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ABSTRACT Outcome-based predictive process monitoring deals with predicting the outcomes of running
cases in a business process using feature vectors extracted from completed traces in an event log. Tradi-
tionally, in outcome-based predictive monitoring, a different model is developed using a bucket containing
different types of feature vectors. This allows us to extend the traditional evaluation of the quality of
process outcome predictions models beyond simply measuring the overall performance, developing a quality
assessment framework based on three metrics: one considering the overall performance on all feature
vectors, one considering the different levels of performance achieved on feature vectors belonging to
individual buckets, i.e., the stability of the performance across buckets, and one considering the stability
of the individual predictions obtained, accounting for how close the predicted probabilities are to the cutoff
thresholds used to determine the predicted labels. The proposed metrics allow to evaluate, given a set of
alternative designs, i.e., combinations of classifier and bucketing method, the quality of the predictions of
each alternative. For this evaluation, we suggest using either the concept of Pareto-optimality or a scenario-
based scoring method. We discuss an evaluation of the proposed framework conducted with real-life event
logs.

INDEX TERMS Process mining, predictive monitoring, outcome prediction, quality, stability.

I. INTRODUCTION
Process mining aims at extracting process-relevant informa-
tion from so-called event logs [1], which contain data logged
during the execution of business processes. It provides a
broad range of analytical tools, from process model discov-
ery, which discovers models of business processes from event
logs, e.g., BPMN models, to conformance checking, which
detects the extent to which events in a log fit a process model.

In process mining, an event log refers to multiple execu-
tions of a given business process, e.g., order-to-cash. An indi-
vidual execution of a process, e.g., the handling of a particular
order placed a customer, is called a process case. An event
contains an id of the case to which it belongs, a timestamp,
information about the task or activity that it represents, and
possibly other attributes, such as the (human) resources who
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executed or supervised the task. The events related to a
process case, ordered in time, form a trace of events.

Predictive monitoring recently has emerged in process
mining as a set of techniques that aim at predicting various
aspects of interests of a process using event log data, such
as the next activity that will be executed in a running process
case [2], time-related aspects [3], or the outcome of a case [4].

This paper focuses on the outcome prediction use case.
In this prediction use case, each trace in an event log is asso-
ciated with an outcome label (usually binary), which can be
given or reconstructed from information in an event log. The
objective is then to develop a model that can predict the value
of the outcome label for running traces, that is, for process
cases that have not terminated yet, using data from cases
that have already completed their execution. Since process
outcomes are captured by categorical labels, this requires the
use of machine learning classification techniques [5].

Approaches to outcome prediction and, more in general,
predictive process monitoring, have evolved in the literature
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with a clear focus on performance improvement. Several
authors have in fact developed quantitative predictive moni-
toring benchmarks using different classification techniques,
encoding schemes, and event log types [4], [6], [7], com-
paring the overall performance, i.e., on all the traces in an
event log, using standard measures, such as AUC, precision,
or recall, in different predictive monitoring tasks. To improve
the model performance, research also has focused on the
engineering of new features and encoding methods for event
log data, e.g., inter-case features [8], or adapting cutting-edge
machine learning models, such as deep learning [3], to the
problem at hand.

In this paper, we consider a broader notion of quality of the
models obtained for outcome prediction that goes beyond the
standard performance measures that have been adopted in
the literature. There is no standard definition for the quality
of a machine learning classification model in the literature
and, therefore, different notions of model quality may be
developed depending on the specific characteristics of a clas-
sification problem. For instance, in some cases the quality
of the model is evaluated by probing whether it is either
overfitted or underfitted to the samples in the training set
[9], [10], while other approaches take a different perspective
on the quality, taking data imbalance into consideration [11].
As far as classification in predictive process monitoring is
concerned, the work by [12] is the only one that has pro-
vided a notion of model quality that goes beyond standard
performance measures, focusing in particular on the temporal
stability of predictions of process outcomes. Specifically,
the authors have developed a set of metrics to define how
stable outcome predictions are as a running trace evolves,
i.e., more events are executed.

We take a different perspective on model quality, analysing
the stability and performance of outcome predictions over
buckets of trace prefixes. Typically, in a process outcome
prediction model, in the offline phase trace prefixes are first
extracted from events in a log, where a prefix of length l is
constituted by features extracted from the first l events of a
given process trace. Prefixes are then divided into a number
of disjoint buckets, e.g., applying a clustering algorithm or
grouping prefixes by length, i.e., the number of events from
which prefixes are extracted. Then, a classifier is trained
for each bucket. In the online phase, a running trace is first
assigned to a bucket, then a prediction for it is obtained using
the classifier trained for that particular bucket.

