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Abstract

Recently, irradiation of visible light photoredox catalyst has been widely used to drive
transformation of organic molecules though the highly desirable processes.*® Absorption of visible light
induces the long-lived excited-triplet state of the photocatalyst. The returning from this excited state to
the bench state of the catalyst leads single-electron-transfer (SET), transforming the reacting substrates
into radical intermediates. The radical cation/anion intermediates show their reactivity which is
basically differentiated from those of electronically ground state of molecules.

Multicomponent reaction (MCR) serves as a powerful tool, employing three or more simple
building blocks to produce complex molecular frameworks in a single step.®® Given its advantages of
rapid access to structural complexity, MCR has been adopted as a valuable means for the discovery of
bioactive compounds.*®** As such, photoredox catalysis has been explored in the context of MCR.**%°
However, the limited examples are mostly based on radical-polar crossover mechanisms, in which the
process is in operation for initial coupling of two reactants, while a third component is incorporated via
a polar process.'®?® Although this approach is useful, quenching of radical processes by redox catalysts
entailing the involvement of polar processes poses limitations in the scope of coupling partners. To the
best of our knowledge, MCR with three consecutive bond formation based on radical processes via
visible-light photoredox catalysis has not been reported.

Due to their utilities, significant efforts have been made to develop efficient synthetic methods
for quinolines. However, the conventional methods rely on condensation under harsh conditions and
more recent developments are limited to transitional metal-catalyzed®”?° and iodine-mediated
synthesis.*>*? Here, a successful development of a new tandem radical cyclization based on visible-

light photoredox catalysis enables the efficient formation of quinolines based on consecutive radical

processes.
EtO,C.__CO,Et
H CO,R? Br ﬂ photocatalyst N
N~ (e} (o) blue LED SN N CO.R2
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Chapter 1. Background of Quinoline
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1.1. Quinolines in natural compounds and drugs

In nature, it is almost impossible to find the biologically active, therapeutic compounds without
possession of heterocyclic scaffolds. Among the approximately 20 million natural/synthetic compounds
identified by the end of the second millennium, more than half are heterocyclic compounds. Numerous
famous natural drugs, including papaverine, theobromine, quinine, emetine, theophylline, codeine and
morphine, contain heterocyclic scaffolds. Plus, most of important synthetic medications such as
diazepam, chlorpromazine, isoniazid, metronidazole, are also heterocyclic compounds. Among the
diverse heterocycles, nitrogen-containing heterocyclic (N-heterocyclic) compounds are especially the
most common features in both natural and synthetic drugs. Among the best-selling 200 small molecule
pharmaceuticals worldwide, 74% of them are the N-heterocyclic compounds.® Therefore, seeking the
easier way to forming N-heterocyclic compounds has been the most important issue in view of synthetic

chemistry in a long period.

1.1.1. Quinolines in natural compounds

Quinoline, one of the most important N-heterocyclic compounds, has attracted enormous
attention when it is discovered 200 years ago because of its significant bioactivity. From 19" century,
a number of natural compounds containing quinoline moiety have been isolated from natural sources
and studied by worldwide researchers. There are two representatives, quinine and camptothecin (CPT),
which are two of the most famous quinoline-containing compounds. They opened new horizons for

drug development in antimalarial and anticancer fields (Scheme 1-1).

MeO

Quinine Camptothecin (CPT)

Scheme 1-1. The most famous quinoline alkaloids, quinine and CPT

Quinine, which was isolated in 1820 from the bark of Cinchona tree, was the major treatment
for malaria before it was replaced by other advanced treatments such as quinacrine, chloroquine and
primaquine. It is known that its toxicity against malaria pathogen interferes the ability of malaria

parasite, inhibiting the metabolism and ingestion of hemoglobin.
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Camptothecin (CPT), which was isolated in 1966 from the bark and stem of Camptotheca
acuminate, was widely used as treatment to cancer in China. As a topoisomerase poison, it has been
used as preliminary clinical trials for broad range of cancers, including breast, ovarian, colon, lung, and
stomach. Due to its poor solubility, numerous analogues of CPT have been developed by synthetic and

medicinal chemists.

1.1.2. Quinolines in drugs

Moreover, more than 200 quinoline alkaloids showed expansive range of biological activities
on not only antimalarial and anticancer but also antibacterial, antifungal, antiviral and anti-
inflammatory effects.®* The following examples are the famous quinoline-containing medications,
which are successfully supplied as treatments of important diseases on a huge scale in the world
(Scheme 1-2).

Lenvatinib is known to act as a kinase inhibitor, inhibiting the signaling between cancerogenic
proteins (VEGFR1, VEGFR2 and VEGFR3 kinases) in thyroid cancer.® It is treated for differentiated
thyroid cancer, which has not been successful with the treatment of radioactive iodine. In combination
with everolimus, it is used as treatment to advanced renal cell carcinoma for patient who has experienced
anti-angiogenic therapy before. After approval of U.S. FDA in 2016, it is being sold worldwide on a

$61.7 million scale.

Montelukast is one of leukotriene receptor antagonists for the treatment of asthma and allergic
coryza, opposing the act of leukotriene which is the inflammatory mediator in immune system. Blocking
of leukotriene results in the suppressed inflammation and relaxation of smooth muscle in lungs. As a
result, Montelukast has been a solution for effective prevention and long-term management of asthma.

After approval of U.S. FDA in 1998, it is being sold worldwide on a $70.8 million scale.

Lenvatinib Montelukast
$61.7 millioin/year $70.8 millioin/year

Scheme 1-2. Two of top-selling quinoline-containing medications
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1.2. Classical synthesis of quinoline

Classical approaches to synthesis of quinoline generally employed simple aniline, proceeding
condensation with carbonyl groups. So far numerous synthetic protocols to quinoline scaffold have been
developed. Among them, the most famous named reactions for the synthesis of quinoline are described

below.

1.2.1. Gould—Jacobs reaction

The Gould-Jacobs reaction is a named reaction for preparation of 4-hydroxyquinoline
derivatives (Scheme 1-3). It starts with condensation between aniline and diethyl
ethoxymethylenemalonate, followed by substitution. A 6 electron cyclization results in the loss of
second ethanol molecule and tautomerization, forming 4-hydroxy-3-carboalkoxyquinoline.
Saponification followed by decarboxylation produces 4-hydroxyquinoline. This protocol enables to

prepare various drugs containing 4-hydroxyquinoline as a core scaffold.*

1. Heat [ OEt 6" ovelizat OH
€ Ccyclization;
- @\ EtOZC\[COQEt 2 NaOH CO,E V4_
| + X
ZSNH 3. HCl O\ Saponification
2 OBt 4 Heat N7

Decarboxylation

Scheme 1-3. General scheme of Gould—Jacobs reaction

1.2.2. Friedldnder reaction

The Friedlander reaction is a named reaction between 2-aminobenzaldehyde and ketone for
preparation of quinoline (Scheme 1-4). It is catalyzed by a base or acid, proceeding via condensation
and double cyclodehydration. The reactive a-methylene group of ketone undergoes aldol-condensation
to produce aldol-adduct, then elimination step results in the loss of water. Another loss of water in

formation of imine forms variously functionalized quinoline.*

1
Acid, Base R! OH R3 R s
or Heat o AN -2H,0 o X R
REC RY| — = R’} P
R4 Aldol NH2 o) N R4

Scheme 1-4. General scheme of Friedlander reaction
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1.2.3. Pfitzinger reaction

The Pfitzinger reaction is a named reaction for preparation of quinoline-4-carboxylic acid from
isatin and a carbonyl compound in presence of strong base (Scheme 1-5). The hydrolysis of amide bond
with base in isatin gives keto-acid, then condensation between resulted aniline and a ketone forms imine
intermediate. Enamine, which has come from the imine through tautomerization, cyclizes to from the
desired quinoline after dehydration. The Pfitzinger reaction is one of extension of the Friedlander

reaction, but it utilizes the more stable isatin varieties than unstable 2-aminobenzaldehyde.*

CO,H
CO,H
NaOH COH N Yo *
| \ (aq.) HZO R -H,0 X
R1 O —» R'I | i NH _— R1_|
= Q LA Z
N RS N R3

Scheme 1-5. General scheme of Pfitzinger reaction

1.2.4. Skraup/Doebner-von Miller reaction

Both the Skraup reaction and the Doebner—von Miller reaction are organic reactions for
formation of quinolines, utilizing an aniline and o, 8-unsaturated carbonyl compounds (Scheme 1-6). In
the Skraup reaction, the a, f-unsaturated carbonyl compound (acrolein) is prepared in-situ through
dehydration of glycerol in acidic condition. Nucleophilic attack from aniline to acrolein results in
propionaldehyde intermediate, then following intramolecular electrophilic attack from aromatic ring to
the protonated aldehyde group yields concomitant cyclization.® In the Doebner—von Miller reaction,
2,3 and 4-substituted quinoline can be prepared when highly substituted o,8-unsaturated carbonyl
compound is employed in place of the simple acrolein. Both reactions have fundamental drawbacks in

that they require strong oxidants and highly acidic reaction conditions.*

(Skraup)
OH H2S0, N | [Q] dj
R'T XA — RI-L
HO OH —> X + U !
\/K/ -2 H,0 WO % NH2 O\ = N/

(Doebner-von Miller)

4
X Q T R3
H,SO
R1_: P + REY R 29y R1—: NN
NH, R3 Oxidant NP OR2

Scheme 1-6. General scheme of Skraup/Doebner—von Miller reaction
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1.2.5. Combes/Conrad-Limpach reaction

Both the Combes reaction and the Conrad-Limpach reaction involve the condensation of
aniline with ketones (1,3-diketone and f-ketoester; the Combes reaction and the Conrad-Limpach
reaction, respectively), forming Schiff bases (Scheme 1-7). The Schiff bases undergo acid-catalyzed
cyclization from each enamine or imine intermediate (tautomerization). The resulted product in the
Combes reaction is 2,4-substituted quinoline, which can be differentiated from the substituted 4-
hydroxyquinoline in the Conrad-Limpach reaction. These reactions also require the use of strong base

and high temperature when cyclodehydration is proceeded.*

(Combes)

[ (0] H R4 ] R4
O (0] 3 Y 5
RIS Acid (cat.) ~ R —— 0= R® | H*-catalyzed R
| + 2 4 _ - R1_| R1 | R1
2T R r A -~ >~ _
2 R3 Heat N” "R2 H R2 | cyclization N7 R2
(Conrad-Limpach) on
O O 3
R o Acid (cat.) OR4 \ R3 6 electro- R
L~ * R OR* ——~ R
NH; R3 Heat cyclization N” > R2

Scheme 1-7. General scheme of Combes/Conrad—Limpach reaction

In conclusion, even though there are various modified version of these named reaction, most
of them still require harsh conditions such as high reaction temperature, use of hazardous (transitional
metal) catalysts, acid or base and solvents, tiresome procedure for work-up, long reaction time,
unsatisfactory regioselectivity and involvement of specific functional groups. These are potent burden
to environment in aspect of sustainable development of methodology. Therefore, simple and greener

route to development of methodology of quinoline is highly desired.
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Chapter 2. Photoredox catalysis and

Examples in Quinoline Synthesis
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2.1. Multicomponent reaction (MCR)

Multicomponent reaction (MCR) is a chemical transformation in which three or more starting
materials participate in a single reaction as building blocks to form a product. The newly formed final
product contains all or most of the atoms of starting materials, minimizing generation of byproduct.
Therefore, MCR s highly ideal methodology in the view of atom economy. Compared with stepwise
synthetic route, the target molecule can be achieved faster with much fewer steps in MCR strategy. In
other words, MCR enables to access a shortcut to highly-functionalized complex molecule in a one-pot,
whereas the sequential synthesis requires the greater effort and resources such as solvent, reagents and

catalysts.

2.2. Visible-light-mediated photoredox catalysis

2.2.1. Radical generation from conventional methods to photoredox catalysis

In organic chemistry, radical intermediate indicates the molecule possessing an unpaired
electron, which is in situ generated during the reaction under specific reaction conditions. The
conventional methods depend on the use of toxic regents such as radical initiators and stoichiometric
oxidant/reductants. Also, they require harsh conditions involving high reaction temperature or high-
energy ultraviolet light for irradiation. Therefore, these methods are usually accompanied by limitations
such as chemical wastes from the toxic reagents, the use of specific equipments and generation of

undesired radical species.*

In modern organic chemistry, development of benign, sustainable and eco-friendly synthetic
methodologies has been highly demanded. Recently, photoredox catalysis has received a great attention
because of its potential.***° Photocatalysts are excited by visible light, which is mild and abundant in
limitless sunlight. The use of visible light does not lead any deleterious side reactions, because most of
organic molecules are not excited by visible light. Plus, photoredox catalysis does not require any
specific reactor, on the other words, normal glassware is sufficient to carry the reaction under visible
light. In the catalytic cycle, it does not require the use of external oxidant and reductant because the
photocatalysts act as internal oxidant/reductant themselves. The catalytic reaction usually proceeds at

room temperature with a tiny amount of catalyst loading.
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2.2.2. General characteristic of photocatalysts

Photoredox catalysts usually consist of a central metal and surrounding polypyridyl ligands.
Iridium and ruthenium complexes are frequently used in photoredox catalysis. Their redox potentials
of the complexes are determined by the electronic properties of ligands and central metals. The tuning
of redox potential, which can be a solution for improvement of reaction efficiency, can be achieved by
modification of the structure of the ligands or replacement of central metals.>® Not only limited to the
metallic catalysts, but also organic photoredox catalysts such as eosin Y, rose bengal exhibit the similar

reactivity, extending to metal-free photocatalysis.>*

Among various photocatalysts, [Ru(bpy)s]** is the most famous photocatalyst and well-
investigated because of its exceptional photochemical properties. The excitation event of [Ru(bpy)s]**
via visible light irradiation can be explained by its orbital energy diagram. (Figure 2-1) In the octahedral
complex of [Ru(bpy)s]*, its HOMO is located in dixg(M) orbital of central Ru" whereas its LUMO is
located in w*(L) orbital of its ligands. Under the irradiation of visible light, one electron from the HOMO
of Ru" is promoted to the ligand-centered LUMO without conversion of its spin, resulting in excited
singlet state (S1) of the complex. This promotion is attributed by the absorption of visible light, of
which Amax is 452 nm. This transition is named metal-to-ligand charge transfer (MLCT). Subsequently,

a rapid spin flipping of the electron in 7*(L) orbital is followed, called intersystem crossing (ISC).

2+ 2+
B X
Com) ——— | Co) —— | |
= I N I A Visible Light = | N | A
TU* TU*
(L) LN, N~ 452 nm v —— N, N~
""||qull‘ > ""J;um
tagm) %ﬁiﬁ NN MLCT o) q‘}:ﬂi N[N
S /N L S /N 2
my —4h— Y - -]
Ground Singlet State (S;) Excited Singlet State (S;)
ﬂISC
gy ——— N
MLCT = Metal-to-Ligand Charge Transfer M) ——— |
ISC = Intersystem Crossing Z | N | N
Red.-n*(L) —17 N | N~
Red. = High energy electron as reductant /'RUT.‘/—\ Oxidant
Ox. = Vacancy as oxidant Ox. - tagmy %{F‘j Z°N | N7
S /N L
 —— 9

~__~ Reductant

Excited Triplet State (T4)

Figure 2-1. Orbital energy diagram for triplet-excited state (T1) of ”‘[Ru(bpy)g]2+
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Finally, the excited triplet state (T1) of [Ru(bpy)s]** possesses both the oxidized Ru"' and

reduced ligand. The oxidized Ru""

has a vacancy to fill one electron, therefore acts as a strong oxidant,
on the other hand, the reduced polypyridyl ligand has a high energy electron, which is willing to reduce
organic substrates. The excited triplet state of [Ru(bpy)s]** has significantly extended lifetime (t =
approximately 1.1 ps), which makes it possible to carry chemical transformations via intermolecular
single-electron-transfer process.®*>* It is worthy to note that the overall charge of the excited complex

is not changed.

17'E*+n
A Y
Internal
onversion .
] c Single-Electron
* A J
(L) y Transfer (SET)
c _
9 ©
a >
5| (3 |z
N X S Ss;, 3, %
Q g % " - (L)
c = | > | = m
n|o 3 |o =]
) s~ e |2 e
] a | o n s Q
£ N o o |9 m<
> = - — (=
3 2 =9
413 Y
L K
tag(m)

Radiative process >
Non-radicative process wwwannnnanann—3

Single electron transfer -

Figure 2-2. Brief Jablonski diagram for a typical photocatalyst

This process can be also explained by the brief Jablonski diagram. As described, the transition
from the ground to the triplet-excited state is resulted from the absorption of photon from visible light.
After MLCT and ISC, the long-lived, stable triplet-excited photocatalyst can be quenched by two
possible pathways, including single-electron-transfer (SET) and energy transfer (Ev). In this project,

SET was utilized to carry the radical chemistry.
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2.2.3. Oxidative/reductive quenching cycles of photoredox catalysts

As noted in section 2.2.2, the ground state of [Ru(bpy)s]** (M) can be activated by irradiation
of visible light to form its excited triplet state (*M) through MLCT and ISC. The excited photocatalyst
is finally able to participate in two opposed quenching cycles; oxidative quenching cycle and reductive
quenching cycle. In each quenching process, *[Ru(bpy)s]** interacts with organic substrates, either
electron donor (D) or acceptor (A), through single-electron-transfer (SET). *[Ru(bpy)s]** can
simultaneously act as a strong oxidant or reductant depending on the properties of substrates. (Figure
2-3)
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Figure 2-3. Oxidative/reductive quenching cycle of “[Ru(bpy)s]*
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In reductive quenching cycle, the excited photocatalyst is reduced first then re-oxidized.
(i) "[Ru(bpy)s]** (*M) obtains one electron from electron donor (D) to fill togwy orbital of ruthenium,
resulting in the formation of radical cation (D**) and [Ru(bpy)s]* (M"). (ii) Then, the reduced [Ru(bpy)s]*

(M") gives up an electron from 3r*., orbital to the electron acceptor (A), resulting in the
formation of radical anion (A™) and regeneration of ground-state [Ru(bpy)s]** (M).

On the other hand, in oxidative quenching cycle, the excited photocatalyst is oxidized first then
reduced again. (iii) “[Ru(bpy)s]** (*M) loses one electron from 3mn*, orbital of ligand to electron
acceptor (A), resulting in the formation of radical anion (A~) and [Ru(bpy)s]** (M*). (iv) Then, the
oxidized [Ru(bpy)s]** (M*) gains an electron from the electron donor (D), resulting in the formation of
radical cation (D™*) and regeneration of ground-state [Ru(bpy)s]** (M).

The meaning of oxidative/reductive can be ambiguous. Oxidative originates from the oxidation
of “[Ru(bpy)s]** (*M) with reduction of electron donor (D). On the contrary, reductive originates from
the reduction of “[Ru(bpy)s]** (*M) with oxidation of electron acceptor (A). It is worthy to note that

each of quenching cycles processes its transformation via overall redox-neutral SET pathway.

2.3. Synthesis of quinolines based on photoredox catalysis

As discussed in chapter 1, quinoline exhibits an extensive range of its biological activities.>*
% Moreover, it is often employed to fluorescent agents due to its small size. Also, it is widely applied
in DNA, RNA imaging and chemo-sensing because of its tendency not only to coordinate H-bonding
of protein and nucleic acid, but also to chelate with metals.®** Considering the potential of quinoline
in industry, development of milder, greener and facile synthesis of it has received a great attention.
Recently, the development of methodologies based on visible-light-mediated strategy is favored as a
greener, sustainable approach. Therefore, a humber of quinoline synthesis based on visible-light-

mediated photoredox catalysis has been developed and can be categorized as the following sections.®®

2.3.1. From iminyl or imidoyl radicals

Among N-centered radicals in photoredox catalysis, iminyl and imidoyl radicals are usually
involved in the synthesis of N-heterocycles. They are prepared from distinct methods with particular
precursors such as N-acyl oximes, vinyl azide and isocyanides. In situ generated such radicals

participate in the formation of quinoline under visible light irradiation.
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In 2015, Zhang and co-workers developed a method for generation of iminyl radical from N-
acyl oxime. Intramolecular homolytic aromatic substitution (HAS) was achieved by utilization of the
radical to form quinoline.®® In the same manner, Yu and co-workers developed the method to form

quinoline through in situ generation of N-acyl oxime and generation of iminyl radical.®’ (Scheme 2-1)

R* R4 R4
R3 fac-Ir(ppy); (1 mol%) RS | — R
YT I I (Zhang)
R DMF,rt R+ R
AT = B I
LG p=Tatella 21 examples
Yield = 46-88%
R2 o) R?
fac-Ir(ppy)s (1 mol%)
N R oM SR (Yu)
R + DMF, CBSA, it R Y
Z 0" H NC Whithe LED SN

8 examples
Yield = 45-63%

Scheme 2-1. Cyclization of N-acyl oximes

In the same year, Zhou and co-workers developed the synthesis of quinoline with vinyl azide
and a-carbonyl benzyl bromide. Reduction of the bromide by the excited *[fac-Ir(ppy)s] results in a
radical intermediate and addition of the intermediate into the vinyl azide produces the desired iminyl

radical. Subsequently, intramolecular aromatic substitution is followed.® (Scheme 2-2)

fac-Ir(ppy)sz (1 mol%) 2
Br K,HPO, (4 equiv.) COR COR?

