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Abstract. Propositional KLM-style defeasible reasoning involves
extending propositional logic with a new logical connective that can
express defeasible (or conditional) implications, with semantics given by
ordered structures known as ranked interpretations. KLM-style defeasi-
ble entailment is referred to as rational whenever the defeasible entail-
ment relation under consideration generates a set of defeasible implica-
tions all satisfying a set of rationality postulates known as the KLM
postulates. In a recent paper Booth et al. proposed PTL, a logic that is
more expressive than the core KLM logic. They proved an impossibility
result, showing that defeasible entailment for PTL fails to satisfy a set
of rationality postulates similar in spirit to the KLM postulates. Their
interpretation of the impossibility result is that defeasible entailment for
PTL need not be unique. In this paper we continue the line of research
in which the expressivity of the core KLM logic is extended. We present
the logic Boolean KLM (BKLM) in which we allow for disjunctions,
conjunctions, and negations, but not nesting, of defeasible implications.
Our contribution is twofold. Firstly, we show (perhaps surprisingly) that
BKLM is more expressive than PTL. Our proof is based on the fact that
BKLM can characterise all single ranked interpretations, whereas PTL
cannot. Secondly, given that the PTL impossibility result also applies
to BKLM, we adapt the different forms of PTL entailment proposed by
Booth et al. to apply to BKLM.

Keywords: Non-monotonic reasoning · Defeasible entailment

1 Introduction

Non-monotonic reasoning has been extensively studied in the AI literature, as it
provides a mechanism for making bold inferences that go beyond what classical
methods can provide, while retaining the possibility of revising these inferences
in light of new information. In their seminal paper, Kraus et al. [14] consider a
general framework for non-monotonic reasoning, phrased in terms of defeasible,
or conditional implications of the form α |∼ β, to be read as “If α holds, then
typically β holds”. Importantly, they provide a set of rationality conditions,
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in the form of structural properties, that a reasonable form of entailment for
these conditionals should satisfy, and characterise these semantically. Lehmann
and Magidor [16] also considered the question of which entailment relations
definable in the KLM framework can be considered to be the correct ones for
non-monotonic reasoning. In general, there is a large class of entailment relations
forKLM-style logics [9], and it is widely agreed upon that there is no unique best
answer. The options can be narrowed down, however, and Lehmann et al. propose
Rational Closure (RC) as the minimally acceptable form of rational entailment.
Rational closure is based on the principle of Presumption of Typicality [15], which
states that propositions should be considered typical unless there is reason to
believe otherwise. For instance, if we know that birds typically fly, and all we
know about a robin is that it is a bird, we should tentatively conclude that it flies,
as there is no reason to believe it is atypical. While RC is not always appropriate,
there is fairly general consensus that interesting forms of conditional reasoning
should extend RC inferentially [9,15].

Since KLM-style logics have limited conditional expressivity (see Sect. 2.1),
there has been some work in extending the KLM constructions to more expres-
sive logics. Perhaps the main question is whether entailment relations resembling
RC can also be defined for more expressive logics. The first investigation in such
a direction was done by Booth and Paris [4], who consider an extension in which
both positive (α |∼ β) and negative (α "|∼ β) conditionals are allowed. Booth
et al. [3] later considered a more expressive logic called Propositional Typicality
Logic (PTL), in which propositional logic is extended with a modal-like typical-
ity operator •. This typicality operator can be used anywhere in a formula, in
contrast to KLM-style logics, where typicality refers only to the antecedent of
conditionals of the form α |∼ β.

The price one pays for this expressiveness is that rational entailment becomes
more difficult to pin down. This is shown by Booth et al. [2], who prove that
several desirable properties of rational closure are mutually inconsistent for PTL
entailment. They interpret this as saying that the correct form of entailment
for PTL is contextual, and depends on which properties are considered more
important for the task at hand.

In this paper we consider a different extension of KLM-style logics, which we
refer to as Boolean KLM (BKLM), and in which we allow negative conditionals,
as well as arbitrary conjunctions and disjunctions of conditionals. We do not
allow the nesting of conditionals, though. We show, perhaps surprisingly, that
BKLM is strictly more expressive than PTL by exhibiting an explicit translation
of PTL knowledge bases into BKLM. We also prove that BKLM entailment
is more restrictive than PTL entailment, in the sense that a stronger class of
entailment properties are inconsistent for BKLM. In particular, attempts to
extend rational closure to BKLM in the manner of LM-entailment as defined by
Booth et al. [2], are shown to be untenable.

The rest of the paper is structured as follows. In Sect. 2 we provide the rel-
evant background on the KLM approach to defeasible reasoning, and discuss
various forms of rational entailment. We then define Propositional Typicality
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Logic, and give a brief overview of the entailment problem for PTL. In Sect. 3
we define the logic BKLM, an extension of KLM-style logics that allows for
arbitrary boolean combinations of conditionals. We investigate the expressive-
ness of BKLM, and show that it is strictly more expressive PTL by exhibiting
an explicit translation of PTL formulas into BKLM. In Sect. 4 we turn to the
entailment problem for BKLM, and show that BKLM suffers from stronger ver-
sions of the known impossibility results for PTL. Section 5 discusses some related
work, while Sect. 6 concludes and points out some future research directions.

