
HoRoSim, a Holistic Robot Simulator:
Arduino Code, Electronic Circuits and Physics

Andres Faiña (�)

Robotics, Evolution and Art Lab (REAL),
IT University of Copenhagen,
Copenhagen S 2300, Denmark

anfv@itu.dk

Abstract. Online teaching, which has been the only way to keep teach-
ing during the pandemic, imposes severe restrictions on hand-on robotic
courses. Robot simulators can help to reduce the impact, but most of
them use high-level commands to control the robots. In this paper, a
new holistic simulator, HoRoSim, is presented. The new simulator uses
abstractions of electronic circuits, Arduino code and a robot simulator
with a physics engine to simulate microcontroller-based robots. To the
best of our knowledge, it is the only tool that simulates Arduino code and
multi-body physics. In order to illustrate its possibilities, two use cases
are analysed: a line-following robot, which was used by our students to
finish their mandatory activities, and a PID controller testbed. Prelim-
inary tests with master’s students indicate that HoRoSim can help to
increase student engagement during online courses.

Keywords: Robot simulator, Arduino, Electronics, Physics, Educational
tools

1 Introduction

There are a lot of robots controlled by microcontrollers that interact with phys-
ical objects, such as line-following robots or walking robots. In these robots,
sensors are used to transform physical properties into electrical signals, which
are then processed by the microcontroller. Based on these inputs, the micro-
controller produces electric signals as outputs, which are then processed by an
electric circuit to power actuators. Finally, these actuators produce some effect
in the environment (turning a motor for example) and the sensors generate new
signals. Thus, teaching these robotic first principles involves a wide curricula
that includes mechanics, electronics and programming.

The main aim of teaching these basic topics in a robotics course is to de-
mystify these areas, show the big picture to the students and force them to
understand that robotics is not only computer science. At IT University of
Copenhagen, we use this holistic approach in the first course of the robotics
specialization. The course is called ”How to Make (Almost) Anything”1 and is

1Inspired by the course of the same name taught at MIT by Neil Gershenfeld.

https://orcid.org/0000-0001-7288-6988

2 Andres Faiña

targeted to Computer Science students (21 to 30 years of age) without previous
knowledge in robotics, mechanics or electronics. The approach is comparable to
the famous ”NAND to tetris” course [1] for teaching computer science, where
computer science abstractions are made up concrete through detailed implemen-
tations. In our course, each lecture focuses on a specific technique or topic which
allows students to build some components of a custom line following robot, which
is completely functional after 7 weeks. The approach used was not to simulate
anything and work directly in hardware. This strategy worked relatively well
until March 2020, when the pandemic forced a lock down of the university. This
caused that half of the students could not get access to their robots while still
having pending assignments to hand in. This suddenly created the need for a
simulator.

Simulators have several drawbacks. First, they are not accurate, which pro-
vokes a reality gap between the simulation and the real behaviour. Second, they
introduce limitations as not all the aspects of the robots are taken into account
and not all the components are available to be simulated. And finally, the man-
ufacturing of physical prototypes cannot be recreated. To avoid the limitations,
there are several robots designed to be used in education [2,3]. However, simula-
tors have some advantages over working in hardware: (1) They provide a quick
way to prototype and check that everything works as expected, (2) they do not
require any hardware to learn (apart from a computer), which is especially rele-
vant for online learning, (3) they reduce the running costs of the course and (4)
students lose their fear to break the hardware which allow them to experiment
more freely.

While there are a lot of simulators that allow us to simulate robots, there is
a lack of a holistic simulator. Most of the times, teaching robotics involves the
use of several simulators, as there is no one that covers all the topics (physics,
electronics, and embedded programming). As an example, when using robot
simulators, the electronic aspects are usually ignored and students do not need to
think in the electronic hardware that controls the actuators, the type of actuators
of the robot or the low-level controllers used. Other simulators are focused on
electronics and microcontrollers but are unable to simulate multi-body physics.

This paper introduces a new holistic simulator that combines three funda-
mental aspects of robotics: physics, electronics, and embedded programming.
The main advantage is that it forces students to understand the basic princi-
ples of robotics before moving to more advanced topics. The simulator, called
HoRoSim, consists of a robot simulator that simulates multi-body physics (Cop-
peliaSim), custom libraries for the Arduino code and the logic to simulate basic
electronic circuits.