Intuitively, in some cases, good overall performance of an
outcome-based prediction model on all prefixes may result
from aggregating excellent performance on some buckets
of prefixes and poor performance on some others. Even
though the overall performance of such a model, e.g., AUC
or accuracy, may appear acceptable, this model may not be
a good model in many practical situations, since decisions
taken using it for specific types of cases, i.e., the ones falling
in buckets associated with low performance, are likely to
be highly inaccurate. There is one more critical aspect to
be considered when considering the practical applications of

outcome-based predictive monitoring, which deals with the
stability of predictions in respect of the probability thresholds
chosen for classification. A decision tree in a binary classifi-
cation problem, for instance, given a new observation, outputs
a probability for it to be classified in each class. The class
associated with a probability higher than 0.5 is then chosen
as the classification label. The closer the highest classification
probability to 0.5, the more likely such a classification to be
unstable, i.e., to change with only a slight modification of
either the input data or the training set from which the model
was obtained. A similar rationale may be applied to other
classification techniques, such as feed-forward neural net-
works or random forests. Generally, we argue that a decision-
maker would be more confident when taking decisions using
predictions obtained from a classifier that is stable.

In this paper, we assume that the quality of an outcome-
based prediction model should be evaluated considering both
the performance of individual classifiers within it, i.e., the
ones obtained for each bucket of trace prefixes, and the sta-
bility of the performance inside buckets and across different
buckets. More in detail, our quality framework relies on the
following principles: first, the higher the performance of an
outcome prediction model on individual buckets, the higher
its quality. Second, individual classifiers should also be sta-
ble, i.e., the likelihood that a prediction made for a running
case changes in respect of the value set for the classification
threshold should be low. Then, a third principle considers the
stability of the performance across classifiers created using
different buckets. Specifically, we consider a low quality clas-
sifier yielding good and reliable prediction only on particular
buckets, but outputs a bad and unreliable classification for
other buckets.

Based on these principles, this paper develops a framework
containing a set of metrics for evaluating the quality of an
outcome prediction model in process predictive monitoring.
Specifically, similarly to the notion of quality in other fields,
such as quality of service (QoS) [13] or data quality [14],
we consider the quality of an outcome prediction framework
as amulti-dimensional concept defined by the following three
metrics:
• Overall Bucket Performance (OBP), which focuses on
the predictive performance of classifiers developed for
each bucket;

• Intra-bucket Prediction Stability (IBS), which measures
how distant are the actual prediction probabilities from
the cutoff thresholds, as a proxy of their stability in
respect of slight changes of the predictionmodel or input
data;

• Cross-bucket Performance Stability (XBS), which mea-
sures the extent of the difference among the performance
across different buckets in an outcome prediction model.

The proposed framework is evaluated considering
real-world event logs publicly available and different com-
binations of classifiers and trace bucketing methods. The
proposed framework can be used as an objective way of
assessing the quality of given combinations of classifier and
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trace bucketing methods chosen for an outcome prediction
model. Therefore, the metrics that we propose in this paper
do not aim at substituting the performance evaluation met-
rics traditionally defined for classification techniques, but
rather complement them in the specific context of outcome-
based process predictive monitoring. From a practical stand-
point, the proposed framework can aid decision-makers when
assessing whether a prediction model outputs stable predic-
tions across different buckets of input observations. Based
on the type of bucketing chosen, such stability may assume a
different meaning. For instance, if clustering-based bucketing
is chosen, then the proposed framework assesses stability
across different groups of similar traces, whereas if prefix
length-based is chosen, stability is assessed across the amount
of knowledge, i.e., events, known for each historic trace
execution.

The paper is organised as follows. Section II presents
the related work and Section III gives a formal introduction
to the problem of developing predictive models of process
outcomes using event logs. Section IV describes the metrics
to evaluate the models and discusses how they can be used
in practical scenarios. Section V presents the experimental
evaluation. Lastly, section VI summarizes the findings along
with implications for future work.

II. RELATED WORKS
Predictive process monitoring [15] concerns various predic-
tion tasks, such as predicting the outcome of a process [4],
[16], the next event of a running case [3], [6], or the remaining
time until the termination of a running case [3]. In outcome-
based predictive monitoring, the outcome of a case is binary
in general. Approaches in the literature tend to define out-
comes as the satisfaction of service level agreements or the
satisfaction of linear temporal logic constraints defined on the
order and occurrence of activities in a case [4].While traces in
an event log can be split into training and test set for learning,
traces can also be bucketed to train the classifier intended
to be built exclusively for the corresponding bucket, where
samples in the same bucket share similar characteristics.
In addition, features can be encoded to better characterise
the data. Since predictive monitoring of process outcomes
handles an event log as an input which is a set of the sequence
of events, sequence information can be used to encode the
features. For example, index-based encoding generates one
feature for each attribute on each executed event [17].

To enhance the performance of predictions in predictive
monitoring of process outcomes, most of the efforts have
been made from the algorithmic side, such as selecting which
type of classifiers or hyperparameters to use, and the feature
engineering side, such as the feature encoding and feature
selection. Tree-based classifiers such as random forest or
extreme gradient boosting have successfully been adopted
to predict process outcomes along with various bucketing
techniques, such as prefix-length bucketing or clustering
bucketing, and sequence encoding techniques such as index-
based encoding and Hidden Markov Models (HMM)-based

encoding [17], [18]. Most recently, the focus of the research
community appears to have shifted to complex deep learning
architectures [19], [20], which however appear more suited
to use cases such as next activity or time prediction, and
to generating and interpreting explanations for the output of
process predictive monitoring [21]–[23].

