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Finding Kinematics-Driven Latent Neural States
From Neuronal Population Activity

for Motor Decoding
Min-Ki Kim , Jeong-Woo Sohn , and Sung-Phil Kim

Abstract— While intracortical brain–machine interfaces
(BMIs) demonstrate feasibility to restore mobility to peo-
ple with paralysis, it is still challenging to maintain high-
performance decoding in clinical BMIs. One of the main
obstacles for high-performance BMI is the noise-prone
nature of traditional decoding methods that connect neural
response explicitly with physical quantity, such as velocity.
In contrast, the recent development of latent neural state
model enables a robust readout of large-scale neuronal pop-
ulation activity contents. However, these latent neural states
do not necessarily contain kinematic information useful for
decoding. Therefore, this study proposes a new approach
to finding kinematics-dependent latent factors by extracting
latent factors’ kinematics-dependentcomponents using lin-
ear regression. We estimated these components from the
population activity through nonlinear mapping. The pro-
posed kinematics-dependent latent factors generate neural
trajectories that discriminate latent neural states before
and after the motion onset. We compared the decoding
performance of the proposed analysis model with the
results from other popular models. They are factor analysis
(FA), Gaussian process factor analysis (GPFA), latent factor
analysis via dynamical systems (LFADS), preferential sub-
space identification (PSID), and neuronal population firing
rates. The proposed analysis model results in higher decod-
ing accuracy than do the others (>17% improvement on
average). Our approach may pave a new way to extract latent
neural states specific to kinematic information from motor
cortices, potentially improving decoding performance for
online intracortical BMIs.

Index Terms— Kinematics-dependent latent factor, motor
decoding, intracortical brain–machine interface, neural
trajectory, factor analysis.

I. INTRODUCTION

D IRECT connection of brain to devices has been a subject
of great interest for decades, driven by demands as
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diverse as improving people’s quality of life with paralysis and
addressing neuroscientific issues. For several decades, many
studies have attempted to develop clinically valid intracortical
brain–machine interfaces (BMIs) that typically translate pri-
mary motor cortical (M1) activity into control signals [1]–[5].
However, the estimation of precise kinematic information from
the noisy observations of neuronal population activity remains
one of the ongoing challenges in BMIs [6].

Recent studies have revealed that although the neurons’ pop-
ulation appears to predict kinematic variables reasonably well,
only a small fraction of them is associated with generating
movements [7]–[10]. A simulation study on neural networks
showed that individual M1 neurons do not encode behavioral
covariates with equal weights when they generate firing pat-
terns to activate realistic muscles [10]. Thus, decoding the
firing activity of single M1 neurons is probably influenced by
some non-task-related neurons in the population.

On the basis of this notion, subsequent studies have dis-
closed that latent neural states of neuronal population activity
inferred by dimensionality reduction methods could enable a
more accurate and stable estimation of kinematics [11]–[17].
In an early study of this kind, Churchland et al. showed
that latent neural states of motor cortical activity obtained by
dynamic principal component analysis (jPCA) could system-
atically decrease the trial-to-trial variability of neural dynam-
ics presented compared to neuronal population activity [15].
These dynamic neural states allow us to understand the tem-
poral patterns of neural states in M1 with fewer influences
by the noisy activity of single neurons. However, although
visualization of the trajectory of neural dynamics is impressive
with the help of jPCA, it is unsuitable for extracting kinematic
information in a single trial because it does not have an
explicit noise model to exclude the independent variance of
single neurons [16]. Alternatively, factor analysis (FA) can
provide an alternative way to model noise for the single trial
analysis. Santhanam et al. demonstrated that FA improves
decoding performance by modeling correlated neural vari-
ability effectively [12]. Recently, a Gaussian process factor
analysis (GPFA) in which FA is combined with a Gaussian
kernel-based-temporal smoother was used to characterize the
temporal patterns of neuronal population activity better than
using FA only [13]. GPFA, in particular, significantly improves
decoding performance compared with smoothed neuronal pop-
ulation activity [18]. This suggests that anyone who wants
better decoding performance should consider the covarying
neuronal activity in the population, which is often embed-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1885-291X
https://orcid.org/0000-0002-6321-0836
https://orcid.org/0000-0001-6665-3475


2028 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 1. (a) A schematic illustration of the architecture finding kinematics-dependent latent factor (KDLF) from observed neural population activity.
(b) An example of the relationship (correlation coefficients) between kinematic variables and latent neural states (which is from the testing data of
monkey C). The top row denotes template latent neural states, corresponding to the modeled KDLF in (a). The middle row denotes noisy latent
neural states containing faint kinematic factors (KF), corresponding to factor scores inferred by factor analysis. The bottom row denotes latent neural
states containing enhanced KF (estimated KDLF).

ded in latent neural states, rather than only focusing on
single neurons for extracting kinematic information more
accurately [16].

As the importance of latent neural states has been increas-
ingly highlighted, several researchers have recently begun
paying attention to latent neural states’ dynamical properties
in a single trial [14], [18]–[20]. Latent neural states evolve
in time by dynamic rules that govern physical systems dur-
ing arm movements in most of these studies. Kao et al.
developed a linear dynamical system model of latent neural
states in a single trial [14]. This model captures population
activity’s dynamical properties and achieves a substantially
higher performance of motor decoding than non-dynamical
latent neural states. Pandarinath et al. recently developed a
latent factor analysis via dynamical system (LFADS) to infer
de-noised firing rates from noisy spike trains based on complex
nonlinear neural dynamics [11]. LFADS modeled neuronal
populations’ internal dynamics and consequently generated
neural states that contain neural state information useful for
decoding kinematics. In addition to decoding improvement,
these dynamics-based approaches provide neural information
that can help validate scientific hypotheses [16].