N
X" COR? + ° X - N
R RN Blue LED, rt R R
Pz 18-crown-6 (2 equiv.) /‘\N R3 NZ O RS

MeOH/MeCN (1:1)

22 examples
Yield = 40-78%

Scheme 2-2. Cross-coupling between vinyl azide and bromide

In 2018, Zhang and co-workers developed the synthesis of polycyclic quinoline by cross-
coupling and cyclization between isocyanoarenes and N-(alkyl-2-yn-1-yl)pyridine-2(1H)-one under
visible-light-mediated photoredox catalysis. The uptake of an electron of N-(alkyl-2-yn-1-yl)pyridine-
2(1H)-one from reductively quenched [Ru(bpy)s]® produces a radical intermediate, releasing iodide
anion. Radical addition to isocyano group Yields the desired imidoyl radical and subsequent

intramolecular cyclization is followed.®® (Scheme 2-3)
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Ru(bpy)3(PFg), (1 mol%)
K>CO5 (1 equiv.)
et T P NEts (30 mol%) i \‘N o N 0

|
= Z R'9r . N — R1_I N
NC R? | \| Blue LED, rt Z N/A(\\j FSNT \
MeCN, N, 7 Y

17 examples
Yield = 37-92%

Scheme 2-3. Formation of imidoyl radical from isocyanides

2.3.2. Dehydrogenation of tetrahydroquinolines

Dehydrogenation of H-rich molecules requires quantitative amount of toxic oxidants.
Therefore, removal of H atoms as H» gas by acceptorless dehydrogenation is highly desired because H;

gas is non-polluting, valuable energy fuel.

In 2017, Li and co-workers developed dehydrogenation of tetrahydroquinolines combining
photoredox catalysis with cobalt catalysis. The repetitive generation of H, gas can be achieved by
single-electron-transfer (SET) from the excited *[Ru(bpy)s]** and uptake of protons from

intermediates.” (Scheme 2-4)

Ru(bpy);Cl, (1 mol%)
1R Co(dmgH),PyCl (2 mol%) \_R + 2H,
N) N/)

[Ru(bPY)3]3+>_< *[Ru(bpy)s]?*
SET

N Blue LED, rt, EtOH :
20 examples !
Yield = 17-99% : [Co™ [Co'l
Ru(bpy)33+ ar : Hx(9) e
SET oH*, e | uoRY)s !
’ SET i
(0 3w 2 N w/ oo ol
—R ——» R =— —R !
+o \
N N N" | \4{
H H ' H*

Scheme 2-4. Dehydrogenation in dual photoredox/cobalt catalysis

2.3.3. Povarov cyclization

Povarov reaction is a type of [4 + 2] cycloaddition between imines and alkenes, also hamed
aza-Diels-alder reaction, yielding tetrahydroquinoline.”* The Povarov reaction along with
dehydrogenation (aromatization to quinoline) usually requires the use of oxidizing agents including

metals or quantitative amount of DDQ or peroxides. Employment of photoredox catalysis enables to
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produce imine from radical cation of the electron-rich amines. Then, [4 + 2] cycloaddition between the
imine and alkenes in intra/intermolecular manner followed by dehydrogenation results in the formation

of quinoline in the way of simpler and cleaner way.

In 2016, Zhang and co-workers developed the intramolecular Povarov reaction mediated by
visible-light-induced photoredox catalysis. The excited *[Ru(bpy)s]** oxidizes the amine to its radical
cation, then imine formation is achieved by hydrogen atom abstraction by superoxide radical anion.
Lewis acid-assisted intramolecular cyclization, followed by aromatization produces the desired
quinoline.” (Scheme 2-5)

2
R Ru(bpy)o(PFo)s (1 moi%) N I
R | A g/\o BF3 Etzo (5 mol /o) K/\ + [02] R']_: ) o) [0] R? 0
N — = 2
N MeCN, rt, air # Né\\< N
H/\\< ot N/\\< _ H02 \ S Y
o

23 W fluorescet light

i 16 examples
Yield = 40-86%

Scheme 2-5. Intramolecular Povarov reaction by photoredox catalysis

In the same year, Li and co-workers developed the intermolecular version of Povarov reaction
through coupling between glycine esters and alkenes. The oxidation of glycine is achieved by oxidation
of the excited *[Ru(bpy)s]** then imine is formed under aerobic condition. The formed imine is not only
stabilized but also activated by Cu salt.” (Scheme 2-6.)

4
R4 R
Ru(bpy)sCl, (0.5 mol%) R3 R®
i Cu(OTR), (10 mol%) | ¢ \/‘% o] R NS
N N)\[(ORZ + R3/\/R4 T N7 R2 | — SN 82
MeCN, rt, air \
H oo Blue LED | ,lo 0
Cu” 38 examples

Yield = 18-84%

Scheme 2-6. Intermolecular Povarov reaction by photoredox catalysis

In 2018, Zhang and co-workers developed metal-free visible-light-mediated Povarov reaction,
which involves coupling between glycine esters and 2,3-dihydrofurans. Instead of metallic
photocatalyst, the generation of key intermediate, imine, was achieved by employment of Eosin Y. The

resulted quinoline-fused lactone was obtained through intramolecular ester exchange.’ (Scheme 2-7)

H R
.
Eosin Y (1.5 mol%) 3 O
R
zso4 20 mol%) ’ 1o R1—‘ D
OR2 + O ! N/ (0]
MeCN, rt, air
Blue LED O

16 examples
Yield = 40-86%

Scheme 2-7. Intermolecular Povarov reaction by Eosin Y
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2.3.4. N-Propargyl aniline/imine

N-Propargy! amines are widely used in the synthesis of important N-heterocyclic compounds
such as pyridine, pyrrole, 1,4-diazepane and so on.” They have been also utilized to the synthesis of
highly substituted quinoline via cyclization and aromatization. Especially, the synthesis in photoredox
catalysis usually begins with radical addition of in situ generated nucleophilic radicals on the alkyne.
Then, the resulted vinyl radical participates in the cyclization, followed by aromatization.

In 2018, Zhou and co-workers initially developed the synthesis of quinoline from N-propargyl
amine. The quinoline was formed by condensation between alkynyl imine and alkene and cascade
radical additions. The presence of gem-difluorinated ring is characteristic. Due to the electronegativity
and lipophilicity, exchange of proton with fluorine is important in drug design.”® (Scheme 2-8)

R? R4

Ru(bpy)sCl, (1 mol%) WR®

2
5 K,CO3 (1.2 equiv.) R3 1_: NN R3
~
N ,  "BuN (20 mol%) O\ j Ay A
| _ R F
CF,Cl R3

MeCN, rt, Blue LED 41 examples
Yield = 47-97%

Scheme 2-8. Synthesis of gem-difluorinated quinoline

In the same year, Liu and co-workers developed the synthesis of quinoline possessing
fluorinated substituents from N-propargyl amines. Again, radical addition of in situ generated radicals
from bromodifluoroacetate or bromofluoroacetate is followed by cyclization to neighboring aromatic
ring. Bromodifluoroacetate and bromofluoroacetate are often employed as inexpensive fluorine source

for coupling.”” (Scheme 2-9)

X
w2l N R?+
i =
= fac-Ir(ppy)s (2 mol%)
K,CO; (2.5 equiv.)
F
~ I+ HFcoskt | ~ F(H)
R1 T Y MeCN, rt, Ar RYT N F
P H Br Blue LED ” CO,Et 28 examples

Yield = 35-91%

Scheme 2-9. Synthesis of fluorine-substituted quinoline

26



2.3.5. Aniline derivatives

Anilines have been widely employed as building blocks for construction of N-heterocyclic
compounds. Also, aniline and its derivatives were explored in photo-catalyzed synthesis of quinolines.
The following examples commonly go through the formation of imine/enamine intermediates from

anilines, then subsequent oxidation by photocatalyst enables intramolecular radical cyclization.

In 2016, Zhang and co-workers developed the synthesis of 2-arylquinoline from the coupling
between aromatic ketones and 2-aminobenzylamine. Condensation between ketone and aniline results
in the formation of amino-imine, which is oxidized by the excited *[Ru(bpy)s]**. The oxidized radical
cation is further oxidized by superoxide ion then followed hydrolysis produces aldehyde-imine.

Intramolecular cyclization and elimination of resulted alcohol form 2-arylquinolines.” (Scheme 2-10)

=
Ru(bpy)sCl, (2 mol%) 1 R2 - R?
TsOH ( 1eqU|v) N +[0,] N
Lot WS ad-PU e
2 MeCN, 82°C, O, N NHZ - HO, R NH,

23 W CFL R
13 examples
Yield = 49-90%

Scheme 2-10. Synthesis of 2-arylquinoline

In 2017, Xia and co-workers developed the synthesis of 4-carbonyl-quinolines and quinoline-
2,3-dicarboxylate via oxidative intramolecular/intermolecular cyclization with photoredox catalysts in

the presence of oxygen.”

Initially, the intramolecular version of photo-oxidative cyclization was achieved with ortho-
alkynyl enamine The organic photocatalyst, Mes-Acr-Me" is irradiated by visible light, then oxidizes
the enamine to form its radical cation intermediate. The resonance form of the radical cation, which is
stabilized by the presence of electron-withdrawing group, participates in radical cyclization, followed

by deprotonative O-O cleavage supported by copper to produce 4-carbonyl-quinoline (Scheme 2-11)

H Mes-Acr-Me™* (5 mol%) COZEt N oh N\ Ph
NN coEt CuCl (20 mom N R P
R Phen (20 mol%) T
= Ph — — CO,Et
X Ph CO,Et
X, TBHP (3 equiv.), O, | 07 R?

R DMF, rt, Blue LED (ICu” >0~ “R2

\ /

O

14 examples
Yield = 38-84%

Scheme 2-11. Intramolecular synthesis of 4-carbonyl-quinoline
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The concept of oxidative radical cyclization was also tolerated with the intermolecular version
between ortho-alkynyl aniline and dimethyl acetylenedicarboxylate. The Michael-addition product also
gets oxidized by the excited *[Ru(bpy)s]** and follows the same mechanism. (Scheme 2-12)

COZMe N\ CO,Me

N2 meo,c Ru(bpy)sCly ( 5mo|%
- 0,
RT + \ CuCl (20 mol%), A come
A CO-Me COzMe
Ar 2 DMF, rt, Blue LED 0 Ar

12 examples
Yield = 30-62%

Scheme 2-12. Intermolecular synthesis of 4-carbonyl-quinoline

Intermolecular addition/radical cyclization strategy was extended to o-alkenyl aniline in the
presence of palladium. The addition of amine into the activated alkyne is mediated by palladium, then
photo-oxidative radical cyclization is followed. Instead of O-O cleavage in the version of o-alkynyl

aniline, oxidative C-C cleavage affords quinoline-2,3-dicarboxylates. (Scheme 2-13)

2
PACl, (10 mol%)/PPh; (20 mol%) COZR N_ _CO,R?
NH, 5 Ru(bpy)sCly (2 mol% A
N R0C Cu(OAC), (20 mol%), ) P 2
A AN COZR COzR
Ph CO,R? PivOH (1 equiv.) 6 examples
DMF, rt, Blue LED Yield = 34-46%

Scheme 2-13. Intermolecular synthesis of quinoline-2,3-dicarboxylate

Even though all the developments of synthesis of quinoline in photoredox catalysis are useful

in a various aspect, the synthesis in the strategy of multicomponent reaction has not been developed.
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Chapter 3. Three-Component Synthesis of
Quinolines based on Radical Cascade

Visible-light Photoredox Catalysis
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3.1. Design of synthesis of quinoline

Due to their utilities, significant efforts have been made to develop efficient synthetic methods
for quinolines. Conventional synthesis including Miller, Skraup, Friedlander, Combes, Pfitzinger, and
Conrad-Limpach reactions typically relies on condensation under harsh conditions and often leads to
poor regioselectivity. In order to overcome these limitations, transition metal-catalyzed reactions,

iodine-mediated reactions as well as visible-light photoredox reactions have been developed.

In this report, we wish to describe quinoline synthesis based on radical cascade three-
component reaction catalyzed by visible-light photoredox catalysis. We envisioned that coordination of
the chemoselectivity among reactants may be feasible by the differential electronic properties of radical
sources and acceptors such that the tandem cyclization of the three coupling partners smoothly proceeds
in order (Scheme 3-1). Thus, we reasoned that the combination of electron-rich f-aminoacrylates with
electron-deficient halides and alkenes as the reactants would meet the requirement. Detailed

mechanistic studies led us to propose an unexpected reaction mechanism.

R3
/
oN

Electron
deficient
Electron—r/ch

EtOQC CO,Et Electrophlllc
@ radical
Et0,CUPCO,Et 1 CO,R?

Electrophilic ucleophI/IC J
radical radical

tOZC CO,Et

co2

EtO,C.__CO,Et

> Rl ] R
N LN

Electron-rich

Scheme 3-1. Three-Component synthesis of quinolines based on radical cascade visible-light

photoredox catalysis
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3.2. Reaction optimization for synthesis of quinoline

fac-Ir(ppy)s Ir[dF(CF3)ppyl;(dtbbpy)PFg
(R'=R%=F, R3=CF3, R*=t-Bu)

Ir(ppy),(dtbbpy)PFg
(R'=R?=R3=H, R*=t-Bu)

Scheme 3-2. Photoredox catalysts used in Table 3-1.

Table 3-1. First optimization of reaction condition in absence of electron donor **

EtO,C.__CO,Et
H COy,Me Br CH; 1) Photoredox catalyst
|

N__— Base, Solvent N
+ Etozc)\COZEt + Oo=N_o Blue LED, RT S~ COMe
< r D

2) DDQ (2.1 equiv.)

1a 2a 3a PhMe, 100 °C S N\
4a
Entry (eqzliliv.) (ecfliliv.) Photoredox catalyst (mol %) Base (equiv.) Solvent (M) (};iéﬁf) Siizl)d
1 1 2 Ru(bpy)3(PFs)2 (2) NaHCOs(2) MeCN (0.2) 18 Trace
2 1 2 Eosin 'Y (2) NaHCOs(2) MeCN (0.2) 18 14%
3 1 2 Ru(phen)sClLz (2) NaHCOs(2) MeCN (0.2) 18 20%
4 1 2 Ir(ppy)s (2) NaHCOs(2) MeCN (0.2) 18 45%
5 1 2 Ir(dF(CF3)ppy)2(dtbbpy)PFs (2) NaHCO:s (2) MeCN (0.2) 18 47%
6 1 2 Ir(ppy)2(dtbbpy)PFs (2) NaHCO:s (2) MeCN (0.2) 18 58%
7 1 3 Ir(ppy)2(dtbbpy)PFs (3) NaHCO:s (2) MeCN (0.2) 18 66%
8 1.5 3 Ir(ppy)2(dtbbpy)PFs (3) NaHCO:s (3) MeCN (0.2) 18 45%
9 2 3 Ir(ppy)2(dtbbpy)PFs (3) NaHCO:s (3) MeCN (0.2) 18 40%
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1
1

3
3

Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)
Ir(ppy)2(dtbbpy)PFs (3)

Ir(ppy):(dtbbpy)PFs (3)

Ir(ppy)2(dtbbpy)PFs (3)

NaHCO:s (2)
NaHCO:s (2)
NaHCOs (2)
NaHCOs (2)
NaHCOs (2)
NaHCOs (2)
NaHCO:s (2)
NaHCOs (2)
NaHCOs (2)
NaHCOs (2)
NaHCOs (2)
NaHCO:s (2)
NaHCO:s (2)
NaHCO:s (2)
KHCO; (2)
NaxHPO4(2)
KoHPO4(2)
NaH2PO4(2)
KH2PO4(2)
NaOAc (2)
KOAc (2)
NasPO4(2)
K5PO4(2)
Cs2C03(2)
CsOAc (2)
CsF (2)
DBU (2)
DABCO (2)
Na;HPO4 (1)
NaxHPO4(3)

Acetone (0.2)
DMF (0.2)
DCM (0.2)
CHCI3(0.2)

1,2-DCE (0.2)

EtOAc (0.2)
THF (0.2)

DMSO (0.2)
NMP (0.2)
MeOH(0.2)
PhH (0.2)

MeCN (0.4)
MeCN (0.1)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

MeCN (0.05)

18
18
18
18
18
18
18
18
18

18

18
18
18
18
18
18
18
18
18
18
18
18
18

63%
65%
38%
45%
31%
38%
36%
Trace
Trace
Trace
Trace
43%
73%
76%
76%
78%
2%
43%
33%
1%
Trace
73%
Trace
Trace
Trace
Trace
Trace
Trace
81%
79%

2 Reactions were conducted under argon atmosphere with 0.05 mmol scale.

® Yields were calculated based on NMR vyield; 1,1,2-trichloroethene used as internal standard.
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Our initial attempts commenced with the reaction of f-aminoacrylate 1a (1 equiv.) with
diethyl bromomalonate 2a (1 equiv.) and N-methyl maleimide 3a (2 equiv.) in MeCN (0.2 M) in the
presence of NaHCO;3 (2 equiv.) under blue irradiation of blue light from LED stripe at room
temperature. Upon completion of the reaction under visible light, teterhydroquinoline intermediate
was directly oxidized to quinoline 4a with with 2,3- Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).
All yields in Table 3-1 were calculated based on *H NMR spectroscopic analysis in the presence of
stoichiometric amount of 1,1,2-trichloroethene as an internal standard.

We started the optimization with the survey of various photoredox catalysts. The use of
Ru(bpy)s(PFs)2 gave a trace amount of the three-component coupling product 4a (Entry 1). While an
improved but low yield (20%) of 4a was obtained with Ru(phen)sCl; (Entry 3), iridium-based
complexes provided more promising results with Ir(ppy)2(dtbbpy)PFg giving a highest yield (58%)
among other iridium-based complexes (Entries 4~6). On the other hand, organic dye Eosin Y turned
out to be much less effective than the iridium catalysts (Entry 2). To examine the influence of catalyst
loading and the equivalence of alkene 3a on the efficiency of the reaction, increased amounts of
Ir(ppy)2(dtbbpy)PFs (3 mol%) and 3a (3 equiv.) were employed, which resulted in a slightly improved
yield (66%) (Entry 7). In contrast, the increased amount of radical source 2a led to diminished yields;

1.5 equiv. and 2 equiv. gave 45% and 40%, respectively (Entries 8, 9).

Next, we observed the significant solvent effects when a variety of solvents were tested.
Acetonitrile, acetone and DMF gave comparable yields (68%, 65%, and 63%, respectively) (Entries 7,
10, 11), while other chlorinated solvents, EtOAc and THF gave quinoline 4a in moderate yields
(Entries 12~16). Interestingly, trace amounts of quinoline 4a were obtained when other polar solvents
(DMSO, NMP and MeOH) were employed (Entries 17~19). Also, the use of nonpolar solvent such as
benzene afforded a poor result (Entry 20). Since the reaction involves tandem intermolecular reaction
followed by intramolecular cyclization, we anticipated that reaction concentration would play an
important role. It turned out that high reaction concentration (0.4 M) is detrimental to the reaction
efficiency as yield decreased to 43% as opposed to 66% with 0.2 M concentration. (Entry 21). On the
contrary to this, dilution of reaction mixture to lower concentration (0.1 M and 0.05 M) gave the

improved yields (73% and 76%, respectively) (Entries 22 and 23).

With the optimal reaction concentration identified, we became intrigued by the effect of
base. It appeared that no such counter ion effect was observed for bases including bicarbonate, mono
and dibasic phosphates, affording comparable yields with both sodium and potassium cations
(NaHCO; vs. KHCO3, 76% vs. 76%; Na;HPO, vs. KoHPO4, 78% vs. 72%; NaH;PO4 vs. KH2P Oy,

43% vs. 33%) (Entries 23~28). On the other hand, for certain inorganic bases including acetates and
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phosphates, counter cations have the crucial impact for the efficient transformation (NaOAC vs.
KOAC, 71% vs. trace; NasPOas vs. KsPOs, 73% vs. trace) (Entries 29~32). None of cesium salts
(Cs,CO3, CsOAc, and CsF) and amine bases (DBU and DABCO) gave the coupling product (Entries
33-37). Finally, the equivalence of base could be reduced without affecting the reaction efficiency
(Entry 38 vs Entries 25 and 39).

3.3. Preliminary result

Table 3-2. Preliminary result with optimized reaction condition in Table 3-1. &°

1) In dtbbpy)PF
L COR? Br _ ) (pp[é)i(‘ol%]py) 6
+
N " o co oy So ————
RHL EtO, 2Et | Na,HPO, (1 quiv.)
Z , MeCN (0.05 M)
1 2a (1 equiv.) 3a (3 equiv.) Blue LED, RT
Et0,C.__CO,Et Et0,C.__CO,Et
H
i N N CO,R? 2) DDQ (2.1 equiv.) il N N\ CO,R?
A o PhMe, 100°C “ANE0
N N
o\ \
4
EtO,C.__CO,Et EtO,C.__CO,Et Et0,C.__CO,Et EtO,C.__CO,Et
N N N N
X CO,Me = CO,Me N CO,Me ~ CO,Me
FN_0 | ¥ \.=0 BocHN ¥ N0 MeO,C “ N0
N N N N
o A\ o\ o\ o '\
4a (81%) 4d (58%) 4j (47%) 41 (30%)

“Reaction conditions: 1 (0.1 mmol), 2a (0.1 mmol), 3a (0.3 mmol), Ir(ppy)2(dtbbpy)PFs (3 mol%), NaxHPO4 (0.1 mmol),
MeCN (0.05 M), DDQ (0.21 mmol), toluene (0.1 M).
b isolated yield.