2 Related Work

There are several simulators that can be used to simulate some aspects of robots.
Physics engines such as ODE [4] or Bullet [5] can simulate multi-body dynamics
and use collision detection algorithms to calculate the distance from one sensor

HoRoSim: a Holistic Robot Simulator 3

to a body. However, the input of these physics engines requires to specify the
torques or forces for each joint and the output is just the position of the bodies
in the system for the next time step. Robot simulators such as Gazebo [6],
CoppeliaSim (before known as V-Rep) [7] or Webots [8] can facilitate the use of
the physics engines as they provide a graphical user interface where the robot and
physical bodies are displayed, a set of controllers for the joints (move joint with
constant speed, etc.), sensors (cameras, distance sensors, etc.), and predefined
models of robots and common objects. Nevertheless, they ignore the fact that
these actuators and sensors are controlled by some electronic circuit.

The most popular electronic simulator is SPICE [9] and its different forks
such as LTspice [10] and Ngspice [11]. These simulators take the definition of an
electronic circuit through a netlist and can perform different types of analyses:
direct current operating point, transient, noise, etc. However, the complexity of
these analyses is especially high when simulating devices that interact with the
real world (motors, switches, photo-diodes, etc.) as they require to specify the
properties of their components depending on the physical environment.

There are different simulators for microcontrollers, but most of them are
very specialized tools. These simulators change the registers of the microcon-
troller based on the firmware introduced without simulating other hardware
than LEDs [12]. Some of them have been extended to interact with electronic
circuits. For example, Proteus [13] or SimulIDE [14] are able to combine the
simulation of a microcontroller with a SPICE simulation. They are very useful
to learn electronics, however they are not able to perform physics simulations
and their use for teaching robotics is limited.

3 HoRoSim

HoRoSim 2 has four main components. The first one is the Arduino code that
students program, which has been extended with a function to specify the hard-
ware devices employed (electronic circuits, motors and sensors). The second one
is the HoRoSim libraries that replace the standard libraries used by Arduino.
The third component is a robot simulator, CoppeliaSim [7], that is employed
for visualization and calculation of the physics (multi-body dynamics, object
collision, distance sensors, etc.). Finally, there is a user interface to handle those
devices that are not part of the physical simulation and that the user just uses
to interface with the microcontroller (buttons, potentiometers and LEDs). A
representation of these four components is shown in Fig. 1.

HoRoSim is used from the Arduino IDE and uses the same sketch building
process as Arduino. Basically, HoRoSim installs a new Arduino ”core” (software
API) that compiles and links the user’s program to the HoRoSim libraries. Thus,
the user can choose to use HoRoSim (and the Arduino board to be simulated3)
from the Board menu in the Arduino IDE. For the user, the only difference is

2HoRoSim is open source (MIT license) and available for download at https://
bitbucket.org/afaina/horosim

3Currently, only Arduino Unos are supported.

https://bitbucket.org/afaina/horosim
https://bitbucket.org/afaina/horosim

4 Andres Faiña

Robot Simulator

Arduino Code User InterfaceHoRoSim

hardware setup()
Extended Code:

call

init
Hardware devices

Arduino library

functions

Regular Code:
setup()
loop()

pinMode()
digitalWrite()

etc.
analogRead()

Fig. 1: Main components of the HoRoSim simulator: The Arduino code is ex-
tended to specify the hardware devices employed, the code is compiled using the
HoRoSim libraries and the libraries are in charge of communicating with a robot
simulator (CoppeliaSim) and the user interface.

that HoRoSim needs an extra function in the program that specifies the hard-
ware devices (motors, sensors, LEDs and its circuits) that are connected to the
Arduino. This is done in a function called hardware setup() that is mandatory.
In this function, the user creates instances of the hardware devices employed and
specifies their properties and the pins of the Arduino that are used to interact
with them. Two implementations of the hardware setup function can be seen in
section 4.

Currently, the hardware devices that HoRoSim can simulate are shown in
Fig. 2 and include:

– Direct current (DC) motors controlled with a transistor or with motor con-
trollers (H-bridges)

– Stepper motors controlled by drivers with a STEP/DIR interface

– Radio control (RC) servomotors

– Proximity sensors like ultrasound or infrared (IR) sensors (analogue or dig-
ital)

– Infrared sensors used as vision sensors to detect colours (analogue or digital)

– Potentiometers connected to a joint in the robot simulator

– LEDs (User Interface)

– Potentiometers (User Interface)

– Buttons (momentary or latching) (User Interface)

The program is compiled using a C++ compiler using the Arduino IDE
interface (verify button), which creates an executable program. This program
can be run from the Arduino IDE (upload button) or through a terminal in the
computer.