2 Background

Let P be a set of propositional atoms, and let p, q, . . . be meta-variables for
elements of P. We write LP for the set of propositional formulas over P, defined
by α ::= p | ¬α | α ∧ α | $ | ⊥. Other boolean connectives are defined as usual
in terms of ∧,¬, →, and ↔. We write UP for the set of valuations of P, which
are functions v : P → {0, 1}. Valuations are extended to LP in the usual way,
and satisfaction of a formula α will be denoted v ! α. For the remainder of this
paper we assume that P is finite, and drop the superscripts where there’s no
ambiguity.

2.1 The Logic KLM

Kraus et al. [14] study a conditional logic, which we refer to as KLM. It is
defined by assertions of the form α |∼ β, which are read “if α, then typically
β”. For example, if P = {b, f} refers to the properties of being a bird and flying
respectively, then b |∼ f states that birds typically fly. There are various possible
semantic structures for this logic, but in this paper we are interested in the case of
rational conditional assertions. The semantics for rational conditionals is given
by ranked interpretations [16]. The following is an alternative, but equivalent
definition of such a class of interpretations.

Definition 1. A ranked interpretation R is a function from U to N ∪ {∞}
satisfying the following convexity condition: if R(u) < ∞, then for every 0 ≤
j < R(u), there is some v ∈ U for which R(v) = j.

Given a ranked interpretation R, we call R(u) the rank of u with respect to
R. Valuations with a lower rank are viewed as being more typical than those
with a higher rank, whereas valuations with infinite rank are viewed as being
impossibly atypical. We refer to the set of possible valuations as UR = {u ∈ U :
R(u) < ∞}, and for any α ∈ L we define !α"R = {u ∈ UR : u ! α}.

Every ranked interpretation R determines a total preorder on U in the obvi-
ous way, namely u ≤R v iff R(u) ≤ R(v). Writing the strict version of this
preorder as ≺R , we note that it is modular :

Proposition 1. ≺R is modular, i.e. for all u, v, w ∈ U , u ≺R v implies that
either w ≺R v or u ≺R w.
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Lehmann et al. [16] define ranked interpretations in terms of modular
orderings on U . The following observation proves that the two definitions are
equivalent:

Proposition 2. Let R1 and R2 be ranked interpretations. Then R1 = R2 iff
≺R1=≺R2 .

We define satisfaction with respect to ranked interpretations as follows. Given
any α ∈ L, we say R satisfies α (written R ! α) iff !α"R = UR . Similarly, R
satisfies a conditional assertion α |∼ β iff min≤R !α"R ⊆ !β"R , or in other words
iff all of the ≤R -minimal valuations satisfying α also satisfy β.

Example 1. Let R be the ranked interpretation below. Then R satisfies p → b,
b |∼ f and p |∼ ¬f. Note that in our diagrams we omit rank ∞ for brevity, and
represent a valuation as a string of literals, with p indicating the negation of the
atom p.

2 pbf
1 pbf, pbf
0 pbf, pbf, pbf

A useful simplification is the fact that classical statements (such as p → b)
can be viewed as special cases of conditional assertions in ranked interpretations:

Proposition 3 [14, p. 174]. For all α ∈ L, R ! α iff R ! ¬α |∼ ⊥.

In what follows we define a knowledge base to be a finite set of conditional
assertions. The set of all ranked interpretations over P is denoted by RI, and
we write Mod(K) for the set of ranked models of a knowledge base K. For any
U ⊆ RI, we write U ! α to mean R ! α for all R ∈ U , and finally the set of
formulas satisfied by the ranked interpretation R is denoted by sat(R).

2.2 Propositional Typicality Logic

In this paper we are interested in looking at more expressive variations of KLM,
as the syntax for conditionals in KLM is somewhat restrained. An early inves-
tigations in this direction was done by Booth and Paris [4], who consider an
extension of KLM that permits both positive (α |∼ β) and negative (α "|∼ β)
conditionals.

A more recent variation of KLM is Propositional Typicality Logic (PTL), a
logic for defeasible reasoning proposed by Booth et al. [2], in which propositional
logic is enriched with a typicality operator •. The intuition behind a formula
•α is that it is true whenever α is typical for the world in consideration. In
contrast to KLM, however, the typicality operator can be placed anywhere in
a formula, as well as nested. Formulas for PTL are defined by the grammar
α ::= $ | ⊥ | p | •α | ¬α | α ∧ α, where p is any propositional atom, and other
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logical connectives can be defined as usual in terms of ¬ and ∧. We denote the
set of all PTL formulas by L•.

