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Abstract

Abstract dialectical frameworks (in short, ADFs) are a uni-
fying model of formal argumentation, where argumentative
relations between arguments are represented by assigning ac-
ceptance conditions to atomic arguments. This idea is gen-
eralized by letting acceptance conditions being assigned to
complex formulas, resulting in conditional abstract dialec-
tical frameworks (in short, cADFs). We define the seman-
tics of cADFs in terms of a non-truth-functional four-valued
logic, and study the semantics in-depth, by showing existence
results and proving that all semantics are generalizations of
the corresponding semantics for ADFs.

1 Introduction
Formal argumentation is one of the major approaches to
knowledge representation. In the seminal paper (Dung
1995), abstract argumentation frameworks were conceived
of as directed graphs where nodes represent arguments and
edges between these nodes represent attacks. So-called ar-
gumentation semantics determine which sets of arguments
can be reasonably upheld together given such an argumen-
tation graph. Various authors have remarked that other rela-
tions between arguments are worth consideration. For exam-
ple, in (Cayrol and Lagasquie-Schiex 2005), bipolar argu-
mentation frameworks are developed, where arguments can
support as well as attack each other.

The last decades saw a proliferation of such extensions
of the original formalism of (Dung 1995), and it has of-
ten proven hard to compare the resulting different dialects
of the argumentation formalisms. To cope with the result-
ing multiplicity, (Brewka et al. 2013) introduced abstract
dialectical argumentation that aims to unify these differ-
ent dialects (Polberg 2016). Just like in (Dung 1995), ab-
stract dialectical frameworks (in short, ADFs) are directed
graphs. In difference to abstract argumentation frameworks,
however, in ADFs, edges between nodes do not necessar-
ily represent attacks but can encode any relationship be-
tween arguments. Such a generality is achieved by asso-
ciating an acceptance condition with each argument, which
is a Boolean formula in terms of the parents of the argument
that expresses the conditions under which an argument can
be accepted. This results in an ADF being defined as a triple
(At, L, C) where At represents a set of atoms or arguments,

L ⊆ At× At represents a set of argumentative relations be-
tween the atoms and C is a set of acceptance conditions Cs
for every s. As such, ADFs are able to capture all of the
major semantics of abstract argumentation and offer a gen-
eral framework for argumentation-based inference. Further-
more, ADFs were shown to be able to capture a number of
non-argumentative formalisms such as logic programming
(Brewka et al. 2013). Recently, first attempts were made to
translate non-monotonic conditional logics in ADFs (Heyn-
inck et al. 2019).

However, there are limits to the representative capabilities
of ADFs, both on a conceptual as well as a more technical
level. On the conceptual level, acceptance conditions are as-
signed to atoms, which means that, e. g., an attack on a set
of arguments cannot be captured by ADFs. For example, to
state that the set {p, q} is attacked by r we would have to be
able to set the acceptance condition of p ∧ q to ¬r, which is
not possible in ADFs. Likewise, it is not immediately obvi-
ous how to represent more complicated logic programming
languages in ADFs, such as disjunctive logic programming.
Such limitations are, not unsurprisingly, also reflected on a
more technical level. For example, a (polynomial) trans-
lation of disjunctive logic programming into ADFs is im-
possible in view of complexity results on disjunctive logic
programming and ADFs. Finally, in (Heyninck et al. 2019)
shows that only a fragment of the full language of condi-
tional logics can be translated in ADFs in view of their lim-
ited syntax.

In this paper, we generalize ADFs as to allow for the
assignment of acceptance conditions to complex formulas.
This results in conditional abstract dialectical frameworks
(in short, cADFs) which are sets of acceptance pairs of the
form φCψ with arbitrary formulas φ and ψ, interpreted as
a defeasible version of “φ is the case if and only if ψ is the
case”. The semantics of cADFs are formulated as a gener-
alization of the semantics of ADFs, with the Γ-function, on
its turn based on a non-truth-functional four-valued logic,
as a central component. Some of the main results include
existence results for all the major semantics, as well as the
definition of the so-called grounded state, a single-state se-
mantics which can be iteratively constructed and represents
the minimal information entailed by a given cADF.
Outline of this Paper: We first state all the necessary
preliminaries in Section 2 on propositional logic (Section



2.1), and abstract dialectical argumentation (Section 2.2).
The syntax of conditional abstract dialectical frameworks
cADFs is introduced in Section 3. In Section 4, a four-
valued logic, which will form the basis of the semantics of
cADFs, is defined and studied. In Section 5, we then define
and study the admissible, complete, preferred and grounded
semantics for cADFs. A unique, iteratively constructible
analogue to the grounded extension, called the grounded
state, is introduced in Section 6. Related work is discussed
in Section 7 and a conclusion is drawn in Section 8.

2 Preliminaries
In the following, we briefly recall some general preliminar-
ies on propositional logic, as well as technical details on con-
ditional logic and ADFs (Brewka et al. 2013).

2.1 Propositional Logic
For a set At of atoms let L(At) be the corresponding propo-
sitional language constructed using the usual connectives ∧
(and), ∨ (or), ¬ (negation) and→ (material implication). A
(classical) interpretation (also called possible world) ω for a
propositional languageL(At) is a function ω : At→ {T,F}.
Let V2(At) denote the set of all interpretations for At. We
simply write V2 if the set of atoms is implicitly given. An
interpretation ω satisfies (or is a model of) an atom a ∈ At,
denoted by ω |= a, if and only if ω(a) = T. The satisfaction
relation |= is extended to formulas as usual. For Φ ⊆ L(At)
we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define the set of models Mod2(X) = {ω ∈ V2(At) | ω |=
X} for every formula or set of formulas X . A formula or
set of formulas X1 entails another formula or set of formu-
las X2, denoted by X1 ` X2, if Mod2(X1) ⊆ Mod2(X2).
A formula φ is a tautology if Mod2(φ) = V2(At) and a fal-
sity if Mod2(φ) = ∅.

2.2 Abstract Dialectical Frameworks
We briefly recall some technical details on ADFs following
loosely the notation from (Brewka et al. 2013). An ADF D
is a tuple D = (At, L, C) where At is a finite set of atoms,
L ⊆ At × At is a set of links, and C = {Cs}s∈At is a
set of total functions Cs : 2parD(At) → {>,⊥} for each
s ∈ At with parD(s) = {s′ ∈ At | (s′, s) ∈ L} (also called
acceptance functions). An acceptance function Cs defines
the cases when the statement s can be accepted (truth value
>), depending on the acceptance status of its parents in D.
By abuse of notation, we will often identify an acceptance
function Cs by its equivalent acceptance condition which
models the acceptable cases as a propositional formula.