Once the compiled program is launched, it connects to the robot simula-
tor (CoppeliaSim) through TCP/IP communication and starts a user interface.
The robot simulator is used to perform the rigid-body dynamic calculations.

HoRoSim: a Holistic Robot Simulator 5

Fig. 2: The different hardware devices wired in a breadboard; note that this view
is for illustration purposes only and it is not available in the simulator. The wires
that come out of the breadboard are the connections that need to be specified in
the hardware setup function (blue for Arduino outputs, purple for digital inputs
and orange for analogue inputs). For the sake of clarity, the power applied to
the rails of the breadboard is not shown.

The components that do not need the robot simulator (LEDs, buttons and po-
tentiometers) are rendered in the user interface using ImGui, a graphical user
interface library for C++.

Calls to the Arduino functions are executed using the HoRoSim libraries.
Currently, the list of available Arduino functions is shown in Table 1. The func-
tions that interact with hardware devices (I/O and Servo libraries) call the re-
spective functions for each hardware device instance that has been defined in the
hardware setup function. The code in each hardware device instance will check
that the pin of the Arduino that is passed as an argument matches the pin where
the hardware device is connected and that the pin has been initialized properly.
If these conditions are met, the HoRoSim libraries call the functions to replicate
the expected behaviour in the robot simulator or user interface. Therefore, a
digital output pin in the Arduino can control several devices. An example of
this software architecture for the digitalWrite function can be seen in Fig. 3.
In this case, the user has defined a DC motor controlled by a transistor, which

6 Andres Faiña

Table 1: Arduino functions implemented in HoRoSim
I/O Servo Serial Time

pinMode attach begin delay
digitalRead write write delayMicroseconds
digitalWrite writeMicroseconds print millis
analogWrite read println micros
analogRead detach

attached

base is connected to a specific pin in the Arduino. If the conditions are met,
the library sends a message to CoppeliaSim to set a new speed (0 or maximum
speed) depending on the argument passed as value. In case of functions that re-
turn a value (analogRead and digitalRead), the mechanism is similar. The logic
implemented takes into account that the analogue values can only be read in
analogue pins and analogue writes can only be used in the pins that have pulse
width modulated (PWM) hardware.

Thus, there is no simulation of the electronic circuits. The libraries just repli-
cate the behaviour of the electronics. Of course, this means that there are some
electronic aspects that are not addressed such as the appropriate values of the
components used or the wiring of the circuits.

Before running HoRoSim, the CoppeliaSim simulator needs to be launched
and the user needs to load the scene that contains the robot and environment
to simulate. The user can also decide which physics engine to use (ODE, Bul-
let, Newton, etc.). The name of the joints and sensors used in the scene should
be introduced as arguments to the appropriate hardware devices in the hard-
ware setup function. The simulation is automatically started when the student
presses the upload button in the Arduino IDE and stops automatically when the
user interface is closed.

In order to create the scenes, the students need to use the functionality pro-
vided by CoppeliaSim. This process consists in generating the body of the robot
using primitive shapes and connecting them together with joints (kinematic pairs
which can be passive or actuated). This process can be time consuming, but it
only needs to be performed once.

The simulation is asynchronous. CoppeliaSim updates the physics engine
in its own thread and HoRoSim sends the commands and reads the sensors
independently. Therefore, the handling of the time in HoRoSim is not accurate.
The delays and time related functions are handled by the chrono library. In
addition to the inaccuracies caused by the operating system, the communications
with the simulator and the update of the graphical user interface introduce more
delays. As a workaround, students can slow down the physics simulator through
its graphical user interface (GUI). However, we have found that most robots can
be simulated without noticeable side effects.