An extensive research dedicated to the predictive moni-
toring of process outcomes has been conducted by compar-
ing not only the classifiers from different families (random
forest, extreme gradient boosting, logistic regression, and
support vector machine) but also different trace bucketing
and sequence encoding techniques [4]. For selecting optimal
values or hyperparameters, a tuning-enhanced predictive pro-
cess monitoring framework has been devised in [24], which
evaluates the predictions using three metrics: accuracy, fail-
ure rate, and earliness. A search heuristic based on genetic
algorithm has been used to efficiently scan the hyperparam-
eter optimization space in [25]. Beyond the approaches from
the algorithmic side, from a practical standpoint focusing
on service level agreement, a hybrid metric to measure the
reliability of predicting the service level agreement has been
proposed in [26].

The evaluation of the quality of predictive models covers a
broad scope of topics, such as the reliability and the stability
of predictions. Overfitting is a critical problem related to
the reliability in both classification and regression problems.
In fact, overfitting not only makes the model less parsimo-
nious by introducing irrelevant terms, but it also harms the
predictive performance disturbing the way in which the val-
ues of the model parameters are calculated and bringing ran-
dom errors and variations to the predictions [9]. Underfitting,
the opposite concept of overfitting, is also a problem related
to the reliability of predictions, since it prevents a model,
while being learned, to properly investigate the underlying
relationship among data samples [10].

Data imbalance also decreases the validity of predictions
by masking the predictive performance of the minority class
samples with the overall performance [11]. Along with the
perturbations of learning data, learning with unlabeled input
data and sensitivity analysis can also be used for estimating
the reliability [27]. The transductive method is used for esti-
mating the reliability, where a classifier is fitted to a modified
training set [28]. Beyond the traditional reliability metrics,
explainability in predictions has recently emerged as a new
dimension of reliability metrics [29], [30].

The stability of predictions in supervised learning has been
extensively discussed in various prediction tasks. In general,
a classifier is said to be stable if its predictive performance
does not vary with changes in input datasets, generally mea-
sured by the variance of the performance metrics, such as
AUC [31], [32]. Depending on the context, a classifier can
also be considered stable even if its predictive performance
does not vary with not only the changes in datasets, but also
changes in parameters, repeated trials, or time slots (in case
of time series data). In case of selecting the training variables,
themodels for selecting variables are considered stable if they
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select similar variables after the repeated trials [33]. Espe-
cially in the case of decision trees, the issue of the stability of
predictions has been highlighted, as the predictions provided
by decision trees have been found unstable. In order to solve
this problem, random forest, an ensemble of decision trees,
has been developed [34], [35]. Other than ensemble methods,
non-ensemble methods, such as Info-Fuzzy Network (IFN),
has been developed to enable the interpretation of the results
while preserving a high level of stability at the same time [36].
These kinds of approaches to mitigate the problems related
to the stability of decision trees can also be applied to other
classifiers or regression methods showing poor stability [34].
In order to estimate the stability of regression methods, such
as multiple linear regression, support vector regression and
artificial neural network, the bootstrapping method has been
proposed [37].

In predictive monitoring of business processes, the con-
cept of temporal stability of predictions has been introduced.
Given the predictive performance provided for each prefix,
the classifier is considered temporally stable if the classifier
outputs similar predictions to successive prefixes [12].

III. PRELIMINARIES
An event log EL contains events. An event e is a tuple
e = 〈c, a, t, r, (d1, v1), . . . , (dm, vm)〉, where c is the case
id, a is the activity to which the task recorded by this
event belongs, t is the timestamp at which the event has
been recorded, r is the resource that executed the task and
(d1, v1), . . . , (dm, vm), with m ≥ 0, are other domain specific
attributes and their values. For instance, the event e =
(45, assess, 2020.1.2,Alice, amount = 1000, type = deep)
captures the fact that, in a process case associated with loan
request number 45, the resource Alice has executed a deep
assessment of a loan request of 1000 USD on January 2nd,
2020. The universe of all events is denoted by E . We use a
dotted notation to identify attributes of events, e.g., e.c to
identify the case id of event e.

The sequence of events generated in a given case forms
a trace σ = [e1, . . . , en], where ∀i ∈ [1, n], ei ∈ E , and
∀i, j ∈ [1, n], ei.c = ej.c, i.e., all events of a trace belong to
the same case, and ∀i ∈ [1, n−1], ei.t < ei+1.t , i.e., events in
a trace can be ordered in time using the timestamp attribute.
The universe of all traces is denoted by S.
Given a trace σ and an integer l < n, the prefix func-

tion returns the first l events of σ , that is, prefix (σ, l) =
[e1, . . . , el]. We refer to P ⊆ S as the set of prefixes that
can be generated from the events in an event log EL. A prefix
bucketing BN of size N is a partition of the prefixes P in N
subsets, that is, BN (P) = {Bi}i=1...N with

⋃
i Bi = P and⋂

i Bi = ∅.
A labeling function y : S −→ Y is a function mapping

a trace σ ∈ S (or any prefix derived from it) to its class
label y(σ ) ∈ Y , with Y being the domain of the class labels.
Typically, outcome predictions involve a binary outcome, that
is, Y = {0, 1}. Note that all prefixes generated from a trace σ
have the same class label.