Example 1. We consider the following ADF D1 =
({a, b, c, d}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)}
and Ca = ¬b, Cb = ¬a, and Cc = ¬a ∨ ¬b.
Informally, the acceptance conditions can be read as “a is
accepted if b is not accepted”, “b is accepted if a is not ac-
cepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (At, L, C) is interpreted through 3-valued
interpretations ν : At → {T,F,U}. We denote the set of

all 3-valued interpretations over At by V3(At). We define
the information order <i over {T,F,U} by making U the
minimal element: U <i T and U <i F, and † ≤i ‡ iff
† <i ‡ or † = ‡ for any †, ‡ ∈ {T,F,U}. This order is lifted
point-wise as follows (given ν, ν′ ∈ V3(At)): ν ≤i ν′ iff
ν(s) ≤i ν′(s) for every s ∈ At. The set of two-valued in-
terpretations extending a 3-valued interpretation v is defined
as [ν]2 = {ω ∈ V2(At) | ν ≤i ω}. Given a set of 3-valued
interpretations V ⊆ V3(At), uiV is the 3-valued interpreta-
tion defined via uiV (s) = † if for every ν ∈ V , ν(s) = †,
for any † ∈ {T,F,U}, and uiV (s) = U otherwise. Truth
values based on a three-valued interpretations can now be
assigned to complex formulas φ by taking ui[ν]2(φ). All
major semantics of ADFs single out three-valued interpre-
tations in which the truth value of every atom s ∈ At is, in
some sense, in alignment or agreement with the truth value
of the corresponding condition Cs. The Γ-function enforces
this intuition by mapping an interpretation ν to a new inter-
pretation ΓD(ν), which assigns to every atom s exactly the
truth value assigned by ν to Cs, i.e.:

ΓD(ν) : At→ {T,F,U} where s→ ui{ω(Cs) | ω ∈ [ν]2}.

Definition 1. Let D = (At, L, C) be an ADF with ν ∈
V(At) a 3-valued interpretation:

• ν is admissible for D iff ν ≤i ΓD(ν).
• ν is complete for D iff ν = ΓD(ν).
• ν is preferred forD iff ν is≤i-maximal among all admis-

sible interpretations.
• ν is grounded for D iff ν is ≤i-minimal among all com-

plete interpretations.

We denote by admissible, complete(D), prf(D), and
grounded(D) the sets of complete, preferred, and grounded
interpretations of D, respectively.

Notice that ν is admissible iff ν(s) ≤i ui[ν]2(Cs) for ev-
ery s ∈ S and likewise, ν is complete iff ν(s) = ui[ν]2(Cs)
for every s ∈ S. It can thus be observed that the logic de-
fined by ui[ν]2 is, essentially, the logic underlying ADFs,
in the sense that the evaluation of acceptance conditions un-
der ui[ν]2 is the fundamental operation underlying every se-
mantical notion of ADFs. It should be furthermore noted
that ui[ν]2 does not give rise to a truth-functional logic.
Recall that a truth-functional logic is a logic in which the
truth value assigned to a complex formula is a function of
the truth values of its component formulas. E.g. for a truth-
functional logic, the truth value of a∨¬b is determined com-
pletely by the truth value of a and ¬b. For example, given
ν(a) = U and ν(b) = U, ui[ν]2(a ∨ ¬a) = T whereas
ui[ν]2(a ∨ ¬b) = U.

Example 2 (Example 1 continued). The ADF of Example 1
has three complete models ν1, ν2, ν3 with:

ν1(a) = T ν1(b) = F ν1(c) = T
ν2(a) = F ν2(b) = T ν2(c) = T
ν3(a) = U ν3(b) = U ν3(c) = U

ν3 is the grounded interpretation whereas ν1 and ν2 are
both preferred.



3 Syntax of cADFs
The syntactical representation D = (S,L,C) of an ADF
contains some superfluous information. In particular, as
there is a link between a statement s and s′ iff s is men-
tioned in the acceptance condition of s′, the set of links does
not contain any information not already derivable from the
set of acceptance conditionsC. As such, given a set of atoms
S, we can simply write an ADF as a set of statements sCCs
if Cs is the acceptance condition of s. So the ADF D1 from
Example 1 can be simply written as:

D1 = {aC¬b, bC¬a, cC¬a ∨ ¬b}
An ADF is determined by a set of propositional formulæ
that, when evaluated to true, make a certain statement, which
is a simple atom, true as well, and when evaluated to false,
make the simple atom false as well. In other words, C can
be read as a approximate if and only if : sCCs means that
the truth-values s and Cs should be aligned. C can truly be
read as a approximate iff, since it might not always be pos-
sible to align the truth values of s and Cs in such a way that
they take on exactly the same (determinate) truth value. To
see this, consider, e. g., aC¬a. We generalise this frame-
work by allowing these statements to be arbitrary proposi-
tional formulæ:
Definition 2. Given a set of atoms At, a conditional abstract
dialectical framework cADF Π w.r.t. At is a finite set of ac-
ceptance pairs over At, where an acceptance pair is of the
form:

φCψ

with φ and ψ being propositional formulæ over At.
In order to stick to ADF terminology we call φ the state-

ment and ψ the condition of the acceptance pair φCψ. We
omit the reference to the signature At when it is clear from
context.
Example 3. Consider a cADF Π1 = {c1, c2, c3} with

c1 : p ∨ s ∨ qC>
c2 : p ∧ sC¬q
c3 : (p ∧ q) ∨ (p ∧ s)C t

This cADF can be used to model an argument of a group
of friends about making plans on a Sunday. They are dis-
cussing whether to go to a party (p), to the swimming pool
(s) or go to a pub quiz (q). They want to do at least one
of these three things (c1). However, if they go to the quiz,
they won’t be able to still go to the pool and go to the party
(represented by the attack of q on p ∧ s in c2). If everyone
arrives on time (t), they would like to go to both the quiz
and the party, or to both the pool and the party (c3). We no-
tice that without adding further atoms, an attack from q on
the set {p, s}, as formalized by c2, cannot be represented in
ADFs.

We observe that this simple generalization w.r.t. ADFs
results in the following additional points of expressiveness
in comparison to ADFs:
• cADFs allow for complex formulas as statements, as

demonstrated by (p ∧ q) ∨ (p ∧ s)C t in Example 3.

• cADFs allow for “incomplete” specifications, i.e. they do
not force the user to formulate an acceptance condition
for every atom, as demonstrated in Example 3, where t
has no acceptance condition.

• cADFs allow for “overspecifications” or conflicting spec-
ifications, as demonstrated by the cADF {aC b,¬aC b}
where both a and ¬a have the acceptance condition b.

• cADFs allow for indeterminism, as demonstrated by the
cADF {a ∨ bC>}, where a ∨ b is required to be true,
but no further information on which of the disjuncts is
required to be true is given.