Satisfaction for PTL formulas is defined with respect to a ranked interpre-
tation R. Given a valuation u ∈ U and formula α ∈ L•, we define u !R α
inductively in the same manner as propositional logic, with an additional rule
for the typicality operator: u !R •α if and only if u !R α and there is no v ≺R u
such that v !R α. We say that R satisfies the formula α, written R ! α, iff
u !R α for all u ∈ UR . The following proposition explains why we are viewing
PTL as an extension of KLM, rather than as a separate logic in its own right:

Proposition 4 [3, Proposition 11]. A ranked interpretation R satisfies α |∼ β
iff it satisfies •α → β.

Proposition 4 can be rephrased as saying that everyKLM knowledge base has
an equivalent PTL knowledge base, in the sense that they share the same set of
ranked models. Note, however, that the converse doesn’t hold, which intuitively
shows that PTL is strictly more expressive than KLM:

Proposition 5 [3, Proposition 13]. For any p ∈ P, the knowledge base con-
sisting of •p has no equivalent KLM knowledge base.

Later, we will show that there is a sense in which PTL is not maximally
expressive for semantics given by ranked interpretations, a fact that may seem
surprising in light of its unrestricted syntax.

2.3 The Entailment Problem

We now turn to a central question in non-monotonic reasoning, namely deter-
mining what forms of entailment are appropriate in a defeasible setting. In other
words, we wish to understand what it means for a formula α to follow from a
knowledge base K. We will denote such a relation by K |≈ α, to be read “K
defeasibly entails α”.

First steps toward the entailment problem for KLM-style logics were made
by Kraus et al. [14], who argue that a defeasible entailment relation should
satisfy all of the rationality properties listed below. Such relations are said to be
rational, and one reason for their importance is that they can be characterised
precisely by ranked interpretations:

(Refl) K |≈ α |∼ α for all α ∈ L
(Lle) |= α ↔ β and K |≈ α |∼ γ implies K |≈ β |∼ γ

(Rw) |= β → γ and K |≈ α |∼ β implies K |≈ α |∼ γ

(And) K |≈ α |∼ β and K |≈ α |∼ γ implies K |≈ α |∼ β ∧ γ

(Or) K |≈ α |∼ γ and K |≈ β |∼ γ implies K |≈ α ∨ β |∼ γ

(Cm) K |≈ α |∼ β and K |≈ α |∼ γ implies K |≈ α ∧ β |∼ γ

(Rm) K |≈ α |∼ γ implies K |≈ α |∼ ¬β or K |≈ α ∧ β |∼ γ
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Proposition 6 [16, Theorem 5]. A defeasible entailment relation |≈ is rational
iff for each knowledge base K, there is a ranked interpretation RK such that
K |≈ α |∼ β iff RK ! α |∼ β.

Note that by Proposition 4, these rationality properties can be considered for
PTL entailment relations as well, by replacing each instance of α |∼ β with the
equivalent •α → β. An interesting consequence of an entailment relation being
rational is non-monotonicity, which means that the following Tarskian definition
of entailment fails to be rational [16]:
Definition 2. A formula α is rank entailed by a knowledge base K (written
K |≈R α) iff R ! α for every ranked model R of K.

Despite this, it is generally agreed that defeasible entailment relations should
extend rank entailment, a property known asAmpliativity. In the context of PTL
entailment, Booth et al. [2] consider this, as well as a number of other desirable
properties of defeasible entailment:

(Inclusion) K |≈ α for all α ∈ K
(Cumulativity) K |≈ α whenever K |≈ β for all β ∈ K2 and K2 |≈ α

(Ampliativity) K |≈ α whenever K |≈R α

(Strict Entailment) for classical α ∈ L, K |≈ α iff K |≈R α

(Typical Entailment) for classical α ∈ L, K |≈ $ |∼ α iff K |≈R $ |∼ α

(Single Model) for all K there’s some R ∈ Mod(K) such that
K |≈ α iff R ! α

Proposition 6 states that the Single Model property is equivalent to being
rational for KLM entailment relations, but note that the properties diverge
for more expressive logics. Surprisingly, it turns out that a number of these
properties are mutually inconsistent in the case of PTL entailment relations:
Proposition 7 [2, Theorem 1]. There is no PTL entailment relation |≈ sat-
isfying the Inclusion, Strict Entailment, Typical Entailment and Single Model
properties.

As a final remark on general entailment relations, we note that this list of
properties is by no means exhaustive. Booth et al. [2] consider many variations
of the above properties in the context of PTL entailment, whereas Casini et al.
[9] study properties of extensions of Rational Closure, a well-known entailment
relation for KLM.

2.4 Rational Closure

Given the failure of rank entailment to be rational, an interesting question is
which rational entailment relation should be considered the right one for defea-
sible reasoning. In their seminal paper, Lehmann et at. [16] define Rational Clo-
sure, an entailment relation for KLM that is widely considered to be a minimal
acceptable answer to this question [9]. In this section we give a semantic descrip-
tion of Rational Closure in terms of an ordering on ranked interpretations [12]:
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Definition 3 [12, Definition 7]. Given two ranked interpretations R1 and R2,
we say R1 is preferred to R2 (written R1 <G R2) iff for every u ∈ U we have
R1(u) ≤ R2(u) and there is some v ∈ U s.t. R1(v) < R2(v).

