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Abstract

This thesis unravels the symptomatic structure behind the two commonly observed mental health dis-

orders namely depression and anxiety. Additionally, structural effects of worry and meta-worry mech-

anisms on these disorders are explored by estimating their network models. From mental health data

collected over the years, best-fitting models are created, analyzed, and interpreted. This is the first

study to deep dive into the symptomatic relations within depression and anxiety disorders and to esti-

mate the intricate relationship of the depression-worry & meta-worry and anxiety-worry & meta-worry

mechanisms with psychological networks. Since learning of networks is a high-dimensional statistical

problem, I employ regularization to learn sparse networks and thereby control over-fitting. In particu-

lar, I used the popular graphical Lasso model which is an implementation of the undirected Gaussian

Graphical Model (GGM). Centrality and edge weight stabilities are computed for all the generated net-

works prior to interpretation. Furthermore, I used Bayesian networks (directed acyclic graphs–DAGs)

using the hill-climbing algorithm provided by the R package bnlearn including the correlation structures

in order to reveal terminal nodes as crucial intervention and prevention targets. As a result, I revealed

central symptoms and symptom initiators for depression and anxiety by means of undirected regularized

partial correlation network and directed acyclic networks respectively. Comorbid symptoms are investi-

gated through bridge network analysis and the causality of each bridge item is further explored through

directed networks. For depression, "Self-dislike", "Loss of energy", "Worthlessness" and "Tiredness or

fatigue" symptoms emerged as the most central symptoms. Further analysis by directed acyclic net-

works showed "Self-dislike", "Worthlessness" along with "Past failure" as the initiator of remaining

symptoms. For anxiety, "Shaky / unsteady", "Hearth pounding / racing", "Nervous" and "Scared" ap-

pear as the strongest nodes in the undirected network. "Nervous" and "Scared" together with "Fear

of worst happening" comes up as triggering symptoms of anxiety in the directed network. "Need to

control thoughts" subscale only showed comorbidity with depression symptoms. While "Lack of cogni-

tive confidence", "Negative beliefs about ncontrollability and danger" sub-scales of the meta-cognition

questionnaire, and "My worries overwhelm me" item from the PSWQ(worry) showed comorbidity with

both depression and anxiety symptoms. The causality of each bridge item is explored through a directed

network further.
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I Introduction

Recent years have seen increasing use of network modeling for exploratory studies of psychological

behavior as an alternative to latent variable modeling [1, 2]. In simple terms, Network is a set of nodes

connected by set of edges. In social networks nodes can represent entities like people and cities while

edges (links connecting two nodes) represent friendship, contacts or distance. Exploration is based upon

well-defined edges between certain nodes. In so-called psychological networks [3], nodes represent

psychological variables such as symptoms and psychological constructs, while edges represent unknown

statistical relationships such as comorbidity, causality, interaction that required to be estimated. There-

fore, this class of network models is quite different from social networks, where edges between nodes

are well defined [4].

Indeed, psychological networks differ from networks of many other disciplines in one very funda-

mental aspect. Edges are not observed and need to be estimated and this definitely paves the way of

novel problems for statistical inference. Recently, psychological variables are perceived just like inter-

acted particles so as directly effecting each other rather than utterly causing an unobserved latent entity.

For instance, considering depression as a latent variable, "common cause model" tells us depression is

the cause of all symptoms, on the other hand, "network model" tells that symptoms are essentially dy-

namical systems that cause depression. So, there is a certain need of focusing on analyzing psychological

data.

There are number of research papers published dealing with the estimation of network models [5–8].

However, those studies rarely focus on analyzing psychological data rather they are mostly conceptual

and require deep technical background. In the last five years, network research has gained attention

in psychological sciences [1, 9]. Representing edges as statistical relationships has gained substantial

footing and has been used in various different fields of psychology, such as clinical psychology [10–13],

psychiatry [14–16], personality research [17], social psychology [18]), and quality of life research

[19].

Statistical relationships between edges can be interpreted when drawn as a network structure. Edges

indicate pathways on which nodes can affect each other. The edges can differ in strength of connection,

that we call edge weights in network theory, indicating if a relationship is strong (thick edges) or weak

(thin, less saturated edges) and positive (blue edges) or negative (red edges) as common conventions.

After a network structure is estimated, the visualization of the graph itself tells us a detailed story of the

multivariate dependencies in the dataset. Furthermore, many inference methods from graph theory can

be used to assess which nodes are the most important in the network, termed the most central nodes. In

network theory, some nodes are more important and special than others in different ways that we defined

some of them as strength, betweenness, closeness, and expected influence.

This thesis study, mostly focuses on two centrality measures:i) "Strength" as the sum of the abso-

lute edge weights between a focal node and all other nodes to which it is connected in the network, ii)

"Expected Influenced" as sum of edge weights (accounts for negative edges). In networks lacking of

red edges, expected influence and strength measures give similar results. Betweenness and closeness
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centralities were computed and analysed when it is meaningful to interpret. Betweenness looks at how

many of the shortest paths between two nodes go through the node in question; the higher the between-

ness, the more important a node is in connecting other nodes. Closeness takes the inverse of the sum of

all the shortest paths between one node and all other nodes in the network. Therefore investigates how

strongly a node is indirectly connected to other nodes in the network.

An important question is, what type of findings can be obtained throughout the usage of this new

psychological network analysis? Following is a list of what can be potentially learned via psychological

network analysis. Symptoms (nodes) are active causal elements, they can directly lead to one another.

Symptoms connecting two disorders can be found. Thus comorbidity can be revealed. Symptoms are

correlated due to dynamic interactions. Therefore, detection of the most important symptom is crucial

and can be computed via centrality metrics. How are symptoms uniquely related to one another, in

short, finding the interactions among symptoms constitutes the disorder. How symptoms level relation-

ships inform interventions, because targeted treatments will be based on symptoms interactions. After

describing the necessity and importance of this recently emerged field, and in the light of the given psy-

chometric network terminology the purpose of the conducted study and research findings will be given

in organized fashion at following sections.

Psychometric network modelling first emerged as an alternative to the latent variable modeling.

However, it is proven that if a latent variable model is a good fit for the data, it appears as a strong

clustering in the network model as well. If both models were driven by using the same data set, it is

also possible to show mathematical equivalence between the latent variable model and the psychome-

tric network model. Most common comparison is between Confirmatory factor analysis and Gaussian

graphical model which will be discussed in this study [20–23].
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II Objective of the Research

This study is fully data-driven. Instead of testing pre-determined hypotheses, data is explored through

pre-determined research aims/goals. Through out the study, depression and anxiety is addressed inde-

pendently from each other while undergoing the same route of research structure.

1. First goal of this study is to explore depression and anxiety symptoms to detect central symptoms

and strongly connected symptoms of each. This is to find most efficient ways to intervene the

symptoms.

2. Second goal is to establish the causal-link between depression and anxiety symptoms separately.

Identifying initiator symptoms can enable and help to design preventive methods.

3. Third goal is to find out how worry and meta-worry concepts interact with depression and anxiety

symptoms. This is to pinpoint what kind of worrying minds have alerting status for one’s mental

health.

4. Fourth goal is to observe where worry and meta-worry elements fit in the causal-link between

symptoms of depression and anxiety. This observation will lead to finding out potential detrimen-

tal worry and meta-worry concepts to one’s mental health.

I considered some arguments which helped me during hypothesis generation. Although depression

and anxiety are closely related concepts, it has been stated that anticipation of fewer positive outcomes

appears to be one characteristic that may distinguish depression from anxiety. [24] Pessimism and maybe

other future-event related concepts within the transparent borders of depression can be key concepts to

do research. To paraphrase and emphasize, worry and meta-worry items, particularly future related ones,

can make clear cuts or dissect the combined entity of depression and anxiety. If that would be achieved,

one could extend the concept of generalized anxiety syndrome (GAD) to mixed anxiety/depression

(MAD) by using the worry measures.

To achieve the research goals above; I explore the mental-health data of university students collected

over a long period of time through the university web page. I have conducted network analysis to

explore three fold interactions between depression-worry-meta worry, and anxiety-worry-meta worry.

After revealing the importance of each feature of depression and anxiety measures, correlations of those

individual entities with worry and meta worry items are analysed. To do so, first I construct the networks

with Gaussian Graphical Model (GGM) as undirected network, estimate a statistical model on data,

where parameters can be represented as weighted network between observed variables (symptoms).

