programmers
to integrate the tool exactly where and how they want. A setup
window to help setting up the framework (step one in Fig. 2), where
the user can select game objects or tags and the event triggers they
would like effects to respond to. The inspector interface, with its
simplified tree view providing a simple visual interface to gener-
ate, mutate, add and remove elements from effect sequences (step
two in Fig. 2). As well as the expanded effect editor (step three
in Fig. 2) that can be used to modify effect parameters. For those
who prefer an API, Squeezer allows triggering and saving effect
sequences generated by the sequence generator with the shorthand
Squeezer.Trigger(...). This shorthand generates an effect sequence
based on a selected category and triggers it with the provided target,
position, optionally a direction, and handing back a reference to the
sequence for reuse later on. Programmers can also build and trigger
effects or sequences manually; examples of this can be found in the
sequence generator and several of the spawner effects (see Section
3.5).

3.3 Workflow
Fig. 2 shows a potential workflow for Squeezer, along with juice
iterations on a breakout clone. Step one shows the setup window
and basic game without effects. After setting up the triggers, step
two shows the game with a bit of color and an initial generated
effect sequence for block destruction. Step three shows the foldout
menu for editing parameters of the trail effect. On the right side
of step three, you can see a few iterations of the effects. Designers
work iteratively, going back and forth between steps two and three,
in addition to repeating steps one to three for every class of objects
and event triggers they need.

3.4 Demo Scenes
We created four demo scenes in 2D and 3D. The demo scenes trigger
effects on simple game objects when specific events occur. They
are named Timer, Move, Jump and Shoot according to the event
they demonstrate. All scenes either feature 2D objects and an or-
thographic camera or 3D objects and a rotating perspective camera.
In Fig. 5) you can see one of the 3D demo scenes in the middle of
executing an explosion effect.

6The Unity port of SFXR called usfxr: https://github.com/zeh/usfxr

Johansen, et al.

-70pt-

70pt

Figure 2: Squeezer Workflow. Step (1): take a game prototype and setup the Squeezer event triggers using the setup window. Step (2): add
some color and generate or manually add initial effect sequences. Step (3): explore, mutate or design parameters of individual effects until
they suit the game mechanics. Repeat steps (2-3) until the effect sequence is done, then go back to step (1) to add new triggers and start
again.

Squeezer - A Mixed-Initiative Tool for Designing Juice Effects

Figure 3: The description for an Explosion effect sequence. Underlines added externally to associate descriptions and visuals with the
animation seen in Fig. 4.

Johansen, et al.

Figure 4: The "synthesized" effect shown at 5fps by executing the description in Fig. 3. The big white square is the breakout ball
(i.e. not part of the effect). There are three visible parts of the effect sequence in the description (the “Camera Shake” is not visible here). The
first is the “Positional Flash” (white underline in Fig. 3) which shows up as a white circle in the first three frames, scaling up and fading out.
After the scale up finishes a blue flash (blue underline in Fig. 3) appears and fades out. The second part of the sequence is the “Particle Puff”
(yellow underline in Fig. 3) controlling the slowly expanding yellow circles, each will spawn a quick black flash (black underline in Fig. 3),
giving the slight illusion of smoky dust as they expand and fade away. The third part of the sequence is the “Particle Puff” (gray underline in
Fig. 3) simulating debris with the small fast moving gray boxes.

Figure 5: The run-time interactive evolution interface, seen here showcasing an explosion effect in a 3D scene.

Our original demo scene [18], a breakout clone, mainly consisted
of events triggered by collisions. These new scenes revealed issues
with trigger data as the initial version of Squeezer only passed
a single 3D vector. The particle effect called “ParticlePuffEffect”
provided the perfect test case for the amount of control and data
neededwhen triggering events in the new demo scenes. The particle
puff effect requires two parameters, a position, and a direction.
Without changing the data provided by the triggers, the effect
would only get a direction and would be forced to use the target
object’s position. However, both in the Jump and Shoot demo scenes,
triggering particles at the center of a game object would be incorrect.
For events such as collisions, the center of either colliding object
would also not be an accurate position to spawn an effect. While

technically feasible for a designer to add an invisible game object as
the trigger target7, allowing the system to pass a relative position
offset removes the need to do that. Triggers can now provide effects
with “TriggerData” specifying both direction and position, allowing
the particle puff effect to accurately execute at the location of the
impact between two objects. The particle puff effect itself provides
a simple way to create a small cloud of particles, expanding in a
selected pattern.

The demo scenes provide an easy way to design and test effects
in isolation. However, a more realistic testing scenario presented
itself as the user study was about to begin. The developers of DISC

7This is indeed a well known “hack” designers exploit to implement position offsets
visually in Unity

Squeezer - A Mixed-Initiative Tool for Designing Juice Effects

ROOM [6] launched a game jam, where participants could create
their different versions of the game. As part of this promotional
event, a tutorial video for a simple disc room prototype with ac-
companying source files, sprites, and sound pack, was released8.
Squeezer includes this simple DISC ROOM prototype, re-created in
Unity with the sprite and sound assets.