Intuitively, the lower down a ranked interpretation R is with respect to the
ordering ≤G, the fewer exceptional valuations it has modulo the constraints
of K. The ≤G-minimal ranked interpretations can therefore be thought of as
the semantic counterpart to the Presumption of Typicality mentioned in the
introduction. For the case of KLM knowledge bases containing positive and/or
negative conditionals, it follows from the work of Booth and Paris [4] that there
is always a unique minimal model:

Proposition 8. Let K ⊆ L|∼ be a knowledge base. Then if K is consistent,
Mod(K) has a unique ≤G-minimal element, denoted by RRC

K .

The Rational Closure of a knowledge base is defined to be (or rather, can be
characterised as) the set of formulas satisfied by this minimal model:

Proposition 9 [12, Theorem 2]. A conditional α |∼ β is in the rational closure
of a knowledge base K ⊆ L|∼ (written K |≈RC α |∼ β) iff RRC

K ! α |∼ β.

Rational Closure satisfies all of the properties given in Sect. 2.3, and has
attractive properties in other respects [16]. Nevertheless, it has some well-known
shortcomings, such as not providing for the inheritance of generic properties to
exceptional individual - a property that is known as the drowning effect. To
deal with some of these issues, various refinements of Rational Closure have
been proposed, such as Lexicographic Closure [15], Relevant Closure [8] and
Inheritance-Based Closure [7]. There is a general consensus that interesting forms
of defeasible entailment should extend Rational Closure inferentially [9].

3 Boolean KLM

In this section we describe Boolean KLM (BKLM), an extension of KLM that
permits arbitrary boolean combinations of defeasible conditionals. Syntactically,
this goes beyond the extension of Booth and Paris [4] by allowing disjunctive as
well as negative assertions in knowledge bases. BKLM formulas are defined by
the grammar A ::= α |∼ β | ¬A | A∧A, with other boolean connectives defined
as usual in terms of ¬ and ∧. For convenience, we use α "|∼ β as a synonym for
¬(α |∼ β), and write Lb for the set of all BKLM formulas. Hence, for example,
(α |∼ β)∧ (γ "|∼ δ) and ¬((α "|∼ β)∨ (γ |∼ δ)) are valid BKLM formulas, but the
nested conditional α |∼ (β |∼ γ) is not.

Satisfaction for BKLM is defined in terms of ranked interpretations, by
extending KLM satisfaction in the obvious fashion, namely R ! ¬A iff R "! A
and R ! A ∧ B iff R ! A and R ! B. This leads to some subtle differ-
ences between BKLM and the other logics described in this paper. For instance,
care must be taken to apply Proposition 3 correctly when translating between
propositional formulas and BKLM formulas. The propositional formula p ∨ q
translates to the BKLM formula ¬(p∨ q) |∼ ⊥, and not to the BKLM formula
(¬p |∼ ⊥) ∨ (¬q |∼ ⊥), as the following example illustrates:
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Example 2. Consider the propositional formula A = p ∨ q and the BKLM for-
mula B = (¬p |∼ ⊥) ∨ (¬q |∼ ⊥). If R is the ranked interpretation below, then
R satisfies A but not B, as neither clause of the disjunction is satisfied.

1 pq
0 pq

To prevent possible confusion, we will avoid mixing classical and defeasible
assertions in a BKLM knowledge base. For similar reasons, it’s also worth not-
ing the difference between boolean connectives in PTL and the corresponding
connectives in BKLM. By Proposition 4, one might expect a BKLM formula
such as ¬(p |∼ q) to be equivalent to the PTL formula ¬(•p → q). This is not
the case in general, however:

Example 3. Consider the formulas A = ¬(•p → q) and B = ¬(p |∼ q), and let
R be the ranked interpretation in the example above. Note that A is equivalent
to •p ∧ ¬q, which is not satisfied by R. On the other hand, R satisfies B.

A natural question is how BKLM compares to PTL in terms of expressive-
ness. In the next two sections we show that BKLM is strictly more expressive
than PTL, and detail an algorithm that converts PTL knowledge bases into
equivalent BKLM knowledge bases.

3.1 Expressiveness of BKLM

Satisfaction for KLM, PTL and BKLM formulas is defined in terms of ranked
interpretations. This allows us to compare their expressiveness directly, in terms
of the sets of models that they can characterise. With the results mentioned
earlier, we can already do this for KLM and PTL:

Example 4. Let K ⊆ L|∼ be a KLM knowledge base. Then the PTL knowledge
base K′ = {•α → β : α |∼ β ∈ K} has exactly the same ranked models as K by
Proposition 4, and hence PTL is at least as expressive as KLM. Proposition 5
proves that PTL is strictly more expressive than KLM.