To cope with this higher expressiveness semantically, it will
prove useful to move from three-valued interpretations to
four-valued interpretations. To assign truth values to com-
plex formulas on the basis of four-valued interpretations, we
generalize the logic defined by ui[v]2 to a four-valued set-
ting in Section 4. We then generalize the semantics of ADFs
to cADFs on the basis of this four-valued logic in Section 5.

4 A Four-Valued Logic Based on
Completions

We first define a four-valued logic 4CL which generalizes
the idea of completions known from the logic underlying
ADFs defined by [ν]2, which preserves classical tautologies
and falsities. We first recall four-valued interpretations. A
four-valued interpretation v : At → {T,F, I,U} assigns
to every atom a truth value T (true), F (false), U (unde-
cided) or I (inconsistent). We will also write an interpre-
tation v ∈ V4({a1, . . . , an}) as v(a1) . . . v(an), e. g., v over
{p, q} with v(p) = T and v(q) = U will be written as TU.
We denote the set of four-valued interpretations over At by
V4(At). Notice that V2(At) ⊆ V3(At) ⊆ V4(At). If it is
clear that an interpretation is two- respectively three-valued,
we will denote it by (a possibly indexed) ω respectively ν.

Two useful orders over these truth values are the infor-
mation order ≤i and the truth order ≤t, which form the
following bilattice-structure (Fitting 2006):

≤i

≤t
U

F T

I

Notice that V4(At) also forms a bounded lattice under
≤i with vU and vI as least and greatest element respec-
tively (where vU is defined as the interpretation that sets
vU(a) = U for every a ∈ At and vI is defined as vI(a) = I
for every a ∈ At).

We shall interpret the four truth values, at least for atoms,
in the same way as (Belnap 2019): U (undecided) means that
we have no explicit information for either the truth nor the
falsity of an atom. T (true) respectively F (false) means that
we have explicit information only for the truth respectively
the falsity of the atom in question. Finally, I (inconsistent)
means that we have explicit information for both the truth
and the falsity of the atom in question. When it comes to



complex formulas, we shall see that we take a somewhat
hybrid position between the truth values expressing merely
explicit information and the truth values standing for objec-
tive truth. In particular, the logic we will define here will al-
low for logically contingent formulas, i. e., formulas which
are neither classical tautologies nor classical falsities, to be
assigned any of the four truth values, whereas classical tau-
tologies and classical falsities will always be assigned T re-
spectively F by any interpretation. Intuitively, this means
that even though the truth value of s ∈ At might be unde-
termined (U) or inconsistent (I), the logic will still evaluate
s ∨ ¬s as true. This is in complete agreement with ADFs,
where tautologies and logical falsities are always evaluated
in agreement with classical logic by ui[v]2.

Semantically, we proceed as follows: we construct a set
of sets of (two-valued) worlds on the basis of a four-valued
interpretation v that represents the beliefs expressed by v.
Just like in the logic underlying ADFs ui[ν]2, a set of (two-
valued) worlds will be used to represent a three-valued in-
terpretation ν. The worlds in [ν]2 represent equally plausi-
ble candidates of the actual world in view of the beliefs ex-
pressed by the three-valued interpretation ν. Likewise, a set
of three-valued interpretations [v]3 will be used to represent
the information expressed by a four-valued interpretation v.
[v]3 consists of the three-valued interpretations that jointly
represent the information expressed by v. Notice the differ-
ence with [ν]2: [ν]2 consists of equally plausible candidates
of the actual world in view of the information expressed by
v, whereas [v]3 contains interpretations that taken together
represent the information expressed by v. We now develop
this idea in more formal details.

Given a four-valued interpretation, we define the set of
two-valued completions of v, [v]2, in two steps. First, we
construct [v]3, which converts v ∈ V4(At) to a set of three-
valued interpretations [v]3 ⊆ V3(At). Then, we obtain
[v]2 ⊆ ℘(V2(At)) by converting every three-valued inter-
pretation ν ∈ [v]3 to a set of two-valued interpretations [ν]2.
Definition 3. Given a four-valued interpretation v ∈ V(At),
[v]3 = {ν ∈ V3(At) | for every s ∈ At : if v(s) =
I then ν(s) ∈ {T,F}, ν(s) = v(s) otherwise}

In other words, [v]3 is obtained by replacing every assign-
ment of an atom s to I to an assignment of s to T or to F.

Notice that [v]3 consists of the ≤i-maximal three-valued
interpretations that v extends:
Fact 1. For any v ∈ V4(At), [v]3 = max≤i({ν ∈ V3(At) |
ν ≤i v}).1

Example 4. Consider v = TUI over Σ = abc. Then [v]3 =
{TUT,TUF}.

We are now ready to define the four-valued completions
[v]4 of v:
Definition 4. Given some v ∈ V4(At), the four-valued com-
pletions of v are defined as: [v]4 = {[v′]2 | v′ ∈ [v]3}.

Thus, [v]4 is obtained by first constructing [v]3, and then
taking for every ν ∈ [v]3 the set of two-valued completions
of ν. The intuition behind this is as follows: v(s) = I means

1Some proofs have been left out in view of spatial limitations.

that we have information for both s being true and s being
false. Thus, the interpretations where we set ν1(s) = T and
ν2(s) = F are both (partial yet consistent) representations
of the state of the world represented by v. Hence [v]3 can
be viewed as the set of three-valued interpretations that to-
gether form the representation of the state of the world repre-
sented by v. We then construct for every such representation
a set of two-valued interpretations, which represent equally
plausible candidates of the state of the world represented by
ν ∈ [v]3. Altogether, [v]4 contains a set of set of possible
worlds, which together represent our knowledge about the
actual state of the world.

It is useful to notice that for a three-valued interpretation
v ∈ V3(At), [v]4 = {[v]2}.
Example 5. Consider v = TUI over Σ = {abc}.
Since [v]3 = {TUT,TUF}, [TUT]2 = {TTT,TFT}
and [TUF]2 = {TTF,TFF}, we see that [v]4 =
{{TTT,TFT}, {TTF,TFF}}.

Notice that, in order to retain the four-valued structure
of an interpretation v in its four-valued completion [v]4, the
two-step nature of the construction of [v]4 and the resulting
nested structure of [v]4 is essential. Indeed, if [v]4 would
merely consist of possible worlds, we would somehow have
to choose between letting the members ω ∈ [v]4 stand as
equally plausible candidates of the actual world or partial
descriptions of the information given by v, i. e., we would
have to choose between U and I. Conceiving of [v]4 as a
set of sets of worlds avoids this choice: sets of worlds V ′ ∈
[v]4 represent partial descriptions of the information given
by v, and members of these sets of worlds ω ∈ V ′ represent
equally plausible candidates of the information in V ′.