With the optimized conditions in hand, we turned our attention to the scope of this reaction,
in which various f-aminoacrylates 1 have been investigated for their reactivity in this three-
component reaction. However, the reaction conditions turned out to be unsatisfactory in that -
aminoacrylates 1 containing functionalized aryl groups such as 1d, 1j and 1l gave poor to moderate

yields with extended reaction time for completion (30 h) (Table 3-2).
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In this stage, we mechanistically propose that oxidative quenching of the excited

photocatalyst Ir'""" by a single electron transfer (SET) process to electron-deficient bromide 2a

initiates the reaction by the generation of the corresponding electrophilic radical 2a’, which reacts

with electron-rich B-aminoacrylate 1a to give a-amino radical 1. Subsequent intercept of the

nucleophilic a-amino radical | by electron-deficient alkene 3a leads to the formation of another

electron-deficient radical species I11, which undergoes annulation by addition to the aryl group of 111.
Finally, oxidation of aryl radical intermediate 1V by the photocatalyst affords tetrahydroquinoline V1.

Formation of quinoline 4a is achieved by one-pot oxidation of the tetrahydroquinoline with DDQ

(Scheme 3-3).

Visible light g
EtozCYcozEt Ir(l11)=<——Ir(Ill
Br Oxidative Quenching
2a Cycle

Br  EtO,C._ CO,Et Ir(IV)
1 ]

; 2a
-/ tOZC CO,Et

H @02Me
N\éJ CO,Me
7
1a

Et0,C.__CO,Et Et0,C.__CO,Et
H
L Y

H
N
< >CO,Me CO,Me
{\\ @]
N o) H
(f/// NN
N N
g N m 4
3a

Base

tOzC CO,Et

l [0]

EtO,C._ _CO,Et
N
N CO,Me

& N\—0

N
o \

4a

Scheme 3-3. Initially proposed reaction mechanism with preliminary result
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3.4. Second reaction optimization

2+
2PFg

2Na*

Br
(¢}

EosinY Ru(phen);Cl,
fac-Ir(ppy); Ir[dF(CF3)ppyl,(dtbbpy)PFg Rose bengal
(R'=R%=F, R®=CF;, R*=t-Bu)

Ir(ppy)(dtbbpy)PFg
(R'=R?=R3=H, R*=t-Bu)

Scheme 3-4. Photoredox catalysts used in Table 3-3

Table 3-3. Second optimization of reaction condition in presence of electron donor &°
CO,Et

1) Photoredox catalyst EtO,C
CO,Me B CH Base, Solvent
H \/ )\r N 8 e” donor N
+ Et0,C”7 “CO,Et + O 0 Blue LED, RT S COMe
i A,
' 2) DDQ (4.1 equiv.)
1d 2a 3a PhMe, 100 °C et
4d
Entr 2a 3a Photoredox e donor Base Solvent Time  Yield
Y (equiv.) (equiv.) catalyst (mol%) (equiv.) (equiv.) ™M) (hour) (%)
1 1 3 Ru(phen)sCl2 (3) NaAsc (2) NaxHPO4 (1) Acetone (0.05) 18 17
2 1 3 Ru(bpy)3(PFe)2 (3) NaAsc (2) NaxHPO4 (1) Acetone (0.05) 18 30
Ir[dF(CF3)ppy)2
3 1 3 (dtbbpy)PFs (3) NaAsc (2) NazHPOs (1) Acetone (0.05) 18 67
4 1 3 Ir (ppgl)jé(‘(i;t)’bpy) NaAsc(2)  NaHPO4 (1)  Acetone (0.05) 18 75
5 1 3 Sac-Ir(ppy)s (3) NaAsc (2) Na>HPO4 (1) Acetone (0.05) 18 77
3 Eosin Y (3) NaAsc (2) NazHPOs (1) Acetone (0.05) 18 38
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10

11

12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

1.2

1.5

2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2
1.2

1.2

Rose Bengal (3)
Ir(ppy)s (3)

Ir(ppy)3 (3)
Ir(ppy)3 (3)
Ir(ppy)3 (3)

Ir(ppy)3 (3)

Ir(ppy)s (3)

Ir(ppy)s 3)

Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)
Ir(ppy)s (3)

Ir(ppy)s (3)
<dark>

NaAsc (2)
DIPEA (2)
PraNH (2)

(4-MeO-Ph)
Ph:N (2)

DABCO (2)

Hantzsch
ester (2)

Ascorbic
acid (2)

NaAsc (2)

NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)
NaAsc (2)

NaAsc (2)

NaAsc (2)

NaHPO4 (1)
NaHPOq4 (1)

NaHPO4 (1)
NaHPO4 (1)
NaHPO4 (1)

NaHPOq4 (1)

NaHPO4 (1)
Na,HPO,
(1.2)
NaxHPO4 (1.5)
Na:HPO4 (2)
NaHPO4 (1.2)
NaHPO4 (1.2)
NaOAc (1.2)
KOAc (1.2)
NaHCOs (1.2)
KHCOs (1.2)
KoHPO4 (1.2)
Na2COs (1.2)
Cs2C0s3 (1.2)
DBU (1.2)
Na2HPO4 (1.2)
Na2HPO4 (1.2)
Na2HPO4 (1.2)
Na2HPO4(1.2)
Na2HPO4 (1.2)
Na2HPO4 (1.2)
Na2HPO4 (1.2)

NaHPOs (1.2)

NaHPOs (1.2)

Acetone (0.05)
Acetone (0.05)

Acetone (0.05)
Acetone (0.05)
Acetone (0.05)

Acetone (0.05)

Acetone (0.05)

Acetone (0.05)

Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
Acetone (0.05)
MeCN (0.05)
DMF (0.05)
DMSO (0.05)
CH:Cl2(0.05)
CHCI5(0.05)
EtOAc (0.05)
MeOH (0.05)

Acetone (0.05)

Acetone (0.05)

18
18
18

18

18
18
18
18
18
18
18
18
18
18
18
18
18

18

33
19
18

74

Trace

17

63

84

75
71
69
81
31
trace
80
50
72
59
trace
trace
74
49
19
trace
41
trace
trace

trace

trace

2 Reactions were conducted under argon atmosphere with 0.05 mmol scale.

® Yields were calculated based on NMR vyield; 1,1,2-trichloroethene used as internal standard.
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We envisaged that addition of an external electron donor may increase the efficiency of the
catalytic cycle. The results on the combination of various catalysts and reducing agents are
summarized in Table 3-3.

By employing 1d as a benchmark along with sodium ascorbate (NaAsc) as an external
electron donor, we surveyed various photoredox catalysts. 4d was obtained in poor yields after in-situ
oxidation of the tetrahydroquinoline when ruthenium-based catalysts including Ru(phen)sCl, and
Ru(bpy)s(PFs). were used (Entries 1 and 2; 17%, and 30%, respectively). Iridium-based complexes
provided more promising results with fac-Ir(ppy)s giving an improved yield (77%, Entry 5). On the
other hand, organic dyes including Eosin Y and Rose Bengal turned out to be inferior to iridium

catalysts (Entries 6 and 7).

Next, with fac-Ir(ppy)s as an optimal photocatalyst, we examined the effects of various
electron donors. Alkyl amines including diisopropylethylamine (DIPEA) (Ep2.* = + 0.65 V vs SCE in
MeCN at 25 °C)¥ and diisoproylamine (Ep>™ = + 1.09 V vs SCE in MeCN at 25 °C)® gave low
yields (19% and 18%, respectively) (Entries 8 and 9), while 74% of quinoline 4d was obtained when
4-methoxy-N,N-diphenylaniline (Ep2** = + 0.82 V vs Ag/AgCl in MeCN at 25 °C, see experimental
data) was employed (Entry 10). Widely used electron donors including DABCO (Ey2™ = + 0.69 V vs
SCE in MeCN at 25 °C)® and Hantzsch ester (Ep2*™ =+ 0.72 V vs SCE in MeCN at 25 °C)* proved
to be ineffective (trace and 17%, Entries 11 and 12, respectively). Replacement of NaAsc (Ep»™ = +
0.33 V vs Ag/AgCl in MeCN at 25 °C)* to ascorbic acid resulted in a decrease in yield (77% to 63%,
Entries 5 and 13, respectively).

With NaAsc as the optimized electron donor in hand, the stoichiometric control of reactants
(radical source 2a and coupling partner 3a) was followed. The minor increase of 2a (1.2 equiv.) along
with the equal amount of base (1.2 equiv.) leaded the improvement of yield up to 84% (Entry 14),
while further increase of both showed the tendency of decrease in yield (75% and 71%, Entries 15 and
16, respectively). Plus, the reduced amount of 3a to 2 equiv. and increased amount of 3a to 4 equiv.

was not effective, indicating 3 equiv. of 3a was the optimal amount (Entries 17 and 18).

The detailed investigation on bases and solvents was conducted in the same manner of Table 3-1,
indicating that the use of Na;HPO4 (1.2 equiv.) was still helpful, while the optimal solvent was
changed from acetonitrile to acetone (Entries 19~33). Finally, control experiments performed in the
absence of either catalyst or visible light showed no product formation, which supported that the

reaction is indeed mediated by visible light photoredox catalysis (entries 34 and 35).
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3.5. Substrate scope in f-aminoacrylate

Table 3-4. Substrate scope in f-aminoacrylate 1 &°

1) fac-Ir(ppy)z [3 mol%] EtOC COEt
CO,R? Br ﬂ NaAsc (2 equiv.) N
H¢ * 07 =0 NaHPO, (12equiv.) o S S COR?
gL S Et0,C” “CO,Et | Acetone (0.05 M) NS
T Blue LED, RT 0
1 2a 3a g N\
. . 2) DDQ (4.1 equiv.)
(1.2 equiv.) (3 equiv.) Toluene, 100°C 4
EtO,C.__CO,Et EtO,C.__CO,Et o F102C._CORE EtO,C.__CO,Et
3
N N N
CO,Me X CO,Me X CO,Me X CO,Me
HaC & \=0 N0 “ N0
N N N
(¢} \ (¢} \ (e} \
4a (74%) 4b (61%) 4c (70%) 4d (64%; 58%°)
EtO,C.__CO,Et EtO,C.__CO,Et EtO,C.__CO,Et ouE02C~ ~COE
N N N
CO,Me Sy co,Me Sy Sco,Me Sy co,Me
o cl “ N0 MeO “ N0 N0
N N N
o \ 0} \ o \
4e (69%) 4f (66%) 4g (77%) 4h (61%)
EtO,C CO,Et EtO,C CO,Et EtO,C
2 2 2 2 NHBO(32 CO,Et
N N
CO,Me N CO,Me A CO,Me
BocHN “ N0 AN_0
N
o\ SN
4i (52%) 4j (73%; 47%°) 4Kk (60%)
EtO,C.__CO,Et EtO,C.__CO,Et
N N
X CO,Me X CO,'Bu
MeO,C “ N0 2 )
N N
(¢} \ (o} \

41 (49%; 30%°) 4m (59%)

@ Reaction conditions: 1 (0.1 mmol), 2a (0.12 mmol), 3a (0.3 mmol), fac-Ir(ppy)s (3 mol%), sodium ascorbate (0.2 mmol),

NaxHPOs (0.12 mmol), acetone (0.05 M) then, 2,3- Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.41 mmol), toluene
(0.1 M).

b All isolated yield.

¢Isolated yield with reaction condition described in Table 3-2.
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With the newly optimized conditions in hand, we turned our attention to the scope of the
developed reaction, in which various f-aminoacrylates 1 have been investigated for their reactivity in

this three-component coupling (Table 3-4).

We began by examining the influence of various substituents on the aromatic ring on the
reaction. Substitution with a methyl group on the para or ortho position was tolerated to afford the
corresponding quinolines 4b and 4c after oxidation with DDQ. Even though one of the two positions
available in annulation step was blocked by the ortho-methyl group, substitution on ortho position did
not affect the formation of quinolines 4c. We also examined the tolerability of different halides under
the reaction condition and found that iodo, bromo, and chloro- substituted quinolines 4d, 4e, 4f could
be prepared in good yields. The reaction with the substrates bearing electron-donating groups such as
methoxy group proceeded smoothly to give 4g and 4h, while that with a free hydroxy group gave the
corresponding quinoline 4i in a moderate yield. Aminoquinolines 4j and 4k were successfully
synthesized by employing substrates containing Boc-protected amine 1j and 1k. Also, that bearing
electron-deficient aryl group 11 gave the corresponding quinoline 4l in moderate yield. B-
aminoacrylate 1m containing a bulky fert-butyl ester, instead of methyl ester, successfully participated

in the reaction to give 4m.
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3.6. Substrate scope in C-C unsaturated bonds and halides
3.6.1. Substrate scope in maleimide

Table 3-5. Substrate scope in maleimide 3 #°

1) fac-Ir(ppy)s [3 mol%] EtO,C._ _CO,Et
CO,Me NaAsc (2 equiv.)
y Br Z =0 Na,HPO, (1.2 equi N
N a, 4 (1.2 equiv.) N CO.M
\) + /I\ + ﬁ Acetone (0.05 M) 2Me
EtO,C™ "COEt o R Blue LED, RT Z N0
12 2a 3 2) DDQ (4.1 equiv.) N
12 v, : .1 equiv. \
(1.2 equiv.) (3 equiv.) Toluene, 100°C o 4 R
Et0,C.__CO,Et EtO,C.__CO,Et Et0,C.__CO,Et EtO,C.__CO,Et
N N N N
N CO,Me X CO,Me X CO,Me X CO,Me
) & \—0 & N\—0 & N\—0
N N N N
o A\ o o] o 4
4a (74%) 4n (87%) 40 (71%) 4p (56%)

Et0,C.__CO,Et Et0,C.__CO,Et Et0,C.__CO,Et EtO,C.__CO,Et

N N N N
X CO,Me A CO,Me N CO,Me X CO,Me
= o = 0 = o = 0
N N S N N

O ‘TBDMS o @ o
4q (32%)

with 4p (36%) ar (73%) 4s (75%)  ‘ome 4(63%)  ‘coMe

EtO,C. _CO,Et EtO,C__CO,Et

N N

S Cco,Me S CoMe
N0 F N0
N N o
O “oBn 0o ?/ij/
4u (78%) O~
4v (55%)

“ Reaction conditions: 1a (0.1 mmol), 2a (0.12 mmol), 3 (0.3 mmol), fac-Ir(ppy)s (3 mol%), sodium ascorbate (0.2 mmol),
Na2HPOs4 (0.12 mmol), acetone (0.05 M) then, 2,3- Dichloro-5,6-dicyano-1,4-benzoquinone (0.41 mmol), toluene (0.1 M).
b All isolated yield.

Next, we examined the effect of substituents on maleimide 3 (Table 3-5). The use of
maleimides with N-alkyl groups including methyl, benzyl and cyclohexyl groups provided the
corresponding quinolines 4a, 4n and 40 in good yields. While the maleimide lacking a N-substituent 3p
furnished 4p in moderate yield (56%), TBDMS-protected maleimide 3q provided the corresponding
quinoline 4q along with the deprotected quinoline 4p in 68% yield (almost 1:1).
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In order to investigate electronic effects, maleimides 3r, 3s and 3t bearing aryl groups with different
electronic properties were subjected to the reaction. Whereas phenyl substituted 3r and electron-rich 3s
respectively provided quinoline 4r and 4s in similar yields, the use of the maleimide bearing an electron-
deficient aryl group 3t resulted in relatively lower yield (63%). We also examined the compatibility of
maleimide containing N-alkoxy group, which is known to be labile under photoredox conditions.®
Gratifyingly, 3u with a benzyloxy group gave 4u in 78% yield. With the anticipation of bis-quinoline
formation, we employed [1,1'-bipyrrole]-2,2',5,5-tetraone 3v as a coupling partner, however, it gave
only mono-annulated product 4v in 55% yield. Interestingly, when 4v was re-subjected to the reaction

as a coupling partner, the second annulation did not proceed.

3.6.2. Substrate scope in activated unsaturated C-C bonds

Table 3-6. Substrate scope in activated unsaturated bond 2 °

1) fac-Ir(ppy)s [3 mol%] EtO,C.__CO,Et
H\)Cone )B\r NaAsc (2 equiv.) : ’
N~ 1 Na,HPO, (1.2 equiv. N
/@/ * Et0,C7 DCO.Et ¥ RiA g2 ,Azceton4e((0.05qM) ) h CO:Me
Moo ‘o ’n 3 Blue LED, RT MeO A2
(1.2 equiv.) (3equiv.) ) ppQ (4.1 equiv.) R
Toluene, 100°C 4
E (§ &
Ne.( NC Et0,C
~FeN ~FTCO,Et ZINFTC0,E
3w 3x 3y
EtO,C.__CO,Et Et0,C.__CO,Et EtO,C.__CO,Et EtO,C.__CO,Et
N N
N\ COzMe ~ COMe  + = COzMe N\ COzMe
MeO N MeO 7 COo,Et MeO “ SeN MeO o,k
N CN CO,Et CO,Et
4w (71%) 4x, 4’ (50%, 2 : 1) 4y (0%)
Et0,C.__CO,Et
N
_ \E) CO,Me X (£ COyMe
MeOC” MeO Z Co,Me
CO,Me
4z (36%)

2 Reaction conditions: 1g (0.1 mmol), 2a (0.12 mmol), 3 (0.3 mmol), fac-Ir(ppy)s (3 mol%), sodium ascorbate (0.2 mmol),
Na2HPO4 (0.12 mmol), acetone (0.05 M) then, 2,3- Dichloro-5,6-dicyano-1,4-benzoquinone (0.41 mmol), toluene (0.1 M).

b All isolated yield.

¢ 5 equiv. of 3x was used.
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In addition to maleimides, we turned our attention to the scope of unsaturated carbon-carbon
bonds, which are activated by neighboring electron-withdrawing groups (Table 3-6). Fumaronitrile
3w, which is highly electron-deficient, turned out to be a good coupling partner affording quinoline
4w in 71% yield. While a moderate yield of 4x and 4x” was obtained with 2:1 ratio when less
activated 1,2-cyanoacrylate 3x was employed, no product corresponding to 4y formed when diethyl

fumarate 3y was used.

EtO,C_CO,Et EtO,C.__CO,Et Et0,C._CO,Et
1L :
N N
v~_“CO,Me CO,Me ————= AN CO,Me
) —
MeO C MeO H R? MeO Z R2
DA

R2 R
R%{: i 4

Scheme 3-5. Radical addition to activated alkene

We rationalized these results based on the electrophilicity of alkenes 3, as radical acceptors
toward nucleophilic radical intermediates I at the annulation step. The electrophilicity of alkenes was
deduced from their relative redox potentials. The redox potentials were measured by cyclic
voltammetry. (Ep»"® of 3w = - 1.22 V vs Ag/AgCl in MeCN at 25 °C, E;»®¢ of 3x =- 1.29 V vs
Ag/AgClin MeCN at 25 °C and E,»"™® of 3y = - 1.40 V vs Ag/AgCl in MeCN at 25 °C, Figure 3-1).

Fumaronitrile, 3w (E)-ethyl 3-cyanoacrylate, 3x

Diethyl fumarate, 3y

Figure 3-1. Reduction potentials of activated alkenes 3w, 3x and 3y
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The higher the relative reduction potential of alkene is, the more it is readily to accept an
electron. Therefore, fumaronitrile 3w showed the highest yield among alkenes because of its highest
reduction potential indicating strong electrophilicity, whereas no product was observed with fumarate
3y. Plus, the ratio of 4x and 4x” can be explained by the location of radical and the stability of radical
at intermediate II1. We also examined the reactivity of alkyne vs. alkene by employing (E)-dimethyl
hex-2-en-4-ynedioate 3z as a coupling partner, and found that the reaction proceeds selectively on the

alkyne to give 4z in moderate yield.

3.6.3. Substrate scope with Perfluorinated substituents

Table 3-7. Substrate scope with fluorinated substituents

1) fac-Ir(ppy)s [3 mol%]

NaAsc (2 equiv.) RF
CO;Me Na,HPO, (2 equiv.) N
H = 2 4
N\) F O Acetone (0.05 M) N CO;Me
R N Blue LED, RT P
S ’ MeO o
Meo 19 2 3a 2)DDQ (4.1 equiv.) N
(2 equiv.) (3 equiv.) Toluene, 100°C 0 4 \
CF,CF,CF3 CF,
N N
> CoMe CF3 N CO,Me
I
CF3CF,CFy-| MeO 2 ) % MeO Ao
N N
2aa (0] \ o o \
4aa (68%) 2ab 4ab (70%)

@ Reaction conditions: 1g (0.1 mmol), 2a (0.2 mmol), 3 (0.3 mmol), fac-Ir(ppy)s (3 mol%), sodium ascorbate (0.2 mmol),
NazHPO4 (0.2 mmol), acetone (0.05 M) then, 2,3- Dichloro-5,6-dicyano-1,4-benzoquinone (0.41 mmol), toluene (0.1 M).
b All isolated yield.

Given that fluorination is an important tactic to modulate the physicochemical properties of
drugs, we have shown that perfluorinated substituents can be readily introduced by using the
corresponding coupling partners. Thus, quinolines 4aa and 4ab with fluorinated substituents were
prepared in good yields by using n-heptafluoropropyl iodide 2aa and Togni’s reagent II 2ab,
respectively (Table 3-7).
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3.7. Mechanistic studies
3.7.1. Control experiments

In order to probe the reaction mechanism, we have performed several experiments described
in this section.