Second, I apply Graphical Lasso bootstraps for accuracy and stability tests. Subsequently, I check the

existence of bridge symptoms, and interpret them. Finally, I apply directed acyclic graph (DAG) model

based on the findings of previous analysis.
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III Methods

3.1 Datasets

Mental health surveys are self reported measures to assess one’s mental health state at a given time. If

their reliability and validity are proven, they can also be used as a clinical tool for diagnosing certain

mental health disorders. There are considerate number of clinically approved mental health related

surveys available. In this study, focus of attention is given to the clinical surveys which are conjugates

or closely associated in theory level.Among the data, there are most widely used psychometric tests

such as Beck Depression and Anxiety Inventories. The complete set of the surveys which are used in

this study is given in Figure 1. The data set was filtered by removing incomplete values and the number

of pairwise intersections who responded the same surveys were computed.

Figure 1: Original participant sizes & Pairwise overlaps.
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3.2 Measures

For the purpose of this study, node name abbreviations are all presented in the Figure 3 in respect to the

item order in the original survey starting from A1 to A21 for anxiety, from D1 to D21 for depression,

sub-scale node names from M1 to M5 for Meta-cognition and certain selected items for Worry scale.

Summary of the item numbers, scoring, and the selected items are summarized in Figure 2.

Figure 2: Summary of chosen scales, their scoring and number of selected items from each.

Beck Depression Inventory (BDI-II)

The BDI-II is a self reporting tool to assess one’s depression symptoms (Beck et al., 1996 [25]). 21

item scored based on a 4-point Likert scale from 0 to 3 to check psychosomatic and cognitive symptoms

of depression. The Korean version of the survey showed good reliability and validity in Korean adult

population [26] and university student population both online [27] and offline [28]. All of the 21 items

of the BDI-II measure were used as nodes whenever depression is included in a network estimation.

Beck Anxiety Inventory (BAI)

BAI have 21 items to self-assess one’s psychosomatic and cognitive anxiety symptoms [29]. Symptoms

are rated on a 4-point Likert scale from 0 (Not at all) to 3 (Severely-it bothered me a lot). The Korean

version of the survey was used which showed good reliability and validity in Korean adult sample [30].

All of the 21 items of the BAI measure were used as nodes whenever anxiety is included in a network

estimation.

Meta-cognition Questionnaire (MCQ-30)

The MCQ-30 questionnaire consists of 30 questions to evaluate one’s meta-cognitive beliefs and pro-

cesses by self reporting. Each item is scored based on a 4-point Likert scale from 1 (Do not agree)

to 4 (Agree very much). It is divided into five sub-scales that have equal number of questions making

their total score minimum 6 and maximum 24. Subscales are named as following: "(Lack of) cognitive
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confidence", "Positive Beliefs about worry", "Cognitive self-consciousness", "Negative beliefs about

uncontrollability and danger", "Need to control thoughts". Korean version of the scale were used [31].

Instead of each item of the questionnaire, only the sub-scale scores were included in the network analy-

sis.

Penn State Worry Questionnaire (PSWQ)

The PSWQ is a self reporting tool to assess one’s excessive or uncontrollable worries [32]. It has 16

items rated on a 5-point Likert scale from 1 (not at all typical of me) to 5 (very typical of me). Korean

version of the PSWQ showed good validity and reliability [33]. To avoid items measuring the same

thing in the network only 8 items were included in the network analysis. To assure theoretical support,

item selection was done based on the short version of the PSWQ. Selected items were named in respect

to the item order in the original survey being: W2, W4, W5, W6, W7, W9, W12, W13.

Figure 3: Abbreviations of questionnaire items used as network nodes
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3.3 Participants

The mental-health data including BDI-II, BAI, PSWQ and MCQ-30 measure scores of Korean university

students from the same school was collected online from 2008 to April 2011. Students were able to

selectively attend to each measure. Among them, 5015 students participated to BDI-II, while 5430

students participated to BAI, 3590 students to MCQ-30 and finally 1762 students to PSWQ measures.

Only 743 students attended to all 4 measures which was also the intersection set between PSWQ and

MCQ-30 pairs participants.Table 4 3 data-sets were chosen to be used for different network analysis.

For networks which includes depression symptoms only, all 5015 (2379 female, 2636 male) participants

for BDI-II measure were used aging from 17 to 65 with mean 23,01 and standard deviation 2,35. For

networks which includes anxiety symptoms only, all 5430 (2694 female, 2736 male) participants for

BAI measure were used aging from 18 to 47 with mean 22,86 and standard deviation 2,46. For all the

other networks, 743 participants who attended to all 4 measures were used. Among them 366 were

female, 377 were male aging from 19 to 31 with mean 23,12 and standard deviation 2,13.

Figure 4: Area proportional Euler Diagram which shows the set properties of curated data collected over

the years.

7



3.4 Networks

Regularized partial correlation network(GLASSO)

In a psychometric network, each node represents an item or a symptom of a measure and each edge

represents a relationship between nodes. Blue edges shows positive correlations and red edges accounts

for negative correlations. The relationship between two nodes can be assessed in two ways. First, we can

directly assess the edge weight. If edges are weighted, thicker edges represents stronger relationships.

Edge weight of zero indicate there is no edge, however most of the time edges are nonzero. The sign of

the edge weight indicates the type of interaction while the absolute value indicates the strength of the

effect. As such, the length of an edge is defined as the inverse of the edge strength. The distance between

two nodes is equal to the sum of the lengths of all edges on the shortest path between two nodes. In a

partial correlation network, correlations between each node are calculated by controlling the influence

of all the other nodes. This allows the network to be sparse, meaning, representing most variance with

the fewest number of edges possible.

There are several methods for computing partial correlation coefficients as described by Cohen et al

[34]. Here we focus on two widely used approaches to obtain partial correlations, namely standardizing

the precision matrix or performing node-wise regressions. In essence, both approaches leads to the

exact same estimate. At first method, we can obtain the partial correlations directly from the inverse

of a variance–covariance matrix. Let y represents a set of item responses, and Σ denote a variance–

covariance matrix. By assuming y follows a multivariate normal distribution:

yyy∼ N(OOO,,,ΣΣΣ).

The precision matrix, denoted by the letter K, can then be defined as the inverse of Σ

KKK = Σ
−1

we can standardize the elements of the precision matrix between variable yi and y j, after conditioning

on all other variables in yyyi, yyy−(i, j) [35].

Cor(yi,y j|yyy−(i, j)) =−
κi j√

κii
√

κ j j
.

Second method is to use node-wise regressions [36] to obtain partial correlation coefficients. If yi is

predicted from all other variables in a multiple regression, then:

y1 = β10 +β12y2 +β13y3 + · · ·+ ε1,

followed by a similar regression model for y2:

y2 = β20 +β21y1 +β23y3 + · · ·+ ε2,

Likewise, we can compute the above formula for y3, y4, etc. The regression slope predicting yi from y j

ory j from yi is proportional to same partial correlation coefficient between yi and y j [37].
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Cor(yi,y j|yyy−(i, j)) =
βi jSD(ε j)

SD(εi)
=

β jiSD(εi)

SD(ε j)

where SD is the abbreviation for standard-deviation.

In this study, four different partial correlation networks were estimated. First two networks were

computed for only the depression symptoms and the anxiety symptoms separately. Then EBICglasso

function of the "qgraph" package [38] was used to estimate all four networks. In the first network,

only the depression symptoms (BDI-II items) were included, therefore 5015 participant data were used

to estimate it. Similarly, in the second network, only the anxiety symptoms (BAI items) were used

with 5430 participant data. In the remaining two networks, selected PSWQ and MCQ-30 items were

combined with depression symptoms and anxiety symptoms in separate networks, hence 743 participants

who attended all measures were used. Later two networks were mainly used for bridge analysis only.

