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Abstract 

 

In the brain, iron is an essential element in oxygen supply through blood vessels, energy metabolism, 

myelin formation, and neurotransmitter synthesis for brain development with maintaining homeostasis. 

However, even in healthy people, as they grow older, iron levels increase steadily in some regions of 

the brain. Among the inevitable iron deposits with aging, the unbound labile iron generates reactive 

oxygen and free radicals, which produce stress on the brain tissue and necrosis of cells, which are 

closely associated with neurodegenerative diseases. These finally promote neurodegenerative diseases, 

including Parkinson’s disease and Alzheimer’s disease, which accompany the damage in behavior and 

cognitive function. Therefore, developing magnetic resonance imaging-based biomarkers to detect 

various iron clusters deposited in the brain is crucial work for diagnosing and monitoring related 

diseases. However, it’s still impossible to classify the states of iron and separate the various forms of 

iron deposited in the brain. 

The aim of this study was to develop multi-color iron magnetic resonance imaging and the 

investigation of its in vivo feasibility through translation research from the preclinical trials including 

postmortem magnetic resonance imaging with histopathological validation to clinical application. 

In the first section, it was discovered that the neuromelanin pigment within the human substantia nigra 

is only sensitive to T2
* than other magnetic resonance contrast due to its paramagnetic property. 

Subsequently, the technique for specific visualization of neuromelanin-iron clusters in postmortem 

substantia nigra tissue was developed using combined T2 and T2
* (T2

*/T2 or T2
*/T2

2) with 

histopathological validation supported by the Monte Carlo simulation. Separate segmentations of the 

areas of iron detected in the T2 map and neuromelanin observed in the T2
*/T2 map (or T2

*/T2
2 map) were 

available within the substantia nigra. The dorsal linear mismatch of T2 and T2
* was consistently detected 

in the brains of healthy controls. However, it was shortened in the diseased brains. In vivo feasibility 

and implication of developed technique as a clinical biomarker were quantitatively demonstrated in the 

patients of Parkinson’s disease compared to healthy subjects. 

In the second section, the iron deposition along the myelinated fiber of white matter was identified in 

the diseased brains. The iron-rich white matter at the frontal subcortical area contributes to the positive 

susceptibility in the patients of Adult-onset leukoencephalopathy with axonal spheroids and pigmented 

glia. Susceptibility-weighted imaging presented the noticeable phase signal showing the tree-like 

structure in the white matter of the frontal brain, with striking atrophy. This kind of rare tissue contrast 

in susceptibility-weighted imaging can aid to define Adult-onset leukoencephalopathy with axonal 

spheroids and pigmented glia. Besides, the deposited iron was verified on the myelinated fibers of the 

3rd cranial nerve, which is the oculomotor nerve within the brain of progressive supranuclear palsy. Our 
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results demonstrated the enhanced magnetic resonance susceptibility value between the area of 

substantia nigra and red nucleus shown in the brain of progressive supranuclear palsy derives from 

exaggerated iron concentration on the myelinated fibers of the nerves between two structures. 

In conclusion, the developed techniques of multi-color iron magnetic resonance imaging in this thesis 

can be useful imaging biomarkers to evaluate the progressive change of several iron-related 

neurodegenerative diseases, such as Perry syndrome, progressive supranuclear palsy, Parkinson’s 

disease, and Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. The advanced 

research will be implemented to validate the alteration of magnetic resonance signal with the presence 

of iron molecules chelated to beta-amyloid or tau with Alzheimer’s disease progression. 
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Chapter 1. Introduction 

 

1.1 Motivation 

 

In the brain, iron is an essential element in oxygen supply through the blood vessels, energy 

metabolism, myelin formation, and neurotransmitter synthesis for brain development with maintaining 

homeostasis. However, even in healthy people, as they grow older, iron levels increase steadily in some 

areas of the brain. Among the inevitable iron deposits with aging, the unbound labile iron generates 

reactive oxygen and free radicals, which produce stress on the brain tissue and the necrosis of cells. 

Many studies have shown that these finally lead to neurodegenerative diseases, such as Alzheimer’s 

disease and Parkinson’s disease, which accompany the damage in cognitive function and behavior. To 

prevent such neurodegeneration, most iron molecules are stably transported and stored in the brain by 

binding to proteins such as ferritin, transferrin, and hemosiderin. 

Among the various iron distributions in the brain, most iron within the human substantia nigra (SN) 

located in the midbrain is in the form of a stable structure chelated to neuromelanin, which means 

sequestered or surrounded by neuromelanin. The degeneration of dopaminergic neurons containing 

neuromelanin pigments and excessive iron deposition in the SN is highly associated with Parkinson’s 

disease progression. The molecules containing a high level of iron are also stored in the myelinated 

fiber of white matter and oligodendrocyte because iron is needed for the formation of myelin sheaths 

or axon maturation. But the problem of the mechanism of iron homeostasis causes abnormal iron 

deposition on the white matter. The vulnerability of oligodendrocytes and myelinated fibers against 

oxidative stress of iron can be stimulated by the environment of high iron concentration. The enhanced 

iron concentration on the white matter fibers causes damage to neurons according to the disease 

progression. Furthermore, iron molecules are deposited along the blood vessels. Iron in hemoglobin can 

be deposited along the vessels due to hemorrhage caused by damage to the blood-brain barrier. 

Perivascular Iron deposition also occurs due to the deposition of beta-amyloid on the vascular wall 

called cerebral amyloid angiopathy with Alzheimer’s disease progression. 

According to the situation, two different states of iron including ferric iron and ferrous iron are 

deposited in the brain. The iron chelated to neuromelanin in the SN is in the state of ferric iron. And the 

iron attached to the aggregated beta-amyloid is ferrous iron. Ferric iron is not reactive and stable. It can 

be detected by Perls’ Prussian blue staining. Ferrous iron is toxic and causes oxidative stress to brain 

tissue. It is detected by Turnbull blue staining. Visualizing the progressive changes of iron distribution 

in the brain tissues is a crucial way for monitoring neurodegenerative diseases. However, it’s still 

impossible to classify the iron states and separate the various iron forms deposited within the brain. 
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1.2 Purpose 

 

The aim of this study is the development of multi-color iron magnetic resonance (MR) imaging and 

the investigation of its in vivo feasibility and implication. Using a new concept of MR imaging, the 

states of iron molecules were non-invasively classified and the various forms of iron deposition in the 

brain were separated. Analyzing the spatial distribution and concentration of iron molecules in the brain 

is also important. So, this study is called multi-color iron MR imaging. 

The objectives in this thesis are: 

1) the visualization of neuromelanin-iron complex in the SN, 

2) the identification of iron deposition along myelinated fibers. 

 

1.3 Outline 

 

The followings are the summary of each Chapter. 

Chapter 2 provides the background of multi-color iron MR imaging. The basic theory of iron-sensitive 

MRI techniques and the brief description of neurodegenerative diseases are proposed to explain the 

importance of the non-invasive classification of the iron states and the separation of the various iron 

forms. 

Chapter 3 shows the specific visualization of neuromelanin-iron clusters in the postmortem SN with 

the validation by histopathological analysis and Monte-Carlo simulation. In vivo feasibility and 

implication of the developed method was investigated and compared between the patients of 

Parkinson’s disease and healthy controls. 

Chapter 4 describes the iron deposition on the myelinated fibers of white matter in the brain suffering 

from neurodegenerative diseases. The area of white matter within the brains of Adult-onset 

leukoencephalopathy with axonal spheroids and pigmented glia patients and progressive supranuclear 

palsy patients were analyzed by iron-sensitive MRI techniques with assessing pathological correlation 

and compared with the brains of healthy controls. 