EtO,C.__CO
Et0,C.__CO,Et o fac-Ir(ppy)s [3 mol%] EtO,C.__CO,Et no Y EC
H /\[ z NaAsc (2 equiv.) \I 3a N o

+ > N 2
NwZSco,me S N NayHPO, (1.2 equiv.) N7 COMe | X Me
Acetone (0.05 M) o)
5a 3a Blue LED, RT A N
(3 equiv.) le} \

Scheme 3-6. Control experiments (1)

During the survey of substrate scope, the formation of isomeric mixture of enamine 5a was
often observed as by-products, which led us to examine the intermediacy of 5a in the course of
reaction. In place of radical mechanism, the incorporation of maleimide 3a may proceed through
Diels-Alder reaction after tautomerization to intermediate A. However, this could be ruled out based
on the observation that desired tetrahydroquinoline B did not form when enamine 5a and maleimide
3a were subjected to the standard reaction conditions (Scheme 3-6). In other words, the possibility of

intermediacy of 5a could be excluded.

EtO,C.__CO,Et Fac-Ir(ppy)s

EtO,C CO,Et
’L . ﬁo [3 mol%)] | 2;{ 2 o
CO,Me N — X N
©/ z \ ACN (0.1 M) ©/ v~ "COyMe

(0]
5b 3a Blue LED, RT c
(3 equiv.) Air, 18 hr
E1O.C COLEt EtO,C CO,Et
IrfdF(CF3)ppy), 2 2 |
EtO,C.__CO,Et (dtbbpy)PFs | J: H

N
N CO,M
,L . OF° [3 mol%] ~NCo,Me Y CoMe
CO,Me N E—— (\ — o (2)
g N\ ACN (0.1 M) H

56 3a Blue LED, RT ;\fo e
B Air, 18 hr N
(3 equiv.) \

43% (isolated)
HRMS confirmed

Scheme 3-7. Control experiments (2)

This led us to the postulation that successful coupling of 5b and 3a under photoredox
conditions would provide an evidence for the intermediacy of a-amino radical C derived from 5b (Eq.
1, Scheme 3-7). An initial attempt by using fac-Ir(ppy)s as a catalyst failed to give C, which is
consistent with the result from a fluorescence quenching experiment and redox potentials; 5b (Ep2* =
+0.98 VV vs Ag/AgCl in MeCN at 25 °C, Figure 3-2) vs. fac-Ir(ppy)s (E"™" =+ 0.31 V vs SCE in
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MeCN at 25 °C). In terms of oxidation potentials, the excited fac-Ir(ppy)s has insufficient oxidative
potential for oxidation of 5b to produce a-amino radical C (Figure 3-3). In other words, the
coincidence between the normalized intensity of the solution containing only photocatalyst (Blue,
Figure 3-3) and that of the solution containing both photocatalyst and 5b (orange, Figure 3-3) proved
that the interaction in redox between them did not take place.

EtO,C___CO,Et
| Ep/zox =+ 098V

N
@ _coqe (vs SCE in MeCN at 25°C)

Cyclic voltammetry of 5b

Figure 3-2. Measurement of oxidation potential of Sh

fac-[Ir(ppy)s] + 5b

=
[N

—Ir(ppy)3 10 uM
PR Cat_10uM+5hb_50mM

[E=Y

o
oo

o
~

Normalized Intensity
o
»

o
()

o

450 500 550 600 650 700
Emission Wavelength (nm)

Figure 3-3. Fluorescence quenching between Sb and fac-Ir(ppy);
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Meanwhile, as the oxidation potential of Sb was known by measurement of cyclic
voltammetry, Ir[dF(CF3)ppy]a(dtbbpy)PFs was chosen because of its higher oxidation potential (E™*/"!
=+ 1.21 V vs SCE in MeCN at 25 °C). So, we were able to observe the clear interaction between
photocatalyst and 5b in fluorescence quenching study, when Ir[dF(CF3)ppy]2(dtbbpy)PFs was
employed instead of fac-Ir(ppy)s (Figure 3-4). Again, the blue line indicated the normalized intensity
of the solution containing the photocatalyst only and orange line showed that of the solution
containing both photocatalyst and Sb. The fully diminished graph in orange proved that the excited
photocatalyst was readily quenched by 5b through redox interaction. Therefore, replacement of
photocatalyst from fac-Ir(ppy)s to Ir[dF(CF3)ppy].(dtbbpy)PFs enabled to oxidize 5b to produce a-
amino radical C, forming the isomeric mixture of D in 43 % yield. The characterization of the
isomeric mixture in D was confirmed based on HRMS analysis due to the complexity of isomers in

NMR. These results strongly suggest the coupling of maleimide 3a proceeds via radical mechanism.**
87

Ir[dF(CF3)ppy],(dtbbpy)PF4 + 5b

=
[N

— Ir[dF(CF3)ppy)]2(dtbbpy)PF6_10uM
PR Cat_10uM+Amine_25mM

[E=Y

o
oo

o
~

Normalized Intensity
o
(op]

o
()

400 450 500 550 600 650
Emission Wavelength (nm)

Figure 3-4. Fluorescence quenching between Sb and Ir[dF(CF3)ppy]2(dtbbpy)PFs
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Next, we turned our attention to the mechanism, tracing the origin of radical species by

employing 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, TEMPO, which is widely used as a radical

scavenger.
fac-Ir(ppy)s [3 mol%] EtO,C._COoEt
H CO,Me )B\r NaAsc (2 equiv.) H\;[
N~ + Na,HPO, (1.2 equiv. CO,M
©/ E10,0” “Coget 2 o4 (12 edu) 2ve 1)
1 ) Acetone (0.05 M) 5a
a a
(1.2 equiv.) Blue LED. RT 99% (isolated)
fac-Ir(ppy)s [3 mol%] EtO,C._COzEt
H CO,Me Br NaAsc (2 equiv.) H\;E o/N
N + PY Na,HPO, (1.2 equiv.) COMe +
EtO,C” CO,Et -~ o )\ 2)
) , TEMPO (2 equiv.) 5a Et0:C E COEt
a a
(1.2 equiv.) A%?L%nﬁégogy) (trace) 97% (isolated)

Scheme 3-8. Control experiments (3)

In the absence of maleimide 3a, reaction between B-aminoacrylate 1a and bromomalonate 2a
under standard condition produced the isomeric mixture of enamine 5a in 99 % yield (Eq. 1, Scheme
3-8). Meanwhile, when 2 equimolar amount of TEMPO was injected, the formation of enamine 5a was
completely suppressed and a large amount of malonate-TEMPO adduct E was obtained in 97 % after
isolation (Eq. 2, Scheme 3-8). This is consistent with the hypothesis that the generation of malonyl

radical 2a’ proceeds through oxidative quenching of photoexcited [Ir"']*.

fac-Ir(ppy)s [3 mol%]
H\)COZMe /Bl\r z O  NaAsc (2 equiv.)
N~ + + Na,HPO, (1.2 equiv.) <
Et0,C”~ “CO,Et AN it b
0 TEMPO (2 equiv.) EtOC COZE‘

1a 2a 3a Acetone (0.05 M) E F

i i 3a’
1.2 equiv. 3 equiv. RT .
( quiv.) (3 equiv.) Blue LED, 30% (isolated) HRMS confirmed

Scheme 3-9. Control experiments (4)

On the other hand, when the reaction of 1a and 2a was performed in the presence of 3a and
TEMPO, the maleimide-TEMPO adduct F, which was unstable for isolation, was observed by HRMS
along with 4a and E (trace and 30% isolated yield, respectively) (Scheme 3-9). We were perplexed by

the observation of F, which suggests the formation of maleimide radical 3a’ in the reaction.
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3.7.2. Fluorescence quenching study

Our initial mechanistic hypothesis was that the excited [Ir'"']* would undergo oxidative
quenching by 2a to give 2a’, however, the presence of 3a’ prompted us to investigate the competitive

oxidative quenching of the excited catalyst between 2a and 3a.

j‘i Epn™ " =-142V

EtO,C” “CO,Et .
2a (vs SCE in MeCN at 25°C)

Diethyl bromomalonate, 2a

Figure 3-5. Measurement of reduction potential of 2a

In order to identify the radical species forming first in the catalytic cycle, Stern-Volmer
quenching studies were performed. The redox potential of fac-Ir(ppy); (E™"Y = - 1.73 V vs SCE in
MeCN at 25 °C) indicates that oxidative quenching of [Ir'"]* by both 2a and 3a would be feasible
(Ep®* = - 1.42 V vs Ag/AgCl in MeCN at 25 °C, Figure 3-5 and E,»**** = - 1.21 V vs SCE in
MeCN at 25 °C,* respectively). Fluorescence quenching study of 2a and 3a with phased concentrations
was independently conducted with a fixed amount of fac-Ir(ppy)s (Figure 3-6). In the case of both 2a
and 3a, the normalized intensity of excited fac-Ir(ppy)s was inversely proportional to the concentration
of 2a or 3a, indicating that they did participate in the quenching of the excited fac-Ir(ppy); in the redox
interaction. Then, this result was converted into Stern-Volmer plot for the direct comparison about the
preference of quenching between 2a and 3a. Based on the slope of each trend curve, the Stern-Volmer

plot clearly suggested that 3a was the preferred electron acceptor over 2a.
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fac-[Ir(ppy)s] + 2a fac-[Ir(ppy)s] + 3a
1.2 Ir(ppy)3 10 uM 12 Ir(ppy)3 10 uM
> 1 —25mM > 1 —25mM
‘@ 50 mM k% 50 mM
g 08 100 mM g 08 100 mM
= 06 = 06
Ee] °
(5] (5]
N 04 N 04
© @
E 02 S0 N
o [=]
Z 0 Z 0 b
0 2450 500 550 600 650 700 0 2450 500 550 600 650 700
Emission Wavelength (nm) Emission Wavelength (nm)

Figure 3-6. Fluorescence quenching study of 2a (left) and 3a (right) with fac-Ir(ppy)s

Stern-Volmer Plot of 2a and 3a
25
3a y=0.2165x + 1
20 2a
_ 15
" 10
5 y=0.0288x + 1
0
0 25 50 75 100
Concentration (mM)

Figure 3-7. Comparison of Stern-Volmer Plots of 2a and 3a

This result of the preferential reduction of 3a over 2a raises the question of identification of
the counterpart reacting with radical anion 3a’ derived from 3a. We speculated that the radical anion
3a’ is responsible for the reduction of 2a to 2a’. Therefore, additional fluorescence quenching
experiments were performed on equimolar mixtures of 2a and 3a at varying concentrations (Figure 3-

8).
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Normalized Intensity

fac-[Ir(ppy);] + mixture of 2a and 3a
1.2 Ir(ppy)3 10 uM 0.014 ——25mM 2a+25mM 3a
2a_25mM 2 50mM 2a+50mM 3a
1 —2a_50mM D 0.012
—3a_256mM s 001
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08 —25mM 2a+25mM 3a B 0006
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06 v car = = 0.004
S 0.002
04 0 =
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0 = X
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Figure 3-8. Fluorescence quenching study of mixture of 2a and 3a

To our surprise, much greater extent of fluorescence quenching was observed in comparison

to those taken separately (Expanded graph, blue and grey, Figure 3-8). Again, the increase of

concentration of mixture also leaded stronger quenching of the photocatalyst. This synergistic effect

could be reasoned that the reversible quenching of the excited [Ir"']* in the presence of 3a alone

becomes irreversible when both 3a and 2a are present, in which 2a is irreversibly reduced to 2a’ by

3a’. This result could also account for the presence of the radical species derived from 3a evidenced

by 3a-TEMPO adduct F (Scheme 3-10).

(a)

Visible light g | o N/ Visible light g
: I/EO
EtOZCYCOZEt #Ir(II)=<—2 Ir(lll) 3 5 #Ir(II)=<—2= Ir(lll)
‘ a
Br Oxidative Quenching | Oxidative Quenching
2a Cycle 3 o N/ Cycle
Et0,C.__CO,Et Ir(1v) 3 \T\fo Ir(Iv)
Br  gpr _TEMPO_ p | 3a' _TEMPO_ E
() o N Visible light
Et0,C.__CO,Et I/EO
h “Ir(111)y<—2= Ir(lll)
Br 3a
2a Oxidative Quenching
o N/ Cycle
EtO,C._CO,Et w\;/&o Ir(1v)
' Br- -
2a 3a'

Scheme 3-10. Synergetic effect of 2a and 3a
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3.7.3. Visible-light on/off experiment

We have performed an experiment with light-on/off to investigate whether the reaction
involves radical chain propagation. However, this could be ruled out as the conversion comes to a halt
as shown in Figure 3-9. The recorded yields were determined by 'H NMR spectroscopy with the

addition of trichloroethylene as an internal standard.

On/Off Experiment

NMR Yield (%)
%] w =Y [9)]
o o o o

Juny
o

o

0 4 8 12 16 20 24 28
Time (h)

Figure 3-9. On/off experiment at 4 hour intervals
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3.7.4. Plausible Mechanism
Based on the mechanistic studies, we propose a plausible mechanism shown in Scheme 3-11.

* by 3a to form radical anion 3a’,

The reaction is initiated with oxidative quenching of the excited [Ir
which allows the reduction of 2a resulting in the formation of malonyl radical 2a’. Selective coupling
of the electron-deficient radical 2a’ with electron-rich B-aminoacrylate 1a over electron-deficient alkene
3a leads to the formation of a-amino radical species I. Concomitant redox reaction of I and 3a catalyzed
by the catalyst provides iminium species II and radical anion 3a’, which undergoes coupling to afford
radical species III. Subsequently, intramolecular cyclization of the resulting electron-deficient radical
I with the electron-rich aryl group furnishes IV, which proceeds to form tetrahydroquinoline VI by

oxidation followed by aromatization. Lastly, one pot oxidation with DDQ provides quinoline 4.

N isible li HO
Visible light HO gt <
Il < i

3a [Ir'] [Ir'] y/
Oxidative fe} OH O (0]
Quenching Asc DHA

o / Cycle
HO

o / HO. = o
—~ fe) N \/\g

3a’ \]\;):O ~
YCOZEt ;_L, Et0,C._CO,Et Asc’

Br Et02C CO,Et

2a EtO,C. _CO,Et
COzMe \_/ EtO,C.__CO,Et N‘\ H

COzMe N
©/ J:co " ©/ i) @/ CO,Me
2 ~
©/ [Ir'"] iy £/\: o ©
N N

o g N\
Vi_sib|e<7\‘ [Ir”']*/(/‘ | I

light

EtO,C

1a

3a
6-endo-trig
[ EtO,C_ _CO,Et )
EtO,C.__CO,Et EtO,C.__CO,Et t02C CO,Et
N
N CO,Me H H
| CO,Me 2 CO,Me CO,Me
_
0 - fo) -
N [O] Base H SET
o’ A\ N T N
4a o\ o’ A\
. J VI V

Scheme 3-11. Plausible Mechanism

In sum, we have developed an efficient three-component radical cascade reaction for the
synthesis of highly substituted quinolines based on visible-light photoredox catalysis. This method,
which involves three consecutive radical-mediated bond formations, allows chemoselective
incorporation of coupling partners. Detailed mechanistic studies were performed by various
spectroscopic methods.
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3.8. Experimental procedures and data

3.8.1. General methods

All the reactions were carried out in oven dried glassware under nitrogen atmosphere with
freshly distilled dry solvents under anhydrous conditions unless otherwise indicated. Solvents for the
key step and optimization table are dried by drying agents (appropriate for each solvent, for example,
acetonitrile was distilled from P.Os) and distilled out. Then they were degassed by bubbling of nitrogen
gas for 30 minutes with cooling bath. All key step reactions were set under nitrogen atmosphere in
glovebox. Organic solutions were concentrated under reduced pressure on a Biichi rotary evaporator
using water bath. Analytical thin layer chromatography (TLC) was performed using Merck TLC Silica
gel 60 F254 precoated plate (0.2 mm thickness). After elution, plates were visualized using UV radiation
(254 nm) on Spectroline Model ENF-240C/FE 254 nm. Further visualization was possible by staining
with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash column
chromatography was performed with Silica Flash P60 silica gel (230-400 mesh). All reagents were
obtained from commercial sources (Alfa Aesar, Sigma Aldrich, TCI Chemicals) and were used without

further purification.

Proton (*H) and carbon (**C) NMR spectra were recorded on a 400/100 MHz Agilent 400M
FT-NMR spectrometer or 400/100 MHz Bruker Advance Il1 FT-NMR spectrometer. NMR solvents
were obtained from Cambridge Isotope Laboratories and the residual solvent signals were taken as the
reference (0.0 ppm for *H NMR spectra and 77.0 ppm for *C NMR spectra in CDCls). The signals
observed are described as: s (singlet), d (doublet), t (triplet), g (quartet), m (multiplet). Coupling
constants are reported as J value in Hz. High resolution mass analysis (HRMS) was performed with
Bruker HCT Basic System coupled with Agilent 1200 Series. Cyclic voltammetry spectra were recorded
on WizMAC WizECM - 1200 Premium. Luminescence quenching studies were performed with Varian
Cary Eclipse. The reaction mixture of key steps was irradiated with a 12 W blue LED lamp (5 cm away,
25 °C maintained with a cooling fan). For reactions irradiated by microwave, Biotage Initiator™ was
used. Systematic nomenclature for the compounds follows the numbering system as defined by IUPAC

with assistance from CS Chemdraw® software.
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3.8.2. Synthetic procedures for f-aminoacrylates

3.8.2.1. General procedure A (for 1a ~ 11)

NH, CO,Me
coMe — - H
@ rZ MeOH (1 M) N
(1.1eq.) Microwave; 80 °C
30 min.

To a solution of aniline (1 equiv.) in MeOH (1 M) was added methyl propiolate (1.1 equiv.).
The reaction was stirred and irradiated in microwave synthesizer for 30 minutes at 80 °C. Upon
completion (monitored by TLC analysis), the solution was concentrated under reduced pressure. The

residue was purified by flash chromatography.

Methyl 3-(phenylamino)acrylate (1a): Prepared according to General Procedure A from aniline and
methyl propiolate. Yield 70%.
y  COaMe

>
&

'H NMR (400 MHz, CDCl3): 6 9.87 (d, 1H, J = 10.4 Hz) § 7.28 — 7.21 (m, 3H) & 7.00 — 6.94 (m, 3H)
8 4.83 (d, 1H, J =8.4 Hz) 6 3.70 (s, 3H). NMR data is consistent with the reported data.

Methyl 3-(p-tolylamino)acrylate (1b): Prepared according to General Procedure A from p-toluidine
and methyl propiolate. Yield 57%
4 CO:Me

N
e

IH NMR (400 MHz, CDCls): § 9.82 (d, 1H, J = 12.0 Hz) & 7.22 (dd, 1H, J = 8.3 Hz, 12.8 Hz) 5 7.10
(d, 2H, J = 8.0 Hz) 5 6.87 (d, 2H, J = 7.8 Hz) 5 4.81 (d, 1H, J = 8.3 Hz) § 3.72 (s, 3H) & 2.30 (s, 3H).

NMR data is consistent with the reported data.

Methyl 3-(o-tolylamino)acrylate (1c): Prepared according to General Procedure A from o-toluidine
and methyl propiolate and methyl propiolate. Yield 85%

CH3 H CO2M€

N~
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'H NMR (400 MHz, CDCls): 5 10.0 (d, 1H, J = 11.4 Hz) § 7.32 (dd, 1H, J=8.3 Hz, 12.5 Hz) § 7.19
(m, 2H) 6 7.04 (d, 1H, J="7.9 Hz) 4 6.94 (m, 1H) 6 4.89 (d, 1H, J =8.2 Hz) 6 3.74 (s, 3H) 8 2.34 (s,
3H) NMR data is consistent with the reported data.

Methyl 3-((4-iodophenyl)amino)acrylate (1d): Prepared according to General Procedure A from 4-
iodo aniline and methyl propiolate. Yield 57%.
COZMe

1
T

IH NMR (400 MHz, CDCl3): § 9.87 (d, 1H, J = 12.7 Hz) § 7.58 (d, 2H, ] = 8.8 Hz) § 7.18 (dd, 1H, J =
8.4 Hz, 12.6 Hz) § 6.73 (d, 2H, J = 8.8 Hz) 5 4.89 (d, 1H, J = 8.4 Hz) § 3.72 (s, 3H) NMR data is

consistent with the reported data.

methyl 3-((4-bromophenyl)amino)acrylate (1e): Prepared according to General Procedure A from
4-bromo aniline and methyl propiolate. Yield 60%.
CO,Me

1
AT

IH NMR (400 MHz, CDCls): 5 9.88 (d, 1H, J = 12.3 Hz) & 7.40 (d, 2H, J = 8.9 Hz) § 7.18 (dd, 1H, J =
8.4 Hz, 12.3 Hz) 5 6.84 (d, 2H, J = 8.9 Hz) 5 4.88 (d, 1H, J = 8.4 Hz) & 3.72 (s, 3H) NMR data is

consistent with the reported data.

Methyl 3-((4-chlorophenyl)amino)acrylate (1f): Prepared according to General Procedure A from
4-chloro aniline and methyl propiolate. Yield 40%
CO,Me

1
ST

IH NMR (400 MHz, CDCls): § 9.88 (d, 1H, J = 11.4 Hz) § 7.26 (d, 2H, J = 8.8 Hz) § 7.17 (dd, 1H, T =
12.6 Hz, 8.4 Hz)) 5 6.89 (d, 2H, J = 8.8 Hz) § 4.88 (d, 1H, J = 8.4 Hz) & 3.72 (s, 3H) NMR data is

consistent with the reported data.

Methyl 3-((4-methoxyphenyl)amino)acrylate (1g): Prepared according to General Procedure A

from 4-methoxyaniline and methyl propiolate. Yield 56%.
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Ly COMe

N
e

'H NMR (400 MHz, CDCls): 6 9.79 (d, 1H, J = 13.6 Hz) § 7.15 (dd, 1H, J = 8.25 Hz, 12.84 Hz) §
6.92 (d, 2H, J =9.02 Hz) 6 6.85 (d, 2H, J =9.02 Hz) 5 4.79 (d, 1H, J =8.25 Hz) 5 3.78 (s, 3H) 6 3.71
(s, 3H). NMR data is consistent with the reported data.