To quantify the importance of each node in the network, centrality indices are computed. Centrality

indices reflect how connected a node is within the network and hence how potentially clinically relevant

it may be. The betweenness centrality of a node equals the number of times that it lies on the shortest

path between any pair of other nodes. Closeness centrality signifies the average distance of a node to all

other nodes in the network, calculated as the inverse of the weighted sum of shortest path lengths of a

given node to reach all other nodes network. Node strength is the sum of the absolute value of the edge

weights connected to a node. While expected influence is the sum of all the value of the edge weights

connected to a node. If there are red edges in the network, expected influence becomes important. Of

the three centrality indices, node strength may be the most relevant index of importance for modelling

symptom networks since it is proven to be the most stable of them all. Similarly, centrality metrics

were plotted for the normalized (z-scored) values for each node by using "networktools" and qgraph

packages. Robustness of our findings is also evaluated by using the R package "bootnet". First, stability

of the centrality measures were checked with the case dropping boot-strap by sampling the data 10000

times. Then, the accuracy of the edge weights are estimated by employing a non-parametric boot-strap

approach to calculate the 95% confidence intervals for the edges by sampling the data 10000 times (with

replacement), thereby generating a distribution of edge weights.
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Bridge Analysis

Psychometric researchers in psychopathology have relied on visual inspection of networks to identify

bridge symptoms [39–42] Bridge analysis is a tool to detect comorbidity between different measures.

After estimating a GLASSO network, nodes are divided into communities to estimate bridge analysis

between them. Bridge centrality measures are derived as an extension of regular centrality measures

that we use in network analysis and we call them bridge strength, bridge betweenness, bridge closeness,

and bridge expected influence. The precise definitions of those centrality metrics in mathematical terms

are given below for psychological networks [43]. Before passing through to the definitions, we need

to introduce the following notations that apply to all of the statistics below. A network with a set of V

nodes and E edges can generally be conceptualized as G(V,E). Let C be a community in this network,

implying that C is a proper subset of V. Each of the bridge centrality statistics below are defined with

respect to a selected node a within community C. The notation N(a) is used to represent the neighbour

nodes of a while wab denote the weight on each edge ab belongs to E. Following the aforementioned

notations, we can define four bridge centrality measure as below.

1. Bridge strength indicates a node’s total connectivity with other community.

bridge strength = ∑
b∈(N(a)−C)

|wab|.

2. Bridge betweenness assesses the number of times a node lies on the shortest path between any

two nodes. Letting Pi j be a shortest path between i, j ∈V , where the nodes i and j are not belong

to same community.

x =

 0.5, a ∈ Pi j

0, otherwise

bridge betweenness = ∑
i∈V

xi.

3. Bridge closeness reflects the average distance from a node to all nodes outside of its own dis-

order. if a ∈ C∧ b /∈ C, and Pab be the shortest path among a and b, including edges E(Pab =

ei, · · · ,ek, · · · ,en where each edge has weight wk for 1≤ k ≤ n.

bridge closeness =
|V −C|

∑b∈(V−C) ∑ek∈E(Pab)
1

wk

.

4. Bridge expected influence, much like bridge strength, indicates a node’s sum connectivity with

other disorders and can be expressed as:

bridge expected influence = ∑
b∈(N(a)−C)

wab.

In the case of bridge expected influence, absolute value of edges is not taken before summing them. For

this reason, this statistic is more useful in the presence of negative edges.
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So, In addition to regular centrality measures, we calculated bridge centrality measures and their

stabilities. Bridge centrality is calculated for each node connecting to every node in the other community.

After detecting the greatest bridge centrality, correlation matrix between nodes is checked to find which

node in the other community it is most strongly connected to. Thus, both sides of the bridge can be

established. In this study, worry and meta-cognition nodes were grouped together as one community.

Their relationship between depression symptoms and anxiety symptoms were examined as separate

networks.
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Directed Acyclic Graph network(DAG)

For ages, philosophers and scientists have struggled to figure out how to infer causal relationships. Over

the past few centuries, little progress has been made in elucidating the circumstances that allow causal

inference to be made. This began to change in the late 1980s, when researchers realized that studying

multivariate systems allow for more robust conclusions. Indeed, provided the researcher is willing to

invest the required assumptions, causal conclusions can be drawn from correlational data under certain

circumstances. Judea Pearl’s book Causality [44] is responsible for many of the theories discussed here

so that I will try to explain the theoretical foundation of DAGs based on this excellent book.

Figure 5: Building blocks of a Directed Acyclic Graph. Three important causal structures.

As it shown in Figure 5, there are three main blocks of a DAG. We can interpret the situation in

abstract terms to exemplify each case. For example, in the common cause case, disease B simply causes

two symptoms – A and C. Here, A and C conditionally independent given B. For the chain case, disease

A causes B, which in turn causes C. Here again, A and C conditionally independent given B Finally, in

the case of collider, A and C jointly cause a third variable B. Here, A and C conditionally dependent

given B.

It is practically possible to narrow down the number of causal possibilities by looking at the condi-

tional independence relations. However, as apparent, the systems in Figure 5 are only for demonstra-

tion. In this study, I generated DAGs with 21 and 34 items. Testing such causal models involves testing

whether all conditional independence relations hold. Thus, there is a need for a method to analyze larger

systems. Such method should test causal models against correlational data and also search the data for

possible causal models that are consistent with them. Luckily, there are very simple rules by which we

can look at a causal graph and derive which conditional independence relations should hold in the data

if that graph were true. The method to do this is called d-separation. However, we need to explain the

concept of blocking before explaining what d-separation is.

To identify if two variables are conditionally independent given a third variable or set of multiple

variables, one needs to list all paths between the variables by ignoring direction of edges. After, the

variable is checked if the following two condition is satisfied.

• The middle node in a chain or common cause structure

• Not the middle node in a collider structure or an effect of such a common effect

If the above conditions are satisfied then the path is called "blocked". Likewise, if all such paths are
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blocked, the two variables are d-separated and thus conditionally independent.

The d-separation is an extremely powerful concept, because one only has to look at the graph to

determine that, for example, two variables A and B are d-separated by C; if one sees that they are, then it

follows that the variables A and B are conditionally independent given C in all probability distributions

that are consistent with the graph, regardless of how the variables are distributed or what the functional

form of the relation between is.

To compute a Bayesian network [45], visualized as a DAG, the hill-climbing algorithm furnished

by the R package bnlearn was run. The bootstrap function of bnlearn calculates the structural aspect of

the network by adding edges, subtracting them, and reversing their direction to optimize the Bayesian

Information Criterion (BIC) which is a target score. The inner mechanism of how this algorithm works

can be described as follows: First step ascertains whether an edge between two symptoms exists; it

does not determine its weight. Then, this procedure is randomly restarted with various candidate edges

potentially linking different pairs of symptoms, perturbed the system, and so forth. As this iterative

process unfolds, the algorithm discerns the network’s structure.

The Bayesian analysis was done over 4 different datasets following the same framework of GLASSO

networks. In the first directed network, only the depression symptoms (BDI-II items) were included,

therefore 5015 participant data were used to estimate it. Similarly, in the second directed network, only

the anxiety symptoms (BAI items) were used with 5430 participant data. In the remaining two networks,

selected PSWQ and MCQ-30 items were combined with depression symptoms and anxiety symptoms in

separate networks, hence 743 participants who attended all measures were used. To ensure the stability

of the DAG, 10000 samples are bootstrapped, computing a network for each sample. Later, they are

averaged to obtain the final, resultant network. There are two steps involved. First, determining how

often an edge appeared in the 10000 bootstrapped networks. Only edges that appears more then a given

threshold makes it to the final network. A fixed threshold can be used such as 85% as used in other

papers.Scutari and Nagarajan’s (2013) [46] statistically-driven method can be used to find an optimal

cutpoint for retaining edges in the final, averaged network. Second, determining the direction of each

edge in each of the 10000 bootstrapped networks. If an edge pointed from symptom X to symptom Y in

at least 51% of the networks, then this direction was depicted in the final, averaged network.

Visualizations of the final, averaged network is two-fold. First, a DAG whose edges depicted the

BIC value of an edge was computed. High absolute BIC values signify the importance of an edge to

the model that best captures the structure of the data. Edge thickness depicts the magnitude of the BIC

value. The thicker an edge, the more damaging it would be to model fit if the edge were removed from

the network.