Chapter 5 contains the summary and conclusion of this thesis. The potential of the developed 

techniques to visualize iron clusters in the brain tissues as imaging biomarkers in the clinical diagnosis 

of neurodegenerative diseases is briefly described. The limitations of this study are presented with 

suggestions for improving the performance of iron imaging techniques for further study. 
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1.4 Abbreviations 

 

AC-PC   Anterior commissure and posterior commissure 

ALSP   Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia 

COSMOS  Calculation of susceptibility through multiple orientation sampling 

[18F] FP-CIT  18F-N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane 

FA   Flip angle 

H-Y   Hoehn and Yahr 

LA-ICP-MS  Laser ablation inductively coupled plasma mass spectrometry 

LBV   Laplacian boundary value 

LFB   Luxol fast blue 

MC   Monte Carlo 

MEDI   Morphology enabled dipole inversion 

MGE   Multiple gradient echo 

MR  Magnetic resonance 

MRI   Magnetic resonance imaging 

MS   Multiple sclerosis 

MSME   Multi-spin multi-echo 

MT   Magnetization transfer 

PD   Parkinson’s disease 

PET   Positron emission tomography 

PS  Perry syndrome 

PSP   Progressive supranuclear palsy 

QSM   Quantitative susceptibility mapping 

RARE   Rapid acquisition with relaxation enhancement 

RAREVTR  Rapid acquisition with relaxation enhancement with variable repetition time 

RN   Red nucleus 

ROI  Region of interest 

SD  Standard deviation 

SN   Substantia nigra 

SNc   Substantia nigra pars compacta 

SNr   Substantia nigra pars reticulata 

SWI   Susceptibility-weighted imaging 

TE   Echo time 
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TR   Repetition time 

UPDRS III  Unified Parkinson’s disease rating scale part III 

WM   White matter 
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Chapter 2 Background 

 

2.1 Iron-sensitive MRI technique 

 

2.1.1 R2 and R2
* relaxation 

 

 The simplest magnetic resonance (MR) image is acquired by measuring the global signal in the 

transverse plane from the sample. After the tipping net longitudinal signal to the transverse plane by 

application of radiofrequency (rf) pulse, the vector sum of transverse spin components is in the 

coherence. Several causes bring the loss of transverse coherence. R2 (1/T2) and R2
* (1/T2

*) relaxation are 

the process that the signals in the transverse plane decay or dephase. R2 is called spin-spin relaxation 

because one excited spin transfers the energy to other spins. Due to the spin-spin relaxation, the 

movement of spins from molecular vibrations or rotations induces spin precession. Besides, the proton 

never experiences a 100% homogeneous magnetic field. As time goes by, the spins encounter the 

fluctuating local magnetic field and precess on the transverse plane at the Larmor frequency with loss 

of phase coherence. This precession generates the free induction decay (FID) with the vector sum 

toward 0. 

 

 

Figure 2.1.1 The time progression of T2
* decay and T2 decay. 

 

The relaxation times T2 and T2
* are decided by the time demanded for the signal in the transverse plane 

exponentially decaying or dephasing to 37 % of the initial signal after the rf pulse. The relation between 

T2 and T2
* is  
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1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2𝑖
           (1) 

, where 𝑇2𝑖 is a major factor in determining T2
* associated with the main magnetic field inhomogeneity 

and local magnetic susceptibility difference. 𝑇2𝑖  is usually from the significant iron deposition or 

calcification in the tissue and the area near the air tissue interface. The Gradient-echo sequence produces 

the FID signal following 90°  rf pulse. The bipolar readout gradient (frequency encoding gradient) 

generates an echo for the data related to the time constant of T2
*. 

The application of 180° rf pulse in spin-echo sequence causes the reversal of proton dephasing with 

the same rate of precession prior to the 180° rf pulse. The proton dephasing related to 𝑇2𝑖 is eliminated 

because all protons encounter the same environment before and after the pulse. The irreversible 

relaxation caused by the interaction between spins is still left regardless of the application of 180° rf 

pulse. The reformation of coherence in the spin-echo sequence makes an echo. The resultant signal is 

associated with T2 relaxation. Using multiple bipolar readout gradients and 180° rf pulses continuously 

generate the other signals until the protons are completely dephased by T2
* and T2 relaxation. 

 

2.1.2 Quantitative susceptibility mapping 

 

Magnetic susceptibility is a dimensionless and inherent property of the source. The susceptibility of a 

material can be positive (paramagnetic) or negative (diamagnetic). Iron is the most abundant element 

with paramagnetic property in the human brain. The myelin sheath of white matter is a diamagnetic 

source, which is composed of lipids and proteins. Calcification is another diamagnetic source in the 

diseased brain. 

 The induced magnetic field is determined by the susceptibility of the material in accordance with the 

applied magnetic field. The sources with paramagnetic susceptibility induce internal magnetic fields in 

the same direction as the applied magnetic field. However, the diamagnetic susceptibility sources 

generate magnetic fields in the opposite direction. The relation between the spatially different 

susceptibility and the magnetic field is expressed as 

∆B(r) = 𝐵0 ∙ d(r) ∗ χ(r)           (2) 

, where 𝐵0  is the main magnetic field and d(r)  is the unit dipole kernel in the spherical polar 

coordinates. Therefore, the reconstruction of the susceptibility value from the magnetic field map needs 

inverse calculation. The convolution in the spatial domain corresponds directly to a multiplication in 

the frequency domain. The equation is expressed as 

ℱ{∆B(k)} = 𝐵0 ∙ D(k) ∙ ℱ{χ(k)}           (3) 

, where ℱ is the Fourier transform operator and D(k) is the unit dipole kernel in the Fourier domain. 
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Quantitative susceptibility mapping (QSM) is a novel technique solving an inverse calculation to 

reconstruct the 3D distribution of magnetic susceptibility value of the tissue using an MR phase image 

obtained from gradient-echo-based sequences. In QSM, the standard scale of the measured value is a 

voxel. Due to each voxel containing various susceptibility sources according to the environment, the 

bulk susceptibility in each voxel was estimated by the weighted sum of the magnetic susceptibility of 

the respective element with its fractional volume as the following equation, 

χ𝑣𝑜𝑥𝑒𝑙 = ∑ 𝑉𝑘 ∙ 𝜒𝑘

𝑘

           (4) 

, where 𝑉𝑘 is the volume fraction and 𝜒𝑘 is the susceptibility of component 𝑘. 

QSM can be applied in the investigation of susceptibility differences in human tissues, especially in 

the case of iron deposition and calcification with aging and the progression of neurodegenerative 

diseases. Even though T2
* or R2

* map is the quantitative analysis using the multiple magnitude images 

of gradient-echo based sequences, the calcification and iron deposition in the tissue cannot be 

distinguishable based on the T2
* or R2

* values, because both circumstances bring the shortened T2
* 

(increased R2
*) values due to the local magnetic susceptibility difference. On the other hand, QSM can 

provide the differentiation of such cases as the positive value for iron deposition and the negative value 

for calcification. 
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2.2 Neurodegenerative disease 

 

2.2.1 Parkinson’s disease 

 

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder mainly affecting the 

motor function of the patient. The clinical motor symptoms of PD include postural disturbance, rigidity, 

tremor, and bradykinesia. Depression, sleep disorders, constipation, genitourinary dysfunction are the 

non-clinical symptoms of PD. Loss of dopaminergic neurons within the substantia nigra (SN) of the 

midbrain is pathological characteristics of PD. The decline of dopamine levels over time induced by the 

death of dopaminergic neurons causes most abnormal motor dysfunctions in PD. Besides, excessive 

iron accumulation associated with oxidative stress in the SN is another abnormal characteristic of PD. 

There is no standard clinical assessment to diagnose PD. The diagnosis of PD is primarily following 

clinical criteria, based on the patient’s symptom and medical history. Currently, medical imaging tools 

of MRI, positron emission tomography (PET), single-photon emission tomography (SPECT), and 

ultrasound can be promising diagnostic methods for helping monitor and diagnose PD. They have been 

used to distinguish PD from other diseases. For MRI, the visualization of progressive changes of 

neuromelanin pigment located in the SN is believed as a promising method to monitor and diagnose PD 

patients considering nigral degeneration with disease progression. It is well known that using the 

magnetization transfer (MT) contrast pulses on T1-weighted scans shows a bright area adequately 

sensitive to the neuromelanin distribution, which is called as neuromelanin-sensitive MRI technique. 

Furthermore, nigrosomes are clusters of neuromelanin-containing dopaminergic cells within the SN 

degenerated preferentially with the progression of PD by the increased iron content. The nigrosome-1, 

which is the largest cluster, is detected in susceptibility-weighted images (SWI) as a dorsolateral high 

signal intensity with an ovoid appearance in healthy subjects. R2
* and QSM have been utilized for 

measuring the iron levels within the SN and have demonstrated an increase of iron deposition in the SN 

of PD patients. 