However, there is no guarantee that these latent neural states
would contain specific kinematic information because they
find latent neural states via unsupervised learning without
kinematic information. In other words, the latent neural state
inferred from noisy population neurons is probably blended
with less related (or unknown) components to the movement,
making it difficult to characterize the latent neural state for
kinematics (see the middle row in the Fig. 1(b)). These latent
neural states, thus, are likely to end up reflecting poorly on
decoding performance.

A recent study demonstrated a preferential subspace
identification (PSID) algorithm that can uniquely reveal
neural dynamics associated with behavior [21]. PSID is
useful for dissociating and modeling behaviorally relevant
neural dynamics within the subspace of extracted states.
Although these neural dynamics could be helpful ways to
describe the complicated dynamical behavior of neural activ-

ity, note that these harness the output of dynamical sys-
tems and depend on a unique model governing dynamical
systems [16].

Therefore, this study proposes an architecture that can
further improve latent neural states’ kinematic factors with
observable behaviors, while preserving intrinsic properties of
co-activity as much as possible. To characterize kinematic
properties in the latent neural states, which involve inherently
overt or covert processes, we built a filter capable of improving
kinematic factors from noisy latent neural states by training the
defined template for each dimension. Each template (modeled
KDLF) is extracted by a linear model coefficient that describes
movement information linearly from the inferred neural latent
states without considering the noise term (see the top row in
the Fig. 1(b)). Considering the benefits of nonlinear approxi-
mation capable of describing kinematic parameters precisely
from neural activity, we designed one nonlinear mapper that
improves latent neural states robustly associated with behav-
iors through artificial neural networks (ANNs). We believe
that not only is this helpful to characterize latent neural
states that clarify kinematic properties from neural population
activity (see the bottom row in the Fig. 1(b)), but it could
also improve BMI performance by applying them to decoding
algorithms. Therefore, we propose a new kinematics-driven
approach to find neuronal population activity neural states
by estimating kinematics-dependent latent factors. Kinematics-
dependent latent factors are estimated through two successive
steps. First, we perform a typical FA to infer the latent factors
of population activity. Second, we extract the components of
the latent factors that are accounted for by kinematic variables
using linear regression (to define the template for each latent
neural factor linearly correlated with kinematic variables).
These extracted components are termed kinematics-dependent
latent factors (KDLF). Since KDLF can no longer be estimated
directly from the population activity, we built a nonlinear
mapper to estimate KDLF directly from population activity
(i.e., firing rates).

In the proposed approach, we used FA to find initial latent
neural states because we can acquire the shared variability
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of neuronal population activity in a single trial and changes
in joint activity of neurons with FA [22]. Since latent neural
states can be described as neural signals for generating muscle
activations, they are likely to be correlated with various kine-
matics of limb movements [10], [23]. Thus, we constructed a
linear model to relate the latent neural states from FA to several
kinematic variables, including position, velocity, acceleration,
and speed [15]. We consider this model’s output (i.e., KDLF)
as latent neural states specific to limb movements’ kinemat-
ics. To obtain these latent neural states without kinematic
information available, as is the case of running BMIs after
training, we built a nonlinear mapping between population
activity and KDLF using ANNs. First, we compared several
nonlinear mappers, which can approximate a mapper for
KDLF from neuronal population activity, and then selected
one of them to evaluate the effects of KDLF on motor decod-
ing. This study examined the utility of three representative
nonlinear mappers to KDLF estimation, namely, multilayer
perceptron (MLP) [24], long short-term memory (LSTM)
recurrent neural networks (RNNs) [25], and deep canonical
correlation analysis (DCCA or deep canonically correlation
autoencoder) [26], [27]. MLP, one of the ANNs, consists of
multiple hidden layers, including input and output layers [24].
MLP is often used to approximate nonlinear models between
neuronal population activity and kinematic variables, as it
has a simple structure compared to the other nonlinear map-
pers. However, the vanishing gradient problem, one of the
chronic problems of MLP, makes it challenging to estimate
sophisticated nonlinear models. LSTM, another version of
RNNs, allows high-performance sequential data processing
without the vanishing gradient problem [28]. It could also help
predict kinematic information from M1 activity, but it requires
many data and a long training time. Meanwhile, DCCA,
which finds optimal parameters to maximize the correlation
between latent variables for two random variables is often
used for different purposes other than MLP or LSTM [27].
Kim et al. showed the effects of latent variables extracted
by DCCA on motor decoding performance, where the two
random variables correspond to firing rates and kinematic
variables [29]. This examined the feasibility of motor decoding
with DCCA structure-extracting latent variables by directly
associating neuronal population activity with kinematic vari-
ables. In contrast, our proposed approach focused on finding
KDLF that enhances kinematic characteristics to the latent
neural states inferred by the FA. Namely, DCCA for KDLF
referred to in this study was the only example of the nonlinear
mapper that improves the signal-to-noise ratio of the latent
neural states, so it should rather focus on the structure for
estimating KDLF. Note that each trained nonlinear mapper
was only used to estimate KDLF from neural activity and
compared with each other, and not all the mappers were used
in the decoding phase. In other words, we focused on the
effects of structural procedure for estimating KDLF on motor
decoding rather than the ability of these nonlinear mappers in
this study. Through this structural procedure, we hypothesize
that estimated KDLF by the nonlinear mapping would contain
kinematic information enough for high-performance motor
decoding.