Methyl 3-((2-methoxyphenyl)amino)acrylate (1h): Prepared according to General Procedure A
from 2-methoxyaniline and methyl propiolate. Yield 66%

OMe H CO,Me

N~

'H NMR (400 MHz, CDCls): & 10.14 (d, 1H, J = 11.9 Hz) & 7.28 (dd, 1H, J = 8.3 Hz, 13.1 Hz)  7.03
(dd, 1H, J = 1.8 Hz, 7.4 Hz) § 6.93 (dqd, 3H, J = 1.8 Hz, 7.4 Hz, 14.9 Hz) 5 4.88 (d, 1H, J = 8.3 Hz) &
3.92 (s, 3H) 6 3.73 (s, 3H). NMR data is consistent with the reported data.

Methyl 3-((4-hydroxyphenyl)amino)acrylate (1i): Prepared according to General Procedure A from
4-hydroxyaniline and methyl propiolate. Yield 60%
CO,Me

1
LT

'H NMR (400 MHz, CDCls): § 9.75 (d, 1H, J = 11.1 Hz) § 7.14 (dd, 1H, J = 8.3 Hz, 12.8 Hz) § 6.86
(d,2H,J=8.9Hz) 6 6.79 (d, 2H, J=8.9 Hz) 5 4.78 (d, 1H, J=8.2 Hz) 4 3.71 (s, 3H). MS (ESI) m/z
calcd. for C10H11NO3 ([M+H]") 194.07, found 194.1.

Methyl 3-((4-((tert-butoxycarbonyl)amino)phenyl)amino)acrylate (1j): Prepared according to

General Procedure A from tert-butyl (4-aminophenyl)carbamate and methyl propiolate. Yield 78%.

h COMe

o
BocHN
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IH NMR (400 MHz, CDCl):  9.82 (d, 1H, J = 12.6 Hz)  7.29 (d, 2H, J = 8.7 Hz) § 7.18 (dd, 1H, J =
8.3 Hz, 12.6 Hz) § 6.90 (m, 2H) & 6.38 (br s, 1H) & 4.81 (d, 1H, J = 8.3 Hz) § 3.71 (s, 3H) 5 1.51 (s,
9H). MS (ESI) m/z calcd. for CisHzN204 ([M+H]") 293.15, found 293.2

Methyl 3-((2-((tert-butoxycarbonyl)amino)phenyl)amino)acrylate (1k): Prepared according to
General Procedure A from tert-butyl (2-aminophenyl)carbamate and methyl propiolate. Yield 44%.

NHBoc  co,Me
N~

'H NMR (400 MHz, CDCls): 6 9.86 (d, 1H, J = 12.0 Hz) § 7.47 (d, 1H, J = 7.8 Hz) § 7.10 (m, 4H) &
6.26 (brs, 1H) 6 4.89 (d, 1H, J =8.3 Hz) 6 3.71 (s, 3H) & 1.53 (s, 9H). MS (ESI) m/z calcd. for
CisH21N204 ([M+H]+) 293.15, found 293.2

Methyl 4-((3-methoxy-3-oxoprop-1-en-1-yl)amino)benzoate (11): Prepared according to General
Procedure A from methyl 4-aminobenzoate and methyl propiolate. Yield 42%.
H COZMe

o
MeOZC

IH NMR (400 MHz, CDCl5): § 10.07 (d, 1H, J = 12.5 Hz) & 7.98 (d, 2H, J = 8.8 Hz) § 7.29 (dd, 1H, J
= 8.4 Hz, 12.5 Hz) 5 6.97 (d, 2H, J = 8.8 Hz) & 4.96 (d, 1H, J = 8.4 Hz) & 3.88 (s, 3H) & 3.73 (s, 3H).

NMR data is consistent with the reported data.

3.8.2.2. General procedure B (for 1m)

Pd(OAc), (3 mol%)

CO,'Bu
NH PivOH (0.25 equiv. H 2
SRR
(3eq.) 0,5, NMP (2 M) (2)

60 °C,15h
To a solution of aniline (3 equiv.), tert-butyl acrylate (1 equiv.), Pd(OACc)2 (3 mol%) and
pivalic acid (0.25 equiv.) in NMP (2 M) was stirred for 15 hours at 60 °C under oxygen atmosphere.
The solution was diluted with EtOAc and filtered through Celite. The solution was concentrated under

reduced pressure. The residue was purified by flash chromatography on silica gel.
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tert-butyl 3-(phenylamino)acrylate (1m): Prepared according to General Procedure B from aniline
and tert-butyl acrylate. Yield = 40%.
4 CO.Bu

N
©/ @)

'H NMR (400 MHz, CDCls): § 9.84 (d, 1H, J = 12.8 Hz) § 7.31 — 7.27 (m, 2H) § 7.18 (dd, 1H, J = 8.4
Hz, 12.8 Hz) 5 7.01 — 6.92 (m, 3H) 6 4.75 (d, 1H, J = 8.4 Hz) 5 1.51 (s, 9H) MS (ESI) m/z calcd. for
CisH1sNO, ([M+H]") 220.1, found 220.2.

3.8.3. Synthetic procedures for maleimide

3.8.3.1. General Procedure C (for 3n, 30, 3r, 3s and 3t)

Os_o0 H © NaOAc (1.2 equiv.) R
R—NH, + \[\;):o e ,NN > 0 N 10
= PhMe (02 M) R OH " Ac,0 (0.2 M) \V\:/v/
(1 equiv.) RT,2h o 120 °C, 12 h

To a solution of maleic anhydride (1 equiv.) in anhydrous toluene (0.2 M) was added amine
(1 equiv.) in anhydrous toluene dropwise while stirring at room temperature. The solution was stirred
for 2 hours at room temperature, the precipitate was filtered and washed with diethyl ether several
time. The collected precipitate was dried under reduced pressure and used without further purification.
To a solution of maleic acid (1 equiv.) in acetic anhydride (0.2 M) was added sodium acetate (1.2
equiv.) and the solution was stirred at 120 °C overnight. The mixture was concentrated under reduced

pressure and purified by flash chromatography on silica gel.

1-benzyl-1H-pyrrole-2,5-dione (3n): Prepared according to General Procedure C from benzyl amine

oy

o]

and maleic anhydride. Two-step yield 56%.

'H NMR (400 MHz, CDCls): & 7.31 (m, 5H) & 6.71 (s, 2H) & 4.68 (s, 2H). NMR data is consistent
with the reported data.

1-cyclohexyl-1H-pyrrole-2,5-dione (30): Prepared according to General Procedure C from

cyclohexyl amine and maleic anhydride. Two-step yield 63%.
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(0]

o

'H NMR (400 MHz, CDCls): 8 6.62 (s, 2H) & 3.91 (tt,1H, J = 3.93 Hz, 12.43 Hz) § 2.05 (qd, 2H, J =
3.20 Hz, 12.43 Hz) 6 1.83 (d, 2H, J = 13.38 Hz) & 1.66 (dd, 3H, J=2.7,J=12.2 Hz) 6 1.37 — 1.19 (m,
3H). NMR data is consistent with the reported data.

1-phenyl-1H-pyrrole-2,5-dione (3r): Prepared according to the General Procedure C from aniline
and maleic anhydride. Two-step Yield 57%.

oM

IH NMR (400 MHz, CDCls): § 7.47 (t, 2H, J = 7.7 Hz) & 7.36 (m, 3H) & 6.85 (s, 2H). NMR data is

consistent with the reported data.

1-(4-methoxyphenyl)-1H-pyrrole-2,5-dione (3s): Prepared according to the General Procedure C

from 4-methoxyaniline and maleic anhydride. Two-step Yield 59%.

'H NMR (400 MHz, CDCls): 8 7.23 (d, ] = 9.1 Hz, 2H), § 6.98 (d, ] = 9.1 Hz, 1H), § 6.83 (s, 2H), &
3.83 (s, 3H) NMR data is consistent with the reported data.

methyl 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoate (3t): Prepared according to the General

Procedure C from methyl 4-aminobenzoate and maleic anhydride. Two-step Yield 69%
o)

2
N
o
MeO2C

'H NMR (400 MHz, CDCls): 5 8.14 (d, 2H, J = 8.8 Hz) § 7.50 (d, 2H, J = 8.8 Hz) § 6.89 (s, 2H) &
3.94 (s, 3H). NMR data is consistent with the reported data.
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3.8.3.2. General procedure D (for 3q)

TBDMSCI (1.1 equiv.)
o TEA(11equiv) TBDMS

H
o= N
ﬂ DCM (0.2 M) Oﬂ

reflux, overnight, 67%

To a stirred and cooled mixture of maleimide (1 equiv.) and TBDMS-CI (1.1 equiv.) in DCM
(0.2 M) was slowly added triethylamine (1.1 equiv.). The solution was refluxed and stirred overnight.
The precipitated triethylammonium chloride was filtered and the filtrate was washed successively
with 5% HCI solution, H,O and brine. The organic layer was dried (Na,SQ.,), filtered and

concentrated under reduced pressure. The crude material was purified by flash chromatography.

1-(tert-butyldimethylsilyl)-1H-pyrrole-2,5-dione (3q): Prepared according to the General

Procedure D from maleimide. Yield 67%
o

\
N
TBDMS

0]

'H NMR (400 MHz, CDCls): § 6.67 (s, 2H), & 0.93 (s, 9H), & 0.44 (s, 6H). NMR data is

consistent with the reported data.

3.8.3.3. General procedure E (for 3u)

0
Oy_0 | 0 H /o
+ B —
I/Eo E/} Et,0 (0.5 M) o
RT, 24 hr H

4 iv.
(4 equiv.) 69%

Step 1: To a solution of maleic anhydride (1 equiv.) in anhydrous diethyl ether (0.5 M) was added
furan (4 equiv.) while stirring at room temperature. The reaction was stirred for 24 hours at room
temperature. The product was precipitated out and was collected by vacuum filtration. The colorless

precipitation was used without further purification.

(3aR,4R,7S,7aS)-3a,4,7,7a-tetrahydro-4,7-epoxyisobenzofuran-1,3-dione
0
H ~o

0
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'H NMR (400 MHz, CDCls): § 6.58 (s, 2H), 5 5.46 (s, 2H), 5 3.18 (s, 2H), NMR data is consistent
with the reported data.

(0]
O
H o ©/\O’ NH, H N,O\/©

Benzene (0.25 M)
H (1 equiv.) Reflux, 3 hr @)
71% H
Step 2: To a solution of (3aR,4R,7S,7aS)-3a,4,7,7a-tetrahydro-4,7-epoxyisobenzofuran-1,3-dione (1
equiv.) in anhydrous benzene (0.25 M) was added solution of N-benzyloxyamine (1 equiv.) in
benzene while stirring at room temperature. The reaction was stirred and refluxed for 3 hours. After
completion (monitored by TLC analysis), the solution was cooled and concentrated under reduced

pressure. The crude material was purified by flash chromatography.

(3aR,4R,7S,7aS)-2-(benzyloxy)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione

o
0
H N

e

'H NMR (400 MHz, CDCl3): § 7.48 (m, 2H),  7.37 (m, 3H), § 6.49 (s, 2H), 8 5.25 (s, 2H) & 5.07 (s,
2H) 8 2.72 (s, 2H). MS (ESI) m/z calcd. for C1sH12NO, ([M+H]") 272.09, found 272.2

g O\)@ N \Q
H NG N,O
N\
6]

o) neat, 180 °C
H 89%

Step 3: (3aR,4R,7S,7aS)-2-(benzyloxy)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione
(1 equiv.) was heated in an oil bath at 170-180 °C under reduced pressure. The solid slowly melted
with vigorous furan evolution. After completion of furan evolution (monitored by TLC analysis), the
yellowish liquid was cooled to room temperature. The crude material was purified by flash

chromatography.

1-(benzyloxy)-1H-pyrrole-2,5-dione (3u)

0]
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'H NMR (400 MHz, CDCls): § 7.48 (m, 2H), § 7.38 (m, 3H), § 6.58 (s, 2H), & 5.10 (s, 2H). MS (ESI)
m/z calcd. for C11H10NO3 ([M+H]") 204.6, found 204.8

3.8.3.4. General procedure F (for 3v)

o NH,NH, H,0 4O 0y

H 0.5 equiv.
o ( quiv.) -
5 AcOH (1 M)
H RT, overnight H H
95% c o

Step 1: To a solution of (3aR,4R,7S,7aS)-3a,4,7,7a-tetrahydro-4,7-epoxyisobenzofuran-1,3-dione (1
equiv.) in glacial acetic acid (1 M) was added hydrazine hydrate (0.5 equiv.) dropwise while stirring
at RT. The reaction was stirred at RT for 1 hour and 50-60 °C for 1 hour then at RT for overnight. The
product was precipitated out and was collected by vacuum filtration. The colorless precipitation was

used without further purification.

(4R,4'R,5R,5'R,8S,8'S,9S,9'S)-4,5,8,8',9,9'-hexahydro-[2,2'-bi(4, 7-epoxyisoindole)]-
1,1',3,3'(4'H,5'H)-tetraone

'H NMR (400 MHz, CDCls): § 6.55 (s, 4H), 8 5.39 (s, 4H), § 3.00 (s, 4H). NMR data is consistent
with the reported data.

HO QH

O O

Bl ) — o [
neat, 180 °C

Ho oH o O

95%

Step 2: (4R,4'R,5R,5'R,8S,8'S,95,9'S)-4,5,8,8',9,9'-hexahydro-[2,2'-bi(4, 7-epoxyisoindole)]-
1,1',3,3'(4'H,5'H)-tetraone (1 equiv.) was heated in an oil bath at 170-180 °C under reduced pressure.
The solid slowly melted with vigorous furan evolution. After completion of furan evolution
(monitored by TLC analysis), the residue was cooled to RT. The crude material was purified by flash

chromatography.
[1,1'-bipyrrole]-2,2',5,5'-tetraone (3v)
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0 0
0 O

'H NMR (400 MHz, CDCl3): § 6.93 (s, 4H). NMR data is consistent with the reported data.

3.8.4. Synthetic procedures for other coupling partners

3.8.4.1. (Z)-ethyl 3-cyanoacrylate (3x)

oL o NHs (g) (excess) CONH,
e
I/Eo 1,4-dioxane (0.2 M) HOzC\%

1 hr, 80°C, 99%

Step 1: A solution of maleic anhydride (1 equiv.) in anhydrous 1,4-dioxane (0.2 M) was preheated to
80 °C. When the maleic anhydride had melted, ammonium hydroxide solution was heated to 40 °C to
generate ammonia gas. The stream of ammonia gas was introduced to the maleic anhydride solution

for 1 hour. White precipitate was collected by vacuum filtration.

(2)-4-amino-4-oxobut-2-enoic acid

CONH,

HOQC\%

IH NMR (400 MHz, MeOH-d4): § 6.31 (d, 2H, J = 12.9 Hz), & 6.05 (d, 2H, J = 12.9 Hz). MS (ESI)
m/z calcd. for CsHsNO3 ([M+H]") 116.03, found 116.1

o}

CONH, )J\ TEA (2.05 equiv.) CN
HO,C.__~ + CI” DOEt Etozc\/
2 % CH,Cl, (0.25 M), 0°C to RT 2)

(2.2 equiv.)  72%

Step 2: To a solution of (Z)-4-amino-4-oxobut-2-enoic acid (1 equiv.) in anhydrous CH.Cl, (0.25 M)
was cooled to 0 °C under nitrogen atmosphere. To the solution was added trimethylamine (2.05
equiv.) dropwise followed by addition of ethyl chloroformate (2.2 equiv.) dropwise. After completion
of addition, the solution was allowed to warm to RT and stirred for 24 h. After completion, a 10%
aqueous NaOH solution was added to the reaction mixture and the organic layer was separated. The

aqueous layer was extracted with dichloromethane three times and the combined organic layers was

64



dried over anhydrous MgSOs. The solution was concentrated under reduced pressure. The crude
material was purified by flash chromatography.

(2)-ethyl 3-cyanoacrylate (3x):

CN
Et0,C._J

(2)

'H NMR (400 MHz, CDCl3): § 6.57 (d, 2H, J = 11.5 Hz), § 5.95 (d, 2H, J = 11.5 Hz), § 4.33 (q, 2H, J
=7.1Hz) 6 1.36 (t, 3H, J = 7.1 Hz). NMR data is consistent with the reported data.

3.8.4.2. (E)-dimethyl hex-2-en-4-ynedioate (3z)

o)
o DABCO (1 mol%)

" H,CO” O\
%OCH3 CH,Cl, (0.5 M) ° E~_OCH;,
0°C, 1 hour, 97% I

To a solution of methyl propiolate (1 equiv.) in CH2Cl, (0.5 M) at 0 °C was added DABCO (1 mol%)
in CH.Cl,. The reaction immediately turned dark and was stirred for 1 hour. The solution was

concentrated under reduced pressure. The crude material was purified by flash chromatography.

(E)-dimethyl hex-2-en-4-ynedioate (3z)

0
HCO™ "Ne_och,

o

'H NMR (400 MHz, CDCls): § 6.79 (d, 2H, J = 16.0 Hz), § 6.47 (d, 2H, J = 16.0 Hz), 5 3.83 (s, 3H), &
3.79 (s, 3H). NMR data is consistent with the reported data.
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3.8.4.3. Togni’s reagent II (2ab)

j\
Clo _ClI
j\ /’L
| OH 0™ 'N° "0 cl
N .
o Cl (1.01Cl equwz |\o
MeCN (0.2 M), 75°C, 0.5 hr

92% o)

Step 1: To a solution of 2-iodobenzoic acid (1 equiv.) in MeCN (0.2 M) at 75 °C was added a
solution of trichloroisocyanuric acid (1.01 CI* equiv.) in MeCN in one portion. The solution was
stirred and heated at 75 °C for 30 minutes. After completion, the solution was diluted with MeCN and
the precipitated product was filtered on vacuum filtration. The filter cake was rinsed with additional

amount of hot MeCN two times.

1-chloro-122 -benzo[d][1,2]iodaoxol-3(1H)-one

'H NMR (400 MHz, CDCl3): 6 8.26 (dd, 1H, J = 7.5, 1.5 Hz), § 8.21 (d, 1H, J = 8.5 Hz), & 8.00 (m,
1H), 6 7.80 (t, 1H, J = 7.3 Hz). NMR data is consistent with the reported data.

Cl OAc
[ KOAC (2 equiv.) [
\
o — —————~ 0
MeCN (1 M), reflux
5 2hr, 72% o

Step 2: To a solution of 1-chloro-1*® -benzo[d][1,2]iodaoxol-3(1H)-one (1 equiv.) in MeCN (1 M)
was added potassium acetate (2 equiv.) under nitrogen atmosphere. The resulting suspension was
stirred for 2 hours during refluxing. The solution was cooled to RT. and diluted with CHCI; then
filtered on Celite to remove KCI salt. The filtrate was concentrated under reduced pressure. The crude

material was purified by flash chromatography.
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1-acetoxy-1,2-benziodoxol-3-one

'H NMR (400 MHz, CDCls): 6 8.27 (d, 1H, J = 7.6 Hz), 5 8.01 (d, 1H, J = 8.3 Hz), § 7.93 (ddd, 1H, J
=8.3,7.2, 1.6 Hz), 6 7.72 (t, 1H, J = 7.4 Hz). NMR data is consistent with the reported data.

pAC TMSCF; (1.4 equiv.) /CF3
I CsF (2.5 mol%) I
6] > o]
MeCN (0.5 M), RT
0 24 hr, 66% o)

Step 3: To a solution of 1-acetoxy-1,2-benziodoxol-3-one (1 equiv.) in MeCN (0.5 M) was added
anhydrous CsF (2.5 mol%), TMSCF; (1.4 equiv.) under nitrogen atmosphere. The solution was stirred
at RT for 24 hours (reaction turns brown). The white precipitation was collected by vacuum filtration.
The white solid was dissolved in CHCI; and insoluble materials were removed by filtration through a
cotton plug. The colorless filtrate was washed with water and saturated Na-COj; solution. The organic

layer was dried over MgSOy, filtered and concentrated under reduced pressure to afford pure product.

Togni’s reagent II (2ab)

'H NMR (400 MHz, CDCls):  8.48 (dd, 1H, J = 7.1, 1.9 Hz), § 7.86 — 7.74 (m, 3H). NMR

data is consistent with the reported data.
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3.8.5. Procedure for optimization studies

3.8.5.1. First optimized reaction condition

Et0,C.__CO,Et

H CO,Me Br CH, 1) Photoredox catalyst
N\/ )\ N Base, Solvent N
+ EtO,C7 “CO,Et + O o Blue LED, RT X CO,Me
r D@
2)DDQ (2.1 eq.)
1a 2a 3a PhMe, 100 °C, 2 h N

(] \
4a

To an oven-dried 4 mL vial equipped with a stir bar was added photocatalyst Ir(ppy).(dtbbpy)PFs
(1.4 mg, 1.5 umol, 0.03 equiv.), anhydrous sodium phosphate dibasic (powder) (7.1 mg, 0.05 mmol, 1
equiv.), methyl 3-(phenyl amino) acrylate 1a (8.9 mg, 0.05 mmol, 1 equiv.) and N-methyl maleimide
3a (16.7 mg, 0.15 mmol, 3 equiv.). Required amounts of anhydrous acetonitrile (1 mL) and diethyl
bromomalonate 2a (90 % purity, 9.5 puL, 0.05 mmol, 1 equiv.) were added under argon atmosphere in
glovebox. The reaction mixture was irradiated with a 12 W blue LED lamp (5 cm away, 25 °C
maintained with a cooling fan) for 18 h. After evaporating the solvent under reduced pressure, the
crude material was dissolved in toluene (1 mL) and treated with 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ) (23.8 mg, 0.105 mmol, 2.1 equiv.). The mixture was heated at 100 °C for 2 h.