Second, a DAG whereby edge thickness signifies the probability that the edge points in the direction

depicted was computed. Hence, if an edge pointed from symptom X to symptom Y in 9000 of 10000

bootstrapped networks, it would appear very thick. If it pointed from symptom X to symptom Y in only

5100 of 10000 bootstrapped networks, it would appear very thin.
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IV Results

4.1 Regularized partial correlation networks

In this study, three different participant groups were used. For depression only analysis 5015, for anxiety

only analysis 5430 and for worry and meta-worry included version of depression and anxiety analysis

743 students’ data were used. Therefore, descriptive statistics for depression and anxiety were calculated

for two groups, one being a subset group of students who attended all four measures (N=743).

Table 1: Descriptive statistics for two participant groups of the depression measure (BDI-II).

N=5015 N=743

(2379 F, 2636 M) (366 F, 377 M)

Symptoms mean sd r mean sd r

Age 23.01 2.35 - 23.12 2.13 -

1.Sadness 0.45 0.55 0.61 0.50 0.58 0.62

2.Pessimism 0.49 0.65 0.61 0.50 0.67 0.61

3.Past Failure 0.44 0.64 0.60 0.48 0.67 0.60

4.Loss of Pleasure 0.49 0.66 0.63 0.52 0.70 0.60

5.Guilty Feelings 0.60 0.70 0.54 0.61 0.68 0.51

6.Punishment Feelings 0.26 0.62 0.51 0.28 0.65 0.50

7.Self-dislike 0.38 0.70 0.63 0.42 0.73 0.67

8.Self Criticalness 0.44 0.71 0.63 0.48 0.73 0.60

9.Suicidal Thoughts or Wishes 0.24 0.48 0.51 0.25 0.49 0.51

10.Crying 0.32 0.63 0.47 0.36 0.67 0.48

11.Agitation 0.33 0.53 0.56 0.37 0.54 0.56

12.Loss of Interest 0.52 0.71 0.63 0.56 0.72 0.60

13.Indecisiveness 0.58 0.68 0.55 0.62 0.70 0.56

14.Worthlessness 0.27 0.58 0.59 0.32 0.61 0.64

15.Loss of Energy 0.56 0.70 0.69 0.63 0.74 0.70

16.Changes in Sleeping Pattern 0.83 0.75 0.54 0.88 0.75 0.51

17.Irritability 0.41 0.61 0.55 0.44 0.63 0.56

18.Changes in Appetite 0.66 0.71 0.50 0.70 0.73 0.48

19.Concentration Difficulty 0.42 0.60 0.62 0.45 0.62 0.60

20.Tiredness or Fatigue 0.59 0.61 0.64 0.64 0.61 0.66

21.Loss of Interest in Sex 0.23 0.54 0.38 0.28 0.63 0.40

Total 9.49 8.09 1.00 10.26 8.47 1.00
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First, single measure GLASSO networks were estimated starting from BDI-II measure, depicting

the relationship between depression symptoms(see Figure 6). Centrality stability coefficients calculated

by the case dropping boot were lowest for betweenness being 0.28 which is considered just above the

acceptable stability for interpretation. Closeness, strength, and expected influence scored 0.75 which

was the highest level tested and considered as excellent scores. However, in the centrality stability

plot seen in Figure 7, it can be observed that stability of closeness is lower than strength and expected

influence which are close to the ceiling limit. In the bottom graph of the same figure, it shows excellent

edge weight stability that was plotted through the non-parametric bootstrap.

Figure 6: Regularized partial correlation network returned via the graphical LASSO depicting associa-

tions between pairs of depression symptoms.

In Figure 6, edges that connect the "(D7)Self-dislike" node to both "(D14)Worthlessness" and "(D8)Self-

criticalness" nodes appear to be among the strongest edges. Apart from the above-mentioned nodes,

other strongest edges were observed in between the following nodes in order: "(D5)Guilty feelings"

and "(D6)Punishment feelings", "(D4)Loss of pleasure" and "(D12)"Loss of interest", "(D16)Changes in

sleeping pattern" and "(D18)Changes in appetite", and lastly "(D15)Loss of energy" and "(D20)Tiredness

or fatigue". (See Supplementary Figure 36 for more information)

In the figure 8, "(D7)Self-dislike" and "(D15)Loss of energy" symptoms emerged as having the

greatest node strength followed by "(D14)Worthlessness" and "(D20)Tiredness or fatigue" symptoms.

15



Figure 7: Above : Centrality stability graphs for strength, closeness, betweenness, expected-influence

in the case-dropping stability analysis for depression network. Below : Edge stability graph in the

non-parametric stability analysis for depression network

These nodes were revealed to be significantly different from the remaining nodes (See Figure 9 for more

detail). The expected influence measure supports the same result as the strength measure since there were

no apparent red edges in the network. Although the stability of the betweenness and closeness measures

were acceptable and good respectively, they did not provide any centrally strong nodes. Because the

nodes having the strongest betweenness and closeness values were not significantly different from the
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majority of the remaining nodes.

Figure 8: z-scored centrality metrics (betweenness, closeness, expected-influence, strength) for each

depression symptom.
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Figure 9: Centrality differences between depression nodes for strength, expected influence, betweenness

and closeness measures. Black boxes indicate significant difference while grey boxes means signifi-

cantly not different.
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In the Figure 10A, there is no recognisable clustering between nodes meaning latent variable models

may not be able to fully explain the complexity of the relationship between depression symptoms in

given survey. In the previous studies which showed validity and reliability of the Korean version of the

BDI-II survey, factor analysis was reported along with them. In the Figure 10B, each color represents

different factors. Three factors structure reported to be the best fit in the Yu et al. for Korean university

students. Although same colored nodes are relatively close, it does not fit well with current data [28].

In the Figure 10C, two factors structure reported to be the best fit in the Song et al. for Korean university

students. This fitting seems to be a total miss in terms of representing the current data [27] Lastly in

the Figure 10D, three factors structure reported by Park et al. seems to be the best fit for our data. How-

ever, unlike other two studies, factors reported here were generalized adult population not for student

population [26].

Figure 10: Representation and comparison of Factor analysis on BDI-II items done by previous studies

in Korean subjects.
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Table 2: Descriptive statistics for two participant groups of the anxiety measure (BAI).

N=5430 N=743

(2694 F, 2736 M) (366 F, 377 M)

Symptoms mean sd r mean sd r

Age 22.86 2.46 - 23.12 2.13 -

1.Numbness or tingling 0.51 0.62 0.58 0.44 0.62 0.58

2.Feeling hot 0.72 0.66 0.53 0.61 0.63 0.55

3.Wobbliness in legs 0.55 0.67 0.54 0.47 0.64 0.50

4.Unable to relax 0.44 0.65 0.57 0.40 0.62 0.55

5.Fear of worst happening 0.49 0.68 0.63 0.48 0.69 0.65

6.Dizzy or lightheaded 0.72 0.74 0.59 0.63 0.74 0.62

7.Hearth pounding / racing 0.77 0.75 0.63 0.67 0.74 0.66

8.Unsteady 0.65 0.67 0.59 0.55 0.64 0.59

9.Terrified or afraid 0.62 0.77 0.63 0.55 0.74 0.64

10.Nervous 0.68 0.78 0.68 0.57 0.75 0.63

11.Feeling of choking 0.21 0.53 0.49 0.17 0.47 0.46

12.Hands trembling 0.33 0.61 0.47 0.28 0.57 0.45

13.Shaky / unsteady 0.36 0.59 0.62 0.32 0.54 0.59

14.Fear of losing control 0.19 0.49 0.52 0.15 0.43 0.51

15.Difficulty in breathing 0.23 0.53 0.46 0.18 0.48 0.46

16.Fear of dying 0.12 0.39 0.40 0.08 0.31 0.37

17.Scared 0.50 0.66 0.65 0.47 0.65 0.66

18.Indigestion 0.79 0.88 0.58 0.76 0.87 0.62

19.Faint / lightheaded 0.11 0.37 0.38 0.09 0.35 0.37

20.Face flushed 0.55 0.78 0.48 0.50 0.77 0.52

21.Hot / cold sweats 0.33 0.62 0.45 0.28 0.61 0.48

Total 9.85 7.88 1.00 8.67 7.55 1.00
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Similar to the depression network, a GLASSO network depicting the relationship between anxiety

symptoms were estimated(see Figure 11). Centrality stability coefficients calculated by the case drop-

ping boot were lowest for betweenness being 0.57 which is still considered good. Closeness, strength,

and expected influence scored 0.75 which was the highest level tested and considered as excellent scores.