We can now define the assignment of truth values of com-
plex formulas given an interpretation v based on our set of
four-valued completions [v]4:
Definition 5. Given a formula φ and an interpretation v,
then:

v(φ) =



T if for every Ω′ ∈ [v]4,uiΩ′(φ) = T

F if for every Ω′ ∈ [v]4,uiΩ′(φ) = F

I if for some Ω1 ∈ [v]4,uiΩ1(φ) = T

and for some Ω2 ∈ [v]4,uiΩ2(φ) = F

U otherwise

Thus, a complex formula φ is assigned T (respectively
F) relative to an interpretation v if every four-valued com-
pletion Ω′ ∈ [v]4 of v, assigns T (respectively F) to φ. If
there is disagreement among the four-valued completions of
v on which determinate truth value φ should be assigned,
v(φ) = I. Finally, if some of the four-valued completions of
v do not assign any determinate truth value to φ, v(φ) = U.

This way of deriving a truth value for complex formulas
on the basis of a four-valued interpretation is, to the best
of our knowledge, completely new. It is perfectly in line
with ui[v]2, the logic underlying ADFs, in the sense that for
any three-valued interpretation ν ∈ V3(At) and any formula
φ ∈ L, ν(φ) = ui[ν]2(φ).
Fact 2. For any ν ∈ V3(At) and any φ ∈ L(At), ν(φ) =
ui[ν]2(φ).



Example 6. Consider v = TUI over Σ = abc. Observe
that [v]4 = {{TTT,TFT}, {TTF,TFF}}. Thus, we have
the following assignments to complex formulas:

• v(a ∧ c) = I, since ui{TTT,TFT}(a ∧ c) = T and
ui{TTF,TFF}(a ∧ c) = F;

• v(b ∧ c) = U, since ui{TTT,TFT}(b ∧ c) = U and
ui{TTF,TFF}(b ∧ c) = F;

• v(a ∧ ¬a) = F, since ui{TTT,TFT}(a ∧ ¬a) = F and
ui{TTF,TFF}(a ∧ ¬a) = F;

We first observe that 4CL preserves classical tautologies
and falsities:

Proposition 1. If ` φ then for any v ∈ V4, v(φ) = T.
Likewise, if ` ¬φ then for any v ∈ V4, v(φ) = F.

Proof. This is so because for any v ∈ V4, [v]2(φ) = T[F]
for any tautology[falsity].

We can also define entailment in 4CL in the usual way.
We set T and I as designated truth values in compliance with
(Belnap 2019):

Definition 6. Given a set of formulas Ψ ∪ {φ} ⊆ L(At),
Mod4(Ψ) = {v ∈ V4(At) | v(ψ) ∈ {T, I} for every ψ ∈
Ψ} and Ψ |=4CL φ iff Mod4(Ψ) ⊆ Mod4(φ).

We now show that |=4CL is paraconsistent:

Proposition 2. There exists a set of formulas Φ ⊆ L(At)
s.t. Mod(Φ) = ∅ yet Mod4(Φ) 6= ∅.

Proof. Consider the signature At = {p, q}, Φ = {p,¬p}
and v ∈ V4(At) with v(p) = I and v(q) = U. [v]24 =
{{TT,TF}, {FT,FF}} and thus v(¬p) = v(p) = I and
v(q) = U.

We notice, though, that there might still be sets of for-
mulas Φ ∈ L(At) for which no v ∈ V4(At) exists s.t.
v(φ) ∈ {T, I} for every φ ∈ Φ. To see this, it suf-
fices to observe that for any falsity φ and any interpretation
v ∈ V4(At), v(φ) = F. In other words, the logic defined
above is still explosive for contradictions. But for inconsis-
tent sets of formulas containing no contradictions, the logic
is non-explosive.

Proposition 3. For every set of formulas Φ ⊆ L(At) s.t. for
every φ ∈ Φ, Mod(φ) 6= ∅, there is some v ∈ V4(At), s.t.
v(φ) ∈ {I,T} for every φ ∈ Φ.

Remark 1. Observe that the logic 4CL, like the logic de-
fined by ui[v]2, is not truth-functional. To see this con-
sider the interpretation v with v(a) = U and v(b) = U.
Then v(a ∨ ¬a) = T yet v(b ∨ ¬a) = U. Thus, we see
that 4CL is not truth-functional, as v(a) = v(b) = U yet
v(a ∨ ¬a) 6= v(b ∨ ¬a).

We finally notice the following useful property:

Proposition 4. Let v1, v2 ∈ V4(At) and φ ∈ L(At) be
given. Then v1 ≤i v2 implies v1(φ) ≤i v2(φ).

5 Semantics of cADFs
In this section, we define, motivate and study the seman-
tics of cADFs. In more detail, in Section 5.1 we define the
central ΓΠ-function and use it to define the main semantics
for cADFs. In Section 5.2 we motivate the design choices
made in generalizing the Γ-function from ADFs to cADFs.
In Section 5.3 we show some central semantical properties
of the semantics of cADFs.

5.1 The ΓΠ-Function and Resulting
cADF-Semantics

A cADF Π over At is interpreted through 4-valued interpre-
tations. Just like for ADFs, it is of crucial importance to
construct a Γ-function that allows to characterize all seman-
tics in terms of (post-)fixpoints of this function.

The Γ-function, conceptually, performs the following op-
eration for ADFs: given an interpretation ν and an ADF D,
ΓD(ν) assigns to every atom s the truth value determined
by ν and Cs. In other words, ΓD(ν)(s) is the value s should
take in view of the information expressed by sCCs and ν.
If (for every s ∈ S), this value is compatible (in terms of
≤i) with the actual value v(s), then v will be admissible
or even complete. We generalize this idea to the case of
cADFs, and take, intuitively, ΓΠ(v) as the set of interpre-
tations that evaluate φ in accordance with the information
given by φCψ ∈ Π and v. More formally, we define the
Γ-function ΓΠ : V4(At) → ℘(V4(At)) for a cADF Π and
an interpretation v ∈ V4(At) as follows:

ΓΠ(v) = min
≤i

{v′ ∈ V4 | ∀φCψ ∈ Π : v′(φ) ≥i v(ψ)}

Example 7. Let Π = {p ∨ sC>;¬sC p} formulated over
the signature Σ = {p, s}. We have the following interpreta-
tions and corresponding outcomes of the ΓΠ-function:

v ΓΠ(v)
UU {UT,TU}
UT {UT,TU}
UF {UT,TU}
UI {UT,TU}
TU {TF,FI}
TT {TF,FI}
TF {TF,FI}
TI {TF,FI}

v ΓΠ(v)
FU {UT}
FT {UT}
FF {UT}
FI {UT}
IU {TI,FI}
IT {TI,FI}
IF {TI,FI}
II {TI,FI}

We explain ΓΠ(UU) as follows: in view of p ∨ sC> and
UU(>) = T, every interpretation v′ ∈ ΓΠ(UU) has to as-
sign a truth value at least as informative as T to p ∨ s, i.e.
v′(p∨s) ≥i T. Likewise, since UU(p) = U and¬sC p ∈ Π,
v′ ∈ ΓΠ(UU) has to set v′(¬s) ≥i U, which is trivially the
case. The two ≤i-minimal interpretations that satisfy this
constraint are: UT and TU.