Our main result in this section is that BKLM is maximally expressive, in the
sense that it can characterise any set of ranked interpretations. First, we recall
that for every valuation u ∈ U there is a corresponding characteristic formula
û ∈ L, which has the property that v ! û iff v = u.

Lemma 1. For any ranked interpretation R and valuations u, v ∈ U , the fol-
lowing equivalences hold:

1. R ! $ "|∼ ¬û iff R(u) = 0.
2. R ! û |∼ ⊥ iff R(u) = ∞.
3. R ! û ∨ v̂ |∼ ¬v̂ iff u ≺R v or R(u) = R(v) = ∞.



244 G. Paterson-Jones et al.

Note that this lemma holds even in the trivial case where R(u) = ∞ for all
u ∈ U . For convenience, in later parts of the paper we will write α < β as a
standard shorthand for the defeasible conditional α ∨ β |∼ ¬β.

Lemma 2. Let R be any ranked interpretation. Then there exists a formula
ch(R) ∈ Lb with R as its unique model.

We refer to ch(R) as the characteristic formula of R. Taking a disjunction
of characteristic formulas suffices to prove the following more general corollary:

Corollary 1. Let U ⊆ RI be a set of ranked interpretations. Then there exists
a formula ch(U) ∈ Lb with U as its set of models.

In principle, this corollary shows that for any PTL knowledge base there
exists some BKLM formula with the same set of models, and hence BKLM
is at least as expressive as PTL. In the next section we make this relationship
more concrete, by providing an explicit algorithm for translating PTL knowledge
bases into BKLM.

3.2 Translating PTL Into BKLM

In Sect. 2.2, satisfaction for PTL formulas was defined in terms of the possible
valuations of a ranked interpretation R. In order to define a translation operator
between PTL and BKLM, our main idea is to encode satisfaction with respect
to a particular valuation u ∈ U , by defining an operator tru : L• → Lb such that
for each u ∈ UR , R ! tru(α) iff u !R α.

Definition 4. We define tru by structural induction as follows, where α,β ∈ L•,
p ∈ P and u ∈ U :

1. tru(p) def= û |∼ p
2. tru($) def= û |∼ $
3. tru(⊥) def= û |∼ ⊥
4. tru(¬α) def= ¬tru(α)
5. tru(α ∧ β) def= tru(α) ∧ tru(β)
6. tru(•α) def= tru(α) ∧

∧
v∈U

[
(v̂ < û) → ¬trv(α)

]

Note that this is well-defined, as each case is defined in terms of strict sub-
formulas. These translations can be viewed as analogues of the definition of PTL
satisfaction - case 6 intuitively states that •α is satisfied by a possible valuation
u iff u is a minimal valuation satisfying α, for instance. The following lemma
confirms that this intuition is correct:

Lemma 3. Let R be a ranked interpretation, and u ∈ UR a valuation with
R(u) < ∞. Then for all α ∈ L• we have R ! tru(α) if and only if u !R α.
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A PTL formula α ∈ L• is satisfied by a ranked interpretation R iff it is
satisfied by every possible valuation ofR. By combining the translation operators
in Definition 4 for each possible world, we can encode this statement as a BKLM
formula as follows:

Definition 5. tr(α) def=
∧

u∈U

(
(û "|∼ ⊥) → tru(α)

)

Finally, we can prove that this translation does indeed result in an equivalent
BKLM formula:

Lemma 4. For all α ∈ L• and any ranked interpretation R, R satisfies α iff
R satisfies tr(α).

4 The Entailment Problem for BKLM

We now turn to the question of defeasible entailment for BKLM knowledge
bases, and in particular whether interesting entailment relations resembling
Rational Closure can be defined. As a first observation, Proposition 7 show that
there can be no exact analogue of Rational Closure for PTL, and thus in light
of our translation result there cannot be an exact analogue for BKLM either.
In the case of PTL, however, we can get fairly close:

Proposition 10 [5, Proposition 5.2]. Let K ⊆ L• be a consistent PTL knowl-
edge base. Then Mod(K) has a unique ≤G-minimal element, denoted RLM

K .

Booth et al. [5] define LM-entailment as follows: K |≈LM α iff RLM
K ! α.

While this satisfies many of the desirable properties of Rational Closure, such
as the Single Model, Typical Entailment and Ampliativity properties, it fails to
satisfy Strict Entailment. Unfortunately, it turns out that the situation is even
worse for BKLM:

Lemma 5. There is no BKLM entailment relation |≈? satisfying Ampliativity,
Typical Entailment and the Single Model property.

This is a concrete sense in which BKLM entailment is more constrained than
PTL entailment, and raises the additional question of which of these properties
we should commit to giving up. Our main result here, which we will prove in
the next two sections, is that satisfying the Single Model property for BKLM
entailment incurs heavy costs, and hence it is a reasonable candidate for removal.