Similar to the depression network stability, the centrality stability plot in Figure 12 indicates that the sta-

bility of closeness is lower than the strength and the expected influence which are close to the ceiling

limit. Bottom part of the same figure shows excellent edge weight stability that was plotted through the

non-parametric bootstrap.

Figure 11: Regularized partial correlation network returned via the graphical LASSO depicting associ-

ations between pairs of anxiety symptoms.

The edge that connects the "(A11)Feeling of choking" node to "(A15)Difficulty in breathing" node

appears to be the strongest compared to all the other edges in Figure 11. Edges between "(A14)Fear of

losing control" and "(A16)Fear of dying" nodes as well as "(A20)Face flushed" and "(A21)Hot / cold

sweats" nodes come right after. Apart from the above-mentioned nodes, edges observed in between

the following nodes follows in terms of strength: "(A1)Numbness or tingling" with both "(A6)Dizzy or

lightheaded" and "(A3)Wobbliness in legs", "(A10)Nervous" and "(A17)Scared", "(A8)Unsteady" and

"(A13)Shaky / unsteady" (See Figure 37)
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Figure 12: Above : Centrality stability coefficients for strength, closeness, betweenness, expected-

influence in the case-dropping stability analysis for anxiety network. Below : Edge stability graph in the

non-parametric stability analysis for anxiety network.
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Figure 13: z-scored centrality metrics (betweenness, closeness, expected-influence, strength) for each

anxiety symptom.

In the figure 13 "(A13)Shaky / unsteady" symptom emerged as the greatest for all centrality mea-

sures. "(A7)Hearth pounding / racing" symptom was greatest for both strength and betweenness. "(A10)Nervous"

and "(A17)Scared" nodes were only greatest in the strength centrality while "(A14)Fear of losing con-

trol" were only greatest in the betweenness centrality. Meanwhile, "(A6)Dizzy or lightheaded" node

was greatest at both betweenness and closeness measures. These nodes were revealed to be significantly

different from the remaining nodes (See Figure 14 for more detail). The expected influence measure

supports the same result as the strength measure since there were no apparent red edges in the network.
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Figure 14: Centrality differences between anxiety nodes for strength, expected influence, betweenness

and closeness measures. Black boxes indicate significant difference while grey boxes means signifi-

cantly not different.
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In Figure 15A, contrarily to the depression network, there seems to be three observable clustering

among the nodes. First cluster consisting of A11, A14, A15, A16, A19 nodes, second cluster including

A4, A5, A8, A9, A10, A13, A14, A17 nodes and the third cluster forming with the remaining nodes.

This could hint into 3 latent variable behind the clusters. Further analysis needs to be done to reveal the

truth. In Figure 14B, different colors belong to four different factor structure which was reported to be

the best fit for Korean adult population by Lee et al. [30]. Clearly it is far from explaining our data set.

Figure 15: Representation and comparison of Factor analysis on BAI items done by previous studies in

Korean subjects.
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4.2 Bridge Analysis

Table 3: Descriptive statistics for Worry(PSWQ) items and Meta-worry(MCQ-30) subtotals (N=743).

Symptoms mean sd

PSWQ
2.My worries overwhelm me 4.48 3.40

4.Many situations make me worry 6.45 3.41

5.I know I should not worry about things, but I just cannot help it 7.42 3.37

6.When I am under pressure I worry a lot 4.76 3.54

7.I am always worrying about something 3.64 3.02

9.As soon as I finish one task, I start to worry about everything else I have to do 1.93 0.98

12.I have been a worrier all my life 2.52 1.02

13.I notice that I have been worrying about things 2.34 1.17

MCQ-30
1.(Lack of) cognitive confidence 2.84 1.11

2.Positive Beliefs about worry 2.05 1.08

3.Cognitive self-consciousness 1.82 1.00

4.Negative beliefs about uncontrollability & danger 2.33 1.20

5.Need to control thoughts 2.62 1.26
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For bridge analysis, two different GLASSO networks were estimated by using the same data set

of 743 participants. In the first network, depression, worry, and meta-cognition nodes/items were in-

cluded(Figure 16). Similar to the single measure GLASSO networks above, the stability of the network

needs to be good to be able to go forward and interpret the results. Centrality stability coefficients cal-

culated by the case dropping boot for betweenness being 0.20 and closeness being 0.36 were within the

acceptable range to establish the network as stable. Strength and expected influence scored 0.67 and con-

sidered good. Bridge centrality stability coefficients were the same as before-mentioned peers(Figure

17). Excellent edge weight stability that was plotted through the non-parametric bootstrap can be seen

in the same figure as well.

Figure 16: Regularized partial correlation network depicting associations between depression symp-

toms, meta-cognition subsections and worry items.
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Figure 17: Stability of centrality measures and edge weights for depression, meta-cognition and worry

network
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In the interpretation of the results, unlike the single measure GlASSO networks, the most central

nodes or strongest edges were not the interest but the bridge nodes which connect 2 communities were.

Therefore, bridge centrality measures were considered in the analysis. Due to the lower stability of the

bridge-betweenness and the bridge-closeness along with the lack of red edge number and sizes which

results in bridge-expected influence being almost identical to bridge strength, only the bridge-strength

measure was examined (Figure 18). "(M1)Lack of cognitive confidence", (M4)Negative beliefs about

uncontrollability and danger", "(M5)Need to control thoughts", and "(W2)My worries overwhelm me"

nodes showed the highest bridge strength among the 34 nodes, meaning that they are highly connected

to the depression community.

Figure 18: z-scored Bridge strength centrality metrics for Depression, Worry & Meta-worry.z-scored

centrality metrics (betweenness, closeness, expected-influence, strength) for each anxiety symptom
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Figure 19: Difference between nodes for depression, meta-cognition and worry network

Correlation matrix between all nodes was checked to detect which node in the depression com-

munity they are most connected to (Figure 20). "(M1)Lack of cognitive confidence" node is con-

nected to "(D13)Indecisiveness" while "(M5)Need to control thoughts" node is connected to "(D8)Self-

criticalness" symptom in the depression community. "(M4)Negative beliefs about uncontrollability and

danger" and "(W2)My worries overwhelm me" nodes both connect to "(D11)Agitation" symptom.

30



Figure 20: Correlation matrix between nodes for depression, meta-cognition and worry network
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In the second estimated network, anxiety, worry, and meta-cognition nodes/items were included(Figure

21). Centrality stability coefficients calculated by the case dropping boot for betweenness being 0.13 was

very low making this centrality measure not interpretable. Strength and expected influence scored 0.67

and closeness scored 0.52 that considered in the good range for stability analysis. Contrarily, bridge-

closeness scored lowest level tested being 0.05 and making it impossible to use for interpretation. Others

fell into the stably good category; bridge-strength and bridge-expected influence with scores of 0.67 and

bridge-betweenness with a score of 0.52.(Figure 22). It also shows excellent edge weight stability that

was plotted through the non-parametric bootstrap in the same figure.

Figure 21: Regularized partial correlation network depicting associations between anxiety symptoms,

meta-cognition subsections and worry items.
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Figure 22: Stability of centrality measures and edge weights for anxiety, meta-cognition and worry

network
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Similarly, only the bridge-strength measure was examined (Figure 23). "(M1)Lack of cognitive

confidence", (M4)Negative beliefs about uncontrollability and danger", and "(W2)My worries over-

whelm me" nodes showed the highest bridge strength from the worry&meta-worry community, while

"(A9)Terrified or afraid" and "(A13)Shaky / unsteady" nodes from the anxiety community came up as

having highest bridge strength.

Figure 23: Bridge strength and its difference between nodes for anxiety, meta-cognition and worry

network

The correlation matrix between all nodes was checked to detect M1, M4, and W2 nodes’ strongest

connections to the anxiety community nodes(Figure 25). "(M1)Lack of cognitive confidence" node

and "(A13)Shaky / unsteady" node are connected each other while "(M4)Negative beliefs about uncon-

trollability and danger" node’s connections spread out to "(A4)Unable to relax", "(A5)Fear of worst
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Figure 24: Difference between nodes for anxiety, meta-cognition and worry network

happening" and "(A13)Shaky / unsteady" while " "(W2)My worries overwhelm me" node’s connections

spread out to "(A5)Fear of worst happening", "(A8)Unsteady", and "(A9)Terrified or afraid".