HoRoSim: a Holistic Robot Simulator 7

void d i g i t a l W r i t e (char pin , char value) {
f o r each HardwareDevice i n s t anc e

hardwareDevice−>d i g i t a l W r i t e (pin , va lue)
}

(a) The Arduino functions call the functions for each hardware device instance.

void DCMotor Transistor : : d i g i t a l W r i t e (i n t pin , i n t va lue) {
i f pin i s not the pin that c o n t r o l s the t r a n s i s t o r :

r e turn
i f pin has not been i n i t i a l i z e d as OUTPUT:

return

i f va lue i s LOW:
s e t speed to 0

e l s e :
//rpm max i s an argument passed during the
// hardware dev i c e i n i t i a l i z a t i o n
s e t speed to rpm max

// Cal l the func t i on that sends a command to CoppeliaSim
setTargetSpeed (speed)

}

(b) Example of a hardware device (a transistor that controls a DC motor)

Fig. 3: Pseudo-code that illustrates how HoRoSim works. The Arduino functions
call the functions of the hardware devices instances. Each hardware device in-
stance checks that that pin passed as argument is used in that device and that
it has been initialized properly. If so, the correct behaviour is applied or the
correct value returned.

4 Use Cases

In this section, we will illustrate the potential of the simulator with two examples:
A line following robot and a testbed to study PID controllers.

4.1 Line Following Robot

This example was used by our master´s students (21 to 30 years of age) to
finish a mandatory assignment of the course as the real robots were locked in
the university during the lockdown. The assignment consisted in programming a
robot able to follow a line, find a can at the end of the line, grasp it with a gripper
and place it near a crossing. This example replicates all the hardware that the
students had in their line-following robots: DC motors controlled by transistors,
an Arduino, 2 IR sensors for detecting the line on the floor, an ultrasound sensor

8 Andres Faiña

(a) Arduino code (b) CoppeliaSim

Fig. 4: A line following robot that was used to work on a mandatory activity
during the lockdown.

to detect the can and a gripper controlled by a RC servomotor. Figure 4a shows
the Arduino code that initializes the hardware setup function and Figure 4b
shows the robot following the line.

The scene with the robot, the line and the can was given to the students.
To avoid problems, we also gave them a small Arduino sketch with the hard-
ware setup function already implemented to check that the connection between
HoRoSim and CoppeliaSim worked correctly.4 As the installation of HoRoSim
is a bit cumbersome in Windows, an Ubuntu virtual machine was available to
download with HoRoSim already installed (students still had to install Cop-
peliaSim in their computers).

4.2 PID Testbed

This example illustrates how to use HoRoSim for teaching complex topics. In this
case, a testbed for PID controllers has been implemented.5 The scene consists of
a big disc that is static (not affected by the physics engine) with a graduated scale
where a DC motor (red joint) controls a dial (dynamic body). The DC motor is
controlled by an H-bridge and, therefore, it can rotate the dial in both directions.
The angle of the dial is measured by a potentiometer, which is connected to the
dial. Hence, a feedback loop can be created. The Arduino sketch of this example
setups these hardware devices and three extra potentiometers to interact with the

4The scene and the Arduino code with the hardware setup function implemented are
available for download at https://bitbucket.org/afaina/horosim/src/master/examples/
lineFollowingRobot/. The code to follow the line is not provided as it is the students´
task to program the robot. A video of the robot following the line is available at
https://bitbucket.org/afaina/horosim

5The Arduino code and the scene are available for download at https://bitbucket.
org/afaina/horosim/src/master/examples/pidController/. A video is available at https:
//bitbucket.org/afaina/horosim/src/master/videos/pid controller.mp4

https://bitbucket.org/afaina/horosim/src/master/examples/lineFollowingRobot/
https://bitbucket.org/afaina/horosim/src/master/examples/lineFollowingRobot/
https://bitbucket.org/afaina/horosim
https://bitbucket.org/afaina/horosim/src/master/examples/pidController/
https://bitbucket.org/afaina/horosim/src/master/examples/pidController/
https://bitbucket.org/afaina/horosim/src/master/videos/pid_controller.mp4
https://bitbucket.org/afaina/horosim/src/master/videos/pid_controller.mp4

HoRoSim: a Holistic Robot Simulator 9

(a) Arduino code (b) CoppeliaSim and UI

(c) p=1 (d) p=100

Fig. 5: Simulation of a PID testbed. The dial is moved between two different
target positions using a proportional controller. The user can change the target
positions and the proportional constant by moving the potentiometers in the
user interface (sliders). The angle of the dial is plotted for proportional values of
1, 10 and 100 in subfigures c, b and d respectively. Thus, different behaviours are
observed: overdamped, overshooting and oscillation around the target position.

testbed, see Fig. 5a. The code of the sketch implements a closed loop proportional
(P) controller, but of course this could be extended to PID controllers. The dial
is moved continuously between two target positions by the DC motor every few
seconds. The target positions and the proportional constant can be adjusted
by tuning the three potentiometers in the user interface (Fig. 5b). In addition,
a graph element has been inserted in the scene. This graph plots the angle of
the dial (in degrees) versus time and it is updated automatically during the
simulation.