4.1 Order Entailment

One way of looking at Rational Closure is as a form ofminimal model entailment ;
indeed, this is just Definition 3. In other words, given a knowledge base K, we can
construct the Rational Closure of K by placing an appropriate ordering on its set
of ranked models (in this case ≤G), and picking out the consequences common to
all the minimal models. In this section we provide a formal definition of this kind
of entailment, with a view towards understanding the Single Model property for
BKLM.
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Definition 6. Let < be a strict partial order on RI. Then for all knowledge
bases K ⊆ Lb and formulas α ∈ Lb, we say K <-entails α (denoted K |≈< α) iff
R ! α for all <-minimal models R ∈ Mod(K).

The relation |≈< will be referred to as an order entailment relation. Note that
while we have explicitly referred to BKLM knowledge bases here, the construc-
tion works identically for KLM and PTL. It is also worth mentioning that the
set of models of a consistent knowledge base is always finite, as we have assumed
finiteness of P, and hence always has <-minimal elements.

Example 5. By Definition 9, the rational closure of any KLM knowledge base K
is the set of formulas satisfied by the (unique) <G-minimal element of Mod(K).
Thus rational closure is the order entailment relation corresponding to <G for
KLM knowledge bases.

In general, order entailment relations satisfy all of the rationality properties
except property Rm (commonly called rational monotonicity). Rational mono-
tonicity holds if Mod(K) has a unique <-minimal model for every knowledge
base K, a fact that is closely related to the Single Model property:

Proposition 11. An order entailment relation |≈< satisfies the Single Model
property iff Mod(K) has a unique <-minimal model for any knowledge base K.

This is always the case if < is total, for instance, but it is also the case
for Rational Closure and LM-entailment. In the next section we will show that,
perhaps surprisingly, total order entailment relations are nevertheless (modulo
some minor conditions) the only entailment relations for BKLM satisfying the
Single Model property.

4.2 The Single Model Property

This section is devoted to a proof of the following theorem, mentioned in the
preceding discussion:

Theorem 1. Suppose |≈? is a BKLM entailment relation satisfying Cumula-
tivity, Ampliativity and the Single Model property. Then |≈?=|≈<, where < is a
total ordering of RI.

For the remainder of the proof, we consider a fixed BKLM entailment rela-
tion |≈? satisfying the Cumulativity, Ampliativity and Single Model properties.
Corresponding to |≈? is an associated consequence operator Cn?, defined as fol-
lows:

Definition 7. For any knowledge base K ⊆ Lb, we define Cn?(K) = {α ∈ Lb :
K |≈? α}.

In what follows, we will move between the entailment relation and conse-
quence operator notations freely as convenient. To begin with, the following
lemma follows easily from our assumptions:
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Lemma 6. For any knowledge base K ⊆ Lb, Cn?(K) = CnR(Cn?(K)) and
Cn?(K) = Cn?(CnR(K)).

Our approach to proving Theorem1 is to assign a unique index ind(R) ∈ N to
each ranked interpretation R ∈ RI, and then show that Cn?(K) corresponds to
minimisation of index in Mod(K). To construct this indexing scheme, consider
the following algorithm:

1. Set M0 := RI, i := 0.
2. If Mi = ∅, terminate.
3. By Corollary 1, there is some Ki ⊆ Lb s.t. Mod(Ki) = Mi.
4. By the Single Model property, there is some Ri ∈ Mi s.t. Cn?(Ki) = sat(Ri).
5. Set Mi+1 := Mi \ {Ri}, i := i+ 1.
6. Go to step 2, and iterate until termination.

This algorithm is guaranteed to terminate, since M0 is finite and 0 ≤
|Mi+1| < |Mi|. Note that once the algorithm terminates, for each R ∈ RI there
will have been a unique i ∈ N such that R = Ri. We will call this i the index of
R, and denote it by ind(R). Given a knowledge base K, we define ind(K) to be
the minimum of the indices of each of the models of K.

When we write Rn, Kn and Mn in the following lemmas, we mean the ranked
interpretations, knowledge bases and sets of models constructed in steps 3 to 5
of the algorithm when i = n:

Lemma 7. Given any knowledge base K ⊆ Lb, Mod(K) ⊆ Mn, where n =
ind(K).

The following lemma proves that entailment under |≈? corresponds to min-
imisation of index:

Lemma 8. Given any knowledge base K ⊆ Lb, Cn?(K) = sat(Rn), where n =
ind(K).

Consider the strict partial order on RI defined by R1 < R2 iff ind(R1) <
ind(R2). By construction, the index of a ranked interpretation is unique, and
hence < is total. It follows from Lemma8 that |≈?=|≈<, and hence |≈? is equiva-
lent to a total order entailment relation. This completes the proof of Theorem1.

5 Related Work

The most relevant work w.r.t. the present paper is that of Booth and Paris [4]
in which they define rational closure for the extended version of KLM for which
negated conditionals are allowed, and the work on PTL [2,5]. The relation this
work has with BKLM was investigated in detail throughout the paper.

Delgrande [10] proposes a logic that is as expressive as BKLM. The entail-
ment relation he proposes is different from the minimal entailment relations we
consider here and, given the strong links between our constructions and theKLM
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approach, the remarks in the comparison made by Lehmann and Magidor [16,
Sect. 3.7] are also applicable here.