3.5 Architecture
The initial problem of representing and triggering effects based on
events or interactions has been solved many times. One solution is
a hierarchical description approach, including an ontology. This ap-
proach is found in PyVGDL, JavaVGDL, and UnityVGDL [17, 22, 26].
VGDL frameworks execute entire games based on this structure and
effectively hide complexity in the descriptions with the provided
ontology. Both, Squeezer’s data structure and its textual representa-
tion of effect sequences use this hierarchical description approach.
Juice effect sequences require scheduling, both sequentially and
simultaneously, which complicates the nesting logic.

The data structure in Squeezer is hierarchical and simplifies the
complexity of triggers and effects by offering classes for specific
purposes. Broken down from root to leaf, the data structure is as
follows (the hierarchy can be seen in Fig. 3, in a partial view of the
Description inspector):

• Description – in charge of attaching triggers to actual game
objects in the game, contains a list of Triggers (The outer
level containing the "Effect Tree" in Fig. 3).

• Triggers – define which events cause effects to occur. Se-
lected from seven predefined trigger types. Contains a list
of effect groups (In Fig. 3, only one trigger is attached to the
description, namely "On Collision Trigger").

• Effect Groups – determine which game objects the effects
will be executed on and contain lists of effects (In Fig. 3 only
a default "Applies to Self" effect group has been added to the
collision trigger).

• Effects – include functionality to execute the effects them-
selves and a list of effects to apply on completion. Effects
that spawn objects, such as particle puff, additionally contain
a list of effects to run on any generated objects. (In Fig. 3
we see four effects on the root level, two different particle
puffs, a positional flash, and a camera shake. Each of those, in
turn, contain effects to be executed on either their "spawned"
offspring or on their target as they complete).

Effect trees represent sequences. Effects on the same level – with
the same parent – will be queued simultaneously. Nested effects
execute after the parent has completed. In addition to this, a delay
can be added to effects, offsetting them from other effects on the
same level. Delays are handled internally by the effects themselves
and begin counting down as soon as the effects are triggered.

In [18] we selected effect triggering events by analysing industry
talks [19, 21]. This allowed us to identify an initial set of event
triggers:

• OnStart, triggered when creating an object/when the game
starts.

• OnCollision, triggered when a collision occurs.

8DISC ROOM JAM Tutorial, available at https://youtu.be/Dtt5X7twhxA

• OnMove, triggered while moving or changing movement
state.

• OnRotate, triggered when the object rotates in some way.
• OnDestroy, triggered when destroying an object.
• OnDisable, triggered when an object becomes disabled (a
commonway of "destroying" objects, without invoking garbage
collection in Unity)

• OnCustomEvent, triggered when the system receives a cus-
tom event (e.g., named custom events such as Shoot, Jump
or FadeInComplete)

Since a lot of games rely on Finite State Machines (FSMs) to
control game logic, we added a new trigger recently that is called
OnStateChanged. It is capable of tracking and activating based
on changes to specific script parameters (like FSM states), as well as
of checking simple conditions. The trigger detects when the value
of observed parameters changes (e.g., when the state of a character
changes from OnGround to Jumping or when the player’s speed
exceeds a specified value). Reacting directly to changes in the game
state non-invasively can be an excellent alternative to adding code
for triggering custom events in multiple places.

Although triggers are part of the hierarchical data structure,
each trigger has an accompanying detection script attached to
game objects in the game. These detection scripts react to game
events and activate their associated effect groups. The effect groups
determine the targets of the effect sequences defined within them.
Usually, the effect groups only target the triggering object. Yet,
sometimes they can help make other game objects seem to respond
to specific events9.

The main groups of effects are; sound effects, color effects, par-
ticle and trail effects, transform effects (translate, rotate, scale),
time dilation effects, flashing effects (full-screen or localized), shake
(quick random translations), and wiggle (rotational shake) effects.
However, common for all effects is that they can be delayed, applied
to various targets, sequenced (scheduled in relation to other effects),
and executed dependent or independent of in-game timescale. Apart
from those common properties, feedback effects tend to be dura-
tional. The most common are tween effects. The word tween comes
from "inbetweening" [25], which originated in cartoon animation,
where a senior would draw keyframes of animation sequences, and
juniors would then fill in the timelines between those keyframes.
A tween interpolates between a beginning and end value over a
duration. The interpolation can be linear or eased in and out using
easing curves10. The easing functions simulate acceleration and de-
celeration when starting and stopping, based on various functions
like a sine wave or an exponential function. Another class of effects
is those that spawn additional objects in the game instead of manip-
ulating objects that already exist. Trails and other particle effects
that generate objects contain a separate list of effects executed on
their offspring. The four types of effects are One shot, Durational,
Tween, and Spawner effects.