NMR vyields were calculated by using 1,1,2-trichloroethene as an internal standard.

Proposed reaction mechanism — Preliminary result

Et0,C.__CO,Et EtOZC CO,Et Et0,C.__CO,Et

H
Base
/ /’\i CO,Me CO,Me CO,Me
[e]
\]\;N):o Visible light o SH*
= " Y H N

[ e—— 1"

Oxidative
Quenching

Cycle
CO,Et
(0] / 2

N [y

EtO,C.__CO,Et EtOZC
¥
N O CO,Me ©/ CO,Me
\ 6-endo-tril
3a 1):0 () o 9
EtOZCYCOZEt N | Eoc _COLEt e
-Br n

Br 2a' Et0,C.__CO,Et
2a (\\/ H\/\(
Et0,C.__CO,Et N
P L e
=
NG CO,Me C
(=
L =0
N

S

3a
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3.8.5.2. Second optimized reaction condition

EtO,C.__CO,Et

H ©OMe Br CHs 1) Photoredox catalyst
NI )\ N Base, Solvent Ns CO,Me
+ Et0,C” “CO,Et + O o Blue LED, RT 2
— - ZN\0
! 2)DDQ (4.1 eq.) N
PhMe, 100 °C, 2 h N
1d 2a 3a

4d

To an oven-dried 4 mL vial equipped with a stir bar was added photocatalyst fac-Ir(ppy)s (1.0 mg, 1.5
umol, 0.03 equiv.), sodium ascorbate (19.8 mg, 0.1 mmol, 2 equiv.), anhydrous sodium phosphate
dibasic (powder) (8.5 mg, 0.06 mmol, 1.2 equiv.), methyl 3-((4-iodophenyl) amino) acrylate 1d (15.2
mg, 0.05 mmol, 1 equiv.) and N-methyl maleimide 3a (16.7 mg, 0.15 mmol, 3 equiv.). Required
amounts of anhydrous acetone (1 mL) and diethyl bromomalonate 2a (90 % purity, 11.35 uL, 0.06
mmol, 1.2 equiv.) were added under argon atmosphere in glovebox. The reaction mixture was irradiated
with a 12 W blue LED lamp (5 cm away, 25 °C maintained with a cooling fan) for 18 h. After
evaporating the solvent under reduced pressure, the crude material was dissolved in toluene (1 mL) and
treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (46.5 mg, 0.205 mmol, 4.1 equiv.).
The mixture was heated at 100 °C for 2 h. NMR vyields were calculated by using 1,1,2-trichloroethene

as an internal standard.

3.8.6. Procedures for Three-Component Synthesis of Quinolines based on Radical Cascade Visible-

Light Photoredox Catalysis

1) fac-Ir(ppy)s [3 mol%] EtO,C CO,Et
NaAsc (2 equiv.)
CO,Me — !
H 2 Br A Na,HPO, (1.2 equiv.) N
N\) + )\ +* 07\ TO Acetone (0.05 M) = COMe
/©/ BIO,C™ "COaBt | Blue LED, RT | Ao
| . .
1d 2a (1.2 equiv.) 3a (3 equiv.) 2) DDQ (4.1 equiv.) N

(e} \

Toluene, 100°C
4d (84%)

To an oven-dried 4 mL vial equipped with a stir bar was added photocatalyst fac-Ir(ppy)s (2.0
mg, 3 pmol, 0.03 equiv.), sodium ascorbate (39.6 mg, 0.2 mmol, 2 equiv.), anhydrous sodium
phosphate dibasic (powder) (17 mg, 0.12 mmol, 1.2 equiv.), methyl 3-((4-iodophenyl) amino) acrylate
1d (30.3 mg, 0.1 mmol, 1 equiv.) and N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.).
Required amounts of anhydrous acetone (2 mL) and diethyl bromomalonate 2a (90 % purity, 22.7 uL,
0.12 mmol, 1.2 equiv.) were added under argon atmosphere in glovebox. The reaction mixture was
irradiated with a 12 W blue LED lamp (5 cm away, 25 °C maintained with a cooling fan) for 18 h.
After evaporating the solvent under reduced pressure, the crude material was dissolved in toluene (2

mL) and treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (93 mg, 0.41 mmol, 4.1
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equiv.). The mixture was heated at 100 °C for 2 h. Aromatization reaction was monitored by TLC
analysis. The solution was filtered on Celite and concentrated under reduced pressure. The residue
was purified by flash chromatography (silica gel, 20 — 50% EtOAc in hexanes), yielding the
corresponding final product.

3.8.7. Characterization data of Quinolines 4

1,1-diethyl 2-methyl 2-(2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-
1,1,2-tricarboxylate (4a): Prepared following the general procedure outlined above using methyl 3-
(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 % purity,
22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s
(2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO4 (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93
mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography yielded the

pure product. (74 % yield).

Et0,C.__CO,Et

N
~N COZMe
ZN\_—0

N
O \

'H NMR (400 MHz, CDCls): & 8.82 (d, 1H, J = 8.4 Hz) § 8.10 (d, 1H, J = 8.6 Hz) 5 7.87 (t, 1H, J =
7.73 Hz) 5 7.85 (t, 1H, J = 7.6 Hz) 5 5.81 (d, 1H, J = 9.75 Hz) § 4.77 (d, 1H, J = 9.75 Hz) 5 4.32 (q,
2H, J=7.1Hz) 5 4.02 (m, 2H) § 3.65 (5, 3H) 5 3.25 (s, 3H) 5 1.35 (t, 3H, J = 7.12 Hz) & 1.08 (t, 3H, J
= 7.11 Hz).

13C NMR (100 MHz, CDCls): § 170.1, 168.1, 167.9, 167.7, 167.5, 151.6, 150.9, 136.4, 132.6, 129.8,
129.6, 124.8, 122.5, 120.9, 61.8, 61.6, 52.8, 52.6, 48.1, 24.1, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C22H2.N2NaOs ([M+Na]*) 465.1268, found 465.12609.

1,1-diethyl 2-methyl 2-(2,8-dimethyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)
ethane-1,1,2-tricarboxylate (4b): Prepared following the general procedure outlined above using
methyl 3-(p-tolyl amino) acrylate, 1b (19.1 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 %
purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-
Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), NazHPO,4 (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL),
DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography

yielded the pure product. (61 % yield).
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EtO,C CO,Et
N
~N CO,Me

HsC ZN\ 0

N
o \

'H NMR (400 MHz, CDCI3): § 8.58 (s, 1H) § 7.98 (d, 1H, J=8.7 Hz) & 7.69 (dd, 1H, J = 1.9 Hz, 8.8
Hz) 5 5.78 (d, 1H, J=9.8 Hz) § 4.75 (d, 1H, J = 9.8 Hz) § 4.32 (qd, 2H, J = 0.9 Hz, 7.1 Hz)  4.01 (m,
2H) § 3.65 (s, 3H) & 3.24 (s, 3H) & 1.34 (t, 3H, J = 7.1 Hz) § 1.06 (t, 3H, ] = 7.1 Hz).

3C NMR (100 MHz, CDCI3): § 170.2, 168.2, 167.9, 167.8, 167.5, 150.5, 149.8, 140.4, 135.4, 135.0,
129.4,123.3, 122.4, 121.1, 61.7, 61.6, 52.8, 52.6, 47.9, 24.0, 21.9, 14.0, 13.8;

HRMS (ESI-TOF) m/z calcd. for CasH24N2NaOg ([M+Na]+) 479.1425, found 479.1426.

1,1-diethyl 2-methyl 2-(2,6-dimethyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)
ethane-1,1,2-tricarboxylate (4c): Prepared following the general procedure outlined above using
methyl 3-(o-tolyl amino) acrylate, 1b (19.1 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 %
purity, 22.7 pL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-
Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), NazHPO4 (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL),
DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography
yielded the pure product. (70 % vyield).

Et0,C. _CO,Et
CH,y 2 2

N
X NCco,Me

ZN\ 0

N
o \

'H NMR (400 MHz, CDCls): & 8.67 (d, 1H, J = 8.3 Hz) § 7.70 (d, 1H, J = 7.0 Hz) § 7.62 (m, 1H) &
5.75 (d, 1H, J = 9.3 Hz) 5 4.76 (d, 1H, J = 9.3 Hz) § 4.31 (dddd, 2H, J = 3.6 Hz, 7.1 Hz, 10.8 Hz, 17.8
Hz) & 4.04 (dddd, 2H, J = 3.6 Hz, 7.1 Hz, 10.8 Hz, 17.8 Hz) & 3.66 (s, 3H) 5 3.23 (s, 3H) & 2.74 (s,
3H) & 1.33 (t, 3H, J = 7.1 Hz) 5 1.09 (t, 3H, J = 7.1 Hz);

13C NMR (100 MHz, CDCls): § 170.2, 168.1, 167.9, 167.8, 167.6, 149.99, 149.97, 138.1, 136.5,
132.7,129.6, 122.5, 122.3, 121.1, 61.8, 61.6, 52.7, 52.6, 48.5, 24.0, 18.1, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C2sH24N2NaOs ([M+Na]*) 479.1425, found 479.1427.
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1,1-diethyl 2-methyl 2-(8-iodo-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-
yl)ethane-1,1,2-tricarboxylate (4d): Prepared following the general procedure outlined above using
methyl 3-((4-iodophenyl) amino) acrylate, 1d (30.3 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate
2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3
equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2 equiv.),
acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column
chromatography yielded the pure product. (64 % yield).

EtO0,C.__CO,Et
N
X7 YCOo,Me

ZN\ 0

N
O \

'"H NMR (400 MHz, CDCls): & 9.20 (d, 1H, J = 1.80 Hz) § 8.09 (dd, 1H, J = 2.0, 9.0 Hz) & 7.79 (d,
1H,J=9.0Hz) 6 5.77 (d, 1H, J=9.8 Hz) 6 4.72 (d, 1H, J=9.8 Hz) 6 4.31 (qd, 2H, J=1.4 Hz, 7.1
Hz) 6 4.01 (m, 2H) 6 3.64 (s, 3H) 8 3.24 (s, 3H) 6 1.33 (t, 3H, J =7.14 Hz) 5 1.07 (t, 3H, J = 7.14 Hz).
3C NMR (100 MHz, CDCls): & 169.8, 167.7, 167.5, 167.4, 167.3, 152.3, 149.7, 141.4, 134.9, 133.6,
131.0, 123.0, 122.2, 96.4, 61.8, 61.7, 52.7, 52.6, 48.0, 24.2, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C22H21IN2NaOs ([M+Na]") 591.0235, found 591.0234.

1,1-diethyl 2-methyl 2-(8-bromo-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-
yl)ethane-1,1,2-tricarboxylate (4e): Prepared following the general procedure outlined above using
methyl 3-((4-bromophenyl) amino) acrylate, 1e (25.6 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg,
0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (69 % yield).

EtO,C.__CO,Et

N
X NCco,Me

Br & O

N
o \

72



'H NMR (400 MHz, CDCls): & 8.99 (s, 1H) & 7.94 (m, 2H) § 5.78 (d, 1H, J = 9.76 Hz) § 4.73 (d, 1H,
J=9.76 Hz) § 4.32 (q, 2H, J = 6.7 Hz) 5 4.02 (m, 2H) & 3.65 (s, 3H) & 3.25 (5, 3H) 5 1.34 (t, 3H, J =
7.12 Hz) 8 1.08 (t, 3H, J = 7.12 Hz).

¥C NMR (100 MHz, CDCls): 6 169.8, 167.8, 167.5, 167.4, 167.3, 152.1, 149.4, 136.2, 135.3, 131.2,
129.1, 126.9, 124.5, 123.2, 121.8, 61.9, 61.7, 52.7, 48.0, 24.2, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C2H,:BrN2NaOs ([M+Na]*) 543.0373, found 543.0376.

1,1-diethyl 2-methyl 2-(8-chloro-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-
yl) ethane-1,1,2-tricarboxylate (4f): Prepared following the general procedure outlined above using
methyl 3-((4-chlorophenyl) amino) acrylate, 1f (21.2 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg,
0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (66 % yield).

EtO,C.__CO,Et
N
X7 NCo,Me

Cl ZN\ 0

N
O \

'H NMR (400 MHz, CDCls): & 8.80 (d, 1H, J = 2.0 Hz) § 8.03 (d, 1H, J = 9.2 Hz) § 7.79 (dd, 1H, J =
2.3 Hz, 9.2 Hz) 5 5.78 (d, 1H, J = 9.8 Hz) § 4.73 (d, 1H, J = 9.8 Hz) § 4.31 (q, 2H, J = 6.8) 5 4.02 (m,

2H) & 3.65 (s, 3H) 8 3.25 (s, 3H) & 1.34 (t, 3H, J = 7.1 Hz) § 1.08 (t, 3H, J = 7.1 H2).

13C NMR (100 MHz, CDCls): § 169.9, 167.7, 167.5, 167.4, 167.3, 152.0, 149.2, 136.2, 135.5, 133.6,
131.2, 129.6, 127.5, 123.6, 121.4, 61,8, 61.7, 52.7, 48.0, 24.2, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C22H21CIN2NaOs ([M+Na]*) 499.0879, found 499.0880.

1,1-diethyl 2-methyl 2-(8-methoxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-
yl)ethane-1,1,2-tricarboxylate (4g): Prepared following the general procedure outlined above using
methyl 3-((4-methoxyphenyl) amino) acrylate, 1g (20.7 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg,
0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (77 % yield).
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EtO0,C.__CO,Et
N
X7 YCOo,Me

MeO N0

N
O \

IH NMR (400 MHz, DMSO): & 7.98 (d, 1H, J = 9.4 Hz) 5 7.96 (d, 1H, J = 2.8 Hz) & 7.63 (dd, 1H, J
= 2.9 Hz, 9.3 Hz) §5.58 (d, 1H, J = 9.8 Hz) 5 4.49 (d, 1H, J= 9.8 Hz) 5 4.21 (g, 2H, J= 7.1 Hz) &
3.94 (s, 3H) 5 3.89 (q, 2H, J = 7.1 Hz) & 3.54 (s, 3H) 5 3.09 (s, 3H) 5 1.22 (t, 3H, J = 7.1 Hz) § 0.87 (t,
3H, J=7.1Hz).

13C NMR (100 MHz, DMSO): 5 170.0, 168.2, 168.0, 167.8, 167.1, 160.4, 148.3, 147.1, 134.7, 131.3,
126.5, 122.9, 122.4, 101.7, 61.9, 61.8, 56.4, 53.02, 53.00, 47.6, 24.3, 14.3, 13.9.

HRMS (ESI-TOF) m/z calcd. for CosH24N2NaOs ([M+Na]*) 495.1374, found 495.1375.

1,1-diethyl 2-methyl 2-(6-methoxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-
yl) ethane-1,1,2-tricarboxylate (4h): Prepared following the general procedure outlined above using
methyl 3-((2-methoxyphenyl) amino) acrylate, 1h (20.7 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg,
0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), NazHPQO, (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (61 % yield).

Et0,C_ _CO,Et
OMe 2 2

N
X NCco,Me

ZN\ 0

N
o \

'H NMR (400 MHz, CDCls): & 8.58 (s, 1H) 5 7.98 (d, 1H, J = 8.7 Hz) 5 7.69 (d, 1H, J = 8.8 Hz) &
5.78 (d, 1H, J = 9.8 Hz) 5 4.75 (d, 1H, J = 9.8 Hz) 5 4.31 (q, 2H, J = 7.1 Hz) & 4.01 (m, 2H) 5 3.64 (s,
3H) & 3.24 (s, 3H) & 2.60 (s, 3H) & 1.34 (t, 3H, J = 7.1 Hz)  1.06 (t, 3H, J = 7.1 Hz).

13C NMR (100 MHz, CDCls): § 170.2, 168.2, 167.9, 167.8, 167.5, 150.5, 149.8, 140.4, 135.4, 135.0,
129.4,123.3, 122.4, 121.1, 61.7, 61.6, 52.8, 52.6, 47.9, 24.0, 21.9, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for CosH24N2NaOs ([M+Na]*) 495.1374, found 495.1376.

1,1-diethyl 2-methyl 2-(8-hydroxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-

yl) ethane-1,1,2-tricarboxylate (4i): Prepared following the general procedure outlined above using

74



methyl 3-((4-hydroxyphenyl) amino) acrylate, 1i (19.3 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg,
0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (52 % yield).

EtO,C.__CO,Et

N
X NCco,Me
=

HO o

N
O \

'H NMR (400 MHz, DMSO): § 10.85 (s, 1H)  7.94 (dd, 2H, J = 6.1 Hz, 7.7 Hz) § 7.52 (dd, 1H, J =
2.7 Hz, 9.2 Hz) § 5.56 (d, 1H, J = 9.9 Hz) & 4.47 (d, 1H, J = 9.9 Hz) § 4.21 (dd, 2H, J = 6.6 Hz, 13.7
Hz) 6 3.88 (g, 2H, J =7.0 Hz) 6 3.53 (s, 3H) & 3.08 (s, 3H) 6 1.22 (t, 3H,J=7.1 Hz) § 0.86 (t, 3H, J =
7.0 Hz)

3C NMR (100 MHz, DMSO0): § 170.19, 168.3, 168.1, 167.8, 167.1, 159.2, 147.2, 146.4, 134.1,
131.5, 126.6, 122.7, 122.6, 104.8, 61.8, 61.7, 53.0, 52.9, 47.5, 24.3, 14.3, 13.9.

HRMS (ESI-TOF) m/z calcd. for C22H22N2,NaOy ([M+Na]*) 481.1218, found 481.1220.

1,1-diethyl 2-methyl 2-(8-((tert-butoxycarbonyl)amino)-2-methyl-1,3-dioxo-2,3-dihydro-1H-
pyrrolo[3,4-c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4j): Prepared following the general
procedure outlined above using methyl 3-((4-((tert-butoxycarbonyl)amino)phenyl)amino)acrylate, 1j
(29.2 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 % purity, 22.7 pL, 0.12 mmol, 1.2
equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03
equiv.), NazHPO4 (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1
equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure product. (73 %
yield).
EtO,C.__CO,Et
NS CO,Me
=

BocHN (0]

N
o \

'H NMR (400 MHz, CDCls): & 8.32 (d, 1H, J = 1.74 Hz) § 8.17 (d, 1H, J = 8.8 Hz) 5 7.98 (d, 1H, J =
9.3 Hz) § 7.17 (s, 1H) § 5.75 (d, 1H, J = 10.0 Hz) 5 4.76 (d, 1H, J = 10.0 Hz) & 4.32 (m, 2H) & 4.05
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(m, 2H) 6 3.65 (s, 3H) 6 3.19 (s, 3H) 6 1.58 (s, 9H) 6 1.34 (t, 3H,J=7.1Hz) § 1.09 (t, 3H,J=7.1
Hz).

C NMR (100 MHz, CDCls): § 170.29, 167.93, 167.88, 167.74, 167.70, 152.27, 149.39, 147.87,
139.94, 134.78, 130.68, 125.26, 122.84, 121.66, 109.56, 81.6, 61.79, 61.75, 52.86, 52.68, 47.95,
28.26, 24.01, 14.06, 13.8

HRMS (ESI-TOF) m/z calcd. for C27H3:N3sNaO1o ([M+Na]*) 580.1902, found 580.1903.

1,1-diethyl 2-methyl 2-(6-((tert-butoxycarbonyl)amino)-2-methyl-1,3-dioxo-2,3-dihydro-1H-
pyrrolo[3,4-c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4k): Prepared following the general
procedure outlined above using methyl 3-((2-((tert-butoxycarbonyl)amino)phenyl)amino)acrylate, 1k
(29.2 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 % purity, 22.7 pL, 0.12 mmol, 1.2
equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03
equiv.), NaaHPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1
equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure product. (60 %

yield).

EtO,C CO,Et
NHBoc

N
X NCco,Me
=

o

N
O \

'H NMR (400 MHz, CDCls): & 8.64 (d, 1H, J = 7.6 Hz) § 8.60 (s, 1H) § 8.40 (dd, 1H, J = 8.4, 11 Hz)
§7.71(t, 1H, J =8.2 Hz) 5 5.72 (d, 1H, J = 8.6 Hz) & 4.65 (d, 1H, J = 8.6 Hz) & 4.32 (m, 2H) 5 4.10
(m, 2H) & 3.69 (s, 3H) & 3.23 (s, 3H) & 1.60 (s, 9H) & 1.30 (t, 3H, J = 7.1 Hz) 5 1.13 (t, 3H, J = 7.1 H2)
13C NMR (100 MHz, CDCls): § 169.94, 167.81, 167.69, 167.67, 167.54, 152.66, 149.19, 140.52,
136.57, 135.82, 131.01, 123.19, 121.19, 118.00, 117.16, 81.16, 61.98, 61.85, 52.79, 52.58, 48.45,
28.37, 24.18, 13.99, 13.84.

HRMS (ESI-TOF) m/z calcd. for Co7HaiNsNaOyo ([M+Na]*) 580.1902, found 580.1903.