We used datasets of three non-human primates to perform
independent and dissimilar arm reaching movement tasks on
two- or three-dimensional spaces to validate this hypothesis.
We examine how well KDLF represents kinematics by visual-
izing its trajectories via jPCA [15]. We also predicted various
kinematic parameters of arm movements from KDLF by a
simple linear decoder and compared the decoding performance
with three other well-known latent neural states obtained by
FA and GPFA, LFADS, and PSID.

II. MATERIALS AND METHODS

A. Experimental Animals and Behavioral Tasks

Three independently obtained datasets of rhesus monkeys
(Macaca mulatta) were used for this study (monkeys C, M,
and F). The monkeys were implanted with a 96-channel intra-
cortical microelectrode array (MEA) (Utah Array, Blackrock
Microsystems, Salk Lake City, USA). The MEAs were com-
monly implanted in the primary motor cortex (M1) arm area
in all three monkeys. An additional MEA was implemented
in the dorsal premotor cortex (PMd) in monkey M or in the
ventral premotor cortex (PMv) in monkey F. Yet only neuronal
activity data recorded from the MEA in M1 were used in
this study. All the surgery and animal care procedures were
approved by the Institutional Animal Care and Use Committee
at Northwestern University (monkeys C and M) and the
University of Pittsburgh (monkey F). Note that the datasets of
monkey C [30] and M [31], [32] are publicly available in the
repository of Database for Reaching Experiments and Models
and a Collaborative Research in Computational Neuroscience.

Monkey C was trained to perform a 2D center-out reaching
task by controlling a two-link manipulandum. Monkey F
was trained to perform a 3D center-out reaching task in a
virtual reality environment. The detailed experimental pro-
cedures were described elsewhere for monkey C [30] and
monkey F [33], [34], respectively. Briefly, monkeys C and F
were instructed to move the computer cursor from a starting
location toward one of the radial targets equidistant from the
center. For monkey C, eight targets spaced at 45◦ intervals
over a circle were presented. For monkey F, 26 targets were
presented, evenly distributed on the surface of a spherical
working space. In monkey F, the arm position was monitored
and recorded with optical tracking systems (Northern Digital
Inc., Waterloo, Canada).

Monkey M was trained to perform a randomly sequential
reaching task in 2D spaces by controlling a two-link manip-
ulandum. The detailed experimental procedures are described
in [31]. Briefly, monkey M was instructed to move the com-
puter cursor from a starting location toward a pseudo-randomly
located target. In contrast to monkey C and F’s task reaching
one target in a trial, this task presented four targets sequentially
in a trial and, thus, could be more naturalistic [28].

In this study’s datasets, monkeys C, M, and F performed
175, 498, and 468 trials, respectively. Furthermore, bad trials
in which tasks were failed or kinematic data were contami-
nated by noise were excluded, leaving 175, 358, and 451 trials
in monkeys C, M, and F, respectively, for our data analysis.
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B. Data Recording

Single neuronal units were recorded using different neural
acquisition systems for each monkey: Cerebus (Blackrock
Microsystems, Salk Lake City, USA) in monkeys C and M
and OmniPlex (Plexon Inc, Dallas, Texas, USA) in monkey F.
In monkeys C, M, and F, 172, 67, and 143 single units were
sorted, respectively. Furthermore, we excluded silent units
with sparse (units corresponding to the mean firing rate in
a single trial <5% in the distribution of all trials for the
mean firing rates within a single trial) or no spikes, only
analyzing 101, 48, and 79 units in monkeys C, M, and F,
respectively. Note that we observed no significant difference
between decoding performance before and after discarding the
single units with quiescent (except single units with no spikes)
through preliminary decoding test with the linear decoder
(p < 0.05, Wilcoxon rank-sum test).

Each unit’s neural spike train over the entire recordings
in every monkey was binned by a 20-ms time bin without
overlapping to estimate instantaneous firing rates. We then
conducted smoothing by the square root of spike counts with a
Gaussian kernel, where the kernel standard deviation was set to
30 ms. The hand position of each monkey was also resampled
to match the resolution of the spike counts (i.e., 20 ms) using
the piecewise cubic Hermite interpolating polynomial, which
was implemented in MATLAB (Mathworks Inc., Natick, MA,
USA) function, “pchip.” Then, we extracted an epoch of
the neuronal and hand position data corresponding to each
reaching trial, which was defined as from 160 ms before a
target cue to the time of target acquisition.

C. Extracting Kinematics-Dependent Latent Factors

We initially obtained d-dimensional latent factors,
h ={h1, . . . , hd }T ∈ R

d×1, of the m-dimensional smoothed
spike counts (SSC), z = {z1, . . . , zm}T ∈ R

m×1, by FA based
on the following generative model:

z = Fh + c + e (1)

where F is a matrix of factor loadings, e denotes an error
term following a Gaussian distribution, and c is the mean SSC
vector calculated from all data samples. The number of factors
for two approaches (FA and GPFA) to be compared in this
study was equally fixed, except for LFADS and PSID, which
were optimized by sweeping the hyperparameters (described
in section II. E), and was empirically configured as follows:
19 for monkey C, 15 for monkey M, and 28 for monkey F.
To evaluate whether the chosen number of dimensions is
reasonable, we traced changes in log-likelihoods inferred from
validation-testing data with the FA model trained by incre-
ments by one from 2 to 35, where the maximum log-likelihood
reflects co-activity of population neurons [22] (see Fig. S1 in
the Supplementary Materials). Fig. S1 in the Supplementary
Materials depicts changes in log-likelihoods over d in the
FA model in each dataset. As a result, we confirmed that
the number of dimensions was around the maximum log-
likelihood. These procedures were conducted through fourfold
cross-validation from the training set.