As a second example, consider FF. Like with UU, every
interpretation v′ ∈ ΓΠ(FF) has to assign v′(p ∨ s) ≥i T.
However, since FF(p) = F and ¬sC p ∈ Π, any v′ ∈
ΓΠ(FF) has to set v′(¬s) ≥i F. UT is the unique ≤i-
minimal interpretation satisfying these constraints.



We first notice that ΓΠ is indeed a generalization of the
ΓD-function for ADFs. To show this in a more formally pre-
cise manner, we first define the cADF ΠD associated with
an ADF D.
Definition 7. Given an ADF D = (S,L,C), we define the
cADF ΠD associated with D as ΠD = {sCCs | s ∈ S}.

We can now show that for any three-valued interpreta-
tion ν, ΓΠD

(ν) coincides with ΓD(ν), i.e. the Γ-function
for ADFs coincides with the Γ-function for the associated
cADFs for three-valued interpretations.
Proposition 5. For any ADF D = (S,L,C) and any ν ∈
V3(S), ΓΠD

(ν) = {ΓD(ν)}.

Proof. Consider an ADF D = (S,L,C) and some ν ∈
V3(S). v ∈ ΓΠD

iff v is among the ≤i-minimal interpre-
tations s.t. v(s) ≥i ν(Cs) for every s ∈ S. With Fact 2,
ν(Cs) = ui[ν]2(Cs) for every s ∈ S. This means that
ΓD(s) = ν(Cs) and thus ΓD is the unique ≤i-minimal in-
terpretation s.t. v(s) ≥i ν(Cs).

The above result shows that the ΓΠ-function is a direct
generalization of the well-studied ΓD-function known from
ADFs. This allows us to define the main semantics of
cADFs in terms of (post-)fixpoints of the ΓΠ-functions, just
like in the case of ADFs.

With our generalized ΓΠ-function at hand, we can now
define the main semantics for cADFs as straightforward
generalizations of the ADF-semantics:
Definition 8. Let a cADF Π over At and an interpretation
v ∈ V4(At) be given, then:
• v is admissible for Π iff there is some v′ ∈ ΓΠ(v) s.t.
v ≤i v′.

• v is complete for Π iff v ∈ ΓΠ(v).
• v is preferred for Π if it is a ≤i-maximal among all ad-

missible interpretation for Π;
• v is grounded for Π if it is a ≤i-minimal among all com-

plete interpretation for Π;
• v is a two-valued model for Π iff v ∈ V2(At) and v is

complete.
Example 8 (Example 7 ctd.). We see that for Π from Ex-
ample 7, there are two complete interpretations: TF and
UT. This can be seen by observing that TF ∈ ΓΠ(TF)
and UT ∈ ΓΠ(UT). Since these interpretations are ≤i-
incomparable, both interpretations are also grounded. The
admissible interpretations are: UU, UT, TU and TF. Thus,
UT and TF are also preferred.
Example 9. Let Π = {bC p, f C b,¬f C p} formulated
over Σ = {b, f, p} be given. vU = UUU is the unique
complete interpretation and thus also grounded. It is also
the unique admissible interpretation.

Notice that e.g. TIT is not complete, since ΓΠ(TIT) =
{TIU}. The reason for ΓΠ(TIT)(p) = U is since there is no
acceptance pair pCφ ∈ Π. The intuition is that p is only
accepted if we have good information to do so, but no such
information is given by any φCψ ∈ Π.

It is interesting to note that for Π′ = Π ∪ {pC p}, TIT ∈
ΓΠ′(TIT) = {TIU,TIT,TIF}.

As can be seen in the example above, if an atom a occurs
in no statement of φ of any acceptance pair φCψ ∈ Π, then
v(a) = U for any admissible or complete interpretation v.
However, should this be undesired, one can simply add the
acceptance pair aC a for such an atom.

5.2 Design Choices in ΓΠ and Comparison with
ΓD

We now discuss the design choices that had to be made when
generalizing the Γ-function from ADFs to cADFs. In par-
ticular, given the increase in syntactical expressiveness, we
had to generalize ΓΠ as to adequately handle this increased
expressiveness semantically.

A first generalization is caused by the fact that statements
φ of acceptance pairs φCψ are possibly non-atomic formu-
las. Since ΓΠ contains all interpretations v′ that align, for
any φCψ ∈ Π, the truth value of φ with v(ψ), there might
now be more than one interpretation v′ which achieves this.
As a case in point, consider the cADF Π = {p ∨ qC>},
where acceptance of p∨q (which is required by any v ∈ V4,
since v(>) = T for any v ∈ V4) can be guaranteed by
any interpretation that satisfies p or q. Therefore, the Γ-
function might contain multiple interpretations which all do
an equally good job of aligning the truth values of statements
φ with their respective conditions ψ. Thus, ΓΠ is defined as
a non-deterministic operator (Pelov and Truszczynski 2004;
Heyninck and Arieli 2021), in the sense that a single inter-
pretation v might give rise to a non-singleton set of interpre-
tations {v1, . . . , vn} = ΓΠ(v). In the example above, we
have e.g. ΓΠ(v) = {TU,UT} for any v ∈ V4({p, q}).

A second generalization w.r.t. the Γ-function for ADFs
is the fact that alignment of statements φ with their cor-
responding condition ψ cannot always be done in an ex-
act way. In more detail, for ADFs D, alignment by ΓD
of s is always exact, in the sense that ΓD(v)(s) coincides
with the truth value assigned by ui[v]2(Cs). This is not
always possible for cADFs, since we might have conflict-
ing specifications in a cADF. Take for example the cADF
Π = {pC>;¬pC>}. Clearly, for any v ∈ V4(At), there
exists no v′ ∈ V4(At) s.t. v′(φ) = v(ψ) for every φCψ.
Indeed, this is one of the reasons we had to move to a four-
valued logic, since now we can at least specify an interpre-
tation v′ which brings v′(p) and v′(¬p) in alignment with
v(>), in the sense that v′(p) and v′(¬p) are at least as infor-
mative as v(>), i.e. v′(p) ≥i v(>) and v′(¬p) ≥i v(>) (for
any v ∈ V4(At)).

5.3 Semantical Properties of cADF-semantics
In this section, we show central semantical results on the
semantics of cADFs. In particular, we show some relation-
ships between the semantics, and we show under which con-
ditions admissible, complete, grounded and preferred inter-
pretations are guaranteed to exist.

We start by observing that, just like for ADFs, complete
interpretations are admissible:

Proposition 6. Let a cADF Π and a complete interpretation
v for Π be given. Then v is admissible.