This example allows students to experiment with different controllers (and
values of their constants) and observe the different behaviours that they produce.
In Fig. 5b, a proportional value around 10 has been set with the potentiometer
and the graph shows a small overshooting when reaching the targets. When
changing the proportional value, different behaviours are observed as shown
in Fig. 5c and 5d. Note that the simulator allows students to quickly change
other properties and not only the software of the controller. For example, they
could study the response of the system when increasing the mass of the dial or
increasing the speed or torque of the motor.

10 Andres Faiña

5 Discussion

5.1 Students´ Reception

The students used the simulator to fulfil the last mandatory assignment of the
course (programming a line-following robot) and the reception of the simulator
was very good. As an example, one student wrote in the evaluation of the course:
”I liked that Andres made the simulator which helped us finish the mandatories!
It was very cool to use it actually.”. And a lot of students liked the attempt
to keep a hands-on course even during the lockdown, to which the simulator
contributed.

Furthermore, all the students were able to program their robots to success-
fully pass the mandatory assignment. None of them complained about the simu-
lator and most of the questions were about how to achieve that the robot could
make the sharp turns and go straight over the crossing. In that sense, it was
a pleasure to observe that the mandatory assignment could be realised online
without any problems and triggering the same kind of questions as if they had
used a physical robot.

The simulator, which was originally built to only cover the line following
robot assignment, was extended to allow simulating other kinds of robots and
machines, and more hardware devices were implemented. This gave students
the possibility of using the simulator for their final projects (build a robot or a
machine with mechanisms, electronics and embedded programming). When they
started to work on their final projects, a small survey was carried out and 10
students replied. Half of them were interested in using the simulator for their final
projects, while the other half discarded it. The reasons to discard the simulator
were: 3 of them were very busy to use it, 1 machine could not be simulated,
and 1 machine could be built at home and there was no need for the simulator.
However, only one group out of twenty ended up using the simulator.

The low usage of the simulator (1 group out of 20) was motivated by several
reasons. First, the students could use a small budget to order electronic and
mechanical parts from online stores and prototyping services. Thus, most of the
students managed to finish with a minimum prototype and there was no need
for the simulator. However, the university had to use a considerable amount
of money to pay for this when in a normal course the students can prototype
their own parts at our workshop and use our stock materials. Additionally, some
students reported a lack of engagement and difficulty to collaborate during the
lockdown. Finally, the current limitations of the robot simulator, which are de-
scribed in the next section, also contributed to the low usage of the simulator.

5.2 Limitations

The current implementation of the code has several limitations. First, there are
still several functions and libraries available for Arduino that have not been
implemented. They include interrupts, receiving serial messages and I2C (Inter-
Integrated Circuit, Wire in Arduino) and SPI (Serial Peripheral Interface) li-
braries. They could be implemented in the future, but specific I2C and SPI

HoRoSim: a Holistic Robot Simulator 11

libraries need to be implemented for each device (sensor, motor controller, etc.)
which can be tedious.

In addition, the electronic circuits provided are abstractions of the physical
world. Thus, the students are not forced to think how to wire the electric com-
ponents between them. And the lack of a SPICE simulator makes impossible to
detect problems that could happen when working with hardware (wiring, value
of the components, power supply voltages, etc.).

Finally, a big limitation is that the students need to create a scene with
a physical model of their prototypes. In our course, they use Computer-Aided
Design (CAD) software to design their robots. However, the translation from
these 3D models to CoppeliaSim is not automatic. One could import the parts
in CoppeliaSim as meshes, but this makes the dynamic engine slower and can
cause stability issues. Additionally, too many dynamically enabled parts can
again slow down the simulator significantly. A better approach is to design the
prototype in CoppeliaSim using primitive shapes that are faster to simulate
and simplify the mechanisms. For example, most of our students implemented a
gripper for the line following robot using a servo that rotates some gears, which
open or close the end effector. In the simulator, this is simplified as a linear
actuator that opens or closes a cuboid body. Thus, all the gears and their joints
are not simulated. To compensate for this, a reduction ratio between the motor
and the axis of movement was introduced as a parameter in the constructor
of the hardware devices. This value represents the transmission (gears, belts or
leadscrew) and it will reduce the speed and increase its force/torque accordingly.