Next, we modeled the resulting latent factor, h, by a
kinematic vector x that included several types of kinematic
parameters: position p ∈R

2 or3, velocity v ∈R
2 or3, accelera-

tion a ∈R
2 or3, and speed �v� ∈ R

1. A linear regression model
was used to explain the i th variable in hby x as follows:

hi (t) = β i x (t) + �i (t), t = 1, . . . , T (2)

where hi (t) denotes the i th variable in h at time instant
t , β i indicates a vector of linear model coefficients for the
i th variable, and �i (t) is the error term following Gaussian
distribution. We estimated hi (t) for every i using individual
linear regression models. Here we used as many kinematic
parameters as possible because latent neural states are tightly
correlated with muscle activation patterns [15], [23]. Finally,
we defined the model outputs, ĥ(i) for i = 1, . . . , d , as KDLF.
We regarded KDLF as the components of original latent
factors that are accounted for by all kinematic parameters.

D. Estimating Kinematics-Dependent Latent Factors
From Population Activity

To estimate KDLF from neuronal population activity,
we designed a nonlinear mapper between z and h(see
Fig. 1(a)). We approximated this mapper with three ANNs,
namely, MLP, DCCA, and LSTM, and compared Pearson’s
correlation coefficient (CRR) distributions between the mod-
eled KDLF and the estimated KDLF. The nonlinear function
approximations were conducted to minimize the cost function
between input neuronal population activity (z) and those of
KDLF outputs (h), such as

{�∗, b∗ = arg min
�,b

fe(�
T z + b, h) (3)

where � is a matrix of the weights, b is a vector of bias of
the networks, and fe(·) denotes the cost function. Assuming
nonlinear relationships between z and h, we can estimate
KDLF ĥt from zt at time instant t :

ĥt = f
(
zt ; �∗, b∗) , (4)

where f (·) indicates the trained nonlinear mapper by ANNs.
All ANNs were fixed to two layers, where the hyperpa-

rameters were optimized through the Bayesian optimization
algorithm (“bayesopt” package in MATLAB), which was
repeated by 300 [35]. MLP, which is one of the ANNs
and consists of multiple layers with an input, output, and
multiple hidden layers, was configured with a “feedforward-
net” package in MATLAB and optimized four parameters
within specific ranges with fixed hyperbolic tangent transfer
function. The range of each hyperparameter is as follows:
the number of hidden nodes {5, 6, . . . , 100}, the minimum
gradient {1e − 8, . . . , 1e − 5}, learning rates {0.001, . . . , 0.1},
learning rate of decrease {0.01, . . . , 0.5}, and increase ratio
{1, 2, . . . , 15}. DCCA, which finds parameters to maximize the
correlation between canonical variables for two random vari-
ables (z and h) based on the autoencoder structure, was con-
figured using a MATLAB package available at Weiran Wang’s
website (https://ttic.uchicago.edu/~wwang5/dccae.html) [27].
For DCCA, we optimized ten hyperparameters with fixed
linear rectifier function within ranges as follows: the number
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Fig. 2. Distribution of correlation coefficients (CRR) between modeled and estimated KDLF for each monkey. Each color denotes types of linear
or nonlinear mappers. Horizontal error bars denote standard deviation of CRR across the total latent neural states for each mapper. Asterisks
with a vertical solid line denote statistically significant difference, which is based on the Kruskal-Wallis test and a post hoc analysis with Bonferroni
correction, ∗∗∗p < 0.001, ∗p < 0.05.

of hidden nodes {5, 6, . . . , 512} for z and h, regularization
parameters {1e − 6, . . . , 1e − 3} for z and h, the mini-
batch size for estimating gradient {16, 17, . . . , 1024} for z
and h, weight decay parameters for all weight parameters
{1e − 6, . . . , 1e − 3}, the initial learning rate {0.001, . . . , 0.1},
the learning rate decays {0.5, . . . , 1}, and the momentum
parameter {0.5, . . . , 1}. LSTM, which is included in deep
learning fields, is known to be effective in processing sin-
gle and sequential data [25], [28]. For LSTM, we opti-
mized eight hyperparameters within ranges as follows: the
number of hidden nodes {5, 6, . . . , 100}, the initial learning
rate {0.001, . . . , 0.1}, the minibatch size {16, . . . , 1024}, L2-
regularization parameters {1e − 6, . . . , 1e − 3}, the gradi-
ent decay factor {0.5, . . . , 1}, squared gradient decay factor
{0.5, . . . , 1}, learning rate drop factor {0.5, . . . , 1}, and learn-
ing rate drop period {5, 6, . . . , 100}. The optimized hyperpa-
rameters of MLP, DCCA, and LSTM for all monkeys were
listed in Table S1 in the Supplementary Materials. We also
measured the training time for each nonlinear mapper with
the optimized hyperparameters as summarized in Table S3 of
the Supplementary Materials.

Optimized nonlinear mappers will estimate KDLF from
neuronal population activity according to structural charac-
teristics for each ANN. To choose one appropriate method,
we computed the element-wise Pearson’s CRRs between h
and ĥ. Fig. 2 depicts the CRR distributions for each monkey.
Thus, we examined the effects of KDLF on motor decoding
by selecting the LSTM with the highest average CRR across
all elements (dimensions).