Proof. Suppose v is complete for Π. Then v ∈ ΓΠ(v) and
thus v ≤i v′ for some v′ ∈ ΓΠ(v).

For showing the existence of admissible and preferred in-
terpretations, it will be useful to limit attention to what we
will call well-formed cADFs. The main idea is that we
want to avoid cADFs Π for which ΓΠ(v) = ∅ for some
v ∈ V4(At), as occurs in e.g. the following example:

Example 10. Π = {pC>,¬pC>, p ∨ ¬pC p}.

v ΓΠ(v) v ΓΠ(v)
T {I} F {I}
U {I} I ∅

Notice that Γ(I) = ∅.
Definition 9. A well-formed cADF is a cADF Π s.t.
ΓΠ(v) 6= ∅ for any v ∈ V4(At).

We observe that a syntactic sufficient condition for well-
formedness of a cADF Π is to simply require that for every
acceptance pair φCψ ∈ Π, the statement φ is a logically
contingent formula. We call such cADFs unconstrained:

Definition 10. A cADF Π is unconstrained iff for every
φCψ ∈ Π, φ is logically contingent.

We explain the term of unconstrained cADF as follows.
Notice that an acceptance pair φCψ, where φ is a tautol-
ogy or a falsity, can be seen as a constraint, in the sense
that it forces ψ to be set to the value of φ (i.e. v(ψ) = T
if φ is a tautology and v(ψ) = F if ψ is a falsity) for any
complete extension. To see this, observe that v(φ) = T[F]
for any v ∈ V4 if φ is a tautology[falsity]. In particular,
for any v′ ∈ ΓΠ(v), it will hold that v(φ) = T[F]. It
is quite interesting that the framework naturally allows for
the formulation of constraints, but for the development of
the meta-theory, it will prove useful to restrict attention to
well-formed cADFs. It is an interesting question for future
work to see whether constrained argumentation frameworks
(Coste-Marquis, Devred, and Marquis 2006) can be captured
using such constraints.

Proposition 7. Any unconstrained cADF Π is well-formed.

Proof sketch. Suppose that Π is an unconstrained cADF. It
can be shown that for every φCψ ∈ Π, vI(φ) = I . Thus,
for every v′ ∈ V4(At) there is some v ∈ V4(At) (namely
v = vI) s.t. v(φ) ≥i v′(ψ) for every φCψ ∈ Π. Since ≤i
is well-founded and Π is finite, ΓΠ(v′) 6= ∅ for any v′ ∈
V4(At).

However, there are well-formed cADFs that are not un-
constrained:

Example 11. Consider Π = {a ∨ ¬aC a ∨ ¬a}. Then
clearly, for any v ∈ V4(At), ΓΠ(v) = {T} (since U(a ∨
¬a) = T with Lemma 1).

We now show the first existence result, which states that
any well-formed cADF admits admissible interpretations:

Proposition 8. For any well-formed cADF, there exists an
admissible interpretation.

Proof. For any well-formed cADF Π, ΓΠ(vU) 6= ∅. Since
vU ≤i v for any v ∈ V4(At), vU is admissible.

We immediately obtain an existence result for preferred
interpretations:

Corollary 1. For any well-formed cADF, there exists a pre-
ferred interpretation.

We now show an existence result for the complete and
grounded interpretations. This is done by first showing that
ΓΠ satisfies monotonicity under the Smyth-order (Smyth
1976). The Smyth-order �Si ⊆ ℘(V4) × ℘(V4) is defined
as follows: V1 �Si V2 iff for every v2 ∈ V2 there is some
v1 ∈ V1 s.t. v1 ≤i v2.

Remark 2. Notice that �Si is a transitive and reflexive re-
lation over ℘(V4(At)). Furthermore, �Si is a partial order
over the set of ≤i-minimal subsets V4 (i.e. �Si is transitive,
reflexive and anti-symmetric over ℘≤i

(V4(At)) = {V ′ ⊆
V4(At) | V ′ = min≤i

(V ′)}).

Proposition 9. For any well-formed cADF Π, ΓΠ is �Si -
monotonic.

Proof. First observe that for any v1 ≤i v2 and any φCψ ∈
Π, v1(ψ) ≤i v2(ψ). Suppose now that v′ ∈ V4 s.t. v′(φ) ≥i
v2(ψ) for every φCψ ∈ Π. Then v′(φ) ≥i v1(ψ) for every
φCψ ∈ Π. Thus, there is some v ∈ ΓΠ(v1) s.t. v ≤i v′.
In particular, this means that for every v′ ∈ ΓΠ(v2), there is
some v ∈ ΓΠ(v1) s.t. v ≤i v′.

Proposition 10. For any well-formed cADF Π, there exists
a complete interpretation.

Proof. Notice that since vI ≥i v for every v ∈ V4(At),
vI ≥i v1 for any v1 ∈ ΓΠ(vI) (notice that since Π is well-
formed, ΓΠ(vI) 6= ∅). Since ΓΠ is �Si -monotonic with
Proposition 9, ΓΠ(v1) �Si ΓΠ(vI) for any v1 ∈ ΓΠ(vI).
Thus, for any v1 ∈ ΓΠ(vI), there is some v2 ∈ ΓΠ(v1) s.t.
v2 ≤i v1. We can use the above line of argument to con-
struct a chain of interpretations . . . ≤i vn ≤i vn−1 ≤i
. . . v2 ≤i v1 ≤i v0 = vI s.t. for every 1 ≤ i < n,
vi ∈ ΓΠ(vi−1) and ΓΠ(vi) �Si ΓΠ(vi−1). Since V4(At)
is finite, this chain ends, i.e. there some i ∈ N s.t. vi = vi+1.
Since vi+1 ∈ ΓΠ(vi) = ΓΠ(vi+1), vi is a complete inter-
pretation (notice that ΓΠ(vi) = ΓΠ(vi+1) follows from the
anti-symmetry of�Si over ℘≤i

(V4(At)) (Remark 2) and the
fact that ΓΠ(v) ∈ ℘≤i

(V4(At)) for any v ∈ V4(At)).

We immediately obtain an existence result for the
grounded interpretation as well:

Corollary 2. For every well-formed cADF Π, there exists a
grounded interpretation.

Another useful order on ℘(V4) × ℘(V4) is the Hoare-
order �Hi defined as: V1 �Si V2 iff for every v1 ∈ V1 there
is some v2 ∈ V2 s.t. v1 ≤i v2.

Proposition 11. For every well-formed cADF Π s.t. ΓΠ is
�Hi -monotonic, if v is preferred then it is complete.