 

2.2.2 Progressive supranuclear palsy 

 

Progressive supranuclear palsy (PSP) is one of the degenerative parkinsonism, which is defined by the 

pathology of hyper-phosphorylated tau protein and the loss of nerve cells in cortical and subcortical 

regions, including the subthalamic nucleus, globus pallidus, and especially in the SN. Palsy of the gaze 

in vertical plane has been observed as other principal features of PSP. Atrophy of the midbrain is the 

common MRI findings in the PSP brain. The hyperintensity in T2-weighted image was identified in the 
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pons, which is the indicator of gliosis. Distinctive pattern of iron deposition in the brain of PSP patients 

can serves the potential diagnostic marker for in vivo MRI studies. The abnormal iron concentration in 

the specific area of brain would help differentiate the patients of PSP from healthy controls. According 

to the degeneration of neural cells in the SN, subthalamic nucleus, globus pallidus, and red nucleus 

(RN), significant increases in iron-related MR signals have been found in the corresponding areas. In 

postmortem MRI studies using histopathological examinations, the destruction of internal architecture 

and microstructursal surrounding the SN is significantly more than PD. Consequently, the area of 

hypointense signals around the border of SN that interconnect the area of hypointense signals of RN in 

the FLASH MRI leads to the difficult demarcation between two structures in the midbrain of PSP 

patients. 

 

2.2.3 Perry syndrome 

 

Perry syndrome (PS) is a rare progressive brain disease characterized by movement abnormality as 

Parkinsonism, severe loss of weight, central hypoventilation, and psychiatric changes. The movement 

abnormality with disease progression accompanies the changes of behavior and personality of the 

patients. PS is a hereditary disorder with an autosomal dominant manner. The pathological hallmarks 

of PS are the severe depigmentation and the gliosis in the SN with the mutation on the axon of the 

Dynactin subunit 1 (DCTN1) gene, which provides the instructions for producing dynactin-1 protein 

involved in transporting materials within the cells. Mutation of the DCTN1 gene disrupts the 

transportation of materials within cells causing malfunction in neurons. The neurons related to breathing, 

emotion, and movement gradually dies and they underlie the pathogenesis of PS. The marked loss of 

dopamine transporters is shown in the results of [18F] FP-CIT PET application on PS patients 

demonstrating the severe degeneration of dopaminergic neurons. Although there are subtle changes in 

the brain MRI of PS like frontotemporal atrophy, remarkable change was still not detected consistently. 

It can be also due to the very rare individuals reported worldwide. 

 

2.2.4 Ault-onset leukoencephalopathy with axonal spheroids and pigmented glia 

 

Adult-onset leukoencephalopathy with axonal spheroids and pigments glia (ALSP) is a progressive 

neurodegenerative disease described by cognitive disorder, behavior and psychiatric symptoms, 

Parkinsonism, executive dysfunction, ataxia, and apraxia. ALSP is an autosomal dominant disease with 

pathologic features of the presence of myelin loss sparing the subcortical U-fibers, pigmented microglia, 

axonal spheroids, and reactive astrocytosis caused by mutations of the colony-stimulating factor 1 
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receptor (CSF1R) gene and the alanyl-transfer (t)RNA synthetase 2(AARS2) gene in the white matter. 

CSF1R gene encodes transmembrane tyrosine kinase receptor in the phagocytic cells, microglia. The 

mutation in the CSF1R gene is known as the causative factor for the pathogenesis in the white matter. 

AARS2 gene is expressed for a mitochondrial enzyme. The mutation of the AARS2 gene induces 

leukoencephalopathy. MRI has non-invasively demonstrated the marked atrophy of the cerebral cortical 

area corresponding to the WM lesions as well as enlarged ventricles. Thinning of corpus callosum 

thickness, white matter lesions with calcification, the abnormal signal in the pyramidal tracts are other 

MRI findings of the ALSP brain. 

  



  

19 

 

Chapter 3. Detection of neuromelanin pigments in the substantia 

nigra 

 

3.1 Distinct detection of neuromelanin from iron deposition within the 

substantia nigra of post-mortem human brain using 7T MRI 

 

3.1.1 Introduction 

 

Neuromelanin is mostly found in the SN pars compacta (SNc) and is known to be a powerful iron 

chelator [1, 2, 3]. The majority of ferric iron, which can bring oxidative stress to the brain tissue by 

generating highly reactive free oxygen radicals, can be stored in the ferritin of the human brain [4, 5]. 

In the SNc, most of iron molecules are chelated by the neuromelanin in the dopaminergic neurons to 

form a stable complex; thus, dopaminergic neurons are protected from iron toxicity [6, 7]. There are 

two different iron chelating sites on Neuromelanin with high and low affinities [1, 8]. The protective 

ability of neuromelanin against the oxidative stress of iron by chelating iron occurs when the iron is 

mostly chelated in high affinity site [1]. Parkinson’s disease (PD) is a major progressive 

neurodegenerative disease associated with the loss of neuromelanin -containing dopaminergic neurons 

of the substantia nigra (SN) [9]. With the progression of PD, it is generally recognized that iron 

depositions increase at the SN of the PD brain, while the neuromelanin -containing dopaminergic 

neurons decreases [1]. When the iron chelating site of high affinity are saturated in the pathogenesis of 

PD, the iron only can be chelated to the site of low affinity and the hydroxyl radicals were formed to 

generate oxidative stress [10]. Historically, the quantitative measurements of iron and ultrastructural 

images of neuromelanin granules in dopamine neurons of human SN have been investigated using X-

ray diffusion analysis, nuclear magnetic resonance spectroscopy, infrared spectroscopy, Electron 

paramagnetic resonance spectroscopy, Analytical Electron Microscopy, and Nano-Secondary Ion Mass 

Spectrometry [11, 12, 13]. It is increasingly important to non-invasively distinguish the spatial 

distribution of neuromelanin from that of iron in the SN for detecting and monitoring PD pathology. As 

neuromelanin -iron complex and ferric iron are endogenous paramagnetic sources [2, 3], magnetic 

resonance imaging (MRI) approaches appear to be a promising modality for the non-invasive 

delineation of both key components in SN. 

The hyperintense neuromelanin -related MRI contrast with magnetization transfer (MT)-T1 weighted 

scans were investigated to delineate neuromelanin distribution [14]. The neuromelanin -related MRI 

contrast is believed to be generated both from the contribution of neuromelanin to paramagnetic T1 
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shortening and MT effect [14, 15, 16]. Specifically, the hyperintense region near the SN is observed 

with MT-T1 weighted imaging, such as 2D multi slice fast spin echo acquisition. Several studies have 

also reported the shrinkage of the hyperintense region of MT-T1 weighted images near the SN with the 

progression of the PD [14, 17, 18, 19]. However, the association of such MRI hyperintensity in the SN 

with neuromelanin distribution is confounding. Considering the ambiguity in an overlap between the 

deposits of paramagnetic neuromelanin -iron complex and ferric iron in normal and PD SN, it is difficult 

to assign the hyperintense region for the exclusive detection of neuromelanin from only T1 weighted 

MR images. Additionally, the interdependence between MT saturation and myelination in SN further 

complicates the interpretation of the hyperintensity from conventional MT-T1 weighted images [20]. 

On the other hand, neuromelanin -iron complex and ferric iron act as significant endogenous 

paramagnetic perturbs to generate magnetic susceptibility mismatch with respect to underlying tissue 

in normal and PD SN [2]. Resulting inhomogeneous magnetic field variations affect the associated 

transverse MR relaxations, such as T2 and T2
*. As both T2 and T2

* values will change with the varying 

concentrations of paramagnetic sources, it is still impossible to spatially separate neuromelanin -iron 

complex and ferric iron. However, the T2 and T2
* values of MR voxels do not only depend on the 

fractional volumes (concentrations) but also on the effective size of paramagnetic perturbers [21]. For 

example, with increasing fractional volume of a paramagnetic source, both T2 and T2
* values will 

correspondingly shorten. On the other hand, the T2 and T2
* values tend to lengthen and saturate, 

respectively, with the increasing size of the paramagnetic perturbers at a fixed fractional volume [21]. 

Considering the significantly larger effective size of neuromelanin-iron complex compared to ferric 

iron, it is worthwhile to take advantage of this diverging T2 and T2
* behaviors with the increase in the 

size of paramagnetic perturbers. It may provide a unique non-invasive opportunity in distinguishing 

neuromelanin-iron complex from ferric iron in human SN, irrespective of their concentrations. 