3.5.1 Extending Functionality. Squeezer is open source and can
easily be extended with custom effects. Those can be based on one

9This can be seen in the Squeezer showcase [available at:
https://github.com/pyjamads/Squeezer/tree/master/Showcase] when all blocks
in breakout react to the destruction of a single block
10see examples on http://easings.net/

Johansen, et al.

of four effect types – one shot, spawning, durational and tween –
depending on what is appropriate. Adding new effects to the system
is as easy as copying or inheriting other effects, changing the name
and performed logic, and saving the file. Squeezer uses reflection11
to show available effects. The inheritance structure and serialization
allow the system to display and execute the effects correctly.

Similarly, new triggers can be added. That process is slightly
more complicated, as the detection scripts need to be created and
the attaching logic has to be implemented as well.

It should be noted that spawning effects – Trail, Shatter, Copy
and Particle Puff – all instantiate regular Unity game objects, which
makes them very versatile. The objects in question can be custom-
made for this purpose by the designer. Creating a large amount of
game objects in Unity is resource-intensive, so game performance
has to be monitored when effects spawn objects.

3.6 Content Categories
In [18] we identified and proposed the idea of generating effect
sequences based on different categories. We started out with SFXR’s
eight categories of effects (see above) but removed Blip/Select,
Coin/Pickup and Power-up. We limited the Squeezer categories
to a set of simple arcade game mechanics, that suited our test cases.
We added two new options: PlayerMove and ProjectileMove.Meant
for continuous triggers and have no counterpart in SFXR. Finally
we renamed some of them to make their use clearer. The set of
categories is a starting point for effect sequence generation, and we
expect this list to be expanded in the future. In the end we ended
up with the following content categories (SFXR name on the left,
Squeezer name on the right):

• Random −→ Random
• Explosion −→ Destroy/Explode
• Jump −→ Jump
• Laser/Shoot −→ Shoot
• Hit/Hurt −→ Impact
• N/A −→ Projectile Move
• N/A −→ Player Move

Fig. 1 shows the generator interface, where the category and
intensity can be selected. The intensity value controls size, severity
and sound volume, on a scale between one and ten (where one is the
least intense). The intensity scale is split internally into four levels,
[1-3] is low intensity variations, [4-6] is medium intensity, [7-9] is
high intensity, and [10] is extreme intensity. The different intensity
levels, have slightly altered effect sequences for some categories,
but otherwise scale parameters linearly.

3.7 Generation, Mutation and Evolution
We handcrafted base sequences for each category. These sequences
are the foundation of the generator. In the generator effects are
initialized with parameters randomized within predefined ranges.
This allows Squeezer to generate distinct effects with reasonable
initial values.

Additionally, the sequences themselves are mutated at initialisa-
tion by randomly adding and removing effects in the sequence. The
idea is that even significant mutations maintain some traits from
11https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/reflection

the base sequence of the specified category. The logic for mutating
effect trees combines genetic programming’s [1] tree mutations
with effect parameter mutations. This means that when mutating
the effect sequence, a control parameter is used as a probability
measure for adding or removing effects to the tree. While mutating
each individual effect, the control parameter controls the probability
that a value changes and how much it should be adjusted.

However, Squeezer is a design tool, and that means having a
designer in the loop to determine fitness and guide the mutations
along. To assist in this process, the user interface offers a locking
mechanism12. Locked effects will not be mutated or removed while
the rest of the tree gets mutated. This allows designers to ‘freeze’
parts of the effect sequence they like while evolving the remaining
tree (one-armed bandit style). Designers can use this functionality
and repeatedly mutate selected parts of the effect tree, gradually
homing in on a final result.

3.8 User Interface
Squeezer offers interactive evolution through a run-time interface
as well as through an inspector interface that is integrated into the
engine’s editor. In both instances, the genotype is a tree structure of
effect class instances and the phenotype is the resulting sequence
of “synthesized” effects that appear in the game.

The run-time interface consists of four control areas, presented
as an overlay on top of the game view, as seen in Fig. 5. The top area
lists each individual in the population (default is eight), and which
one is currently selected. The left area lists the various triggers
available for evolution. Each trigger is evolved separately, in order
to avoid information overload. However, the last option on the list
does allow bold designers to evolve everything at once. The bottom
area contains buttons for starting over, saving the current individual,
evolving the current individual or re-rolling the evolution from the
previous stage. Both, saving and evolving, cause the current selected
individual to be bookmarked, so that a designer can return to any
step in the evolution they selected or saved at a later time13. The
flow controls are found on the right side. These handle the timer
that automatically switches between different individuals in the
population. The interface shows only one individual at a time, and
the game is reloaded when switching between them. Reloading
the game scene, functions as a “palate cleanser”, clearing out any
lingering settings, colors or game objects the previous individual
may have left behind. An individual can be skipped quickly, the
display time can be changed and the timer can be paused entirely,
allowing a designer to study the effects at the pace they see fit.