E. Other Latent Neural States

We conducted a comparative analysis between neural states
formed by KDLF and four other existing neural states obtained
by SSC, FA, GPFA, and LFADS. Note that neural states by
smoothing spike counts as described above kept the original
population activity without further inferring latent variables
(i.e., d = m). For neural states by FA, we used latent factors
inferred in the above procedure, that is, h in the previous
section.

GPFA is a variant of FA to minimize the noise character-
istics with a Gaussian kernel smoothing process in a single
trial [13]. Similarly, as in FA, we empirically found optimal
dimensionalities for GPFA with the minimum reconstruction
error for all monkeys: 10 for monkey C, 19 for monkey M,

and 15 for monkey F. We initialized the Gaussian process (GP)
timescale to 100 ms and GP noise variance to 0.001. Neural
states estimated by FA and GPFA were used as input to a
motor decoding algorithm described below.

LFADS infers de-noised firing rates by processing the
underlying dynamics of neuronal population-spiking activ-
ity [11]. It models a generic dynamical system through a
variational autoencoder based on RNNs to describe population
activity dynamics. We used LFADS Run Manager available in
GitHub (https://lfads.github.io/lfads-run-manager, written by
Daniel J. O’Shea) and inferred de-noized firing rates on
the basis of the guidelines provided in [11]. In this study,
we conducted only single LFADS, not the stitched LFADS.
Hyperparameters for each monkey were mainly referenced
in the second row of Supplementary Table I in ref [11].
However, we swept several parameters, including the number
of units in the encoder and generator, because of different
input units, even though the number of trials is similar to the
referenced parameter data. The number of units in the encoder
is 128, 64, and 64 for monkeys C, M, and F, respectively,
and the number of units in the generator is 32, 32, and 256.
Then, we set optimal number of latent factors by measuring
decoding performance, while sweeping latent factors. The
number of latent factors is 28, 24, and 28 for monkeys C,
M, and F, respectively. Meanwhile, bin sizes corresponding
to such important hyperparameter were similarly configured
to FA.

The PSID algorithm is useful to dissociate and model
behaviorally relevant neural dynamics. It models beneficial
latent neural states with time-series datasets (neural activity
and behavioral data) and state dimension parameters by identi-
fying a general dynamic linear state space model’s parameters,
while considering behaviorally relevant neural dynamics [21].
We used a PSID package in the MATLAB algorithm that is
available online at https://github.com/ShanechiLab/PSID and
optimized the parameters for PSID under the constraints
specified in the toolbox description. Therefore, we set the
state dimensions as 35, 34, and 24, for monkeys C, M,
and F, respectively, by measuring decoding performance,
while sweeping state dimensions by one from 2 to 35 (see
Fig. S3 in the Supplementary Materials). Notably, all hyper-
parameter optimization was conducted through fourfold cross-
validation, with the validation data separated from the training
data.
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Fig. 3. Visualization of jPCs’ trajectories for latent neural states obtained by each different approach (testing data). The panel (a) indicates averaged
cursor movement trajectories for each monkey, and each color denotes a target. Note that the target directions in monkey M were binned as
eight-angle widths uniformly distributed in an interval of 45◦ for each sub-trial. The panel (b) denotes jPCs’ trajectories. The top to bottom rows
corresponds to monkey C, M, and F, respectively. A thin colored line corresponds to the jPC trajectory in a single trial, and a thick colored line is the
average jPC trajectories across trials for each target. Solid circle denotes motion onset.

F. Neural Trajectory Visualization

We first compared the trajectories of the neural dynam-
ics of all five neural states (KDLF, SSC, FA, GPFA, and
LFADS) using jPCA. jPCA visualizes the output-null model
representing the temporal trajectory of latent factors of neu-
ronal population activity [15], [23]. Especially, the visualized
trajectories reflect the dynamical properties of neuronal pop-
ulation activity and can capture the influence of behavioral
status better than a single neuronal firing activity. To generate
neural trajectories, we utilized the jPCA toolbox available for
download from the Churchland lab homepage (https://church
land.zuckermaninstitute.columbia.edu).

G. Decoding and Evaluation

We decoded neural states generated by each method above
to predict four kinematic parameters (position, velocity, accel-
eration, and speed) using a simple linear decoder, given by

x (t) = Ay(t) (5)

where A denotes a matrix of the decoder coefficients, x(t) is
the kinematic parameter vector, y(t) is the given neural state
vector because of the analysis models for comparison. For each
dataset, the first 75% of all trials were set as a training set,
and the remaining 25% were used for testing (training set =
132 trials, testing set = 43 in monkey C; training set = 269,
testing set = 89 in monkey M; and training set = 339, testing
set = 112 in monkey F). We did not perform cross-validation
decoding in this study because we emulated an online BMI
situation where training and testing are conducted in sequence,
although we conducted fourfold cross-validation in a sep-
arate analysis and confirmed that the decoding evaluation
results were not significantly different between the sequential
testing and cross- validation. Notably, biased results may
occur depending on each dataset’s characteristics. To evaluate
the decoding performance, we measured root-mean-square

error (RMSE) and CRRs between the predicted and actual
values of each kinematic parameter.

III. EXPERIMENTAL RESULTS

A. Estimation of Kinematics-Dependent Latent Factors

We first verified how well mappers predicted KDLF from
neuronal population activity. Fig. 2 depicts the distributions
of element (dimension)-wise CRRs between modeled KDLF
and KDLF estimated using linear or nonlinear mappers. Here,
we further compared nonlinear mappers with linear mappers
(linear regression).