Boutilier [6] defines a family of conditional logics using preferential and
ranked interpretations. His logic is closer to ours and even more expressive, since
nesting of conditionals is allowed, but he too does not consider minimal construc-
tions. That is, both Delgrande and Boutilier’s approaches adopt a Tarskian-style
notion of consequence, in line with rank entailment. The move towards a non-
monotonic notion of defeasible entailment was precisely our motivation in the
present work.

Giordano et al. [13] propose the system Pmin which is based on a language
that is as expressive as PTL. However, they end up using a constrained form of
such a language that goes only slightly beyond the expressivity of the language
of KLM-style conditionals (their well-behaved knowledge bases). Also, the system
Pmin relies on preferential models and a notion of minimality that is closer to
circumscription [17].

In the context of description logics, Giordano et al. [11,12] propose to extend
the conditional language with an explicit typicality operator T (·), with a mean-
ing that is closely related to the PTL operator •. It is worth pointing out,
though, that most of the analysis in the work of Giordano et al. is dedicated to
a constrained use of the typicality operator T (·) that does not go beyond the
expressivity of a KLM-style conditional language, but revised, of course, for the
expressivity of description logics.

In the context of adaptive logics, Straßer [18] defines the logic R+ as an exten-
sion of KLM in which arbitrary boolean combinations of defeasible implications
are allowed, and the set of propositional atoms has been extended to include
the symbols {li : i ∈ N}. Semantically, these symbols encode rank in the object
language, in the sense that u ! li in a ranked interpretation R iff R(u) ≥ i.
Straßer’s interest in R+ is to define an adaptive logic ALCS that provides a
dynamic proof theory for rational closure, whereas our interest in BKLM is to
generalise rational closure to more expressive extensions of KLM. Nevertheless,
the Minimal Abnormality Strategy (see the work of Batens [1], for instance) for
ALCS is closely related to LM -entailment as defined in this paper.

6 Conclusion
The main focus of this paper is exploring the connection between expressiveness
and entailment for extensions of the core logic KLM. Accordingly, we introduce
the logic BKLM, an extension of KLM that allows for arbitrary boolean combi-
nations of defeasible implications. We take an abstract approach to the analysis
of BKLM, and show that it is strictly more expressive than existing extensions
of KLM such as PTL [3] and KLM with negation [4]. Our primary conclusion
is that a logic as expressive as BKLM has to give up several desirable prop-
erties for defeasible entailment, most notably the Single Model property, and
thus appealing forms of entailment for PTL such as LM-entailment [2] cannot
be lifted to the BKLM case.

For future work, an obvious question is what forms of defeasible entailment
are appropriate for BKLM. For instance, is it possible to skirt the impossibility
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results proven in this paper while still retaining the KLM rationality properties?
Other forms of entailment for PTL, such as PT-entailment, have also yet to
be analysed in the context of BKLM and may be better suited to such an
expressive logic. Another line of research to be explored is whether there is a
more natural translation of PTL formulas into BKLM than that defined in
this paper. Our translation is based on a direct encoding of PTL semantics,
and consequently results in an exponential blow-up in the size of the formulas
being translated. It is clear that there are much more efficient ways to translate
specific PTL formulas, but we leave it as an open problem whether this can
be done in general. In a similar vein, it is interesting to ask how PTL could
be extended in order to make it equiexpressive with BKLM. Finally, it may
be interesting to compare BKLM with an extension of KLM that allows for
nested defeasible implications, i.e. formulas such as α |∼ (β |∼ γ). While such an
extension cannot be more expressive than BKLM, at least for a semantics given
by ranked interpretations, it may provide more natural encodings of various
kinds of typicality, and thus be easier to work with from a pragmatic point of
view.
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funded by EU Horizon 2020 research and innovation programme under GA No. 952215.

A Appendix

A.1 Proofs of Lemmas in Sect. 3

Lemma 2. Let R be any ranked interpretation. Then there exists a formula
ch(R) ∈ Lb with R as its unique model.

Proof. Consider the following knowledge bases.

1. K≺ = {û < v̂ : u ≺R v} ∪ {û "< v̂ : u "≺R v}
2. K∞ = {û |∼ ⊥ : R(u) = ∞} ∪ {û "|∼ ⊥ : R(u) < ∞}

By Lemma1,R satisfies K = K≺∪K∞. To show that it is the unique model of
K, consider anyR∗ ∈ Mod(K). SinceR∗ satisfies K∞,R∗(u) = ∞ iff R(u) = ∞
for any u ∈ U . Now consider any u, v ∈ U , and suppose that R(u) < ∞. Then
u ≺R v iff K≺ contains û < v̂. But R∗ satisfies K≺, so this is true iff u ≺R∗ v as
R∗(u) < ∞. On the other hand, if R(u) = ∞, then u "≺R v and u "≺R∗ v. Hence
≺R=≺R∗ , which implies that R = R∗ by Proposition 2. We conclude the proof
by letting ch(R) =

∧
α∈K α. 23

Lemma 3. Let R be a ranked interpretation, and u ∈ UR a valuation with
R(u) < ∞. Then for all α ∈ L• we have R ! tru(α) if and only if u !R α.