The inspector interface, that we integrated into the Unity editor,
enables mutation of each effect group or individual effects. It can be
used on its own or in combination with the run-time interface. In
the latter case, locked and disabled parts of the effect tree will get
copied to the next generation of individuals, guiding the evolution.
The inspector interface allows the mutation of individual effects
in the tree, and of entire effect groups. Effects can be reordered,
deleted and copied between different parts of the effect tree. Effects

12The padlock icons in Fig. 1 indicate which elements are locked
13These bookmarked descriptions have to be loaded back individually and manually
through the inspector interface on the specific description game object. A workflow
that should be improved in the future.

Squeezer - A Mixed-Initiative Tool for Designing Juice Effects

in an effect group can be mutated and regenerated from a selected
category and with a specified intensity.

4 USER TEST
We invited five experienced game designers, two identifying as
female and two identifying as male, to evaluate Squeezer. The par-
ticipants had between two and seventeen years of experience as
game designers.

The evaluation was carried out in a two phase process. We
recorded each video session and collected usage data (telemetry).
The two test phases were designed so the participants would first
test the interactive evolution interface, without being able to mod-
ify effects directly and later get full access. This way, they could
provide focused feedback of that part of the interface. In the second
phase, we allowed the participants to explore the effect manipula-
tion more thoroughly. Here, we were gathering their feedback on
the interplay between the interactive evolution interface and the
effect manipulation. Our test design was inspired by tutorial design,
where games often slowly increase the number and complexity of
the shown features to allow the user to learn. The two test phases
allow us to ask questions about the interface preferences among
the participants, and the pros and cons of each interface.

During the test, participants were asked to open the software for
the first time. Then theywere introduced to the concept and purpose
of Squeezer. They were guided to open the DISC ROOM demo scene,
and add the interactive evolution scene, to begin the test. We asked
them to evolve effects for the player character colliding with discs,
death animations, as well as effects for disc bouncing, using the
run-time interactive evolution interface. During the test they were
encouraged to provide feedback on the process, the interface, and
the generated effects while they worked. Once they had sufficiently
explored interactive evolution and either felt satisfied or mentioned
they wanted to manipulate or tweak effects more directly, the test
proceeded to the second phase. In the second phase, they were
asked to pause the evolution and have a look at the Unity inspector
interface (see Fig. 3 and 1). From here they were instructed on how
the interface worked, and the interaction between the inspector
and run-time interactive evolution. They were allowed to mutate,
regenerate and change anything manually, through the inspector
interface, and they also had the option of resuming the evolution
using the run-time interface. After about an hour, they were asked
to provide immediate thoughts and feedback, to sent us their usage
data and fill out a short questionnaire.

The survey asked them about their game design experience, and
experience with adding effects to games. Additionally they were
asked to provide feedback on interactive evolution as an introduc-
tion to Squeezer and effect generation, their thoughts on using
interactive evolution as part of the workflow, and if they found it
satisfying and/or surprising to work with. Lastly, they were asked
if they would be interested in using a tool such as Squeezer in the
future, or what would need to be changed in order for them to use
it.

5 RESULTS
Given that we conducted expert interviews, we focused on individ-
ual statements and general agreements between the participants.

Additionally to the expert evaluation of the tool, the user test also
helped us to find bugs and usability issues. Since the user tests were
carried out over a few weeks, a few bug fixes and quality-of-life
improvements were added between the tests.

An example of this is the following: The first participant noted
that, while working with interactive evolution, they did not want to
change details of an effect manually. Rather, they wanted to change
the effect slightly in a random directly. They suggested the addition
of a mutate button for all effects in the effect tree, to allow for
the mutation of a single effect or sub-tree. Because the underlying
functionality was already in place, the button was added to the
inspector interface before the next test.

Several users expressed at times that they wanted to roll back
one generation and re-roll the current population. Some wanted to
completely start over because they ended up with effects they didn’t
like. To avoid the latter and support the former, buttons to re-roll,
restart and clear parts of the effects were added to the run-time
interface between the second and third participant.

5.1 Qualitative User survey
The qualitative survey included questions about the user’s profi-
ciency in the area of game feel design. Four out of five participants
write custom code or use libraries such as DOTween14 for anima-
tions, and trigger the corresponding events themselves from code.
But only two of the five were using any tools currently. One uses
their own custom tools, the other one libraries like DOTween or
Unity’s Coroutines15.