We observed that KDLF estimated by LSTM revealed
significantly higher CRRs than other mappers (Kruskal-Wallis
test and a post hoc analysis with Bonferroni correction, p <
0.05). The mean CRR of LSTM was 0.91 ± 0.03 in monkey C,
0.78 ± 0.04 in monkey M, and 0.74 ± 0.06 in monkey F. Also,
DCCA (0.82 ± 0.03 in monkey C, 0.58 ± 0.06 in monkey
M, and 0.61 ± 0.09 in monkey F) and MLP (0.77 ± 0.06 in
monkey C, 0.55 ± 0.06 in monkey M, and 0.59 ± 0.09 in
monkey F) followed by a better performance than linear
models (0.68 ± 0.05 in monkey C, 0.50 ± 0.06 in monkey M,
and 0.54 ± 0.09 in monkey F), and they showed a statistically
significant difference. These results demonstrate that we could
reliably estimate KDLF from the population activity using
LSTM, a nonlinear mapper.

B. Dynamic Rotation Properties of Latent Neural States

We visually observed each method’s neural dynamics (SSC,
FA, GPFA, LFADS, PSID, and KDLF). To this end, we pro-
jected all neural states onto a 2D space using jPCA. Then,
we visualized each method’s neural trajectories in the 2D
spaces where each trajectory was specified by target directions
(Fig. 3). We also marked motion onset on every trajectory
(solid circles in Fig. 3). Note that each motion onset was
defined as a time point corresponding to 15% of the maximum
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Fig. 4. Examples of actual and predicted velocity trajectories for testing
data (ten trials). Gray line denotes actual velocity in example trials of the
testing set, and each colored line indicates the trajectory of the predicted
velocity of segmented by a vertical dashed line according to five neural
states: SSC (dark), FA (cyan), GPFA (green), LFADS (magenta), PSID
(orange), and KDLF (red). Each vertical line represents the boundary
between trials.

speed [36], where we checked the appropriacy for the setting
of motion onset with the actual hand position data in every
trial of each subject and confirmed that it could sufficiently
describe each reaching movement. The mean motion onset was
269 ± 64 ms after target cues in monkey C, 106 ± 73 ms in
monkey M, and 162 ± 63 ms in monkey F.

During movements, all latent neural states’ neural trajec-
tories swept through both dimensions of jPC1 and jPC2,
consistent with patterns reported in [23] (Fig. 3). In particular,
the neural trajectories of KDLF appeared to show more consis-
tent and clearer rotational patterns than do other latent neural
states. Also, the neural trajectories of KDLF tended to be
more spatially organized such that adjacent neural trajectories
corresponded to adjacent target directions.

C. Motor Decoding

We evaluated the performance of decoding six latent neural
states into various kinematic parameters with a simple linear
decoder built and tested in each monkey. Here, we predicted
four kinematic parameters (position, velocity, acceleration, and
speed). As an example, Fig. 4 illustrates the trajectories of
actual velocity along with those of predicted velocity for all
latent neural states (SSC, FA, GPFA, LFADS, PSID, and
KDLF). In this example, predicted velocities decoded from
KDLF were closer to actual ones than were those from other
latent neural states over different monkeys. We then measured
ACCs for velocity and position (Fig. 5(a-b)) across working
space axes and the RMSEs for the velocity and position
(Fig. 5(c-d)) representing the decoding performance for six
neural representations, including SSC. We conducted a statis-
tical process with a Kruskal-Wallis test, where independent
variables consisted of latent neural states (i.e., SSC, FA,
GPFA, LFADS, PSID, and KDLF). For velocity decoding,

Fig. 5. Decoding performances, which are based on testing data in each
monkey (C, M, and F). (a) indicates CRR between actual and predicted
outputs for position, and velocity, and (b) denotes RMSE. Horizontal
lines on each boxplot correspond to 25 %, 50 %, and 75 % of the
distribution of CRRs or RMSEs. Each vertical line indicates the minimum
and maximum CRR or RMSE. Asterisks with a horizontal line denote
significant difference between latent neural states (Kruskal-Wallis test
and a post hoc analysis with Bonferroni correction, ∗p < 0.05, ∗∗p < 0.01,∗∗∗p < 0.001).

the Kruskal-Wallis test showed the main effect of latent neural
states on CRR (χ2 = 84.5, p < 0.01 in monkey C; χ2 =
298.9, p < 0.01 in monkey M; and χ2 = 159.1, p < 0.01 in
monkey F) as well as RMSE (χ2 = 140.3, p < 0.01 in monkey
C; χ2 = 267.4, p < 0.01 in monkey M; χ2 = 228.9, p <
0.01 in monkey F). The post hoc multiple-comparison test with
Tukey–Kramer correction revealed that KDLF yielded better
performance than did PSID, LFADS, GPFA, FA, and SSC for
all monkeys on CRR (see Fig. 5(a)) and RMSE (see Fig. 5(b)).
KDLF yielded a 13.3% increase in decoding performance on
average compared to the second best latent neural states by
PSID (monkey C: 15.3%, monkey M: 12.0%, and monkey F:
12.6%), and LFADS (monkey C: 17.9%, monkey M: 14.4%,
and monkey F: 19.3%).