Property Condition on Π Result
∃ of admissible int. well-formed Prop. 8
∃ of preferred int. well-formed Cor. 1
∃ of complete int. well-formed Prop. 10
∃ of grounded int. well-formed Cor. 2

preferred ⊆ complete
well-formed &
�Hi -monotonic Prop. 11

Table 1: Summary of results from Section 5.3

Proof. Let a well-formed cADF Π s.t. ΓΠ is�Hi -monotonic
be given and consider a preferred interpretation v ∈ V4(At).
Suppose towards a contradiction that v 6∈ ΓΠ(v). Since v is
preferred, it is admissible and thus there is some v′ ∈ ΓΠ(v)
s.t. v ≤i v′. Since v 6∈ ΓΠ(v), v <i v′. With �Hi -
monotonicity of ΓΠ, we obtain that Γ(v) �Hi Γ(v′) and
thus there is some v′′ ∈ Γ(v′) s.t. v′ ≤i v′′. But then v′
is admissible, contradicting v being preferred.

We observe, however, that not every cADF has a �Hi -
monotonic ΓΠ function:

Example 12. Let Π = {p ∨ (q ∧ s)C s, p ∧ qC s} over the
signature {p, q, s}. Then ΓΠ(UUT) = {UTT,TUU} and
ΓΠ(TUT) = {TTU}. Since UUT ≤i TUT, yet there is no
v ∈ ΓΠ(TUT) s.t. UTT ≤i v, we see that ΓΠ is not �Hi -
monotonic.

We summarize our results in Table 1.

6 Grounded Interpretations and the
Grounded State

One of the crucial properties of ADFs is that a unique
grounded interpretation is guaranteed to exist. This property
does not generalize to the grounded semantics of cADFs, in
view of the indeterminism that cADFs allow to express. As
a case in point consider Π = {p ∨ qC>}, which has two
≤i-minimal complete interpretations: v1 and v2 with:

v1(p) = T v1(q) = U and v2(p) = U v2(q) = T

Thus, there might be cADFs that do not have a unique
grounded interpretation. This might be seen as problematic,
since the grounded interpretation for ADFs can be calcu-
lated efficiently and straightforwardly by iterating ΓD start-
ing from vU. Since the grounded interpretation vg is ≤i-
minimally complete and unique for ADFs, it approximates
any other complete interpretation of the ADF in question (in
the sense that vg ≤i v for any complete interpretation v). We
are now interested in defining a similar concept for cADFs,
that is, a unique representation of the ≤i-minimal informa-
tion expressed by a cADF that can be unambigously ob-
tained by application of ΓΠ and approximates any complete
interpretation. This can be done by looking at a set of inter-
pretations instead of a single interpretation. We note that this
idea is not new. For example, many well-founded semantics
for disjunctive logic programming take up this idea, result-
ing in a well-founded state (Baral, Lobo, and Minker 1992;

Alcântara, Damásio, and Pereira 2005).2 Accordingly, we
will be interested in a grounded state V ′ ⊆ V4(At) that rep-
resents the minimal knowledge entailed by a cADF. This
grounded state can be defined as the�Si -minimal fixpoint of
Γ′Π, a generalization of ΓΠ to sets of interpretations. Γ′Π is
obtained as follows:
Definition 11. Given a cADF Π and V ′ ⊆ V4(At):

Γ′Π(V ′) = min
≤i

⋃
v∈V′

ΓΠ(v)

The following fact gives an equivalent characterization
of Γ′Π, which avoids the superfluous ≤i-minimization in
ΓΠ(v):
Fact 3. Given a cADF Π and V ′ ⊆ V4(At), Γ′Π(V ′) =

min
≤i

{v′ ∈ V4 | ∃v ∈ V ′ : ∀φCψ ∈ Π : v′(φ) ≤ v(ψ)}

Proof. Let some cADF Π and V ′ ⊆ V4(At) be given. Then
Γ′Π(V ′) = min≤i

⋃
v∈V′ ΓΠ(v) by definition. By definition

of ΓΠ, this means that Γ′Π(V ′) = min≤i

⋃
v∈V′ min≤i

{v′ ∈
V4 | v′(φ) ≥i v(ψ) for every φCψ ∈ Π}. But then
Γ′Π(V ′) = min≤i{v′ ∈ V4 | ∃v ∈ V ′ : ∀φCψ ∈ Π :
v′(φ) ≤ v(ψ)}.

Definition 12. Let a cADF Π be given. Then we say V ′ ⊆
V4(At) is:
• a complete state (for Π) iff V ′ = Γ′Π(V ′).
• a grounded state (for Π) iff V ′ is a �Si -minimally com-

plete state (for Π).
Proposition 12. Let a cADF Π be given. Then there exists
a unique grounded state which can be obtained by iterating
Γ′Π, starting with vU.

Proof. We now show that Γ′Π is a �Si -monotonic opera-
tor over ℘≤i

(V4(At)). For this, define GΠ(v) = {v′ ∈
V4(At) | v′(φ) ≥i v(ψ) for every ψCφ}. We first show
that V1 �Si V2 implies

⋃
v∈V1 GΠ(v) �Si

⋃
v∈V2 GΠ(v).

Indeed, consider some v2 ∈
⋃
v∈V2 GΠ(v). This means that

v2(ψ) ≥i v(φ) for some v ∈ V2 and every φCψ ∈ Π.
Since V1 �Si V2, there is some v′ ∈ V1 s.t. v′ ≤i v.
Thus, v′(ψ) ≤i v(ψ) for every φCψ ∈ Π (Proposition
4). Thus, v2(ψ) ≥i v′(φ) for every φCψ ∈ Π and
v2 ∈

⋃
v∈V2 GΠ(v). Since Γ′Π(V2) ⊆

⋃
v∈V2 GΠ(v), we

derive that
⋃
v∈V1 GΠ(v) �Si Γ′Π(V2). In other words, for

every v2 ∈ Γ′Π(V2) there is some v1 ∈
⋃
v∈V1 GΠ(v) s.t.

v1 ≤i v2. Since Γ′Π(V1) = min≤i

⋃
v∈V1 GΠ(v), it follows

that Γ′Π(V1) �Si Γ′Π(V2).
We now show Γ′Π admits a �Si -minimal fixpoint. This

fixpoint is constructed by applying Γ′Π iteratively, starting
with vU (recall vU(a) = U for every a ∈ At). Since
vU ≤i v for any v ∈ V4(At), vU �Si ΓΠ(vU). By the

2Some semantics explicitly use the idea of a set of interpreta-
tions (Alcântara, Damásio, and Pereira 2005), whereas other se-
mantics are phrased syntactically, resulting in a set of disjunctions
(Baral, Lobo, and Minker 1992), which is clearly equivalent to a
set of interpretations (see also (Seipel, Minker, and Ruiz 1997).