In this study, we investigated the direct correlations of multiple MR parameters [T1, T2, T2
*, T2

*/T2, 

T2
*/T2

2, susceptibility weighted imaging (SWI), and quantitative susceptibility mapping (QSM)] at 7T 

with respect to quantified histological components, such as myelin (Luxol Fast Blue (LFB)), ferric iron 

(Perls’ Prussian blue staining), and neuromelanin pigments, from six post-mortem human SN samples 

from five subjects (age: 40-year-old male (40M), 60-year-old male (60M), right and left SNs from 70-

year-old female (70FL, 70FR), 75-year-old female (75F), and 86-year-old female (86F)). Numerical T2 

and T2
* relaxation simulations in the presence of paramagnetic spheres with varying sizes were 

performed to derive the feasibility of MR relaxometry in distinguishing neuromelanin-iron complex 

from ferric iron by emphasizing the size differences between them. The efficacy of the suggested MR 

relaxometry method, merging T1, T2, and T2
* contributions, in spatially separating neuromelanin-iron 

complex from ferric iron was directly verified using the co-registered histological components in SN 
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for the six post-mortem samples from five subjects. 

 

3.1.2 Methods 

 

Numerical simulations for MR relaxation 

To demonstrate the usefulness of T2 and T2
* values to separate neuromelanin distribution, Monte Carlo 

(MC) simulations on spin diffusion were implemented by examining the dependence of the size of 

paramagnetic perturbers on T2 and T2
* values. In the simulation, the variables for setting were suggested 

from MRI experiments. The perturbers with spherical shape were randomly scattered with the start of 

each repetition. The matrix size was set as 0.136×0.136×0.136 mm3. The perturbers have the radii as 

3, 5, 7, 9, 11, 13, and 15 μm. Their partial volumes with respect to the whole space was 2%, 4%, and 

6%. The perturbers has 1×10-7 [cgs] for the magnetic susceptibility value. To calculate T2 and T2
* values, 

echo times were decided as 3, 7, 11, 15, 19, 23, and 27 ms for gradient echo and 8, 16, 24, 32, 40, 48, 

and 56 ms for spin echo. 

Each perturbers causes the variation of local magnetic field on the surrounding area. The convolution 

between the calculated local magnetic field variation and the distribution of perturbers presents the total 

change of magnetic field. 60,000 protons moved incoherently in the whole simulation space. Until the 

echo time, protons diffuse continuously with 0.1 ms time steps. At each echo time, the signal reductions 

of gradient and spin echo acquisitions in the entire space were obtained from the voxel-wisely 

accumulated phase. 10 times repetition was performed for averaging the signals. T2 and T2
* values were 

linearly fitted from the signals of respective echo time. 

 

Postmortem brain samples 

The six samples of post-mortem midbrains tissue including SN were obtained from five subjects (40-

year-old male (40M), 60-year-old male (60M), 70-year-old female left tissue (70FL), 70-year-old female 

right tissue (70FR), 75-year-old female (75F), and 86-year-old female (86F)), which have no history of 

other kinds of neurological diseases. All included subjects signed the informed consent and they joined 

the Anatomical Donation Program of Pusan National University. All methods in this study were 

approved by Institutional Review Board of both Pusan National University Yangsan Hospital (PNUYH) 

and Ulsan National Institute of Science and Technology (UNIST) according to the Helsinki Declaration 

guidelines. The previous work reported the association between T2
* values and the results of Perls’ blue 

staining in two samples of 40M and 70FR [22]. After the extractions, the post-mortem brains were 

immediately fixed in the 10% neutral buffered formalin. Subsequently, they were sectioned along the 

midsagittal plane to generate right and left SN [23]. They were cut into the block with 1.5-cm-thickness 
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including the whole SN levels parallel to a plane bisecting the superior colliculus and the mammillary 

body. 

 

Ex vivo MRI experiments 

Post-mortem brain tissues underwent the ex vivo MRI experiments using 7T preclinical MRI scanner 

(Bruker, Germany). Samples were positioned delicately in the 50 ml syringe with formalin solution. T1 

weighted MR technique with MT saturation was performed using RARE sequence with multi slice 

acquisition with and without MT preparation contrast pulses using TR = 800 ms and TE = 8 ms. The 

MT contrast were two sinc pulses of flip angle = 600 ̊ for 10 ms duration with 1 kHz off-resonance [15, 

17]. RAREVTR sequence was performed to acquire T1 map using TR = 107, 200, 300, 500, 700, 1000, 

2000, 3000, and 5000 ms, and TE = 7.1 ms. MSME sequence was performed to acquire T2 map using 

TR = 5000 ms, and TE = 8, 16, 24, …, and 120 ms. MGE sequence was performed to acquire T2
* map 

using TR = 2000 ms, and TE = 3.3, 7.4, ..., and 40.2 ms. The overall parameters for each scan were 

isotropic in-plane resolution of 136 × 136 μm, matrix size of 256 × 256, and 20 slices with slice 

thick ness of 500 μm.  

 

Histological analysis 

After MR scan, the midbrain samples were cryoprotected using the sucrose solution with concentration 

of 10%, 20%, and 30%. Subsequently, the cryoprotected tissues were frozen by liquid nitrogen and 

isopentane. Comparing with T1 weighted MR images, 50 μm-thick tissue blocks were obtained using 

the cryostat by considering the position and angle of each tissue. The thin slides representing each MR 

image were stained by LFB staining and Perls’ blue staining. Myelinated fiber in the white matter was 

demonstrated using LFB staining. The distribution of ferric iron was stained by Perls’ blue staining. 

However, neuromelanin-chelated ferric iron was not identified in the Perls’ blue staining. The stained 

slides were scanned using Virtual Microscope (Olympus, Japan). 

The region of neuromelanin was shown as brown or black color in the Perls’ blue staining. The binary 

image for neuromelanin pigments in each slide was acquired by thresholding the sum of all values of 

RGB channels. For the binary image of iron, blue dots in the Perls’ blue staining were extracted by 

highlighting blue channel among RGB channels (value of blue channel – value of red channel/2 – value 

of green channel/2). In the case of the binary image of myelin, the value of blue channel was used in 

LFB staining. The down-sampled images were generated from the binary image of neuromelanin, iron, 

and myelin counts using 10 x 10 pixel block, which suggest the density of each component identified 

in each staining [22]. 
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Post-processing 

Quantitative T1, T2, and T2
* values for each voxel were estimated by logarithmic linear regression of 

the relaxation signal from the respective pulse sequence. SWI was generated from both magnitude and 

phase images of the same gradient echo sequence [25]. The phase image was acquired after unwrapping 

and filtering using a low pass filter to remove the noise; then, the phase image was multiplied to the 

corresponding magnitude image [25]. The bulk magnetic susceptibility images from the QSM 

algorithms were produced through temporal and spatial phase unwrapping [26], background field 

removal using Laplacian boundary value method [27], and deconvolution of dipole kernel by 

morphology enabled dipole inversion (MEDI) technique [28].  

Based on the MC simulation results, the quantitative T2
*/T2 maps were acquired voxel by voxel to 

segment the region of neuromelanin-iron complex from that of ferric iron and other diamagnetic tissues 

components. The diamagnetic tissue region from the same subject was selected as a reference region of 

interest (ROI), and then mean and standard deviation (STD) for the reference ROI were calculated. The 

threshold value for segmenting the region of neuromelanin-iron complex was set as meanREF - 

5 × STDREF of reference ROI. The whole SN mask was selected from the T1 weighted image. 

Conclusively, the region of neuromelanin-iron complex was represented by multiplying the thresholded 

neuromelanin-iron complex region from T2
*/T2 map and the whole SN mask from T1 weighted image. 

The ferric iron rich region was also selected using the thresholding from the T2 map. 

To match MRI and corresponding histological slides, each MR image was upsampled by a cubic B-

spline interpolation. The upsampled T1 weighted images were co-registered to corresponding LFB 

staining images to have the same resolution using 2D rigid transformation. Other MR images were co-

registered using the same 2D transformation matrix information. Perls’ Prussian blue staining images 

were aligned to right neighboring LFB staining images. 

Voxel-by-voxel correlation between various MR images and pigment distributions from Perls’ Prussian 

blue staining was investigated. Corresponding data from five slices for each subject were analyzed. The 

Pearson partial correlation coefficient was calculated among MR parameter, iron deposits, and 

neuromelanin pigments while controlling the effect of one other variable. For the multiple linear 

regression model, the partial regression coefficients, βneuromelanin and βiron, for neuromelanin pigments 

and iron deposits were determined from the equation Y  = β0  + β neuromelaninxneuromelanin + β ironxiron, 

where β0 is the intercept of Y, and xneuromelanin and xiron are two independent variables (the extracted 

density of neuromelanin pigments and iron deposits, respectively). βneuromelanin and βiron are slopes for 

each independent variable, xneuromelanin, and xiron, respectively, to measure how strongly each variable 

influences Y, the dependent variable (T2
* for our work). βneuromelanin was suggested as the T2

* reduction 

per unit neuromelanin, possibly indicating the amount of iron load on neuromelanin. 
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Figure 3.1.1 The MT-T1 weighted images with co-registered LFB staining and Perls’ Prussian blue 

staining. (I: 40M, II: 70FL) (A): MT-T1 weighted image, (B): LFB staining, (C): Perls’ Prussian blue 

staining, (D): magnified hypointense area from MT-T1 weighted image within the SN shown as a red 

mask, (E): neuromelanin distribution (blue dots) from Perls’ Prussian blue staining and myelin 

distribution (red dots) from LFB staining with same magnification factor used to generate (D), (F): iron 

deposited distribution (black dots) from Perls’ Prussian blue staining with same magnification factor 

used to generate (D). 