In the specific case of outcome-based predictive monitor-
ing, predictions are made using a classifier that takes as input
a fixed number of independent variables (features) and learns
a function to estimate the dependent variable (class label).
This implies that, in order to use the data in an event log as
input of a classifier, each trace in the log must be encoded as
a feature vector.

A sequence (or trace) encoder f : S −→ X1× . . .×XP is a
function that takes a (partial) trace σ and transforms it into a
feature vector in aD-dimensional vector spaceX1× . . .×XD
with Xd ⊆ R, 1 ≤ d ≤ D being the domain of the d-th
feature.

Given a bucketing BN of prefixes in an event log, a process
outcome classification model pom normally is constituted
by N process outcome classifiers poci, with i = 1, . . .N ,
each developed using the prefixes in a bucket Bi. A process
outcome classifier poc is defined by a label predictor function
lp that assigns a class label to a feature vector, i.e. lp :
X1 × . . .XP −→ Y .
In binary classification, classifiers such as neural net-

works or tree-based classifiers normally output a classifica-
tion probability for each of the available class labels. The
class label associated with the highest probability is then
chosen as the predicted class label. Note that this implicitly
means to set the value of a cutoff threshold for assigning
class labels at 0.5. Since the classification probabilities sum
to 1, the highest probability is, in fact, always higher than
0.5. Given the classification probabilities, a poc can also be
defined by a classification probability estimator cpe, which is
a multi-valued function assigning a probability value for each
of the two possible class labels, i.e., cpe : X1× . . .×XD −→

{0, 1} × {0, 1} ⊆ R2, with cpe[f (σ )] = {p0, p1}. Note that,
given pmax = max{p0, p1} the label predictor function can
alternatively be defined as follows:

lp(σ ) =

{
1 if pmax = p1
0 otherwise

IV. MODEL QUALITY FRAMEWORK
Figure 1 depicts the typical application scenario of
outcome-based predictive monitoring. As commonly recog-
nised in the literature [38], the events of completed traces
in an event log are first encoded to obtain the set of all
prefixes. Then the prefixes are divided into a number of
buckets. The literature considers mainly three different types
of bucketing [4], [17], [18], [39]:
• Clustering, where buckets are defined by applying a
clustering algorithm to the set of prefixes;

• Prefix-length, where buckets contain all the prefixes of
a given length;

• State-based, where buckets contain all the prefixes that
have reached a certain state during the process execu-
tion. This way of bucketing relies on the existence of
a process model and it is not considered further in this
paper.
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FIGURE 1. Outcome-predictive monitoring framework, with model quality evaluation.

A process outcome classifier is trained for each bucket of
prefixes obtained. In the online phases, running (incomplete)
traces are first classified into a bucket. After the bucket is
assigned, the classifier trained for the chosen bucket is used to
predict the outcome of the running trace. From the standpoint
of our framework, the outcome of a classifier is the predicted
probabilities p0 and p1 given by the classification probability
estimator cpe and the predicted outcome label y given by the
label predictor function lp. These, together with the ground
truth outcome labels ȳ available in the event log, are the input
of the proposed quality evaluation framework. As remarked
earlier, this is comprised of three elements:
• Evaluation of OBP: measures the predictive perfor-
mance of a classifier within each bucket;

• Evaluation of IBS: measures how much the predicted
probabilities within each bucket are diffused with
respect to both the distance between each predicted
probability and the distance between the classification
cutoff and each predicted probability;

• Evaluation of XBS: measures how much the perfor-
mance across different buckets are diffused, considering
the different sizes of each bucket.

Next, we define the metrics OBP, IBS, and XBS of our
framework.

A. INTRA-BUCKET PREDICTION STABILITY (IBS)
The IBS metric considers how close the prediction probabil-
ities p0 and p1 are to the cutoff threshold, which is 0.5 in
the case of binary classification considered in this paper. The
closer a prediction probability to 0.5, the more likely it is
to change if the experiment is repeated, for instance because
cross-validation is adopted, or if the input data vary slightly,
for instance because some observations are left out from the
training set. Conversely, prediction probabilities distant from
0.5, i.e., close to 1 or 0, are considered stable, because they are
not likely to change in a different repetition of the experiment.

Regarding the design of the metric, since we consider
bucketing techniques to group the prefixes extracted from
an event log and we are looking at the stability of predicted
labels across different repetitions of experiments, we call
this first metric Intra-Bucket prediction Stability (IBS). The
value of the IBS metric for a given combination of classifier

and bucketing method, i.e., a process outcome prediction
model (pom), is calculated as follows: first, we calculate an
IBS value for each bucket Bi; then, we aggregate the values
IBS(Bi) to obtain the overall value IBS(pom).
While we could have considered simple statistical mea-

sures, such as standard deviation or mean absolute deviation
of the difference between predicted probabilities and the
cutoff thresholds, for calculating the value of this metric we
consider a more refined approach inspired by the Western
Electric Rule [40] in the field of statistical process control.
This rule has been created to evaluate the quality of the
output of a manufacturing production line, helping workers to
monitor and understand the control charts. In a nutshell, it is
built by comparing the quality of the output to the expected
quality, dividing the differences obtained according to their
absolute value, and penalizing, i.e., weighting more heavily,
the higher values of these differences. Similarly, while defin-
ing IBS, for all the prefixes σ in a bucket Bi, we calculate
the absolute difference between pmax = max{p0, p1}, which
determines the label y assigned to σ , and the cutoff threshold
0.5. Then, a weightw, withw ∈ (0, 1) is used to penalizemore
heavily the differences that are higher. In the experiments,
we consider the value w = 0.05.
Based on the rationale discussed above, given a bucketing