1,1-diethyl 2-methyl 2-(8-(methoxy carbonyl)-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo [3,4-c]
guinolin-4-yl) ethane-1,1,2-tricarboxylate (41): Prepared following the general procedure outlined
above using methyl 4-((3-methoxy-3-oxoprop-1-en-1-yl) amino) benzoate, 11 (19.3 mg, 0.1 mmol, 1
equiv.), diethyl bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl
maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO,
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(17 mg, 0.12 mmol, 1.2 equiv.), Acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2
mL). Purification by column chromatography yielded the pure product. (49 % yield).

EtO,C.__CO,Et

N
S YCOo,Me
MeO,C ZN\—0

N
O \

'H NMR (400 MHz, CDCls): & 8.87 (d, 1H, J=8.7 Hz) 5 8.79 (d, 1H, J = 1.5 Hz) § 8.31 (dd, 1H, J =
1.5,8.7 Hz) 8 5.81 (d, 1H, J = 9.7 Hz) § 4.76 (d, 1H, J = 9.7 Hz) & 4.33 (q, 2H, J = 7.1 Hz) & 4.09-4.00
(m, 5H) & 3.66 (s, 3H) 5 3.26 (s, 3H) & 1.36 (t, 3H, J = 7.1 Hz) § 1.10 (t, 3H, J = 7.1 Hz).

3C NMR (100 MHz, CDCls): & 169.9, 167.8, 167.6, 167.5, 167.4, 166.0, 152.9, 150.4, 136.3, 133.6,

131.9,129.0, 125.2, 124.0, 123.2, 61.9, 61.8, 52.82, 52.80, 48.1, 24.2, 14.1, 13.8.

HRMS (ESI-TOF) m/z calcd. for C24H24N2NaO1o ([M+Na]*) 523.1323, found 523.1325.

2-tert-butyl 1,1-diethyl 2-(2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)
ethane-1,1,2-tricarboxylate (4m): Prepared following the general procedure outlined above using
tert-butyl 3-(phenyl amino) acrylate, 1m (22 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a
(90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.),
fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2
mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column
chromatography yielded the pure product. (59 % vyield).

Et0,C.__CO,Et
N
N COZtBU

FN\ 0

N
0} \

'H NMR (400 MHz, CDCls): & 8.80 (d, 1H, J = 8.4 Hz) & 8.07 (d, 1H, J = 8.5 Hz) & 7.85 (ddd, 1H, J
=1.4Hz, 7.4 Hz, 8.5 Hz)  7.72 (m, 1H) & 5.64 (d, 1H, J = 9.1 Hz) 5 4.66 (d, 1H, J = 9.1 Hz) § 4.32
(m, 2H) 5 4.04 (pd, J = 3.7 Hz, 6.9 Hz) 6 3.23 (s, 3H) 5 1.37 — 1.32 (m, 12H) § 1.10 (t, 3H, J = 7.1
Hz).

3C NMR (100 MHz, CDCls):  168.4, 168.1, 167.9, 167.8, 167.7, 152.3, 150.8, 136.1, 134.1, 132.4,
129.7, 124.8, 122.7, 120.8, 82.5, 61.59, 61.58, 52.6, 49.2, 27.7, 24.0, 14.1, 13.8.

HRMS (ESI-TOF) m/z calcd. for CasHasN2NaOs ([M+Na]*) 507.1738, found 507.1741.
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1,1-diethyl 2-methyl 2-(2-benzyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-
1,1,2-tricarboxylate (4n): Prepared following the general procedure outlined above using methyl 3-
(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.),  diethyl bromomalonate 2a (90 %
purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), N-benzyl maleimide 3n (56.2 mg, 0.3 mmol, 3 equiv.), fac-
Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na2HPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL),
DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography
yielded the pure product. (87 % yield).

EtO,C._CO,Et
N
N COQMe

FN_0

o] N\_Q
'H NMR (400 MHz, CDCls): & 8.81 (dd, 1H, J = 0.7 Hz, 8.4 Hz) § 8.09 (d, 1H, J = 8.5 Hz) § 7.86
(ddd, 1H, J = 1.4 Hz, 6.9 Hz, 8.5 Hz)  7.73 (ddd, 1H, J = 1.1 Hz, 7.0 Hz, 8.2 Hz) 5 7.47 (d, 2H, J =
6.9 Hz) § 7.39 — 7.28 (m, 3H) 5 5.79 (d, 1H, J = 9.7 Hz) 5 4.90 (d, 2H, J = 3.3 Hz) § 4.73 (d, 1H, J =
9.7 Hz) § 4.32 (qd, 2H, J = 1.3 Hz, 7.1 Hz) 5 3.98 (qd, 2H, J = 2.2 Hz, 7.1 Hz)  3.63 (5, 3H) & 1.34 (t,
3H,J=7.1Hz) § 1.03 (t, 3H, J = 7.1 Hz);
BC NMR (100 MHz, CDCls): 6 170.0, 167.9, 167.6, 167.4, 167.3, 151.6, 151.0, 136.2, 135.9, 132.6,

129.8, 129.7, 128.75, 128.71, 128.0, 124.8, 122.4, 121.0, 61.8, 61.6, 52.8, 52.6, 48.1, 41.8, 14.0, 13.8.
HRMS (ESI-TOF) m/z calcd. for C2sH26N2NaOg ([M+Na]*) 541.1581, found 541.1582.

1,1-diethyl 2-methyl 2-(2-cyclohexyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)
ethane-1,1,2-tricarboxylate (40): Prepared following the general procedure outlined above using
methyl 3-(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.),  diethyl bromomalonate 2a
(90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), 1-cyclohexyl-1H-pyrrole-2,5-dione, 30 (53.8 mg, 0.3
mmol, 3 equiv.), fac-Ir(ppy)s(2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (71 % yield).
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EtO,C._ _CO,Et

N
X7 NCco,Me

ZN\ 0

e
'H NMR (400 MHz, CDCls): & 8.81 (d, 1H, J = 7.9) § 8.08 (d, 1H, J = 8.6 Hz) & 7.85 (ddd, 1H, J =
1.3 Hz, 7.0 Hz, 8.5 Hz) § 7.75 - 7.70 (m ,1H) § 5.78 (d, 1H, J = 9.7 Hz) § 4.74 (d, 1H, J = 9.7 Hz) §
4.31(qd, 2H, J = 1.9 Hz, 7.1 Hz) § 4.20 — 4.12 (m, 1H) & 4.01 (qd, 2H, J = 3.0 Hz, 7.1 Hz) & 2.24 (ddd,
2H, J=8.7 Hz, 12.8 Hz, 16.7 Hz) § 1.89 (d, 2H, J = 13.0 Hz) § 1.79 (d, 2H, J = 11.3 Hz) § 1.72 (d,
1H,J=12.1Hz) § 1.45-1.36 (m, 2H) § 1.33 (t, 3H, J= 7.1 Hz) § 1.07 (t, 3H, J = 7.1 H2).
3C NMR (100 MHz, CDCls): § 170.1, 168.0, 167.9, 167.7, 167.5, 151.5, 150.9, 136.0, 132.4, 129.7,

129.5,124.8,122.1, 121.0, 61.7, 61.6, 52.8, 52.6, 51.2, 48.0, 29.9, 29.8, 26.0, 14.0, 13.8.
HRMS (ESI-TOF) m/z calcd. for C27H30N2NaOg ([M+Na]*) 533.1894, found 533.1896.

1,1-diethyl 2-methyl 2-(1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-1,1,2-
tricarboxylate (4p): Prepared following the general procedure outlined above using methyl 3-(phenyl
amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.),  diethyl bromomalonate 2a (90 % purity, 22.7
uL, 0.12 mmol, 1.2 equiv.), maleimide 3p (29.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003
mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41
mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure
product. (56 % vyield).

EtO,C._ _CO,Et
N
X7 NCo,Me

ZN\ 0

o N‘H
'H NMR (400 MHz, CDCls): & 8.81 (ddd, 1H, J = 0.6 Hz, 1.4 Hz, 8.4 Hz) §8.14 —8.10 (m, 1H) &
7.89 (ddd, 1H, 1.5 Hz, 6.9 Hz, 8.5 Hz) & 7.76 (ddd, 1H, J = 1.2 Hz, 6.9 Hz, 8.2 Hz)  5.77 (d, 1H, J =
9.7 Hz) § 4.77 (d, 1H, J = 9.7 Hz) 5 4.33 (qd, 2H, J = 0.8 Hz, 7.1 Hz) & 4.07 — 4.00 (m, 2H) & 3.66 (s,
3H) § 1.35 (t, 3H, J = 7.1 Hz) 5 1.09 (t, 3H, J = 7.1 Hz)
13C NMR (100 MHz, CDCls): 5 170.0, 167.9, 167.5, 167.4, 167.0, 152.0, 151.0, 136.6, 135.1, 132.8,
129.9, 124.8, 122.9, 121.1, 61.8, 61.7, 52.8, 52.7, 48.1, 14.0, 13.8.
HRMS (ESI-TOF) m/z calcd. for CaiHaoN2NaOs ([M+Na]") 451.1112, found 451.1112.
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1,1-diethyl 2-methyl 2-(2-(tert-butyldimethylsilyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-
c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4q): Prepared following the general procedure outlined
above using methyl 3-(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), 1-(tert-butyldimethylsilyl)-1H-
pyrrole-2,5-dione 3q (63.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.),
NaHPO4 (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and
toluene (2 mL). Purification by column chromatography yielded the pure product. (32 % yield).

EtO,C.__CO,Et

N
X Yco,Me
N0
N\
o TBDMS

'H NMR (400 MHz, CDCls): & 8.84 (ddd, J = 8.3, 1.3, 0.5 Hz, 1H), 5 8.10 (d, J = 8.2 Hz, 1H), & 7.85
(ddd, J=8.5,6.9, 1.5 Hz, 1H), 6 7.72 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), § 5.77 (d, J = 9.5 Hz, 1H), 5 4.73
(d, J=9.5Hz, 1H), 6 4.32 (q, J = 6.9 Hz, 1H), 6 4.04 (qq, J = 7.0, 3.7 Hz, 1H), 5 3.64 (s, 3H), & 1.34
(t, J=7.1Hz, 2H), 5 1.09 (t, J = 7.1 Hz, 2H), 6 1.01 (s, 9H), & 0.57 (s, 6H).

3C NMR (100 MHz, CDCls):  173.4, 172.8, 170.16, 167.9, 167.59, 151.8, 150.7, 137.8, 132.3,
129.7,129.5, 125.0, 121.1, 115.9, 61.7, 61.6, 52.7, 52.6, 48.2, 26.2, 25.2, 14.0, 13.8, -4.23.

HRMS (ESI-TOF) m/z calcd. for C27H34N2NaOgSi ([M+Na]*) 565.1977, found 565.1980.

1,1-diethyl 2-methyl 2-(1,3-dioxo-2-phenyl-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-
1,1,2-tricarboxylate (4r): Prepared following the general procedure outlined above using methyl 3-
(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 % purity,
22.7 uL, 0.12 mmol, 1.2 equiv.), 1-phenyl-1H-pyrrole-2,5-dione, 3r (52 mg, 0.3 mmol, 3 equiv.),
fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2
mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column
chromatography yielded the pure product. (73 % yield).
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EtO,C._ _CO,Et

N
X7 NCco,Me

ZN\ 0

s
'H NMR (400 MHz, CDCls): & 8.89 (d, 1H, J = 8.3 Hz) 5 8.14 (d, 1H, J = 8.5 Hz) & 7.91 (ddd, 1H, J
=1.4Hz, 7.0 Hz, 8.4 Hz) § 7.77 (m, 1H) & 7.57 — 7.32 (m, 5H) & 5.85 (d, 1H, J = 9.5 Hz) & 4.78 (d,
1H,J=9.5Hz) § 4.32 (qd, 2H, J = 1.6 Hz, 7.1 Hz) & 4.06 (qd, 2H, J = 3.0 Hz, 7.1 Hz) & 3.67 (s, 3H) &
1.34 (t,3H,J=7.1 Hz) § 1.11 (t, 3H, J = 7.1 Hz).
3C NMR (100 MHz, CDCls): § 170.0, 167.9, 167.6, 166.9, 166.6, 152.0, 151.1, 135.8, 134.1, 132.8,
131.1,129.9, 129.1, 128.3, 127.9, 126.5, 126.0, 125.0, 121.9, 121.0, 61.8, 61.7, 52.8, 52.7, 48.2, 14.0,

13.8.
HRMS (ESI-TOF) m/z calcd. for C27H24N2NaOg ([M+Na]") 527.1425, found 527.1425.

1,1-diethyl 2-methyl 2-(2-(4-methoxyphenyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-4-
yl)ethane-1,1,2-tricarboxylate (4s): Prepared following the general procedure outlined above using
methyl 3-(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 %
purity, 22.7 pL, 0.12 mmol, 1.2 equiv.), 1-(4-methoxyphenyl)-1H-pyrrole-2,5-dione, 3s (60.9 mg, 0.3
mmol, 3 equiv.), fac-Ir(ppy)s(2 mg, 0.003 mmol, 0.03 equiv.), Na;HPO. (17 mg, 0.12 mmol, 1.2
equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (75 % yield).

EtO,C.__CO,Et

N
N COZMe

\

'H NMR (400 MHz, CDCls): & 8.88 (d, J = 8.4 Hz, 1H), & 8.13 (d, J = 8.6 Hz, 1H), § 7.90 (ddt, J =
8.3, 6.9, 1.3 Hz, 1H), 5 7.77 (ddt, J = 8.4, 6.9, 1.4 Hz, 1H), 5 7.40 (d, J = 8.7 Hz, 1H), 5 7.04 (d, J =

9.1 Hz, 1H), 5 5.84 (d, J = 9.5 Hz, 1H), & 4.78 (d, J = 9.5 Hz, 1H), § 4.32 (qd, J = 7.1, 1.6 Hz, 2H),
4.05 (qd, J = 7.1, 2.4 Hz, 2H), 5 3.86 (s, 3H), 5 3.66 (s, 3H), 8 1.34 (t, J = 7.1 Hz, 2H), & 1.11 (t, J =

7.1 Hz, 2H).
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13C NMR (100 MHz, CDCl): & 170.09, 167.9, 167.1, 166.8, 159.3, 151.9, 151.0, 135.9, 132.78,
129.8, 127.9, 125.0, 123.7, 122.0, 121.08, 114.4, 61.79, 61.70, 55.52, 52.8, 52.7, 48.2, 14.07, 13.87.
HRMS (ESI-TOF) m/z calcd. for CasHasN2NaOs ([M+Na]*) 557.1531, found 557.1533.

1,1-diethyl 2-methyl 2-(2-(4-(methoxycarbonyl)phenyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-
c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4t): Prepared following the general procedure outlined
above using methyl 3-(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), methyl 4-(2,5-dioxo-2,5-dihydro-
1H-pyrrol-1-yl)benzoate, 3t (69.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03
equiv.), NazHPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1
equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure product. (63 %
yield).

Et0,C_ _CO,Et
N
N COQMe

ZN\_—0

N
o

CO,Me

'H NMR (400 MHz, CDCls): & 8.89 (d, J = 8.4 Hz, 1H), § 8.21 (d, J = 8.7 Hz, 2H), § 8.15 (d, J = 8.5
Hz, 1H), § 7.93 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H), 5 7.80 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), § 7.66 (d, J =
8.7 Hz, 2H), 8 5.85 (d, J = 9.6 Hz, 1H), 5 4.79 (d, J = 9.6 Hz, 1H), § 4.33 (qd, J = 7.1, 1.7 Hz, 2H), 5
4.10 - 4.01 (m, 2H), & 3.96 (s, 3H),  3.67 (s, 3H), 8 1.35 (t, = 7.1 Hz, 3H), 8 1.11 (t, J = 7.1 Hz,
3H).

3C NMR (100 MHz, CDCls): 5 170.0, 167.8, 167.6, 166.4, 166.2, 166.1, 152.1, 151.1, 135.6, 135.3,
133.0, 130.4, 130.1, 129.9, 129.5, 125.9, 124.9, 121.8, 121.0, 61.86, 61.77, 52.81, 52.78, 52.33, 48.21,
14.07, 13.87.

HRMS (ESI-TOF) m/z calcd. for CaoH26N2NaOyo ([M+Na]*) 585.1480, found.585.1483.

1,1-diethyl 2-methyl 2-(2-(benzyloxy)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-4-

yl)ethane-1,1,2-tricarboxylate (4u): Prepared following the general procedure outlined above using

methyl 3-(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 %

purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), 1-(benzyloxy)-1H-pyrrole-2,5-dione, 3u (60.9 mg, 0.3 mmol,

3equiv.), fac-Ir(ppy)s(2 mg, 0.003 mmol, 0.03 equiv.), NaoHPO4 (17 mg, 0.12 mmol, 1.2 equiv.),
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acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column
chromatography yielded the pure product. (78 % yield).

EtO,C._ _CO,Et

N COZMe
0 )
N\
o OBn

'H NMR (400 MHz, CDCls): & 8.75 (d, J = 7.8 Hz, 1H), & 8.08 (d, J = 8.5 Hz, 1H), § 7.91 — 7.85 (m,
1H), 8 7.74 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 6 7.60 — 7.54 (m, 2H), & 7.39 (m, 3H), 6 5.71 (d, J = 9.6
Hz, 1H), 6 5.27 (s, 2H), 6 4.74 (d, J = 9.6 Hz, 1H), 6 4.32 (q, J= 6.4 Hz, 2H), 6 4.03 (qd, J = 7.1, 5.7
Hz, 2H), 4 3.64 (s, 3H), 8 1.35 (t, J="7.1 Hz, 3H), 6 1.08 (t, J = 7.1 Hz, 3H).

3C NMR (100 MHz, CDCl): 8 169.8, 167.8, 167.4, 163.2, 163.0, 151.4, 151.1, 133.5, 132.99,
132.98, 131.6, 129.96, 129.96, 129.91, 129.8, 129.4, 128.6, 124.8, 120.5, 119.1, 80.1, 61.8, 61.7,
52.75,52.73, 48.1, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C2sH26N2NaOg ([M+H]") 535.1711, found 535.1708.

1,1-diethyl 2-methyl 2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-1,3-dioxo-2,3-dihydro-1H-
pyrrolo[3,4-c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4v): Prepared following the general
procedure outlined above using methyl 3-(phenyl amino) acrylate, 1a (17.7 mg, 0.1 mmol, 1 equiv.),
diethyl bromomalonate 2a (90 % purity, 22.7 pL, 0.12 mmol, 1.2 equiv.), [1,1'-bipyrrole]-2,2',5,5'-
tetraone, 3v (57.6 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), NazHPO4
(17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2
mL). Purification by column chromatography yielded the pure product. (55 % yield).

EtO,C.__CO,Et

N COZMe

'H NMR (400 MHz, CDCls): & 8.91 (ddd, J = 8.4, 1.5, 0.7 Hz, 1H), 5 8.16 (ddd, J = 8.6, 1.3, 0.7 Hz,
1H), §7.93 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 5 7.80 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 5 7.73 (s, 2H), 5
5.87 (d, J = 9.6 Hz, 1H), § 4.80 (d, J = 9.6 Hz, 1H), 5 4.34 (qd, J = 7.1, 1.7 Hz, 2H), 5 4.07 (qt, J =
7.2,3.7 Hz, 2H), § 3.69 (s, 3H), 3 1.36 (t, J = 7.1 Hz, 3H), § 1.13 (t, J = 7.1 Hz, 3H).
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C NMR (100 MHz, CDCls): § 170.0, 167.8, 167.6, 166.6, 166.3, 152.1, 151.1, 135.7, 132.9, 130.8,
130.0, 129.9, 126.9, 125.0, 121.9, 121.0, 61.8, 61.7, 52.8, 52.7, 48.2, 14.0, 13.8.
HRMS (ESI-TOF) m/z calcd. for CzsH2:NsNaO1o ([M+Na]*) 546.1119, found 546.1116.

1,1-diethyl 2-methyl 2-(3,4-dicyano-6-methoxyquinolin-2-yl) ethane-1,1,2-tricarboxylate (4w):
Prepared following the general procedure outlined above using methyl 3-((4-methoxyphenyl) amino)
acrylate, 1g (20.7 mg, 0.1 mmol, 1 equiv.), diethyl bromomalonate 2a (90 % purity, 22.7 uL, 0.12
mmol, 1.2 equiv.), fumaronitrile 3w (23.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)z (2 mg, 0.003 mmol,
0.03 equiv.), NaHPO, (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1
equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure product. (71 %
yield).

Et0,C.__CO,Et

N
S NCo,Me
MeO ZCN
CN

'H NMR (400 MHz, CDCls): & 8.01 (d, 1H, J = 9.3 Hz) & 7.59 (dd, 1H, J = 2.7 Hz, 9.3 Hz) § 7.36 (d,
1H,J=2.7Hz) § 5.19 (d, 1H, J=10.4 Hz) 6 4.74 (d, 1H, J = 10.4 Hz) 6 4.31 (qd, 2H, J=2.4 Hz, 7.1
Hz) 6 4.08 —3.97 (m, 5H) & 3.68 (s, 3H) 6 1.33 (t, 3H, J=7.1 Hz) 5 1.09 (t, 3H, J = 7.1 Hz)

3C NMR (100 MHz, CDCls): & 168.9, 167.3, 166.8, 161.2, 152.6, 144.4, 131.7, 127.8, 125.9, 122.2,
114.0,113.2,111.3, 102.0, 62.1, 62.0, 56.2, 53.1, 53.0, 50.4, 14.0, 13.8.

HRMS (ESI-TOF) m/z calcd. for C22H21N3NaO7 ([M+Na]*) 462.1272, found 462.1275.