 

3.1.3 Results 

 

T1 weighted image with MT effects and histological components in SN 

The correlation of T1 weighted images with MT effects to neuromelanin pigments was investigated 
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with the co-registered LFB staining and Perls’ Prussian blue staining as shown in Figure 3.1.1 from two 

subjects, 40M and 70F. The hypointense areas within the SN were segmented from the T1 weighted 

images with MT effects as the red regions, magnified in Figure 3.1.1I-D and Figure 3.1.1II-D. The blue-

stained myelin from LFB staining (Figure 3.1.1I-B and Figure 3.1.1II-B) was shown as red dots in 

Figure 3.1.1I-E and Figure 3.1.1II-E with the same magnification factor as that used in Figure 3.1.1I-D 

and Figure 3.1.1II-D. The neuromelanin pigments were identified as blue dots in Figure 3.1.1I-E and 

Figure 3.1.1II-E, which can be both seen from LFB and Perls’ Prussian blue staining (Figure 3.1.1I-C 

and Figure 3.1.1II-C). The iron deposits from the co-registered Perls’ Prussian blue staining were 

identified as black dots as shown in Figure 3.1.1I-F and Figure 3.1.1II-F. When Figure 3.1.1-D and 

Figure 3.1.1-E with same magnification and co-registration were compared, the red areas were 

significantly co-localized. In other words, the hypointense areas in the T1 weighted images with MT 

effects were related to the myelin distribution in LFB staining. 

 

 

Figure 3.1.2 The influences of effective iron-cluster size on the quantitative T2, T2
*, T2

*/T2, and T2
*/T2

2 

values derived from MC simulation. (A): T2 relaxation time for different sizes and partial volumes (B): 

T2
* relaxation time for different sizes and partial volumes. (C): T2

*/T2 values for different sizes and 

partial volumes. (D): Comparison between T2
*/T2 and T2

*/T2
2 for different sizes at a 6% partial volume. 

The red, blue, and dark lines correspond to partial volumes of 2%, 4%, and 6%, respectively. 
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Figure 3.1.3 The schematic flow chart to segment neuromelanin and tissue iron distributions. 

Histograms for the T2
* values (I-1) and T2

*/T2 values (I-2) for the iron (red) and neuromelanin (blue) 

distributions detected from Perls’ Prussian blue staining for the sample from the 40M subject. The 

median values were marked with corresponding arrows. The schematic flow chart guided the procedure 

to segment iron-clustered neuromelanin and tissue iron distributions from MR relaxometries. (A): T2
* 

map, (B): T2 map, (C): T2
*/T2 map, (D): T1 weighted image, (E): SN mask from T1 weighted image, (F): 

neuromelanin distribution from Perls’ Prussian blue staining, (G): Thresholded neuromelanin 

distribution from T2
*/T2 map, (H): Iron distribution from Perls’ Prussian blue staining, (I): Thresholded 

iron distribution from T2 map 

 

Transverse MR relaxometries depending on the size of spherical perturbers 

The size-dependent T2 and T2
* values from MC simulations are shown in Figure 3.1.2A and Figure 

3.1.2B at varying fractional volumes of the perturbers of 2%, 4%, and 6%. The T2 and T2
* values were 

shortened with the increasing volume fraction of spherical perturbers shown as different color lines in 

Figure 3.1.2A and Figure 3.1.2B. When the radius was small, the T2 and T2
* values tended to decrease 

when the sphere size increased. As the sphere size further increased, T2 values started to rise, while the 

T2
* values saturated. Both size and volume fraction of the spherical perturbers influenced T2 and T2

* 

values. However, it was observed that the influence of volume fraction of spherical perturbers was 
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minimized for T2
*/T2 as shown in Figure 3.1.2C. The T2

*/T2 values were mainly correlated with the size 

of spherical perturbers. It was also observed that the T2
*/T2

2 values dropped more sharply with the 

increase in the size of spherical perturbers than the corresponding T2
*/T2 values at fixed volume fraction 

(6%) shown in Figure 3.1.2D. 

 

 

Figure 3.1.4 The multiparametric MRI and co-registered histology to segment iron and neuromelanin 

distribution of the sample from the 75F subject. (A) : MT T1-weighted image, (B) : SWI, (C) : QSM, 

(D) : Perls’ Prussian blue staining, (E) : T1 map, (F) : T2 map, (G) : Iron distribution from T2 map, (H) : 

Iron distribution from Perls’ Prussian blue staining, (I) : T2
* map, (J) : T2

*/T2 map, (K) : neuromelanin 

distribution from T2
* map, (L) : neuromelanin distribution from Perls’ Prussian blue staining. 

 

The segmentation of neuromelanin-iron complex and ferric iron in the SN 

The experimental T2
* map in Figure 3.1.3A indicated the presence of iron deposits and neuromelanin 

pigments identified from Perls’ Prussian blue staining, along with the corresponding T2
*/T2 map in 

Figure 3.1.3C. The clear relative shift of T2
*/T2 distribution of the region of neuromelanin-iron complex 

with respect to that of the region of ferric iron was observed in Figure 3.1.3I-2. These were compared 

with the corresponding T2
* distributions shown in Figure 3.1.3I-1. The red and blue arrows on top of 

the histograms denote the median values of corresponding distributions. Accordingly, the process of 

specifically segmenting the region neuromelanin-iron complex in SN was illustrated in Figure 3.1.3A-

3I for the 40M. The T2
* map, which shows spatially overlapping distributions of neuromelanin with iron 

in SN in Figure 3.1.3A, was divided by the T2 map in Figure 3.1.3B to obtain the T2
*/T2 map shown in 

Figure 3.1.3C. The whole SN mask in Figure 3.1.3E was obtained from the corresponding T1 weighted 
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image as shown in Figure 3.1.3D. Then, the resulting T2
*/T2 map was combined with SN mask, and 

thresholded (T2
*/T2 < meanREF - 5×STDREF, tissue reference ROI is shown as a black circle in Figure 

3.1.3C) to generate the segmented neuromelanin-iron complex in SN as shown in Figure 3.1.3G. The 

region of ferric iron was also obtained by thresholding the T2 map, which is shown in Figure 3.1.3I. For 

the direct comparisons, neuromelanin pigments and ferric iron deposits from histological counts are 

shown in Figure 3.1.3F and Figure 3.1.3H, respectively, which were obtained from Perls’ Prussian blue 

staining (Figure 3.1.3II-2). Spatial separation of neuromelanin-iron complex and ferric iron in SN was 

feasible with the combining process using mutually complementary MR relaxometries, T1, T2, and T2
*. 

 

 

Figure 3.1.5 The multiparametric MRI and co-registered histology to segment iron and neuromelanin 

distribution of the sample from the left SN tissue of 70F subject. (A) : MT T1-weighted image, (B) : 

SWI, (C) : QSM, (D) : Perls’ Prussian blue staining, (E) : T1 map, (F) : T2 map, (G) : Iron distribution 

from T2 map, (H) : Iron distribution from Perls’ Prussian blue staining, (I) : T2
* map, (J) : T2

*/T2 map, 

(K) : neuromelanin distribution from T2
* map, (L) : neuromelanin distribution from Perls’ Prussian blue 

staining. 

 

The comparisons between MR parameters and corresponding histological components 

The various MRI-derived images and maps are shown in comparison with corresponding 

neuromelanin pigments and ferric iron deposits extracted from co-registered Perls’ Prussian blue 

staining for the 75F, 70FL, 86F, and 60M subjects as shown in Figure 3.1.4, Figure 3.1.5, Figure 3.1.6, 

and Figure 3.1.7, respectively. MRI-derived images included the T1 weighted images with MT effects 

(A), SWI (B), QSM (C), T1 map (E), T2 map (F), T2
* map (I), and T2

*/T2 map (J). The T2
*/T2

2 map (M) 
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was included in Figure 3.1.6 and Figure 3.1.7, when the T2
*/T2 map was apparently insufficient in 

separating the neuromelanin pigments for the sample with excessively elevated iron concentrations. 