Three of the five participants found interactive evolution was
beneficial to getting started with Squeezer and helped them get a
perspective on the possibilities. One participant found it mostly
useful as a way to discover new ideas, while the last participant
found it “cool” but was missing some transparency in how the
evolution actually would change the effects.

When asked about their thoughts on using interactive evolution
in a tool like Squeezer, three of the participants said that they imag-
ined it would be good for new designers and developers without the
knowledge to “easily make cool looking stuff ” or just as a tutorial
for Squeezer. One participant found it “chaotic, but also playful”
pushing them out of their comfort zone, while helping them to
“explore a possibility space too large to contain” in their head.

Four of the participants found that the generated and evolved
effects surprised them, and led to unexpected but interesting results.
A few of the participants ran into bugs, that caused the exploration
to mostly generate certain kinds of effects, and noted that it felt like
the system mostly liked the color white and transparency effects.

Three of the five participants said they might use this in the
future for game jams and personal projects, and a fourth said it
might be useful for coming up with new ideas for effects. The last
participant relies more on triggering effects manually from code,
and suggested a more “lightweight” version of the API, would allow
them to bypass Squeezers trigger system, but agreed that Squeezer
should still have that capability as a visual design interface. One of
the participants did raise the concern that Squeezer would probably
not transfer well from the prototyping phase into production.

14http://dotween.demigiant.com/
15https://docs.unity3d.com/Manual/Coroutines.html

Johansen, et al.

5.2 Participant Usage
The authors noted that the depth of the evolution was at most
around ten steps. It usually took only two to four steps before
users felt either content or wanted to start over. This could either
be caused by the loose definition of the task they were asked to
perform or by the fact that users felt they had run into “dead ends”.

The sound effect synthesizer caused several participants to mute
the audio, because it kept generating oddly loud sounds. Squeezer
allows full control and visibility of all the mutated values, providing
users with insight into the changes the system is making [37]. One
participant noted that the inspector interface has quite a lot of
information. They proposed that adding icons and changing the
names of effects could improve the user interface.

Several participants were surprised by the effects generated dur-
ing evolution, and mentioned how those effects changed the game
mechanics in surprising ways. Mixed-initiative systems can provide
surprisingly creative insights when added to game artifacts [35]. To
one participant Squeezer felt like “an animation showreel for effects.”
and we took that as a compliment.

6 REFLECTION
In this paper we presented how adding interactive evolution to
Squeezer can assist game designers in exploring game feel design
[24] in game prototypes. The two interfaces for interactive evo-
lution in Squeezer each have merits of their own. They can be
functionally combined. However, the user experience of working
with it, is still far from optimal. Future research is needed to explore
ways of presenting a range of different effect variations for inter-
active systems. Previously, we created a Breakout clone with an
AI playing the game [18], to allow for designing and testing at the
same time. However, adding artificial agents to any game requires a
lot of effort, and is thus a bad fit for the prototyping phase. While it
is currently possible to edit the effect sequences while the game is
running, this feature is not fully useful without a preview window.

While the effect tree generator supports generating effect se-
quences for a lot of opportunities in a game, several additional
cases were discovered while preparing for the user testing. Cat-
egories such as ‘Starting/Spawning’, with objects fading, sliding
or scaling into view, as well as options to distinguish between 2D
and 3D effects would be great additions. Adding these additional
categories and options would enhance the potential of applying
Squeezer in game development.

Similarly, creating variations of the underlying handcrafted trees
would allow an even more diverse set of generated trees to be cre-
ated. This would present more variation to designers when generat-
ing effects for a certain event. Additionally it might be interesting
to align variations across different event types, by creating for in-
stance “Explosion type A”, which worked well with “Movement
trail A” or “Muzzle flash A”.

Like with every prototyping tool, a potential pitfall of Squeezer
is that the designer can become too attached to the placeholder
effects. That they are locked into a particular path of exploration
and limited in their creativity. The value lies in quickly exploring
feasibility and examples of juice, and then being able to “start over”
using the lessons learned from the prototype. Squeezer does not
contain every possible effect, and it might even be missing some

critical effects for game types we overlooked. However, it provides
a good starting point for exploring and implementing effects early
in a game design process, when the final look and feel has yet to
be determined.

As one participant pointed out in their evaluation, Squeezer
could benefit from streamlining the API for triggering effects di-
rectly from code. While this is already possible, with the current
Squeezer.Trigger(...) API, there are several ways to tie code and effect
descriptions together. An API that easily allows programmers to
trigger, cache, mutate and save effects based on categories and in-
tensity from code would open the evolutionary aspects of Squeezer
to programmers.

7 FUTUREWORK
Comparing this version of Squeezer to the initial version presented
and tested in [18], a lot has changed. The interface has been over-
hauled completely, many of the initial interaction design-concerns
have been addressed. The generator, interactive evolution, and the
mutation and locking system have been added. It is hard to compare
the two interfaces, because the user interface has been upgraded
with many small quality of life features. Yet, while we believe the
new version is a lot better than the initial version, further studies
of designers using Squeezer for their own projects, would highlight
more thoroughly the issues and qualities of Squeezer.