BN = {Bi} and noting the number of prefixes in a bucket Bi
as |Bi|, we calculate the stability of predictions within one
bucket Bi as follows. First, Eq. 1 defines the stability of the
prediction for an individual prefix σ . This is then normalised
(see Eq. 2) using its minimum and maximum value in a
bucket Bi.

sta(σ )

=



(1+ 2w) · pmax if 0.4 < |pmax − 0.5| ≤ 0.5,
(1+ w) · pmax if 0.3 < |pmax − 0.5| ≤ 0.4,
pmax if 0.2 < |pmax − 0.5| ≤ 0.3,
(1− w) · pmax if 0.1 < |pmax − 0.5| ≤ 0.2,
(1− 2w) · pmax |pmax − 0.5| ≤ 0.1

(1)

stanorm(σ ) =
sta(σ )−minσ∈Bi{sta(σ )}

maxσ∈Bi{sta(σ )} −minσ∈Bi{sta(σ )}
(2)
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Finally, the IBS value of a bucket Bi is calculated as the
weighted average of the normalised stability of prefixes in it:

IBS(Bi) =
1
|Bi|

∑
σ∈Bi

stanorm(σ ), (3)

The IBS of an outcome prediction model pom can now be
defined as the average of the IBS of all buckets in it:

IBS(pom) =
1
N

N∑
i=1

IBS(Bi) (4)

B. OVERALL BUCKET PERFORMANCE (OBP)
The objective of OBP is to evaluate the overall test set perfor-
mance obtained by a process outcome prediction model pom.
Therefore, to define an OBP metric, we simply consider the
average across all buckets of a given measure of prediction
performance perf , such as accuracy, F1-score, or AUC.

Let us consider perf (Bi) as the average performance of
a classifier poci achieved over the prefixes in a bucket
Bi, according to a given performance measure normalised
between 0 and 1, such as accuracy, F1-score, or AUC. The
OBP of an outcome prediction model pom is the average
performance across all buckets weighted by the bucket size:

OBP(pom) =
1
T

N∑
i=1

|Bi| · perf (Bi) (5)

where T is the number of prefixes generated, that is, the sum
of the size of all buckets: T =

∑N
i |Bi|.

Note that this type of metric is the one normally considered
by predictive monitoring benchmarks in the literature to eval-
uate the performance. For instance, [17], [18] consider AUC,
while [38], [41] consider average F1-score as performance
measure. In the evaluation of our work, we consider AUC
for measuring the performance, as also recommended by
literature [42].

C. CROSS-BUCKET PERFORMANCE STABILITY (XBS)
XBS measures the extent to which the performance achieved
by a process outcome prediction model pom on different
buckets varies across buckets. The design of the XBS metric
is inspired by the temporal stability metric for outcome-based
predictive monitoring, which calculates the stability of a clas-
sifier measured by two consecutive prediction scores [12].
What makes the formula for XBS different from the formula
for temporal stability is that the former considers prediction
scores from any of the two buckets of different sizes, while
the latter only considers prediction scores from two events
that are sequentially located next to each other.

XBS is calculated as shown in Eq. 6. Firstly, the per-
formance of two different buckets is considered, and their
absolute difference is calculated. Then, this is weighted con-
sidering the relative number of prefixes in the two buckets.
This procedure is repeated for all pairs of buckets in pom.
The weighted performance differences are summed up and
weighted by the numberN−1 of pairs of buckets (N buckets,

in fact, result in N − 1 pairs of buckets to compare). Finally,
the weighted sum obtained is subtracted to 1 to obtain the
value of XBS(pom). Note in fact, that the metric value should
be higher when the differences of performance across buckets
are lower.

XBS(pom) = 1−
1

N − 1

N∑
t=2

t−1∑
r=1

×

[
|Bt | + |Br |

T
· |perf (Bt )− perf (Br )|

]
(6)

D. METRIC INTERPRETATION
In this section, we describe how to apply the proposed frame-
work. The framework allows comparing the quality of dif-
ferent combinations of classifier and bucketing method (i.e.,
process outcome models pom). After having evaluated the
metrics IBS, OBP, and XBS for each model, we propose
two different methods to interpret the values obtained. The
first method proposes to identify the models that are Pareto
optimal, whereas the secondmethod allows amore qualitative
scenario-based analysis of the values obtained.

1) PARETO OPTIMALITY
Pareto optimality, or Pareto efficiency, is the general con-
dition where no individual or preference criterion can be
better off without making at least one individual or preference
criterion worse off [43]. Given a set of alternatives that can
be scored along with a multi-criteria definition of quality,
Pareto optimality is a typical way to select the best alterna-
tives. A Pareto optimal alternative, in fact, is such that no
alternatives exist that improve at least one criterion without
decreasing the value of at least another one. In the context of
the proposed framework, the alternatives are different models
pom, i.e., combinations of classifier and bucketing method,
whereas the criteria are the values of the three metrics IBS,
OBP and XBS.