Iron deposits (H) and neuromelanin pigments (L) were derived from Perls’ Prussian blue staining (D). 

Thresholded regions of neuromelanin-iron complex (K) and ferric iron (G) from respective MRI 

acquisitions of T2
*/T2 map (or T2

*/T2
2 map for 60M and 86F) and T2 map are respectively shown in direct 

comparison with corresponding histological components. 

 

 

Figure 3.1.6 The multiparametric MRI and co-registered histology to segment iron and neuromelanin 

distribution of the sample from the 86F subject. (A): MT T1-weighted image, (B): SWI, (C): QSM, (D): 

Perls’ Prussian blue staining, (E): T1 map, (F): T2 map, (G): Iron distribution from T2 map, (H): Iron 

distribution from Perls’ Prussian blue staining, (I): T2
* map, (J): T2

*/T2 map, (K): neuromelanin 

distribution from T2
* map, (L): neuromelanin distribution from Perls’ Prussian blue staining, (M): 

T2
*/T2

2 map. 

 

It was generally observed that both paramagnetic neuromelanin-iron complex and ferric iron 

contribute to significant T2
* shortening, which are both seen from SWI (B) and T2

* (I) maps for all cases. 

The QSM (C) showed that the white matter containing myelin has negative magnetic susceptibility 

value with the diamagnetic property. On the other hand, ferric iron rich areas, such as the substantia 

nigra pars reticulata (SNr) and red nucleus, and neuromelanin-iron complex rich area, such as SNc were 

manifested as paramagnetic substances with positive magnetic susceptibility value. Positive magnetic 

susceptibility values from the QSM (C) in the regions with neuromelanin-iron complex and ferric iron 

support the iron chelation to neuromelanin. The area with ferric iron pigments was generally observed 
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to have reduced T2 (F) and T2
* (I) values, while the region with neuromelanin-iron complex appears to 

have significantly shorter T2
* (I) values. T1 (E) values were not specifically correlated with 

neuromelanin pigments in this post-mortem study as shown in Table 3.1.1. The hyperintense area in T1 

weighted images with various MT effects appears to overlap only with the non-myelinated SN region 

instead for all cases. 

 

 

Figure 3.1.7 The multiparametric MRI and co-registered histology to segment iron and neuromelanin 

distribution of the sample from the 60M subject. (A): MT T1-weighted image, (B): SWI, (C): QSM, (D): 

Perls’ Prussian blue staining, (E) : T1 map, (F) : T2 map, (G) : Iron distribution from T2 map, (H) : Iron 

distribution from Perls’ Prussian blue staining, (I) : T2
* map, (J) : T2

*/T2 map, (K) : neuromelanin 

distribution from T2
* map, (L) : neuromelanin distribution from Perls’ Prussian blue staining, (M) : 

T2
*/T2

2 map, (N) : neuromelanin distribution from excluding iron distribution (G) from thresholded 

T2
*/T2

2 map (K), (O) : LFB staining.  

 

On the contrary, T2
*/T2 map (J) and correspondingly thresholded neuromelanin-iron complex mask (K) 

directly co-localized with histology-referenced region with neuromelanin pigments (L) from Perls’ 

Prussian blue staining (D) as shown in Figure 3.1.4 and Figure 3.1.5. For the 86F SN sample with highly 

elevated count of iron deposits, the iron contribution appeared to persist in T2
*/T2 map as shown in 

Figure 3.1.6J, but the region of neuromelanin-iron complex was distinguishable from that of ferric iron 

in the T2
*/T2

2 map as shown in Figure 3.1.6M. The correspondingly thresholded neuromelanin-iron 

complex mask was shown in Figure 3.1.6K and compared with respect to the histology-referenced 

region of neuromelanin pigments in Figure 3.1.6L. For the sample from the 60M subject, which showed 
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the highest iron deposits, the region of ferric iron and neuromelanin-iron complex were not separated 

even in the T2
*/T2

2 map as shown in Figure 3.1.7M. However, high ferric iron deposits (H) distinctively 

showed up on the T2 map (F), so that excluding the iron rich area with low T2 values (G) from the 

T2
*/T2

2–thresholded area (K) generated Figure 3.1.7N, which showed the similar co-localization with 

respect to the histology-referenced region of neuromelanin pigments in Figure 3.1.7L. A significantly 

larger portion of myelinated areas was observed within the 60M SN as shown in Figure 3.1.7O, which 

contributed the shrinkage of the hyperintense area in T1 weighted image with MT effects (Figure 3.1.7A). 

 

Direct correlations between MR parameters and histological components 

The partial correlation coefficients for all subjects (40M, 60M, 70FL, 70FR, 75F, and 86F) are 

summarized in Table 3.1.1. It was generally observed that the neuromelanin pigments are more 

significantly correlated with T2
* than T1 or T2. The ferric iron deposits are more sensitive to T2 and T2

* 

than T1. Consistently, T2
*/T2 (or T2

*/T2
2 for the highly iron concentrated case of 60M and 86F) showed 

the highest partial correlation coefficient with neuromelanin pigments than any other MR-derived 

parameters. The trends of correlation coefficient change from T2
* to T2

*/T2 (or T2
*/T2

2) with respect to 

neuromelanin pigments and ferric iron deposits for all six samples were plotted in Figure 3.1.8. The 

partial correlation coefficients from T2
* to T2

*/T2 (or T2
*/T2

2) were significantly improved for the 

neuromelanin pigments but worsened for the ferric iron deposits, verifying the efficacy of combining 

mutually complementary MR relaxometries in segmenting the region of neuromelanin-iron complex. 

The p values of paired-sample t-tests for the change of partial correlation coefficients were less than 

0.05 for both ferric iron deposits and neuromelanin pigments. At the same time, T2 values were only 

significantly correlated with the corresponding ferric iron deposits, but not necessarily with the 

neuromelanin pigments. 

Even with the limited sample sizes of this study, it was observed that the counts of neuromelanin 

pigments showed an increasing trend with age as plotted in Figure 3.1.9A, which is consistent with 

previous reports [24, 29]. To evaluate the variation of iron load on individual neuromelanin, the T2
* 

reduction per neuromelanin, βneuromelanin values of the multiple linear regression model for each subject, 

were plotted in Figure 3.1.9B. In contrast to the linear increase of counted neuromelanin pigments in 

human SN, the βneuromelanin did not show the monotonic trend with normal aging. 
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Table 3.1.1 PCC of multimodal MRI with respect to neuromelanin and iron distributed within SN. 

PCC(40M) T1 map T2 map T2
* map SWI QSM T2

*/T2 map T2
*/T2

2 map 

NM   

SNc 0.04 0.01 -0.52* -0.54* 0.32* -0.70*  

SN -0.03 0.25* -0.28* -0.21* 0.04 -0.63*  

Iron   

SNc -0.52* -0.61* -0.58* -0.57* 0.54* -0.23  

SNr -0.32* -0.44* -0.43* -0.42* 0.42* -0.22  

SN -0.37* -0.46* -0.47* -0.45* 0.44* -0.26*  

        

PCC(60M) 

NM        

SNc 0.00 -0.09 -0.42* -0.43* 0.28* -0.48* -0.49* 

SN -0.10 -0.18** -0.39* -0.37* 0.39* -0.45* -0.43* 

Iron        

SNc -0.12 -0.61* -0.60* -0.59* 0.25* -0.53* -0.26** 

SNr -0.34* -0.62* -0.67* -0.68* 0.35* -0.67* -0.41* 

SN -0.32* -0.61* -0.65* -0.65* 0.29* -0.64* -0.39* 

        

PCC(70FR) 

NM        

SNc -0.11 -0.08 -0.68* -0.68* 0.50* -0.74*  

SN -0.12 -0.05 -0.64* -0.65* 0.55* -0.73*  

Iron        

SNc -0.28* -0.45* -0.45* -0.41* 0.41* -0.30*  

SNr -0.29* -0.28* -0.60* -0.60* 0.60* -0.65*  

SN -0.27* -0.35* -0.52* -0.51* 0.44* -0.48*  

        

PCC(70FL) 

NM        

SNc 0.05 0.06 -0.38* -0.46* 0.40* -0.43*  

SN 0.05 0.14 -0.45* -0.47* 0.35* -0.57*  

Iron        

SNc -0.03 -0.24* -0.07 -0.02 0.16 0.06  

SNr -0.10 -0.34* -0.47* -0.44* 0.37* -0.49*  

SN -0.13 -0.36* -0.25* -0.18** 0.34* -0.10  

        