As we stated in [24], Automated Game Generation [8] could ben-
efit from the addition of effects. However, it requires implementing
measure that make sure that effects are not conveying misleading
feedback. A way of analysing what message a player gleams from a
given effect sequence, and which effects fit generated gamemechan-
ics must be provided to add fitting feedback to generated games.
Similar to having categories align across different events in a game,
verifying that all effects match the game-play of a generated game
consistently, requires further research.

8 CONCLUSION
This paper shows how generative and evolutionary strategies can
be applied in game design, specifically in the realm of juice and
feedback. It demonstrates how Squeezer, a tool for rapidly designing
juice effects, became a “synthesizer”, combining modular sequenc-
ing and presets to generate complex chains of effects. The tool can
help exploring the effect design space and it can also support de-
termining which kinds of juice effects enhance feedback of a game
prototype [18]. In order to further support this kind of exploration
and discovery of the design space of game feedback, we expanded
Squeezer with an interface for generation, mutation and interactive
evolution of effects.

To verify the quality of our implementation, we conducted a user
study with game designers who had no prior experience with the
software. The study indicated that Squeezer could be a great tool to
help designers discover and explore the possibilities of juice effects
and interesting gamemechanics. Additionally our test indicates that
interactive evolution could ease the process of learning, creating
and exploring juice effects with Squeezer.

Squeezer - A Mixed-Initiative Tool for Designing Juice Effects

ACKNOWLEDGMENTS
We would like to thank the test participants for participating and
providing their feedback about working with Squeezer.

REFERENCES
[1] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. 1998.

Genetic Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[2] Philip Bontrager, Wending Lin, Julian Togelius, and Sebastian Risi. 2018. Deep
Interactive Evolution. In Computational Intelligence in Music, Sound, Art and
Design, Antonios Liapis, Juan Jesús Romero Cardalda, and Anikó Ekárt (Eds.).
Vol. 10783. Springer International Publishing, Cham, 267–282. https://doi.org/
10.1007/978-3-319-77583-8_18

[3] Mark Brown. 2015. Secrets of Game Feel and Juice. https://www.youtube.
com/watch?v=216_5nu4aVQ. https://www.youtube.com/watch?v=216_5nu4aVQ
Accessed: 2020-04-17T11:52:14Z.

[4] Mark Brown. 2019. Why Does Celeste Feel So Good to Play? | Game Maker’s
Toolkit. https://www.youtube.com/watch?v=yorTG9at90g. https://www.
youtube.com/watch?v=yorTG9at90g Accessed: 2020-04-17T13:21:54Z.

[5] N. Burtnyk and M. Wein. 1971. Computer-Generated Key-Frame Animation.
Journal of the SMPTE 80, 3 (March 1971), 149–153. https://doi.org/10.5594/J07698

[6] Kitty Calis, Jan Willem Nijman, Terri Vellmann, and Adam Drucker. 2020. Disc
Room.

[7] Jeff Clune, Jason Yosinski, Eugene Doan, Nabeel Samad, Sijie Liu, and Hod Lip-
son. 2012. EndlessForms.Com - Design Objects with Evolution and 3D Print
Them! http://endlessforms.com/. http://endlessforms.com/ Accessed: 2020-11-
17T17:22:46Z.

[8] Michael Cook, Simon Colton, and Jeremy Gow. 2014. Automating Game Design
In Three Dimensions. In AISB Symposium on AI and Games. AISB, 1–4. http:
//research.gold.ac.uk/id/eprint/17354/

[9] Frank Force. 2020. ZzSprite - Tiny Sprite Generator. https://killedbyapixel.
github.io/ZzSprite/. https://killedbyapixel.github.io/ZzSprite/ Accessed: 2020-
11-17T17:25:13Z.

[10] Renaud Forestié. 2019. How to Design with Feedback and Game Feel in Mind
- Shake It ’til You Make It. https://www.youtube.com/watch?v=yCKI9T3sSv0.
https://www.youtube.com/watch?v=yCKI9T3sSv0 Accessed: 2020-04-17.

[11] Tracy Fullerton. 2014. Game Design Workshop: A Playcentric Approach to Creating
Innovative Games (3rd ed.). A K Peters/CRC Press.

[12] Kyle Gray, Kyle Gabler, Shalin Shodhan, and Matt Kunic. 2005. How to Prototype
a Game in Under 7 Days. https://www.gamasutra.com/view/feature/130848/
how_to_prototype_a_game_in_under_7_.php. https://www.gamasutra.com/
view/feature/130848/how_to_prototype_a_game_in_under_7_.php Accessed:
2019-10-27.