To sum up, "(M1)Lack of cognitive confidence" and "(M4)Negative beliefs about uncontrollability

and danger" subcategories of the meta-cognition questionnaire and "(W2)My worries overwhelm me"

item of the Penn-state worry questionnaire are co-morbid with both depression and anxiety symptoms

while "(M5)Need to control thoughts" subsection of the meta-cognition questionnaire is co-morbid with

depression symptoms. However, any bridge nodes from the depression side of the network were not

highly central nodes. Contrarily M4 and M1 were connected to A13 which has high centrality among

anxiety symptoms.

35



Figure 25: Correlation matrix between nodes for anxiety, meta-cognition and worry network
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4.3 Directed Acyclic Graph (DAG)

In the DAG which only covers depression symptoms, 0.85 was used as a treshold for the cutpoint of

edge strength, and 0.5 cutpoint was used as directionality strength (Figure 26). Appearing on top,

"(D7)Self-dislike" has the possibility of being the initiator of the depression symptoms. It was followed

by "(D3)Past failure" and "(D14)Worthlessness" and "(D8)Self-criticalness". In the GLASSO network

of the depression symptoms, D7 and D14 had high centrality as well, making them important targets for

intervention. When checked for directional strength between nodes, edges between top nodes did not

have strong directionality (Figure 27).So, it is better to assess them together as intervention targets. The

DAG ended with "(D10)Crying", "(D13)Indecisiveness" nodes, and "(D16)Changes in sleeping pattern",

"(D18)Changes in appetite", "(D21)Loss of interest in sex" chain nodes.

Figure 26: Directed acyclic graph (DAG) by using the %85 cutpoint. Edges signify the importance (BIC

value) of the edge to model fit (depression).
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Figure 27: Direction probabilities for edge width. Thick arrows indicate high directional probabilities,

thin arrows low directional probabilities(depression).

Figure 28: Correlation matrix for depression symptoms.
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Similarly, in the DAG which only covers anxiety symptoms, 0.85 was used as the cutpoint for edge

strength, and 0.5 cutpoint was used as directionality strength (Figure 29). "(A17)Scared" appeared on

top followed by "(A10)Nervous" and "(A5)Fear of worst happening" making them a focal point for

intervention targets. In the GLASSO network, A17 and A10 had the greatest strength between all the

anxiety symptoms as well. Like DAG with depression symptoms, the directional strength between

nodes that appeared at the top did not have strong directionality (Figure 30). So, it is better to assess

them together as intervention targets. The anxiety DAG ended with "(A2)Feeling hot" on one side and,

"(A15)Difficulty in breathing", "(A19)Faint / lightheaded", "(A21)Hot / cold sweats chain nodes on the

other side.

Figure 29: Directed acyclic graph (DAG) by using the 0.85 cutpoint. Edges signify the importance (BIC

value) of the edge to model fit (anxiety).
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Figure 30: Direction probabilities for edge width. Thick arrows indicate high directional probabilities,

thin arrows low directional probabilities(anxiety).

Figure 31: Correlation matrix for anxiety symptoms.
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When looking for the causality between worry & meta-cognition community and depression or

anxiety symptoms, firstly, the optimal threshold was calculated by using the algorithm provided by (put

ref) for edge strength cutpoint, and 0.5 cutpoint was used as directionality strength.

Figure 32: Directed acyclic graph (DAG) by using the optimal cutpoint. Edges signify the importance

(BIC value) of the edge to model fit (depression, worry, meta-cognition).

Figure 33: Directed acyclic graph (DAG) by using the 0.85 cutpoint. Edges signify the importance (BIC

value) of the edge to model fit (depression, worry, meta-cognition).
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In the figure 32, "(M4)Negative beliefs about uncontrollability and danger" bridge symptom for the

depression appeared on top of all depression symptoms, meaning it can be a contributor for depression

symptoms. "(M1)(Lack of) cognitive confidence" and "(M5)Need to control thoughts" bridge symptoms

appeared at the bottom meaning they are most likely a result. Meanwhile, "(W2)My worries overwhelm

me" only contributed to the lower branches of the depression symptoms. However, when the cutpoint

was raised to 0.85 for the edges, the interaction between the two communities mostly disappeared leav-

ing only "(M1)(Lack of) cognitive confidence" as an end result of the depression symptoms (Figure

33).

In the figure 34, "(M4)Negative beliefs about uncontrollability and danger" and "(W2)My worries

overwhelm me" bridge symptoms for anxiety appeared to be contributors to the top anxiety symptoms.

Meanwhile, "(M5)Need to control thoughts" only contributed to the lower branches of the anxiety symp-

toms. However, when the cutpoint was raised to 0.85 for the edges, again, the interaction between the

two communities completely disappeared making two different islands of causal relationships (Figure

35). Directional probability graphs of last 4 figures can be found at the supplementary material at the

end.

In summary, "(M4)Negative beliefs about uncontrollability and danger" for both depression and

anxiety, and "(W2)My worries overwhelm me" for only anxiety could give us a red flag for students

who scored high on those items as indicators of future mental health problems.
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Figure 34: Directed acyclic graph (DAG) by using the optimal cutpoint. Edges signify the importance

(BIC value) of the edge to model fit (anxiety, worry, meta-cognition).

Figure 35: Directed acyclic graph (DAG) by using the 0.85 cutpoint. Edges signify the importance (BIC

value) of the edge to model fit (anxiety, worry, meta-cognition).
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V Conclusion

In this study, descriptive statistic regarding the depression, anxiety, worry and meta-worry items were

revealed. Factor analysis done by previous studies were compered with the network analysis results

only based on appearance . Although it is insufficient to draw conclusions, the goal was to suggest and

encourage further research. The main focus of this thesis was to explore four aims explained in the

objective of the research at top.

The first two aims of the study were achieved successfully by a detailed analysis of relationships be-

tween depression and anxiety symptoms. For depression, "Self-dislike" and "Loss of energy" symptoms

came up as strongest nodes followed by "Worthlessness" and "Tiredness or fatigue" symptoms emerged

as most central symptoms. Strength was the only centrality measure to give significant results. Also,

"Self-dislike", "Worthlessness" along with "Past failure" was suggested by DAG as an initiator of other

depression symptoms. For anxiety, "Shaky / unsteady", and "Hearth pounding / racing" symptoms had

the greatest node strength betweenness. "Nervous" and "Scared" nodes were only greatest in the strength

centrality while "Fear of losing control" were only greatest in the betweenness centrality. Meanwhile,

the "Dizzy or lightheaded" node was greatest at both betweenness and closeness measures. "Nervous"

and "Scared" together with "Fear of worst happening" comes up as initiator symptoms of anxiety in the

DAG. Central symptoms are substantial targets for intervention since they are highly connected to the

symptoms of those around them. Additionally, initiator symptoms can be considered to come up with

preventive methods for mental health disorders. Another strategy for intervention can be developed by

considering highly connected nodes together.

The last two goals of the study were achieved as well. From 8 PSWQ(worry) items, the "My worries

overwhelm me" item showed comorbidity with both depression and anxiety. When its strongest con-

nection to the symptoms was checked, they did not appear to be one of the central symptoms. When

causality was investigated with optimal cutpoint DAG, it had an impact on the initiator symptoms of

anxiety, while only contributing to the lower branches of the depression symptoms. However, when

the cutpoint was raised to 85%, no ties remained. From 5 subscales of MCQ(meta-worry), "Lack of

cognitive confidence" and "Negative beliefs about uncontrollability and danger" showed comorbidity

with both depression and anxiety. Their strongest connections to anxiety symptoms included one of

the central symptoms of anxiety, namely "Shaky / Unsteady". "Need to control thoughts" subscale only

showed comorbidity with depression symptoms. However, non of the bridge symptoms connected to the

central symptoms of depression strongly. When causality was investigated with optimal cutpoint DAG,

"Negative beliefs about uncontrollability and danger" appeared on top for both depression and anxiety,

meaning, higher scores on this subscale can be initiating factors for both mental health disorders. Con-

trarily, "Lack of cognitive confidence" appeared as an end result in both directed networks, meaning,

high scores in this subscale could be an indicator of already developed mental health problems. How-

ever, when the cutpoint was raised to 85%, only the "Lack of cognitive confidence" subscale’s relation

with depression remained.