PCC(75F) 

NM        

SNc 0.29* 0.35* -0.27* -0.18** -0.05 -0.46*  

SN 0.45* 0.51* -0.08 0.23* -0.14* -0.50*  

Iron        

SNc -0.13 -0.17** -0.22* -0.17** 0.04 -0.13  

SNr 0.08 0.12 -0.06 0.04 0.09 -0.16**  

SN 0.02 0.04 -0.11* -0.02 0.07 -0.15*  

        

PCC(86F) 

NM        

SNc 0.07 0.23* -0.13 -0.16 -0.13 -0.43* -0.60* 

SN 0.05 0.27* 0.01 0.09 -0.40* -0.22* -0.43* 

Iron        

SNc -0.16 -0.49* -0.59* -0.60* 0.47* -0.64* -0.33* 

SNr -0.10 -0.34* -0.47* -0.44* 0.37* -0.49* -0.24* 

SN -0.11* -0.38* -0.50* -0.47* 0.32* -0.53* -0.26* 

*: p < 0.0001, **: p < 0.005. NM: neuromelanin. PCC: Pearson partial correlation coefficients. 
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3.1.4 Discussions and Conclusions 

 

The iron load on neuromelanin within the SN is generally known for reducing the iron toxicity, and 

resulting neuromelanin-iron complex in the SN can act as an endogenous paramagnetic magnetic 

susceptibility perturber. [2, 6, 7] In this study, the dependence of MR relaxometry on the underlying 

geometry of paramagnetic perturbers was observed to provide a unique opportunity for specifically 

detecting neuromelanin-iron complex in the SN. The positive magnetic susceptibility values in the 

region of neuromelanin pigments from QSM ascertained the iron chelation of neuromelanin in SN 

which was consistent results with previous studies using Electron paramagnetic resonance (EPR) and 

Moessbauer spectroscopy [2, 3, 4]. In addition, the diamagnetic myelin region showed negative 

magnetic susceptibility values, which is consistent with previous findings [30, 31, 32]. The region of 

reduced T2 values mostly coincided with high ferric iron deposits, not necessarily with the region of 

neuromelanin pigments, as T2 values tend to increase as the size of paramagnetic perturbers increase 

[21, 33, 34]. On the other hand, the region of low T2
*/T2 (T2

*/T2
2) values showed improved correlations 

with respect to neuromelanin pigments compared to corresponding T2
* values. Consequently, separate 

segmentations of ferric iron from the T2 map and neuromelanin-iron complex from the T2
*/T2 map (or 

T2
*/T2

2 map) were possible in SN, whose mask was determined from the T1 weighted MR image. 

 

 

Figure 3.1.8 The partial correlation coefficients of T2
* and T2

*/T2 (T2
*/T2

2) with respect to neuromelanin 

and iron distribution. (A): The partial correlation coefficients of T2
* and T2

*/T2 (T2
*/T2

2 for the sample 

from the 60M and 86F subjects) with respect to histological neuromelanin distribution for six samples. 

(B): The partial correlation coefficients of T2
* and T2

*/T2 (T2
*/T2

2 for 60M and 86F) with respect to 

histological iron distribution for six samples. 
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Figure 3.1.9 The neuromelanin concentrations and iron-chelating ability per unit neuromelanin versus 

ages. (A): The neuromelanin concentrations versus age for six samples. (B): The partial regression 

coefficient (β neuromelanin) (iron chelating ability per unit neuromelanin) versus ages for six samples. 

neuromelanin and ferric iron concentrations and corresponding T2
* values from five slices for each 

sample were merged and analyzed to obtain (A) and (B). 

 

It is worthwhile to elaborate our experimental findings on T1 weighted images with MT effects and its 

relevance in delineating neuromelanin distributions in the SN. It was consistently observed with all 

samples that hypointense areas of T1 weighted images with MT effects both inside and outside of SN 

coincided with myelinated tissue regions from corresponding LFB staining as shown in Figure 3.1.10. 

As the MT effect provides interaction between protons in free and restricted pools to saturate mobile 

protons, our observation is consistent with the widely applied method to measure myelin content [20]. 

We also found that the region of myelin and neuromelanin pigments in the SN do not overlap with each 

other. Hyperintense areas on T1 weighted images with MT effects may be interpreted as non-myelinated 

regions, which are likely to coincide with the region of neuromelanin pigments. But they did not directly 

correlate with the density of neuromelanin pigments. For example, in samples such as the 60M with 

highest iron deposits from Perls’ Prussian blue staining, a significantly larger portion of myelinated 

areas was observed within the SN, which may be interpreted as a shrinkage of the region of 

neuromelanin in conventional MT-T1 based neuromelanin sensitive imaging as shown in Figure 3.1.7A 

and Figure 3.1.7O. However, the counts of neuromelanin pigments in the 60M SN were not significantly 

different from the rest of the samples. Considering that the iron deposition and loss of neuromelanin-

containing dopaminergic neurons within the SN are pathologically significant in the pathogenesis of 

PD, it appears to require extra precautions, when interpreting only MT-T1 based neuromelanin sensitive 
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imaging as a direct surrogate for the loss of neuromelanin-containing dopaminergic neurons in 

monitoring PD progression. 

 

 

 

Figure 3.1.10 The neuromelanin and myelin distribution from histology. (A): neuromelanin (blue) and 

myelin (red) distribution of 40M, (B): neuromelanin (blue) and myelin (red) distribution of 60M, (C): 

neuromelanin (blue) and myelin (red) distribution of 70FR, (D): neuromelanin (blue) and myelin (red) 

distribution of 70FL, (E): neuromelanin (blue) and myelin (red) distribution of 75F, (F): neuromelanin 

(blue) and myelin (red) distribution of 86F. 

 

The interpretation of T2
*/T2 map in delineating neuromelanin-iron complex at elevated ferric iron 

contents should be noted because the spatially effective clustering of the ferric iron will be inevitable 

even without chelation to neuromelanin. For instance, the counts of ferric iron deposits of SN samples 

from 86F and 60M subjects were significantly larger compared to the other samples. For the sample 

from the 86F, the T2
*/T2

2 mapping was required in differentiating neuromelanin-iron complex from 

ferric iron. For the sample from the 60M with the highest iron stained deposits, even T2
*/T2

2 mapping 

was insufficient. However, iron deposits distinctively showed up on the T2 map, so combining the 
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T2
*/T2

2 and T2 information enabled a specific visualization of neuromelanin-iron complex even at high 

iron deposits. 

The gradual increase of neuromelanin with aging has been reported [24, 29], which is consistent with 

our findings. However, the reduction of T2
* values per neuromelanin pigment (βneuromelanin), which may 

reflect the variation of iron load on individual neuromelanin [35], did not necessarily correlate with the 

counts of neuromelanin pigments or iron deposits in this study. The βneuromelanin values for the samples 

from the 40M, 60M, and 75F were similar. The βneuromelanin of the samples from the 70F and 86F with 

the largest neuromelanin counts were significantly larger and smaller than those of the rest, respectively, 

with the 10-fold increase of ferric iron counts in the 86F compared to the 70F sample, but with similar 

neuromelanin pigments counts. The change in the amount of iron load on the neuromelanin with aging 

is a very important but controversial issue. The neurodegeneration with the loss of neuromelanin-

containing neurons may be facilitated with iron overload within neuromelanin, but no in vivo method 

exists that can characterize the amount of iron chelation to the individual neuromelanin [36, 37]. With 

further optimization and more samples including PD SN, this technique may be efficiently used to 

identify the approximate iron concentration within SN by evaluating the reduction of T2
* on 

neuromelanin-iron complex and ferric iron, respectively. 

There are several limitations in our study. First, it should be noted that post-mortem MT-T1 based 

contrasts with formalin fixation may be different from that of corresponding in vivo contrasts [38]. As 

the formalin fixation changes the chemical environment of tissue and water movement, the effect of 

formalin fixation has been reported to reduce the MT ratio of the brain tissue [39, 40]. Further study 

must be pursued in validating post-mortem and in vivo MT-T1 based contrasts with each other. Second, 

the ability to identify the ratio between reactive ferrous (Fe2+) iron and non-reactive ferric (Fe3+) iron is 

another important issue. Turnbull’s blue staining is needed to observe ferrous (Fe2+) iron and its 

correlation to MR relaxation parameters should be examined. It has been reported that Fe3+ contributes 

10 times more to the T2
* reduction than Fe2+, so it is likely that most of observed T2

* reduction comes 

from the Fe3+ [41]. However, it is difficult to separate the contribution of Fe2+ from that of Fe3+. Third, 

for the clinical applications, lengthy acquisition time for T2 and T2
* mapping may not be ideal, and future 

studies should be conducted to optimize echo times so that the combination of T2 and T2
* weighted 

images at particular echo times can be used to delineate neuromelanin-iron complex except ferric iron 

instead of lengthy relaxation mapping procedures. 