While Pareto optimality can be a reasonableway to identify
good quality alternatives, there are cases in which it clearly
does not indicate good model quality. In fact, Pareto optimal
alternatives often may result from extreme combinations of
values achieved for the quality criteria. Let us consider the
case of a model A for which the three metrics (IBS, OBP,
XBS) evaluate to (0.999, 0.2, 0.2). Such a model is likely to
be Pareto optimal: while many alternatives are likely to have
values of OBP and XBS higher than A, they are not likely to
improve or even match A’s value of IBS, which is extremely
high. Therefore, the model A would be Pareto optimal even
though it scores rather poorly on two of the three metrics in
the proposed framework. To overcome this issue with Pareto
optimality, we define next a method to evaluate alternatives
based on a more qualitative assessment of the value assumed
by the metrics.

2) SCENARIO-DRIVEN SCORING OF ALTERNATIVES
Table 1 describes 8 possible qualitative scenarios resulting
from the combination of the values assumed by the three
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TABLE 1. Description of scenarios for scenario-based scoring.

metrics IBS, OBP and XBS for a given model. Each scenario
assigns a score from 0 to 5 to each combination of classifier
and bucketing method (i.e., a model), with 0 corresponding to
poor model quality and 5 to good model quality. Each metric
can assume the value low or high. These are established
comparing the value of the metric assumed for a model with
the average of the values of the same metric across all models
considered for a given event log (high if above average, low
if below average).

Note that, as general principles:
• For OBP, a high value signifies that the performance
achieved by a model on most buckets is at least above
average, while still there can be few buckets for which
the performance is below average;

• For IBS, a high value signifies that the prediction proba-
bility for most observations is far away from the 0.5 cut-
off threshold. Therefore, most predictions are stable,
i.e., they are not likely to change in a different repetition
of the experiment and/or with small perturbations of the
input data. The opposite happens for low values of IBS;

• For XBS, a high value signifies that on average the
differences among the performance achieved on dif-
ferent buckets are limited. Therefore, the classifier is
fairly balanced, predicting most types of prefixes with
similar accuracy. When XBS is low, there can be the
case that a few buckets show excellent performance,

while most other buckets showing poor one (or vice
versa).

The best scenario (Scenario 1, associated with the highest
score 5) is the one in which all metric values for a model
are high. This corresponds to combinations of classifier and
bucketing method for which:
• the performance in most buckets is high (as interpreted
from the high value of OBP);

• the classification probabilities are normally far from
the cutoff threshold, which leads to stable (consistent)
classifications across different trials of the experiments
(as interpreted from the high value of IBS);

• the performance differences between buckets are nor-
mally low (as interpreted from the high value of XBS).

Conversely, the worst scenario (Scenario 8) is the one for
which, obviously, the value of OBP is low, i.e., the perfor-
mance of the classifier is rather low on most buckets, but for
which, perhaps counter-intuitively, the value of IBS and XBS
are both high, i.e., the low performance is consistent across
buckets (high XBS = low performance differences across
buckets) and bad predictions are rather stable, i.e., not likely
to change with small perturbations of the input data or the
model across different repetitions (i.e., high IBS).

Scenario 2 and 3 are considered the second-best possible
scenarios (associated with a score equal to 4) because they are
characterised by high values of OBP, which means that the
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performance on most buckets is high. However, they suffer
from either one of the following problems: the performance
level is not particularly stable across buckets (low XBS, for
Scenario 2), or the individual predictions are not particularly
stable (low IBS, for Scenario 3). Scenario 4 is scored below
Scenario 2 and 3 because it is still characterised by high
values of OBP, but it suffers from both problems enumerated
above.

Scenario 5 is characterised by the value low for all the
metrics. Perhaps counter-intuitively, again, it is associated
with a higher score than other scenarios for which at least one
of themetrics evaluates to high (Scenario 6 and 7, and 8). This
is due to the fact that the combination of low OBP and low
XBS signals the case in which the low overall performance
of the classifier is due to the combination of excellent perfor-
mance on some buckets and poor performance on many other
buckets. That is, this scenario signals that at least on some
buckets the classifier shows high performance. Additionally,
the low value of IBS signals that the predictions are not
particularly stable and, therefore, they may change, possibly
improving, across different repeated trials of experiments.

Finally, scenario 6 and 7 are similar to Scenario 2 and 3,
but with the exception that the overall performance across
buckets OBP is now low, which means that these scenarios
show overall low performance either stable across buckets
(Scenario 6) or associated with highly stable predictions,
i.e., unlikely to change across different repetitions of experi-
ments (Scenario 7).

V. EVALUATION
Section V-A describes the event logs and classifiers that we
considered for the evaluation. The experimental results are
reported and discussed in Section V-B.