The main inconvenience of the necessity of generating a new and simplified
model of the machine to simulate is that it requires to learn how to use Cop-
peliaSim. In a course where the students already learn several programs and
topics, introducing one more increases the overload of the students. And the
survey showed that most of them are already very busy and not able to handle
more workload. Thus, this limitation needs to be addressed to increase the utility
of the simulator.

6 Conclusions

The paper has shown a new robot simulator, HoRoSim, that has a holistic ap-
proach. Students can simulate Arduino code, electronic hardware and multi-body
dynamics, which helps to teach the basic principles of robotics. To the best of our
knowledge, it is the first simulator that allows users to simulate Arduino code
combined with a physics engine. HoRoSim provides teachers with a flexible tool
that can be used for assignments in robotic courses. Preliminary results have
shown that it can contribute to keep hands-on courses and student engagement
in online courses, which is especially relevant in the current pandemic.

In order to address the limitations of the current version, future work in-
cludes (1) generating CoppeliaSim models automatically from CAD designs, (2)
allowing students to make their own electronic circuits by wiring electronic com-
ponents, and (3) adding a SPICE simulator. We are currently looking at how we

12 Andres Faiña

could integrate Fritzing [15] and Ngspice[11]. Fritzing could provide a platform
where students create their circuits (as schematics or wiring the components in
a breadboard), while Ngspice could simulate these circuits.

References

1. S. Schocken, Nand to tetris: Building a modern computer system from first princi-
ples, in: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, 2018, pp. 1052–1052.

2. F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, A. Martinoli, The e-puck, a robot designed for edu-
cation in engineering, in: Proceedings of the 9th conference on autonomous robot
systems and competitions, Vol. 1, IPCB: Instituto Politécnico de Castelo Branco,
2009, pp. 59–65.

3. F. Bellas, M. Naya, G. Varela, L. Llamas, A. Prieto, J. C. Becerra, M. Bautista,
A. Faiña, R. Duro, The robobo project: Bringing educational robotics closer to
real-world applications, in: International Conference on Robotics and Education
RiE 2017, Springer, 2017, pp. 226–237.

4. R. Smith, et al., Open dynamics engine (2005).
5. E. Coumans, et al., Bullet physics library, bulletphysics.org, accessed: 04-02-2021.
6. N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-

robot simulator, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vol. 3, IEEE, 2004, pp. 2149–2154.

7. E. Rohmer, S. P. Singh, M. Freese, V-rep: A versatile and scalable robot simula-
tion framework, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2013, pp. 1321–1326.

8. O. Michel, Cyberbotics ltd. webots™: professional mobile robot simulation, Inter-
national Journal of Advanced Robotic Systems 1 (1) (2004) 5.

9. L. Nagel, D. Pederson, Simulation program with integrated circuit emphasis, in:
Midwest Symposium on Circuit Theory, 1973.

10. Analog Devices, Ltspice, https://www.analog.com/en/design-center/
design-tools-and-calculators/ltspice-simulator.html#, accessed: 08-01-2021.

11. H. Vogt, M. Hendrix, P. Nenzi, D. Warning, Ngspice users manual version 33
(2020).

12. P. F. Gonçalves, J. Sá, A. Coelho, J. Durães, An arduino simulator in classroom-a
case study, in: First International Computer Programming Education Conference
(ICPEC), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

13. Bo Su, Li Wang, Application of proteus virtual system modelling (vsm) in teach-
ing of microcontroller, in: 2010 International Conference on E-Health Network-
ing Digital Ecosystems and Technologies (EDT), Vol. 2, 2010, pp. 375–378.
doi:10.1109/EDT.2010.5496343.

14. SimulIDE, https://www.simulide.com, accessed: 08-01-2021.
15. A. Knörig, R. Wettach, J. Cohen, Fritzing: a tool for advancing electronic prototyp-

ing for designers, in: Proceedings of the 3rd International Conference on Tangible
and Embedded Interaction, 2009, pp. 351–358.

bulletphysics.org
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#
https://doi.org/10.1109/EDT.2010.5496343
https://www.simulide.com

	HoRoSim, a Holistic Robot Simulator: Arduino Code, Electronic Circuits and Physics