We next reconstructed the position trajectory by integrating
the predicted velocity and compared it among latent neural
states (see Fig. 6). It demonstrated that the reconstructed
trajectories from KDLF traced actual ones more accurately
than did those from other latent neural states. This was
especially well pronounced in the 3D movements in monkey F.
For reconstructed position parameter, the Kruskal-Wallis test
showed the main effect of latent neural states on CRR (χ2 =
14.9, p < 0.05 in monkey C; χ2 = 63.5, p < 0.01 in
monkey M; and χ2 = 41.4, p < 0.01 in monkey F) as well
as RMSE (χ2 = 71.0, p < 0.01 in monkey C; χ2 = 73.2,
p < 0.01 in monkey M; χ2 = 86.9, p < 0.01 in monkey F).
The post hoc multiple-comparison test with Tukey–Kramer
correction revealed that KDLF yielded better performance than
did PSID, LFADS, GPFA, FA, and SSC in most monkeys,
excluding comparison with LFADS in monkey C on CRR
(see Fig. 5(a)) and RMSE (see Fig. 5(b)). KDLF yielded a
11.9% increase in decoding performance on average (across
CRR and RMSE) compared to the second best latent neural
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Fig. 6. Examples of position trajectories reconstructed from predicted velocity for testing data. Each colored line denotes one trial for a specific
target direction. For monkey C, colors denote eight radial targets, and trajectories correspond to 43 trials. For monkey M, colors correspond to four
sequential sub-trials within a single trial. For monkey F, colors indicate 26 radial targets, and one trial per target is shown.

states by PSID (monkey C: 14.4%, monkey M: 9.9%, and
monkey F: 11.4%), and LFADS (monkey C: 11.0%, monkey
M: 11.5%, and monkey F: 17.8%). As with position and
velocity decoding, KDLF yielded significantly higher perfor-
mance than PSID and LFADS for acceleration and speed either
(see Fig. S12 in the Supplementary Materials). Additional
statistical statements for acceleration and speed parameters
are described in Fig. S12 and Table S2 of the Supplementary
Materials.

IV. DISCUSSION

This study proposed a new approach for finding kinematics-
dependent latent neural states of M1 population activity.
We estimated kinematics-dependent latent neural states by
nonlinearly mapping M1 population firing rates to KDLF,
where the nonlinear mapper was approximated by LSTM.
The reason we explore latent factors first is because latent
factors inferred by factor analysis have been demonstrated to
represent neural population activity in M1 reasonably well by
neuroscience literature (e.g., [22], [37], [38]). We thus opt to
use this well-known approach to find latent variables. It also
provides us an opportunity to directly compare with similar
state-of-the-art methods such as LFADS, GPFA and PSID
that are based on the same latent factors or a similar linear
subspace method. We thus validated the proposed latent neural
states by examining the neural dynamics information presented
in their neural trajectory and by decoding the latent neural
states into various kinematic parameters. We compared KDLF
with other latent neural states obtained by SCC, FA, GPFA,
PSID, and LFADS. We found that the neural trajectories
produced by KDLF revealed neural dynamics after movement
onset more clearly than those by other methods (see Fig. 3
and Figs. S2 and S4 in the Supplementary Materials) and
that decoding KDLF enabled a simple linear decoder to
predict kinematic parameters more accurately than decoding
other neural presentations (Figs. 4–6). Notably, KDLF showed
consistently high decoding performance for different monkeys
performing dissimilar tasks.

To validate the decoding performance of the proposed
approach, we predicted four kinematic parameters from KDLF,
including position, velocity, acceleration, and speed. We com-
pared the decoding performance of KDLF with those of
five other latent neural states, including SSC (i.e., SSC, FA,
GPFA, LFADS, and PSID). Decoding KDLF yielded higher
performance for predicting velocity and acceleration than did
all other counterparts and slightly higher performance for
predicting speed than did LFADS, the second-best model.
Notably, this study did not attempt to investigate the effect
of using multiple stitched sessions, in which LFADS has
shown advantages for maintaining decoding performance. Fur-
thermore, it may be difficult to argue that it is substantially
better than LFADS since it does not optimize the bin width
(fixed to 20-ms bins) among the important hyperparameters
of LFADS. However, it could be a considerable advantage to
improve the behaviorally relevant latent neural states with a
few parameters.

Contrary to expectations, PSID did not show a dramatic per-
formance improvement compared to LFADS for all monkeys
(see Fig. 5(c-d)), even though the specified latent state dimen-
sions reached the best achievable performance by optimizing
the number of latent states. The difference between [21] and
this study is that this study utilized the datasets composed
of kinematic information from the end point rather than
angular velocities for an arm. Therefore, the decoding result
in this study suggests that the proposed latent neural states
of KDLF would improve motor decoding for intracortical
BMIs.

According to [15], neural trajectories of a complex kine-
matic model present clear rotational patterns for behavioral
events (e.g., reaching a specific target in a single trial).
We observed that the neural trajectories produced by KDLF
dynamically vary by sweeping the jPC space during arm
movement after motion onset. These characteristics of neural
trajectories associated with arm movements were most pro-
nounced with KDLF than they were with other latent neural
states. Thus, we speculate that a more reliable and clear



KIM et al.: FINDING KINEMATICS-DRIVEN LATENT NEURAL STATES 2035

representation of movements in KDLF might be linked to
improved decoding.