A. DATASETS AND EXPERIMENTAL SETUP
We have evaluated the proposed framework using publicly
available1 event logs. The event logs used for the experi-
ments are the ones published by the BPIC (Business Process
Intelligence Challenge) in 2011 (4 event logs) and BPIC
2015 (5 event logs), and the Sepsis event logs (3 event logs).
These have been chosen because they contain outcome labels
and have been used often by previous research on predictive
process monitoring [4], [6], [24].

All prefixes obtained from events in an event log are
encoded using index-based encoding [17]. This type of
encoding has been chosen because it is lossless, it is widely
adopted in the literature, and it requires no particular config-
uration (as opposed to, for instance, the aggregation encod-
ing, which would require to specify a different aggregation
method for each attribute or attribute type). As bucketing
methods, we consider prefix-length and clustering. The for-
mer creates buckets containing all prefixes having the same
length, i.e., same number of events. The maximum prefix
length is set to 10. In the latter, k-means clustering with k = 5

1https://data.4tu.nl/portal

is employed and prefixes are clustered based on Euclidean
distance of vector of the count of occurrences of the activity
label values.

We consider the following 3 classifiers: Random Forest
(RF), Gradient Boosting Machine (GBM) and Extreme Gra-
dient Boosting (XGB). The hyperparameters of the classi-
fiers have been tuned using Tree-structured Parzen Estimator
(TPE), which is performed separately for each combination
of the dataset and trace bucketing method, performing 3-fold
cross-validation for each configuration of hyperparameter
values to pick the best-performing configuration [44].

For RF, the optimal values of the hyperparameter,
max_features, are selected in the following interval:

max_features ∈ [0, 1]

For GBM, the optimal values of the three hyperparam-
eters learning_rate, min_samples_split and max_depth are
selected in the following intervals: learning_rate ∈ [0, 1],
min_samples_split ∈ {x ∈ N|4 ≤ x ≤ 30}, max_depth ∈
{x ∈ N|4 ≤ x ≤ 30}.
For XGB, the optimal values of the four hyperparame-

ters learning_rate, subsample,max_depth, colsample_bytree
and min_child_weight are selected in the following inter-
vals: learning_rate ∈ [0, 1], subsample ∈ [0.5, 1],
max_depth ∈ {x ∈ N|4 ≤ x ≤ 30}, colsample_bytree ∈
[0.5, 1], min_child_weight ∈ {x ∈ N|1 ≤ x ≤ 6}.
When training/testing a classifier on a given bucket,

we consider a temporal split of traces to separate the sam-
ples into 80:20 (training:test). As for performance measure
perf to evaluate the quality metrics defined in the proposed
framework, we consider the area under the receiver operating
characteristic curve (AUC), which has been considered con-
sistently by other outcome-based prediction models proposed
in the literature [4], [17]. The code to reproduce the exper-
iments is available at https://github.com/paai-lab/bucket-
stability-outcome-prediction.

B. EXPERIMENTAL RESULTS
We first analyse the quality of the alternatives considered
in this experimental evaluation using the Pareto optimality.
Table 2, 3, and 4 show the results achieved for the three
metrics in the proposed framework for the different combi-
nations of classifier and bucketing method. The performance
of the Pareto optimal alternatives is highlighted in boldface.
Note that Pareto optimality is calculated for each different
class of event logs (i.e., considering all the results shown in
each individual table). The largest number of Pareto optimal
alternatives have GBM as a classifier. In the BPIC 2015 and
the sepsis event logs, the smallest number of Pareto-optimal
alternatives have RF as a classifier, while for the BPIC
2011 event log, the smallest number of Pareto-optimal alter-
natives has XGB as a classifier. As far as bucketing methods
are concerned, it can be concluded that it is not possible
to identify one of the analysed alternatives (prefix-length or
clustering) as more likely to be associated with a Pareto-
optimal outcome.
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TABLE 2. IBS, OBP, and XBS of predictions using BPIC 2011 event log.

TABLE 3. IBS, OBP, and XBS of predictions using BPIC 2015 event log.

Generally, it can be noted that alternatives involving GBM
are associated with the highest values of IBS for a given
event log, which points to the fact that GBM is most likely
to output stable (consistent) predictions. In contrast, the IBS
of alternatives involving RF is, most of the times, the lowest
for all event logs, which means that RF is most likely to
exhibit inconsistent predictions. This finding prompts us to be
cautious when using RF, as it is likely to fail at giving stable
predictions, even though its overall performance often can be
high. This is a remarkable result, considering in particular that
RF is often considered a well-performing classifier in process
predictive monitoring [6], [17] and other classification use
cases [45], [46].

In addition, the results of Table 2, 3, and 4 also show that
the values of OBP and XBS are often positively correlated,
i.e., high OBP often appears together with high XBS. This is
mainly due to the fact that high overall performance OBP is
achieved only if the performance across all buckets is high,
whereas below-average OBP can be achieved even if few
very poor-performing buckets exist. There can be few but
critical exceptions to this situation. For example, for the event
log BPIC2015_2, in the case of clustering bucketing and
XGB classifier, OBP is the highest, while XBS is the lowest.
If we drill down to the performance of discrete buckets,
the low XBS value for XGB is due to the exceptional dif-
ference between the highest-performing bucket (0.662) and
the lowest-performing one (0.214).2

2Note that, to keep the paper concise, drilled down results by bucket are
not shown in Table 2, 3, and 4.