[13] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
2013. Procedural Content Generation for Games: A Survey. ACM Transactions
on Multimedia Computing Communications and Applications 9, 1, Article 1 (Feb.
2013), 22 pages. https://doi.org/10.1145/2422956.2422957

[14] Kieran Hicks, Patrick Dickinson, Juicy Holopainen, and Kathrin Gerling. 2018.
Good Game Feel: An Empirically Grounded Framework for Juicy Design. In
Proceedings of the 2018 DiGRA International Conference: The Game Is the Message.
DiGRA, 17. http://www.digra.org/wp-content/uploads/digital-library/DIGRA_
2018_Paper_35.pdf

[15] Amy K. Hoover, Paul A. Szerlip, Marie E. Norton, Trevor A. Brindle, Zachary
Merritt, and K. Stanley. 2012. Generating a Complete Multipart Musical Compo-
sition from a Single Monophonic Melody with Functional Scaffolding. In ICCC,
Vol. PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON
COMPUTATIONAL CREATIVITY. ICCC, Proceedings of the Third International
Conference on Computational Creativity, 111–119.

[16] Robin Hunicke. 2009. Loving Your Player With Juicy Feedback. http://2009.
dconstruct.org/podcast/juicyfeedback

[17] Mads Johansen, Martin Pichlmair, and Sebastian Risi. 2019. Video Game Descrip-
tion Language Environment for Unity Machine Learning Agents. In 2019 IEEE
Conference on Games (CoG), Vol. 2019 IEEE Conference on Games (CoG). IEEE,
1–8. https://doi.org/10.1109/CIG.2019.8848072

[18] Mads Johansen, Martin Pichlmair, and Sebastian Risi. 2020. Squeezer - A Tool for
Designing Juicy Effects. In Extended Abstracts of the 2020 Annual Symposium on
Computer-Human Interaction in Play (CHI PLAY ’20). Association for Comput-
ing Machinery, New York, NY, USA, 282–286. https://doi.org/10.1145/3383668.
3419862

[19] Martin Jonasson and Petri Purho. 2012. Juice It or Lose It. https://www.
youtube.com/watch?v=Fy0aCDmgnxg. https://www.youtube.com/watch?v=
Fy0aCDmgnxg Accessed: 2019-02-27.

[20] Jesper Juul and Jason Scott Begy. 2016. Good Feedback for Bad Players? A
Preliminary Study of ‘Juicy’ Interface Feedback. In Proceedings of First Joint

FDG/DiGRA Conference, Vol. Proceedings of first joint FDG/DiGRA Conference.
DiGRA, Dundee, 2. https://www.jesperjuul.net/text/juiciness.pdf

[21] Jan Willem Nijman. 2013. The Art of Screenshake. https://www.youtube.com/
watch?v=AJdEqssNZ-U. https://www.youtube.com/watch?v=AJdEqssNZ-U
Accessed: 2021-04-22.

[22] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Si-
mon M. Lucas, Adrien Couetoux, Jerry Lee, Chong-U Lim, and Tommy Thomp-
son. 2016. The 2014 General Video Game Playing Competition. IEEE Transac-
tions on Computational Intelligence and AI in Games 8, 3 (Sept. 2016), 229–243.
https://doi.org/10.1109/TCIAIG.2015.2402393

[23] Tomas ’DrPetter’ Pettersson. 2007. SFXR. http://www.drpetter.se/project_sfxr.
html. http://www.drpetter.se/project_sfxr.html Accessed: 2020-07-11.

[24] Martin Pichlmair and Mads Johansen. 2021. Designing Game Feel. A Survey.
IEEE Transactions on Games IEEE Transactions on Games (Early Access), IEEE
Transactions on Games (Early Access) (2021), 1–20. https://doi.org/10.1109/TG.
2021.3072241

[25] William T. Reeves. 1981. Inbetweening for Computer Animation UtilizingMoving
Point Constraints. In Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques - SIGGRAPH ’81. ACM Press, Dallas, Texas,
United States, 263–269. https://doi.org/10.1145/800224.806814

[26] Tom Schaul. 2013. A Video Game Description Language for Model-Based or
Interactive Learning. In 2013 IEEE Conference on Computational Inteligence in
Games (CIG). IEEE, Niagara Falls, ON, Canada, 1–8. https://doi.org/10.1109/CIG.
2013.6633610

[27] Tom Schaul. 2014. An Extensible Description Language for Video Games. IEEE
Transactions on Computational Intelligence and AI in Games 6, 4 (Dec. 2014),
325–331. https://doi.org/10.1109/TCIAIG.2014.2352795

[28] Jimmy Secretan, Nicholas Beato, David B. D Ambrosio, Adelein Rodriguez, Adam
Campbell, and Kenneth O. Stanley. 2008. Picbreeder: Evolving Pictures Collab-
oratively Online. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). Association for Computing Machinery, Florence,
Italy, 1759–1768. https://doi.org/10.1145/1357054.1357328

[29] Noor Shaker, Julian Togelius, and Mark Nelson. 2016. Procedural Content Genera-
tion in Games. Springer, USA. http://www.springer.com/gp/book/9783319427140

[30] Jiesang Song. 2005. Improving the Combat 'Impact' Of Action
Games.