1,1-diethyl 2-methyl 2-(4-cyano-3-(ethoxycarbonyl)-6-methoxyquinolin-2-yl)ethane-1,1,2-
tricarboxylate (4x) and 1,1-diethyl 2-methyl 2-(3-cyano-4-(ethoxycarbonyl)-6-methoxyquinolin-
2-yl)ethane-1,1,2-tricarboxylate (4x’) Prepared following the general procedure outlined above
using methyl 3-((4-methoxyphenyl) amino) acrylate, 1g (20.7 mg, 0.1 mmol, 1 equiv.), diethyl
bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), (Z)-ethyl 3-cyanoacrylate 3x (62.5
mg, 0.5 mmol, 5 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), NazHPO4 (17 mg, 0.12 mmol,
1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by
column chromatography yielded the pure product. (50 % yield, 4x : 4x> =2 : 1).

1,1-diethyl 2-methyl 2-(4-cyano-3-(ethoxycarbonyl)-6-methoxyquinolin-2-yl) ethane-1,1,2-

tricarboxylate (4x)
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Et0,C.__CO,Et
N

S NCo,Me
MeO Z > Co,Et
CN

'H NMR (400 MHz, CDCls): & 7.96 (d, J = 9.2 Hz, 1H), § 7.51 (dd, J = 9.2, 2.7 Hz, 1H), 8 7.44 (d, J
= 2.7 Hz, 1H), 5 5.53 (d, J = 9.5 Hz, 1H), 5 4.71 (d, J = 9.5 Hz, 1H), & 4.60 (qd, J = 7.2, 2.4 Hz, 2H),
54.29 (qd, J=7.1,0.9 Hz, 2H), 8 4.05 (g, J = 7.0 Hz, 2H), & 4.01 (s, 3H), 6 3.65 (s, 3H), 8 1.53 (t, J =
7.2 Hz, 3H), § 1.33 (t, J = 7.1 Hz, 3H), 5 1.07 (t, J = 7.1 Hz, 3H).

¥C NMR (100 MHz, CDCl3): 6 170.2, 168.1, 167.5, 164.6, 160.5, 150.3, 143.6, 131.4, 128.7, 126.4,
125.9, 117.9, 114.3, 102.4, 63.1, 61.7, 61.6, 56.0, 53.1, 52.6, 49.3, 14.0, 13.88, 13.85.

HRMS (ESI-TOF) m/z calcd. for C24H26N2NaOg ([M+Na]*) 509.1531, found 509.1530.

1,1-diethyl 2-methyl 2-(3-cyano-4-(ethoxycarbonyl)-6-methoxyquinolin-2-yl) ethane-1,1,2-

tricarboxylate (4x’)

Et0,C.__CO,Et

N
~N COZMe

MeO ZCN

CO,Et
'H NMR (400 MHz, CDCls): 8 7.96 (d, J = 9.3 Hz, 1H), 5 7.50 (dd, J = 9.3, 2.8 Hz, 1H), § 7.39 (d, J
= 2.7 Hz, 1H), § 5.26 (d, J = 10.4 Hz, 1H), 5 4.77 (d, J = 10.4 Hz, 1H), 5 4.64 (qd, J = 7.1, 1.4 Hz,
2H), 8 4.31 (qd, J = 7.1, 1.0 Hz, 2H), 5 4.01 (qd, J = 7.1, 5.9 Hz, 2H), 5 3.94 (s, 3H), 5 3.68 (5, 3H), 3
1.54 (t, J = 7.2 Hz, 3H), § 1.34 (t, J = 7.1 Hz, 3H), & 1.06 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCls): 5 169.5, 167.6, 166.9, 164.4, 159.8, 152.6, 144.7, 141.8, 131.4, 126.1,
1235, 115.1, 106.5, 102.6, 63.3, 61.9, 61.8, 55.7, 53.4, 52.9, 50.2, 14.06, 14.01, 13.78.

HRMS (ESI-TOF) m/z calcd. for CasHasN2NaOs ([M+Na]") 509.1531, found 509.1530.

(E)-1,1-diethyl 2-methyl 2-(6-methoxy-3-(3-methoxy-3-oxoprop-1-en-1-yl)-4-
(methoxycarbonyl)quinolin-2-yl)ethane-1,1,2-tricarboxylate (4z): Prepared following the general
procedure outlined above using methyl 3-((4-methoxyphenyl) amino) acrylate, 1g (20.7 mg, 0.1
mmol, 1 equiv.), diethyl bromomalonate 2a (90 % purity, 22.7 uL, 0.12 mmol, 1.2 equiv.), (E)-
dimethyl hex-2-en-4-ynedioate, 3z (50.4 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003 mmol,
0.03 equiv.), Na,HPO. (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL), DDQ (93 mg, 0.41 mmol, 4.1

85



equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure product. (36 %
yield).

EtO,C.__CO,Et

N
~N COZMe
(E)

MeO Z NP co,Me

CO,Me

'"H NMR (400 MHz, CDCls): § 8.11 (d, J = 16.2 Hz, 1H), 5 7.93 (d, J = 9.2 Hz, 1H), § 7.39 (dd, J =
9.2,2.7 Hz, 1H), 8 7.11 (d, J = 2.7 Hz, 1H), § 6.26 (d, J = 16.2 Hz, 1H), § 5.11 (d, J = 10.4 Hz, 1H), §
4.81 (d, J=10.4 Hz, 1H), 3 4.27 (qd, J = 7.1, 1.0 Hz, 2H), § 4.00 (g, J = 7.1 Hz, 2H), 5 3.94 (s, 3H), &
3.90 (s, 3H), 5 3.85 (s, 3H), 5 1.31 (t, J = 7.1 Hz, 3H), § 1.01 (t, J = 7.1 Hz, 3H).

3C NMR (100 MHz, CDCls): & 170.4, 168.3, 167.6, 167.5, 165.7, 158.8, 149.0, 143.3, 140.0, 139.8,
131.4, 126.4, 125.6, 125.3, 123.5, 102.6, 61.7, 61.4, 55.7, 53.3, 52.7, 52.5, 52.1, 49.6, 14.0, 13.8.
HRMS (ESI-TOF) m/z calcd. for C26H290NNaO1: ([M+Na]*) 554.1633, found 554.1635.

methyl 3,3,4,4,5,5,5-heptafluoro-2-(8-methoxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-
c] quinolin-4-yl) pentanoate (4aa): Prepared following the general procedure outlined above using
methyl 3-((4-methoxyphenyl) amino) acrylate, 1g (20.7 mg, 0.1 mmol, 1 equiv.), heptafluoropropyl
iodide, 2aa (28.8 uL, 0.2 mmol, 2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-
Ir(ppy)s (2 mg, 0.003 mmol, 0.03 equiv.), NazHPO4 (17 mg, 0.12 mmol, 1.2 equiv.), acetone (2 mL),
DDQ (93 mg, 0.41 mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography
yielded the pure product. (68 % yield).

CF,CF,CF5
X co,Me

MeO (0]

N
0] \

'H NMR (400 MHz, CDCls): & 8.15 (d, 1H, J = 9.4 Hz) § 8.07 (d, 1H, J = 1.9 Hz) & 7.56 (dd, 1H, J =
9.4 Hz, 1.7 Hz) 5 6.13 (dd, 1H, J = 11.7 Hz, 16.9 Hz) 5 4.02 (5, 3H) 5 3.74 (s, 3H) & 3.25 (s, 3H).

13C NMR (100 MHz, CDCly): § 167.9, 167.8, 164.4, 161.2, 148.4, 134.1, 132.0, 127.0, 123.15,
122.5, 101.0, 56.06, 52.9, 48.9, 48.7, 48.5, 29.2, 24.1, 23.6.

F NMR (376 MHz, CDCls): § -80.43 (t, J = 10.5 Hz, 3F) & -110.45 (d, J = 301.1 Hz, 1F) 5 -112.85
(d, J = 301.1 Hz, 1F) & -123.71 (ddd, J = 287.7 Hz, 10.6 Hz, 1.8 Hz, 1F) & -124.72 (ddd, J = 287.7 Hz,

10.5 Hz, 1.2 Hz, 1F)
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HRMS (ESI-TOF) m/z calcd. for CisHisF7N2NaOs ([M+Na]*) 505.0605, found 505.0606.

methyl 3,3,3-trifluoro-2-(8-methoxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-
4-yl)propanoate (4ab): Prepared following the general procedure outlined above using methyl 3-((4-
methoxyphenyl) amino) acrylate, 1g (20.7 mg, 0.1 mmol, 1 equiv.), Togni’s reagent II, 2ab (63.2 uL,
0.2 mmol, 2 equiv.), N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.), fac-Ir(ppy)s (2 mg, 0.003
mmol, 0.03 equiv.), Na;HPO4 (17 mg, 0.12 mmol, 1.2 equiv.), Acetone (2 mL), DDQ (93 mg, 0.41
mmol, 4.1 equiv.) and toluene (2 mL). Purification by column chromatography yielded the pure
product. (70 % yield).

MeO (0]

'H NMR (400 MHz, CDCls): § 8.12 (d, J = 9.4 Hz, 1H), § 8.07 (d, J = 2.8 Hz, 1H), 5 7.56 (dd, J =
9.4,2.9 Hz, 1H), § 5.94 (q, J = 8.2 Hz, 1H), & 4.03 (s, 3H), & 3.78 (s, 3H), & 3.26 (s, 3H).

3C NMR (100 MHz, CDCls): & 168.0, 167.8, 161.1, 148.4, 142.3, 134.2, 131.8, 126.9, 124.6, 123.2,
122.4,121.8,101.1, 56.0, 52.9, 52.4-51.6 (q), 24.1

“F NMR (376 MHz, CDCls): & -65.08 (d, J = 8.2 Hz, 3F).

HRMS (ESI-TOF) m/z calcd. for C17H13FsN2NaOs ([M+H]") 383.0849, found 383.0851
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3.8.8. Control experiments

3.8.8.1. Control experiment (2)
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Figure 3-10. HRMS data of D
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3.8.8.2. Control experiment (3)

N
o

Et0,C” “CO,Et

'"H NMR (400 MHz, CDCls): & 4.92 (s, 1H), 5 4.25 (g, J = 7.1 Hz, 4H), § 1.65 — 1.38 (m, 6H), & 1.29
(t, J=7.1 Hz, 6H), 6 1.20 (s, 6H), 6 1.08 (s, 6H). NMR data is consistent with the reported data.

MS: 0.9852 / 20180412_F262-1/ ESI+ / ESI+ / (19631)
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Figure 3-11. HRMS data of E and F.
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3.8.9. Procedure for visible-light on/off experiment

fac-Ir(ppy)s [3 mol%] EtO,C._ _CO,Et
Br — NaAsc (2 equiv.) H

H 2 . + 0 N o Na,HPO, (1.2 equiv.) N CO,Me

= Et0,C” “CO,Et ]
| CICHCCI, (3 equiv.) o
; ; Acetone (0.05 M)
1a 2a (1.2 . 3a(3 .
(1-2 equiv.) a (3 equiv.) Blue LED, RT L

To an oven-dried 4 mL vial equipped with a stir bar was added photocatalyst fac-Ir(ppy)s
(2.0 mg, 3 umol, 0.03 equiv.), sodium ascorbate (39.6 mg, 0.2 mmol, 2 equiv.), anhydrous sodium
phosphate dibasic (powder) (17 mg, 0.12 mmol, 1.2 equiv.), methyl 3-(phenyl amino) acrylate 1a
(17.7 mg, 0.1 mmol, 1 equiv.) and N-methyl maleimide 3a (33.3 mg, 0.3 mmol, 3 equiv.). Required
amounts of anhydrous acetone (2 mL) and diethyl bromomalonate 2a (90 % purity, 22.7 uL, 0.12
mmol, 1.2 equiv.) were added under argon atmosphere in glovebox. Trichloroethylene (27 uL, 0.3
mmol, 3 equiv.) was added as internal standard. The reaction mixture was irradiated with a 12 W blue
LED lamp (5 cm away, 25 °C maintained with a cooling fan). Yields were determined by ‘*H NMR

spectroscopy with trichloroethylene as an internal standard at every 4 hours.

3.8.10. Cyclic voltammetry data

3.8.10.1. 4-methoxy-N,N-diphenylaniline

(E12™ =+ 0.78 V vs SCE in MeCN at 25°C)

4-methoxy-N,N-diphenylaniline
0.0008

0.0006

0.0004

0.0002

fal
\vJ

-0.0004

Figure 3-11. Measurement of oxidation potential of 4-methoxy-N,N-diphenylaniline
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3.8.11. NMR spectra
methyl 3-(phenylamino)acrylate (1a)
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methyl 3-((4-iodophenyl) amino) acrylate (1d)
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methyl 3-((4-chlorophenyl) amino) acrylate (1f)
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[1,1'-bipyrrole]-2,2',5,5'-tetraone (3v)
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(Z)-ethyl 3-cyanoacrylate (3x)
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1-chloro-1A* -benzo[d][1,2]iodaoxol-3(1H)-one
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Togni’s reagent 11 (2ab)
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1,1-diethyl 2-methyl 2-(2,6-dimethyl-1,3-dioxo0-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

1,1,2-tricarboxylate (4b)
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1,1-diethyl 2-methyl 2-(2,6-dimethyl-1,3-diox0-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

1,1,2-tricarboxylate (4¢)
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1,1-diethyl 2-methyl 2-(8-iodo-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)

ethane-1,1,2-tricarboxylate (4d)
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1,1-diethyl 2-methyl 2-(8-bromo-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)

ethane-1,1,2-tricarboxylate (4e)
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1,1-diethyl 2-methyl 2-(8-chloro-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)

ethane-1,1,2-tricarboxylate (4f)

§ 8§ B B PR §FRBEHEEE g o F
_
£9074
180T+ 1
8601 — ~mwe
T2E'T = e
mmm_ﬁw —
58T
BRI,
KOS 3
000 - 1
810kl i oo
mmu_Lr — ot
062 | T
ace b Y 0T
v ] = rmt
okEH )
0z |
s
L5, .
S6L5 = 01
=m0
=m0
=m0

o0

1.0

1.5

ER

T T T T T
B0 75 70 65 B0 5550 45
f1 (ppm)

T
85

%0

T
05 10 35

T
11.0

16

H4

r12

r10

GER'ET
0T

TECHE—

nZo'ey— -

6845 —
ThTS
£58°T

oy 1zr
TE9'EEly

LIGLETAL
HRO'6ZT )
BT TET—

LYEETF
£6b'SET ﬁ«
a51'9e]
ZIT BT
SE0EST-
55E491
Fab LT Ww
955914 ~
964491 _J,
B06'EAT

T T T T T T T T
170 180 130 120

190 180

T
23 20 2| 200

5]
R
S
g
2

110
f1 (ppm)

40 130

112



1,1-diethyl 2-methyl 2-(8-methoxy-2-methyl-1,3-dioxo0-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)

ethane-1,1,2-tricarboxylate (4g)
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1,1-diethyl 2-methyl 2-(6-methoxy-2-methyl-1,3-dioxo0-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)

ethane-1,1,2-tricarboxylate (4h)
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1,1-diethyl 2-methyl 2-(8-hydroxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl)

ethane-1,1,2-tricarboxylate (4i)
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1,1-diethyl 2-methyl 2-(8-((tert-butoxycarbonyl)amino)-2-methyl-1,3-dioxo-2,3-dihydro-1H-
pyrrolo[3,4-c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4j)
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1,1-diethyl 2-methyl 2-(6-((tert-butoxycarbonyl)amino)-2-methyl-1,3-dioxo-2,3-dihydro-1H-
pyrrolo[3,4-c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4k)

4500

1000

| LI Lo
[ 1
(=] (=]
! =2
— —

T T T T T T T T T T T T T T T T T T
125 15 10.5 95 50 &5 80 75 70 65 {6.0 , 55 50 45 40 35 30 25 20 15 L0 05 00 D5
ppm

(=

2344
42507 £

2,00

3.004, f

900w £
13,000 e
{3007

1 100"

28,368
—24.179
13,995
13.839

g

{

25

61,980

61,846

_(52.?86

52,576
L8446

15

152,657
149,187
140,518
j}-lss.ss?
135,815

T -131.011
—123.195
121.193
\118.004
117.155

167,807
_-\‘-
\
|

167,540
I
b

-
m
)]
i
o
=

81.160

I

T T T T T T T T T T T T T T T
230 220 10 200 150 180 170 160 150 140 130 120 a 3.1.0 ) 100 %0 8D
ppm,

24
o
u
&
w
]
=
=
& A

117



1,1-diethyl 2-methyl 2-(8-(methoxy carbonyl)-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo [3,4-c]

quinolin-4-yl) ethane-1,1,2-tricarboxylate (41)
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2-tert-butyl 1,1-diethyl 2-(2-methyl-1,3-dioxo0-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

1,1,2-tricarboxylate (4m)
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1,1-diethyl 2-methyl 2-(2-benzyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

boxylate (4n)
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1,1-diethyl 2-methyl 2-(2-cyclohexyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

1,1,2-tricarboxylate (40)
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1,1-diethyl 2-methyl 2-(1,3-diox0-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-1,1,2-

tricarboxylate (4p)
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1,1-diethyl 2-methyl 2-(2-(tert-butyldimethylsilyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-

4-yl)ethane-1,1,2-tricarboxylate (4q)

8 g g g g g g g
m1m41_m¢mmm1mm B §8 8 8¢ 7
LE50, 000'0-————=
hs_ﬁ.____ |
£40°TH" - =009
: | 006
Hmc_f_ o
60T T |-d -00°E
EZETT ——==, ~o0%
THE T .
6561/ _
|
!
0ra'e
062 | “ooe
B0E 't tEEg
mNm_L. =Lz
Evet/ S00°T
ez :
hﬁ_qh__ [
m
1505 .
= |
Hmh_m\l oot
m
|
|
|
m
£97f ——
|
| P01
uu 80T
i Moo'T
_
|
= =007

11.0

%0 85 &0 75 70 &5 &0 55 50 45 40 35 30 25 L0 15 10 05 00 -05
f1 (ppm)

55

105 100

ri8

rie

Fi4

ri2
rio
le
€
4

EETF—

vrzEy-
Bm_mmvf
1vees
90919~

ste19Y

vLE'STT
0ETTZT|
S00'SZ T,
EES'6ZT!
trLETT
6EEZETY

I
GCELETS

LTL05T,
288'15T /"

{65'49T,
Hmm_hmﬂw
mmghjﬂ
[LERARS
BEELT!

-10

]

T
160 150 140

T
170

T
130 180

123



1,1-diethyl 2-methyl 2-(1,3-dioxo-2-phenyl-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

1,1,2-tricarboxylate (4r)
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1,1-diethyl 2-methyl 2-(2-(4-methoxyphenyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-4-

yl)ethane-1,1,2-tricarboxylate (4s)
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1,1-diethyl 2-methyl 2-(2-(4-(methoxycarbonyl)phenyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-
c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4t)
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1,1-diethyl 2-methyl 2-(2-(benzyloxy)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolin-4-yl)ethane-

1,1,2-tr

boxylate (4u)
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1,1-diethyl 2-methyl 2-(2-(2,5-diox0-2,5-dihydro-1H-pyrrol-1-yl)-1,3-dioxo-2,3-dihydro-1H-

pyrrolo[3,4-c]quinolin-4-yl)ethane-1,1,2-tricarboxylate (4v)
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1,1-diethyl 2-methyl 2-(2-cyclohexyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c] quinolin-4-yl) ethane-

1,1,2-tricarboxylate (4w)
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1,1-diethyl 2-methyl 2-(4-cyano-3-(ethoxycarbonyl)-6-methoxyquinolin-2-yl) ethane-1,1,2-

tricarboxylate (4x)
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1,1-diethyl 2-methyl 2-(3-cyano-4-(ethoxycarbonyl)-6-methoxyquinolin-2-yl) ethane-1,1,2-

tricarboxylate (4x”)
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(E)-1,1-diethyl 2-methyl 2-(6-methoxy-3-(3-methoxy-3-oxoprop-1-en-1-yl)-4-(methoxycarbonyl)

boxylate (4z)

1car

2-yl)ethane-1,1,2-tr

in-

1

quino

g
i 8 8 ; ; B &8 . §
1660+
mS_if
9z0°T = 00
0621 . =00°%
8087 _J
aga's SZE'TI
1S8'E
E06'E
GEE'E
SUE'E
EBE'E [00E
110t | looe
GZ0 "t “qum Mvco.m
Ozt 00's
NE_?,,ﬁ U otz
25zt | letz
092 - ~00'T
9z - 00T
EYrals
6z
962
€64 Sez'9
618t mhm_mv.. s00tT
860'S
¥ZT's LIT'Ly
BIT L4 — =00'T
LT A A — T
08E'L
{BE'L ~00°T
£0¥L = 00T
0L
0Z6'L
EV6L
E60'8
pere)

35

25 20 15 10 O5 00 OS5

30

wo 55 S0 85 &0 TE 70 65 &0 55 5D 45 40
f1 (ppm}

0.5

R SR B A S R R S . S~ B S
90R'ET
BT

(L9t
0T Es)
82525
{6425
ceeegd
mﬂ_mmu_,.a
(zv'1e
yas1a)
IT9Z0T
BLSETTH
Sm.mﬁv___“
£29°52T
T
szbTeT!
mmm.mmi_w
050 0¥ T -
Pyt
250°60T/
£E8 BT/,
te8soT
61597
219797
tsERaT
@ r0sT)

50 40 L I 1] 10 -10

70 80

120 110 100 S0 80
f1 (ppm})

130

200 130 180 170 160 150 140

210

30 20

132



methyl 3,3,4,4,5,5,5-heptafluoro-2-(8-methoxy-2-methyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]

quinolin-4-yl) pentanoate (4aa):
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Diethyl 2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)malonate
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