TABLE 4. IBS, OBP, and XBS of predictions using the sepsis event log.

TABLE 5. Score table of predictions using BPIC2011 dataset.

TABLE 6. Score table of predictions using BPIC2015 dataset.

TABLE 7. Score table of predictions using sepsis cases dataset.

As far as the scenario-based scoring of alternatives is
concerned, Table 5, 6 and 7 show the scores achieved by
different models and for the different event logs considered
in this evaluation. For the BPIC 2011 and Sepsis event logs,
the classifier GBM has the highest score, while for the BPIC
2015 event log, RF has the highest score. Depending on the
bucketing technique, scores may significantly vary even with
the same event log and classifier.

It is interesting to investigate in depth the relation between
the Pareto optimality and the scenario-based scoring. To do
this, we consider as high scenario-based scores the values
5 and 4 (associated with Scenario 1, 2 and 3 in Table 1) and
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low scenario-based scores the values 0 and 1 (associated with
Scenario 8, 6, and 7 in Table 1).

Now, considering the results shown in Table 5, 6 and 7,
across all event logs, models are scored high with the
scenario-based scoring in 47% of the cases (34/72) and low
in 32% of the cases (23/72). If we restrict this analysis
to the Pareto-optimal alternatives (identified in boldface
in Table 2, 3 and 4), then the proportion of models scoring
high in the scenario-based scoring increases to 72% (21/29),
while the proportion of low-scoring models decreases to
24% (7/29). This highlights that, while on the one hand the
Pareto-optimal alternatives are not always good if interpreted
through the lens of scenario-based scoring, Pareto-optimal
alternatives are more likely to have high scenario-based
scoring.

Most of the Pareto-optimal models associated with low
scenario-based scores have GBM as a classifier (86%, 6/7).
This is because alternatives with GBM usually have high
IBS, which prevents them to be dominated by other alterna-
tives, even though they score low on other metrics. However,
Pareto-optimal alternatives associated with GBM still have
high scenario-based scores in 63% of the cases (10/16). Most
of the Pareto-optimal models having RF as classifiers have
high scenario-based scores (83%, 5/6), and all Pareto-optimal
models using XGB have high scenario-based scores (7/7).

Regarding the choice of bucketing method, when consid-
ering the scenario-based scores, it can be noted (see Table 6)
that for some event logs the prefix-length bucketing appears
more likely to lead to stable classifiers, as acknowledged by
the higher total score. Moreover, it is possible to identify
specific data sets for which one bucketing method is scored
consistently equal or higher than the other one across all clas-
sifiers and should therefore be preferred. For instance, this is
the case of the prefix-length bucketing for BPIC2015_2 or
clustering bucketing for sepsis_cases_1.

VI. CONCLUSION
This paper has proposed a framework for the evaluation of
the quality of outcome-based predictive process monitor-
ing models. It comprises three novel metrics that evaluate
the overall performance across buckets of prefixes (OBP),
the stability of performance in respect of the classification
cutoff threshold (IBS), and the stability of the performance
across different buckets of prefixes (XBS). The aim of the
framework is to provide a more nuanced means to evaluate
the quality of predictive models that goes beyond the typi-
cal focus on overall performance measures derived from a
confusion matrix, e.g., overall accuracy or recall. To apply
the framework in practical scenarios, we have proposed to
compare alternative combinations of classifier and bucketing
method using the concept of Pareto-optimality and a scenario-
based scoring system. We then have evaluated the proposed
framework using several real-life event logs, 3 classifiers (RF,
XGB, and GBM) and 2 bucketing methods (prefix length and
clustering).

The experimental results have shown that while RF is a
classifier that often shows good predictive overall perfor-
mance, it also often fails to give consistent predictions across
different repetitions of the experiments. This is remarkable
considering that RF is considered a well-performing and
stable classifier in many classification use cases. The clas-
sifier GBM is highly likely to give consistent predictions
across different repetitions of the experiments. This can help
decision-makers to be more confident in the decisions based
on predictions obtained using this classifier. Finally, the com-
parative analysis of Pareto optimality and scenario-based
scoring has shown that both methods share commonalities
in aggregating the results of IBS, OBP and XBS, enabling
either method to be used to assess the quality of predictions
in practice.

For future work, two approaches can be taken into consid-
eration. Firstly, the value of the thresholds for dividing high
and low values of IBP, OBP and XBS can be adjusted from
the average to other statistical measures, such as the lower
and upper quartile, as the value of this threshold changes the
way in which the quality is assessed evenwith same IBP, OBP
and XBS values. Secondly, from the perspective of predictive
monitoring of process outcomes, additional trace bucketing
and sequence encoding methods can be compared to exten-
sively investigate how the quality of predictions differs across
different configurations. We will also investigate the applica-
bility of the proposed framework in other predictive monitor-
ing use cases, such as next activity or time prediction. Finally,
to increase the practical relevance of the proposed framework,
we are planning to assess the effectiveness of the Pareto-
optimality and the scenario-based scoring, and possibly other
novel interpretation schemes of the metrics proposed in this
paper, with business process management experts.
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