[31] Steve Swink. 2007. Game Feel: The Secret Ingredient. https://www.gamasutra.
com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1.
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_
ingredient.php?print=1 Accessed: 2020-04-17T11:52:32Z.

[32] Steve Swink. 2009. Game Feel. Morgan Kaufmann.
[33] H. Takagi. Sept./2001. Interactive Evolutionary Computation: Fusion of the Capa-

bilities of EC Optimization and Human Evaluation. Proc. IEEE 89, 9 (Sept./2001),
1275–1296. https://doi.org/10.1109/5.949485

[34] Frank Thomas and Ollie Johnston. 1981. The Illusion of Life: Disney Animation.
Abbeville Press, New York.

[35] Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos. 2014.
Mixed-Initiative Co-Creativity. In Foundations of Digital Games 2014. Society
for the Advancement of the Science of Digital Games, Proceedings of the 9th
International Conference on the Foundations of Digital Games, 8.

[36] Jinhong Zhang, Rasmus Taarnby, Antonios Liapis, and Sebastian Risi. 2015. Draw-
CompileEvolve: Sparking Interactive Evolutionary Art with Human Creations.
In Evolutionary and Biologically Inspired Music, Sound, Art and Design. Springer,
Cham, 261–273. https://doi.org/10.1007/978-3-319-16498-4_23

[37] Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G. Michael Young-
blood. 2018. Explainable AI for Designers: A Human-Centered Perspective on
Mixed-Initiative Co-Creation. In 2018 IEEE Conference on Computational Intelli-
gence and Games (CIG). IEEE, Maastricht, 1–8. https://doi.org/10.1109/CIG.2018.
8490433

https://doi.org/10.1007/978-3-319-77583-8_18
https://doi.org/10.1007/978-3-319-77583-8_18
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=yorTG9at90g
https://www.youtube.com/watch?v=yorTG9at90g
https://www.youtube.com/watch?v=yorTG9at90g
https://doi.org/10.5594/J07698
http://endlessforms.com/
http://endlessforms.com/
http://research.gold.ac.uk/id/eprint/17354/
http://research.gold.ac.uk/id/eprint/17354/
https://killedbyapixel.github.io/ZzSprite/
https://killedbyapixel.github.io/ZzSprite/
https://killedbyapixel.github.io/ZzSprite/
https://www.youtube.com/watch?v=yCKI9T3sSv0
https://www.youtube.com/watch?v=yCKI9T3sSv0
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://doi.org/10.1145/2422956.2422957
http://www.digra.org/wp-content/uploads/digital-library/DIGRA_2018_Paper_35.pdf
http://www.digra.org/wp-content/uploads/digital-library/DIGRA_2018_Paper_35.pdf
http://2009.dconstruct.org/podcast/juicyfeedback
http://2009.dconstruct.org/podcast/juicyfeedback
https://doi.org/10.1109/CIG.2019.8848072
https://doi.org/10.1145/3383668.3419862
https://doi.org/10.1145/3383668.3419862
https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.jesperjuul.net/text/juiciness.pdf
https://www.youtube.com/watch?v=AJdEqssNZ-U
https://www.youtube.com/watch?v=AJdEqssNZ-U
https://www.youtube.com/watch?v=AJdEqssNZ-U
https://doi.org/10.1109/TCIAIG.2015.2402393
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
https://doi.org/10.1109/TG.2021.3072241
https://doi.org/10.1109/TG.2021.3072241
https://doi.org/10.1145/800224.806814
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1109/TCIAIG.2014.2352795
https://doi.org/10.1145/1357054.1357328
http://www.springer.com/gp/book/9783319427140
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://doi.org/10.1109/5.949485
https://doi.org/10.1007/978-3-319-16498-4_23
https://doi.org/10.1109/CIG.2018.8490433
https://doi.org/10.1109/CIG.2018.8490433

	Abstract
	1 Introduction
	2 Background
	2.1 Game feel and Juice
	2.2 Procedural Content Generation

	3 Implementation
	3.1 Core Functionality
	3.2 Integration
	3.3 Workflow
	3.4 Demo Scenes
	3.5 Architecture
	3.6 Content Categories
	3.7 Generation, Mutation and Evolution
	3.8 User Interface

	4 User Test
	5 Results
	5.1 Qualitative User survey
	5.2 Participant Usage

	6 Reflection
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