Latent neural states are related to generating muscle activa-
tion patterns involved in complex movements [10], [16], [23].
For instance, muscles that generate a specific movement would
be driven by a linear combination of neural activities [23].
However, since it is difficult to predict complex kinematic
information from noisy neural manifolds with a simple linear
model, a nonlinear model, such as deep neural networks
(DNNs), has often been proposed [11], [39], [40]. Here,
we estimated KDLF by selecting LSTM, one of the three
types of DNNs (MLP, LSTM, and DCCA), to approximate
nonlinear mapping between neuronal population activity and
KDLF that is supposed to represent various kinematic informa-
tion. We observed that LSTM could yield significantly higher
performance than could MLP and DCCA in terms of the
CRRs between modeled and estimated KDLF (13.2% higher
on average).

In this regard, a framework that directly finds the vector
of hidden layer nodes in LSTM could be considered while
direct mapping from neural population activities to kinematic
variables. We first compared KDLF with the vector of hidden
layer nodes in LSTM, which predicts kinematic variables from
neural population activities (called “direct LSTM” hereafter).
We observed that there was no significant difference between
them in terms of decoding performance for each of three
monkeys (Kruskal-Wallis test and the post hoc analysis with
Bonferroni correction, Fig. S9 in the Supplementary Mate-
rials). In addition, we compared KDLF with direct LSTM,
and as with the framework above, there was no significant
difference for all monkeys (Kruskal-Wallis test and the post
hoc analysis with Bonferroni correction, see Fig. S11). Further,
KDLF showed a slightly better performance than LSTM in
terms of RMSE: for position decoding in the monkeys C and
M (for position, pmonkeyC = 0.02 (by 9.8%), and pmonkeyM
= 0.02 (by 8.0%); for velocity, pmonkeyM = 0.03 (by 4.6%);
and for speed, pmonkeyM = 0.001 (by 8.2%) (Kruskal-Wallis
test and the post hoc analysis with Bonferroni correction,
Fig. S11 in the Supplementary Materials). However, there was
no significant difference in terms of CRR.

Although finding the node vector of hidden layers in the
direct LSTM allows a straightforward architecture and yielded
comparable decoding performance to KDLF, when we eval-
uated the latent neural states created by this new machine-
learning based approach, the neural trajectories by jPCS from
these latent neural states could not represent kinematics well
compared to those from KDLF (see Fig. S5(b) and S6 in the
Supplementary Materials). Specifically, we observed that jPCs
of KDLF captured higher variance than those of the node
vector of hidden layer in the direct LSTM did, where such vari-
ance is known to reflect the strength of dynamic patterns that
are present in the data (see Fig. S6 in the Supplementary Mate-
rials). It shows that using a nonlinear approximator approach
to find latent states yielded less meaningful latent variables
than our proposed approach. In other words, because the key
difference between them is whether based on latent factors or
not apart from LSTM use, in this context, KDLF may be more
intuitive and advantageous than the node vector of hidden layer

in direct LSTM for tracking input neurons associated with a
specific kinematic component such as the movement speed
(e.g., Fig. S13 in the Supplementary materials).

In addition, we computed variance accounted for (VAF)
as a measure of the variance of original neural population
activity explained by each latent neural state (FA, GPFA,
LFADS, PSID, and KDLF). We used the coefficient of deter-
mination (r2) of multiple linear regression to estimate VAF.
As expected, KDLF showed a lower VAF value, 37 % on
average, than other latent neural states with VAF of FA was
0.42 %, VAF of GPFA 0.27 %, VAF of LFADS 0.18 % and
VAF of PSID 0.29 % (p < 0.01, Kruskal-Wallis test and a
post hoc analysis with Bonferroni correction; see Fig. S7 in
the Supplementary Materials). These results support the expec-
tation that KDLF may represent kinematics more specifically
than other neural states that may also contain non-kinematic
information. Thus, this may provide the opportunities to
explore covariates-dependent neural representations allowing
the linear relationship.

Notably, the proposed latent neural states appeared to
provide movement-related information better when the arm
movements became more complex, e.g., from 2D (monkeys C
and M) to 3D tasks (monkey F). This was observed in both
neural trajectories and decoding performance. We speculate
that latent neural states directly related to kinematic parameters
(i.e., KDLF) might embed kinematic information more clearly
and become more effective than might other unsupervised
latent neural states for encoding more complex movements.
KDLF suggests a new way of dealing with the same latent
factors of M1 population activity processed by the Gaussian
process (GPFA) and dynamical systems (LFADS or PSID),
with more potential to improve motor decoding.

This study proposed a novel latent neural state of neuronal
population activity via supervised learning based on kinematic
information with a nonlinear mapper. Thus, it seems natural
to obtain results that latent neural states found by supervised
learning with a nonlinear mapper that yielded more robust
and better performance of decoding kinematics than those
by PSID or unsupervised learning without any kinematic
information. Therefore, previous latent neural states found
in unsupervised ways are more helpful in investigating the
intrinsic nature of neuronal population activity. In contrast,
our latent neural states are more focused on extracting specific
kinematic information. Yet our approach may provide a better
way to generate useful latent neural states applicable to BMI.

This study did not evaluate the proposed approach in
online BMIs, so clinical validations are unavailable. How-
ever, since one of the critical factors for clinical demands
in BMIs is reliable decoding performance, we expect that
our approach may be advantageous for clinical BMIs. Also,
considering clinical applications where actual movements are
often unavailable in participants with paralysis, one can design
virtual movements for BMI training based on the examination
of which kinematic parameters appropriately explain latent
factors given daily. This will make BMI training and decoding
more effective following kinematics-related neural information
available daily. Finally, we would like to underscore that
our approach may be extended to find specific latent neural
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states related to any behavioral covariates, including cognitive
and sensory variables, which would offer a useful means to
understand neural underpinnings of behavior on a single trial
basis.
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