Proof. We will prove the result by structural induction on the cases in Defini-
tion 4:
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1. Suppose that R ! tru(p), i.e. R ! û |∼ p. This is true iff u |= p, which is
equivalent by definition to u !R p. Cases 2 and 3 are similar.

4. Suppose that R ! tru(¬α), i.e. R ! ¬tru(α). This is true iff R "! tru(α),
which by the induction hypothesis is equivalent to u "!R α. But this is equiv-
alent to u !R ¬α by definition. Case 5 is similar.

6. Suppose there exists an α ∈ L• such that R ! tru(•α) but u "!R •α. Then
either u "!R α, which by the induction hypothesis is a contradiction since
R ! tru(α), or there is some v ∈ U with v ≺R u such that v !R α. But by
Lemma1, v ≺R u is true only if R ! v̂ < û. We also have, by the induction
hypothesis, that R ! trv(α) since v !R α. Hence R ! (v̂ < û)∧trv(α), which
implies that one of the clauses in tru(•α) is false. This is a contradiction, so
we conclude that R ! tru(•α) implies u !R •α.
Conversely, suppose that u !R •α. Then u !R α, and hence R ! tru(α) by
the induction hypothesis. We also have that if v ≺R u then v "!R α, which
is equivalent to R ! ¬trv(α) by the induction hypothesis. But by Lemma1,
v ≺R u iff R ! v̂ < û. We conclude that R ! (v̂ < û) → ¬trv(α) for all
v ∈ U , and hence R ! tru(•α). 23

Lemma 4. For all α ∈ L• and any ranked interpretation R, R satisfies α iff R
satisfies tr(α).

Proof. Suppose R ! α. Then for all u ∈ U , either R(u) = ∞ or u !R α. The
former implies R ! û |∼ ⊥ by Lemma1, and the latter implies R ! tru(α) by
Lemma 3. Thus R ! (û "|∼ ⊥) → tru(α) for all u ∈ U , which proves R ! tr(α) as
required. Conversely, suppose R ! tr(α). Then for any u ∈ U , either R ! û |∼ ⊥
and hence R(u) = ∞ by Lemma1, or R ! û "|∼ ⊥ and hence R ! tru(α) by
hypothesis. But then R ! α by Lemma3. 23

A.2 Proofs of Lemmas in Sect. 4

Lemma 5. There is no BKLM entailment relation |≈? satisfying Ampliativity,
Typical Entailment and the Single Model property.

Proof. Suppose that |≈? is such an entailment relation, and consider the knowl-
edge base K = {($ |∼ p) ∨ ($ |∼ ¬p)}. Both interpretations in Fig. 1, R1

and R2, are models of K. R1 satisfies $ |∼ p and not $ |∼ ¬p, whereas R2

satisfies $ |∼ ¬p and not $ |∼ p. Thus, by the Typical Entailment property,
K "|≈? $ |∼ p and K "|≈? $ |∼ ¬p. On the other hand, by Ampliativity we get

Fig. 1. Ranked models of K = {(! |∼ p) ∨ (! |∼ ¬p)}.
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K |≈? ($ |∼ p) ∨ ($ |∼ ¬p). A single ranked interpretation cannot satisfy all
three of these assertions, however, and hence no such entailment relation can
exist. 23

Lemma 7. Given any knowledge base K ⊆ Lb, Mod(K) ⊆ Mn, where n =
ind(K).

Proof. An easy induction on step 5 of the algorithm proves that Mn = {R ∈
RI : ind(R) ≥ n}. By hypothesis, ind(R) ≥ n for all R ∈ Mod(K), and hence
Mod(K) ⊆ Mn. 23

Lemma 8. Given any knowledge base K ⊆ Lb, Cn?(K) = sat(Rn), where n =
ind(K).

Proof. For all A, Kn |≈R A iff R ! A for all R ∈ Mod(Kn) = Mn. But
by Lemma7, Mod(K) ⊆ Mn and hence CnR(Kn) ⊆ CnR(K). On the other
hand, Rn ∈ Mod(K) by hypothesis and hence Rn ! A for all A ∈ K. By
the definition of step 4 of the algorithm we have sat(Rn) = Cn?(Kn), and
thus K ⊆ Cn?(Kn). Applying CnR to each side of this inclusion (using the
monotonicity of rank entailment), we get CnR(K) ⊆ CnR(Cn?(Kn)) = Cn?(Kn),
with the last equality following from Lemma6. Putting it all together, we have
CnR(Kn) ⊆ CnR(K) ⊆ Cn?(Kn), and hence by Cumulativity we conclude
Cn?(K) = Cn?(Kn) = sat(Rn). 23
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