Whether or not they made it to the final network model, all 4 items from worry and meta-worry
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concepts showing comorbidity with depression and anxiety have importance by giving a warning sign

of existing mental health disorders or potential hazard for the future. Them, not making it into the final

model means they may not be as important to include them when designing a prevention or intervention

method for depression and anxiety. All findings of this study give suggestions for intervention and

prevention methods of depression and anxiety disorders by detecting the most important symptoms

of each. However, these findings need to be tested and proven to be a helpful and effective way of

intervention or prevention technique by conducting further clinical research.

This study’s biggest strength was high number of participants which is rare in network analysis. But

it was achieved by collecting over long period of time which in return caused some weaknesses in the

study too. The period of time the data were collected, historical, economical, or sociological events that

may potentially affect the mental health of the given population, and the effect of recently occurred

pandemic. Unfortunately, timestamps were not included in the data collection process. Therefore,

observing the mental health change during the time-period was not possible in this study.
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VI Codes – R scripts

My conclusion will be here

# I n s t a l l r e q u i r e d packages . .

l i b r a r y ( b o o t n e t )

l i b r a r y ( n e t w o r k t o o l s )

l i b r a r y ( qgraph )

l i b r a r y ( " e1071 " )

l i b r a r y ( " i g r a p h " )

l i b r a r y ( " d p l y r " )

## B a y e s i a n ne twork package

l i b r a r y ( " b n l e a r n " )

## used f o r v i s u a l i z i n g B a y e s i a n n e t w o r k s

l i b r a r y ( " Rgraphv iz " )

# Area p r o p o r t i o n a l e u l e r graph .

hope <− c ( " D e p r e s s i o n " = 5015 , " Anx ie ty " = 5430 ,

" Meta −Worry " = 3589 , " Worry " = 1761 ,

" D e p r e s s i o n&Anxie ty " = 2157 , " D e p r e s s i o n&Meta −Worry " = 3584 ,

" D e p r e s s i o n&Worry " = 1761 , " Anx ie ty&Meta −Worry " = 1729 ,

" Anx ie ty&Worry " = 1761 , " Meta −Worry&Worry " = 743 ,

" D e p r e s s i o n&Anxie ty&Meta −Worry " = 1729 ,

" D e p r e s s i o n&Anxie ty&Worry " = 1761 ,

" D e p r e s s i o n&Meta −Worry&Worry " = 743 ,

" Anx ie ty&Meta −Worry&Worry " = 743 ,

" D e p r e s s i o n&Anxie ty&Meta −Worry&Worry " = 743)

# f i t t i n g . .

f i t a <− e u l e r ( hope , i n p u t = " un ion " , shape = " e l l i p s e " )

# ####

# T h i s code was run 4 t i m e s by i m p o r t i n g d i f f e r e n t d a t a s e t s .

# ####

# I mp or t da ta

mydata <− read . t a b l e ( " ~ /DAWmetaW. csv " , h e a d e r =TRUE,

sep =" , " , na = "NA" )
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# Check t h e da ta

summary ( mydata )

head ( mydata )

dim ( mydata )

# Running G o l d B r i c k e r t o f i n d o u t i f t h e r e are nodes s h a r i n g s i m i l a r f a t e !
GBmydata <− g o l d b r i c k e r ( mydata , p = 0 . 0 5 , method = " pea r son1898 " ,

t h r e s h o l d = 0 . 2 5 , corMin = 0 . 5 , p r o g r e s s b a r = TRUE)

# I f found remove them from t h e d a t a s e t . .

Red_ mydata <− n e t _ r e d u c e ( data=mydata , b a d p a i r s =GBmydata )

# c o l o r p a l e t s , used d i f f e r e n t c o l o r s f o r each measure

#and k e p t i t c o n s i s t e n t i n d i f f e r e n t n e t w o r k s .

c o l o r = c ( ’ #A8E6CF ’ , ’ # f f d 2 d 2 ’ , ’ # c b e 2 f f ’ , ’ # f f f e c 8 ’ )

mynetwork <− e s t i m a t e N e t w o r k ( mydata , d e f a u l t =" EBICglasso " ,

corMethod = " c o r " , co rArgs = l i s t ( method = " spearman " ,

use = " p a i r w i s e . c o m p l e t e . obs " ) )

#Change groups and c o l o r s !

png ( " mynetwork _ anx . png " , wid th = 1024 , h e i g h t = 768 , u n i t s = ’ px ’ ,

r e s = 1600 , p o i n t s i z e = 10)

myplot <− p l o t ( mynetwork , l a y o u t =" s p r i n g " , v s i z e =6 ,

g r ou ps = l i s t ( " depp "=c ( 1 : 2 1 ) , " meta −worry "=c ( 2 2 : 2 6 ) ,

" worry "=c ( 2 6 : 3 3 ) ) , c o l o r =c ( ’ #A8E6CF ’ , ’ #DCEDC1 ’ , ’ #FDC705 ’ ) ,

b o r d e r . c o l o r =" b l a c k " , l egend =FALSE)

dev . o f f ( )

# Check c o m m u n i t i e s !

# E s t i m a t e b r i d g e v a l u e s f o r each node
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#Name our b r i d g e o b j e c t

mybridge <− b r i d g e ( myplot ,

communi t i e s =c ( ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ ,

’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ ) ,

useCommuni t ies = " a l l " , d i r e c t e d = NULL, nodes = NULL)

# E s t i m a t e b r i d g e v a l u e s f o r each node

mybridge

w r i t e ( mybridge , " C e n t r a l i t y _ b r i d g e . t x t " )

# l e t s p l o t

p l o t ( mybridge , i n c l u d e = c ( " Br id ge S t r e n g t h " ,

" B r i dg e Expec ted I n f l u e n c e (1 − s t e p ) " ,

" B r i dg e C l o s e n e s s " , " B r i dg e Betweenness " ) )

# Save c e n t r a l i t y v a l u e s

C e n t r a l i t y T a b l e <− c e n t r a l i t y T a b l e ( mynetwork )

w r i t e . csv ( C e n t r a l i t y T a b l e , " C e n t r a l i t y T a b l e _ depp . csv " )

# C e n t r a l i t y p l o t

c e n t r a l i t y P l o t ( myplot ,

i n c l u d e = c ( " S t r e n g t h " , " C l o s e n e s s " ,

" Be tweenness " , " E x p e c t e d I n f l u e n c e " ) )

# C o n s t r u c t i n g a p a r t i a l c o r r e l a t i o n m a t r i x

N1edges <− getWmat ( mynetwork )

w r i t e . csv ( N1edges , " NetworkEdges _ depp . csv " )

# E s t i m a t i n g Network S t a b i l i t y & Accuracy

# I n c l u d e c o m m u n i t i e s o n l y when b r i d g e a n a l y s i s i s needed .

caseDropp ingBoo t <− b o o t n e t ( mynetwork , b o o t s =10000 , t y p e =" c a s e " ,
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s t a t i s t i c s =c ( " s t r e n g t h " , " c l o s e n e s s " , " b e t w e e n n e s s " ,

" e x p e c t e d I n f l u e n c e " , " edge " , " b r i d g e S t r e n g t h " ,

" b r i d g e E x p e c t e d I n f l u e n c e " , " b r i d g e C l o s e n e s s " ,

" b r i d g e B e t w e e n n e s s " ) ,

communi t i e s =c ( ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ ,

’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ ) ,

useCommuni t ies = " a l l " )

n o n P a r a m e t r i c B o o t <− b o o t n e t ( mynetwork , b o o t s =10000 ,

t y p e =" n o n p a r a m e t r i c " ,

s t a t i s t i c s =c ( " s t r e n g t h " , " c l o s e n e s s " , " b e t w e e n n e s s " ,

" e x p e c t e d I n f l u e n c e " , " edge " , " b r i d g e S t r e n g t " ,

" b r i d g e E x p e c t e d I n f l u e n c e " , " b r i d g e C l o s e n e s s " ,

" b r i d g e B e t w e e n n e s s " ) ,

communi t i e s =c ( ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,

’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ ,

’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ , ’ 2 ’ ) ,

useCommuni t ies = " a l l " )