�Si -monotonicity of ΓΠ, ΓαΠ(vU) �Si ΓβΠ(vU) for any or-
dinals α, β with α ≤ β. Since At(Π) is finite, this chain
reaches an endpoint, i.e. for some ordinal γ, ΓγΠ(vU) =
Γγ+1Π(vU). Thus, we have shown that ΓΠ(vU) admits a
fixpoint. To show that this fixpoint is the �Si -minimal fix-
point, consider some V ′ ⊆ V4(At) s.t. ΓΠ(V ′) = V ′. Since
V ′ = ΓΠ(V ′) = min≤i

(
⋃
v∈V′ GΠ(v)), V ′ ∈ ℘≤i

(V(At)).
Notice that vU �Si V ′. Since ΓΠ is �Si -monotonic, for any
ordinal α, ΓαΠ(vU) �Si Γα(V ′). Since V4 is a fixpoint of ΓΠ,
this means ΓαΠ(vU) �Si V ′ for any ordinal α. In particular
this holds for the ordinal γ for which ΓγΠ(vU) = Γγ+1Π(vU).
With the anti-symmetry of�Si , V ′ = ΓγΠ(vU) or ΓγΠ(vU) ≺Si
V ′.

The grounded state is a generalization of the grounded
interpretation for ADFs:
Proposition 13. For any ADF D, the grounded state coin-
cides with {v}, where v is the grounded model of D.

Furthermore, the grounded state approximates any com-
plete interpretation:
Proposition 14. For any cADF Π, where V ′ is the grounded
state for Π and v is a complete interpretation of Π, we have
that: V ′ �Si {v}.

We illustrate the construction of the grounded state with
an example:
Example 13. Let Π = {p ∨ qC>, sC p, sC q} over the
signature {p, q, s}. Then we can obtain the grounded state
for Π by the following calculation:
• The first iteration is obtained as follows:

Γ′Π({vU}) = {TUU,UTU}.

• As a second step we calculate

Γ′Π(Γ′Π(vU)) = min
≤i

(ΓΠ(TUU) ∪ ΓΠ(UTU))

= min
≤i

({TUT,UTT})

= {TUT,UTT}.

• As a third step, we calculate

Γ′Π(Γ′Π(Γ′Π(vU))) = min
≤i

(ΓΠ(TUT) ∪ ΓΠ(UTT))

= {TUT,UTT}

Since in the third step a fixed point was reached, we see that
the grounded state of Π is {TUT,UTT}. We see that the
grounded state consists of two interpretations, which both
make s true, and either make p or q true.
Remark 3. All semantics defined in this paper have been
implemented in Java using the Tweety-library. The imple-
mentation can be found online.

7 Related Work
To the best of our knowledge, no generalizations of ADFs
as we have suggested here have been proposed before. How-
ever, epistemic graphs (Hunter, Polberg, and Thimm 2020)
can be regarded as an orthogonal approach to extend the

expressivity of ADFs. There, general propositional formu-
las are interpreted through a probabilistic semantics (that is
not related to ADF semantics), thus yielding an expressive
probabilistic and argumentative formalism. Instead, we have
a purely qualitative formalism that generalises the original
ADF semantics directly.

ADFs have been generalized in other works, in particular
as to allow for the handling of weights (Brewka et al. 2018;
Bogaerts 2019). As our semantics, they allow for an exten-
sion of the set of truth-values {T,F,U} with other values.
In fact, in (Brewka et al. 2018) an instantiation of weighted
ADFs using Belnap’s four-valued logic is discussed. How-
ever, in (Brewka et al. 2018) this results in five truth-values,
since in weighted ADFs, the truth-values are always sup-
plemented with an information-theoretic minimum U that
is not part of the original set of truth-values. Furthermore,
this instantiation uses Belnap’s four-valued logic to evalu-
ate complex formulas, which means that tautologies can be
both assigned Belnap’s inconsistent and incomplete truth-
values (but never the external U-value). Finally, weighted
ADFs have the same syntax as ADFs, and thus, the syntax
of cADFs also generalize the syntax of weighted ADFs.

As a side effect of the semantics of cADFs, we obtain
also a four-valued semantics of ADFs and argumentation
frameworks. Four-valued semantics for abstract argumenta-
tion frameworks have been suggested in (Baroni, Giacomin,
and Liao 2015) and studied in (Arieli 2012). In (Arieli 2012)
argumentation labellings that map arguments to four truth
values, in, out, none and both, are defined. Adjusting no-
tation to our setting by letting T stand for in, F for out, U
for none and I for both, we see that such argumentation la-
bellings are nothing less and nothing more than four-valued
interpretations over the set of arguments. However, using
the translation of argumentation frameworks in ADFs from
(Brewka et al. 2013), we do not get an equivalence between
p-admissible labellings and admissible interpretations of the
translated argumentation frameworks.
Example 14. Consider the argumentation framework AF =
({A,B,C}, (A,B), (C,B), (C,C), (B,B)}. Then the
corresponding cADF is given by Π = {AC¬B ∧
¬C;C C¬C;BC¬B}. It can be checked that FIU is p-
admissible3 for AF, but FIU is not admissible for Π, as
ΓΠ(FIU) = {UUI}.

It remains a question for future work whether the transla-
tion of argumentation frameworks in cADFs can be adjusted
to avoid this discrepancy.

The logic 4CL we designed as a generalization of the logic
ui[v]2 underlying ADFs has not been suggested in the liter-
ature on many-valued logics, to the best of our knowledge.
The semantics of 4CL bears some similarities to that of gen-
eralized possibilistic logic (Dubois 2012), where a pair of
sets of possible worlds is used to represent the information
given by a four-valued interpretation. However, the crucial
difference is that [v]4 might consist of more than two sets of
possible worlds, and thus the logics behave quite differently.
For example, in generalized possibilistic logic, there exists

3We refer to (Arieli 2012) for definitions of p-admissible la-
bellings.

http://tweetyproject.org/index.html
https://github.com/TweetyProjectTeam/TweetyProject/tree/main/org-tweetyproject-logics-translators/src/main/java/org/tweetyproject/logics/translators/adfconditional


no model that assigns to p, q and ¬p∨¬q a designated truth
value, whereas, in 4CL, vI(p) = vI(q) = vI(¬p ∨ ¬q) = I.

8 Conclusion
In this paper, we have defined and studied cADFs, which
generalize ADFs and allow for indeterminism, over- and
underspecfications. Semantics for cADFs are defined in
terms of a Γ-function mapping four-valued interpretations
to sets of four-valued interpretations. There remains still
a lot of work to be done on cADFs. As a first next
step, there are still some semantics that need to be gener-
alized form ADFs to cADFs, in particular the stable se-
mantics. Thereafter, we plan to study the computational
complexity and realizability (in the style of (Pührer 2020))
of cADFs. On the basis of these steps, we will then
have a clear view of which formalisms can be captured by
cADFs. Among the most interesting candidates for such
representational results, we have our eyes on disjunctive and
propositional logic programming (Minker and Seipel 2002;
Ferraris 2005) and logics for nonmonotonic conditionals
(Kraus, Lehmann, and Magidor 1990).
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