# g e t s t a b i l i t y c o e f f i c i e n t s

m y c o r s t a b i l i t y <− c o r S t a b i l i t y ( ca seDropp ingBoo t )

w r i t e ( m y c o r s t a b i l i t y , " c o r s t a b i l i t y _dmw. t x t " )

# P l o t c e n t r a l i t y s t a b i l i t y

p l o t ( caseDropp ingBoot , s t a t i s t i c s =c ( " s t r e n g t h " , " c l o s e n e s s " ,

" b e t w e e n n e s s " , " e x p e c t e d I n f l u e n c e " ,

) )

p l o t ( caseDropp ingBoot , s t a t i s t i c s =c ( " b r i d g e S t r e n g t h " ,

" b r i d g e E x p e c t e d I n f l u e n c e " ) )

# P l o t c e n t r a l i t y d i f f e r e n c e

p l o t ( n o n P a r a m e t r i c B o o t , s t a t i s t i c s =" b r i d g e S t r e n g t h " ,
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p l o t =" d i f f e r e n c e " , order = " sample " )

p l o t ( n o n P a r a m e t r i c B o o t , s t a t i s t i c s =" s t r e n g t h " , p l o t =" d i f f e r e n c e " ,

order = " sample " )

# Above command can be used f o r o t h e r c e n t r a l i t y measures as w e l l .

# Save edge s t a b i l i t y graph

p l o t ( n o n P a r a m e t r i c B o o t , l a b e l s = FALSE , order = " sample " )

#Edge w e i g h t s d i f f t e s t

p l o t ( n o n P a r a m e t r i c B o o t , " edge " , p l o t = " d i f f e r e n c e " ,

onlyNonZero = TRUE, order = " sample " )

# AIM 2: E s t i m a t e B a y e s i a n ne twork

## F i t a f i r s t B a y e s i a n network ,

# based on 50 random re − s t a r t s and

#100 p e r t u r b a t i o n s f o r each re − s t a r t .

## c o n v e r t t o n u m e r i c s

n e t d a t a <− as . data . frame ( apply ( mydata , 2 , as . numeric ) )

# Quick c o r r e l a t i o n s t r u c t u r e check

cormat <− cor ( n e t d a t a )

c o r r p l o t ( cormat , method = " e l l i p s e " )

s e t . s e ed ( 1 2 3 )

## hc g i v e s d i r e c t e d graph

f i tBN1 <− hc ( n e t d a t a , r e s t a r t = 50 , p e r t u r b = 100)

f i tBN1

## g l o b a l ne twork s c o r e

b n l e a r n : : s c o r e ( f i tBN1 , data = n e t d a t a )

## c o n n e c t i o n s t r e n g t h

a s t r <− a r c . s t r e n g t h ( f i tBN1 , n e t d a t a , " b ic −g " )

## s o r t e d edge s t r e n g t h from s t r o n g e s t t o w e a k e s t

a s t r [ order ( a s t r [ , 3 ] ) , ]
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s t r e n g t h . p l o t ( f i tBN1 , a s t r , shape = " e l l i p s e " )

## Now we s t a b i l i z e t h e ne twork a c r o s s m u l t i p l e

# samples t h r o u g h b o o t s t r a p p i n g :

## Learn 10000 ne twork s t r u c t u r e s

# ( t a k e s ~5 min , we keep t h e number o f r e s t a r t s

#and p e r t u r b a t i o n s c o n s i d e r a b l y low )

s e t . s e ed ( 1 2 3 )

b o o t n e t <− boo t . s t r e n g t h ( n e t d a t a , R = 10000 ,

a l g o r i t h m = " hc " ,

a l g o r i t h m . args = l i s t ( r e s t a r t = 5 , p e r t u r b = 1 0 ) ,

debug = TRUE)

head ( b o o t n e t )

## f i l t e r t h e ones w i t h a s t r e n g t h l a r g e r than 0 . 8 5

#and a d i r e c t i o n p r o b a b i l i t y > 0 . 5

b o o t n e t [ b o o t n e t $ s t r e n g t h > 0 . 8 5 & b o o t n e t $ d i r e c t i o n > 0 . 5 , ]

## Net1 : b u i l d t h e average ne twork u s i n g a 0 . 8 5 t h r e s h o l d

a v g n e t 1 <− a v e r a g e d . ne twork ( b o o t n e t , t h r e s h o l d = 0 . 8 5 )

a v g n e t 1

b n l e a r n : : s c o r e ( avgne t1 , data = n e t d a t a )

## compute edge s t r e n g t h s

a s t r 1 <− a r c . s t r e n g t h ( avgne t1 , n e t d a t a , " b ic −g " )

s t r e n g t h . p l o t ( avgne t1 , a s t r 1 , shape = " e l l i p s e " )

# Net2 : use t h e o p t i m a l c u t p o i n t ,

# a c c o r d i n g t o S c u r a t i & Nagarajan ( 2 0 1 3 )

a v g n e t 2 <− a v e r a g e d . ne twork ( b o o t n e t )

a v g n e t 2

b n l e a r n : : s c o r e ( avgne t2 , data = n e t d a t a )

t h r e s h <− a v g n e t 2 $ l e a r n i n g $ args [ [ 1 ] ]

t h r e s h

## o p t i m a l s i g n i f i c a n c e t h r e s h o l d
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## compute edge s t r e n g t h s

a s t r 2 <− a r c . s t r e n g t h ( avgne t2 , n e t d a t a , " b ic −g " )

a s t r 2

s u p p r e s s W a r n i n g s ( s t r e n g t h . p l o t ( avgne t2 , a s t r 2 ,

shape = " e l l i p s e " , t h r e s h o l d = 0 . 5 ) )

## Net3 : use n e t 2 t h r e s h o l d , edge s t r e n g h t s

# are d e t e r m i n e d by d i r e c t i o n p r o b a b i l i t y

## edges i n n e t 2

b o o t t a b <− b o o t n e t [ b o o t n e t $ s t r e n g t h > t h r e s h &
b o o t n e t $ d i r e c t i o n > 0 . 5 , ]

b o o t t a b

## t a b l e w i t h d i r e c t i o n p r o b a b i l i t i e s

a s t r 3 <− b o o t t a b

## use t h e d i r e c t i o n p r o b a b i l i t i e s f o r edge w i d t h

a s t r 3 $ s t r e n g t h <− a s t r 3 $ d i r e c t i o n

s t r e n g t h . p l o t ( avgne t2 , a s t r 3 , shape = " e l l i p s e " )

## Net4 : use n e t 1 t h r e s h o l d , edge s t r e n g h t s

# are d e t e r m i n e d by d i r e c t i o n p r o b a b i l i t y

## edges i n n e t 2

b o o t t a b <− b o o t n e t [ b o o t n e t $ s t r e n g t h > 0 . 8 5 &
b o o t n e t $ d i r e c t i o n > 0 . 5 , ]

b o o t t a b

## t a b l e w i t h d i r e c t i o n p r o b a b i l i t i e s

a s t r 4 <− b o o t t a b

## use t h e d i r e c t i o n p r o b a b i l i t i e s f o r edge w i d t h

a s t r 4 $ s t r e n g t h <− a s t r 4 $ d i r e c t i o n

s t r e n g t h . p l o t ( avgne t1 , a s t r 4 , shape = " e l l i p s e " )
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VII Appendix

Figure 36: Edge weight differences between depression nodes. Black boxes indicate significant differ-

ence while grey boxes means significantly not different.
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Figure 37: Edge weight differences between depression nodes. Black boxes indicate significant differ-

ence while grey boxes means significantly not different.
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Figure 38: Bridge strength and its difference between nodes for anxiety, meta-cognition and worry

network
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Figure 39: Direction probabilities for edge width. Thick arrows indicate high directional probabilities,

thin arrows low directional probabilities(depression, worry, meta-cognition).

Figure 40: Direction probabilities for edge width. Thick arrows indicate high directional probabilities,

thin arrows low directional probabilities(depression, worry, meta-cognition).
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Figure 41: Direction probabilities for edge width. Thick arrows indicate high directional probabilities,

thin arrows low directional probabilities(depression, worry, meta-cognition).

Figure 42: Direction probabilities for edge width. Thick arrows indicate high directional probabilities,

thin arrows low directional probabilities(depression, worry, meta-cognition).
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