In conclusion, our findings using combined transverse MR relaxometries suggest that paramagnetic 

neuromelanin-iron complex can be separated from ferric iron in SN, based on the MC simulation for 

MR relaxometry alteration due to the effective size differences of paramagnetic perturbers. Because the 

degeneration of neuromelanin-iron complex and the increase of iron deposition within the SN are the 
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most important pathological features of PD, this technique may be a useful tool to evaluate the 

progressive change of neuromelanin and iron distribution with the advance of PD. 

The original source of Chapter 3.1 is the article, Lee, H., Baek, S. Y., Chun, S. Y., Lee, J. H., & Cho, 

H. (2018). Specific visualization of neuromelanin-iron complex and ferric iron in the human post-

mortem substantia nigra using MR relaxometry at 7T. Neuroimage, 172, 874-885.. 
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3.2 Determination of neuromelanin distribution in the dorsal area of 

substantia nigra pars compacta using T2 and T2
* mismatch 

 

3.2.1 Introduction 

 

Neuromelanin is a dark, pigmented granule expressed within the dopaminergic neurons of the 

substantia nigra pars compacta (SNc) [1, 3]. Neuromelanin plays a major function in the protection of 

neurons by storing metals such as iron, copper, and zinc [6, 7]. Parkinsonism is a clinical syndrome 

characterized by tremor, bradykinesia, and rigidity [42]. Specifically, Parkinson’s disease is a typical 

variety of Parkinsonism involving the loss of pigmented dopaminergic neurons mainly in the substantia 

nigra (SN) [1, 43]. The ability to visualize the gradual changes in neuromelanin distribution within the 

SN is a potentially useful metric to monitor nigral degeneration in Parkinson’s disease patients.  

Neuromelanin binds iron molecules, forming neuromelanin-iron complexes, and is one of the 

endogenous paramagnetic perturbers in the SN [3, 13, 44]. Thus, magnetic resonance imaging (MRI) 

could be a useful imaging tool to detect the distribution of these paramagnetic neuromelanin-iron 

complexes [2, 45]. Recent development of neuromelanin-sensitive MRI using T1-weighted scans with 

additional magnetization transfer (MT) contrast preparation pulses can generate hyperintense signals 

adequately sensitive to detect neuromelanin localization [17, 46, 47, 48]. Neuromelanin-specific 

contrast results from both T1 shortening and MT effects [16]. In addition, nigrosome 1 is considered a 

cluster of neuromelanin-containing dopaminergic neurons, which are preferentially affected by 

Parkinson’s disease progression [9]; this cluster is characterized by a dorsolateral hyperintense region 

with a swallow-tail appearance on T2
*- and susceptibility-weighted images (SWI) from healthy controls 

[49, 50]. An increase in iron deposition in Parkinson’s disease may cause a progressive loss of the tail 

sign [51]. Transverse MR relaxometry and quantitative susceptibility mapping (QSM) have been 

employed to characterize iron deposition within the SN to aid diagnosis of Parkinson’s disease [46, 52, 

53, 54]. 

The use of MRI, however, as a noninvasive modality to identify and differentiate the spatial 

distribution of neuromelanin and ferric iron within the SN remains controversial. Due to increased 

accumulation of total iron content in the SN during aging and Parkinson’s disease progression, the 

spatial distribution of neuromelanin and deposition of ferric iron molecules can overlap within the SN. 

Both neuromelanin and deposited iron act as iron clusters of different sizes with paramagnetic properties 

leading to similar MR signal contrast [2, 16, 45]. Additionally, the SN is a relatively small area located 

in the midbrain, making delineation of the region difficult; for this reason, neuromelanin may be 

distributed in areas with the size of only a few voxels when visualized by conventional in vivo MRI [22, 
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57]. In Parkinson’s disease, dopaminergic neuron loss, an accumulation of iron molecules, and 

progressive atrophy of cerebral tissue can further confound the interpretation of spatial localization 

through in vivo MRI [56].  

More recently, studies assessing postmortem tissue using 7T MRI and co-registered histological 

analysis have reported that neuromelanin significantly shortens the T2
*, but not necessarily the T2 values 

[22, 57]. Meanwhile, ferric iron deposition has been observed to shorten both transverse relaxation 

times [57]; this mismatch of T2 and T2
* values has previously been utilized to investigate the spatial 

separation between neuromelanin and ferric iron deposition in postmortem tissue of the SN in normal 

brains [57].  

Building upon these previous observations, we hypothesized that the T2 and T2
* mismatch would be a 

useful indicator to assess dorsal neuromelanin distribution of normal and diseased SN tissue. Both high- 

and low-resolution MR transverse relaxometries were performed at 7T to investigate the cause of the 

T2 and T2
* mismatch in normal and depigmented postmortem SN tissue. Furthermore, the feasibility of 

use and clinical applications of this method in vivo were explored at 3T. 

 

3.2.2 Methods 

 

This study was approved by the Institutional Review Boards of Pusan National University Yangsan 

Hospital and Ulsan National University of Science and Technology. MRI experiments were conducted 

with healthy volunteers and Parkinson’s disease patients in accordance with the guidelines established 

by the Declaration of Helsinki. All participants provided written informed consent prior to enrollment 

in the study. 

 

3-dimensional histological reconstruction to delineate neuromelanin and iron distribution 

The histology data were obtained from the SN of a brain from a normal subject (a 60-year-old male). 

This tissue sample was also used in our previous study [57]. There were high amounts of both 

neuromelanin and ferric iron deposits within the SN detected by Perls’ Prussian blue staining. Binary 

masks were generated to assess the distribution of neuromelanin and ferric iron by thresholding three 

color (RGB) channels of images captured from 30 sparsely stained sections. These 30 binary images 

were sequentially co-registered to corresponding T1-weighted images of 15 slices [22]. The midbrain 

structures (thickness = 7.5 mm) were reconstructed in three dimensions using a 3D Slicer interface 

(MATLAB-bridge, www.slicer.org) to identify the distribution of neuromelanin and ferric iron 

deposition. The dark pigments of neuromelanin were represented by green dots, while the ferric iron 

molecules stained with Perls’ Prussian blue staining were represented by red dots within the 3D 

http://www.slicer.org/
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transparent structure. To detect dopaminergic neurons, tyrosine hydroxylase immunohistochemistry of 

tissue sections was also performed using a rabbit anti-tyrosine hydroxylase antibody (AB152, Millipore 

Corporation, Temecula, CA). 

 

Postmortem midbrain tissue collection 

Postmortem midbrain samples containing the SN were obtained from two subjects (75-year-old and 

86-year-old females) with no diagnosis of neurodegenerative diseases who had joined the Pusan 

National University Anatomical Donation Program; the brain of one patient (51-year-old male) with 

genetically confirmed Perry syndrome (DCTN1 T78C mutation) was obtained from the Pusan National 

University Hospital Brain Bank [58]. The two normal postmortem midbrain tissue samples had been 

fixed in formalin solution for two years, while the one diseased brain had been fixed for four years. In 

the midbrain tissue stored for two to four years in formalin, the redistribution of iron among different 

molecules may occur, which can affect the paramagnetic complexes formed by iron chelation, changing 

the absolute transverse relaxation times but maintaining contrast of MR transverse relaxometries within 

brain tissues [59, 60]. 

 

Postmortem MRI 

Sample preparation for postmortem assessment with a preclinical 7T MR scanner (BioSpec, 

Paravision 6.0, Bruker, Ettlingen, Germany) was conducted according to a previous protocol [57]. For 

the acquisition of MRI scans, the midbrain tissues were positioned in a 50 mL syringe and the imaging 

slice was aligned perpendicular to the main B0 field. 

The T2 map was acquired using a multi-spin multi-echo (MSME) pulse sequence with the following 

parameters: repetition time (TR) = 6,000 ms; echo time (TE) = 8 ~ 384 ms in steps of 8 ms; and single-

slice excitation for five slices. In multi-slice acquisition, multiple off-resonance excitation pulses 

contribute to signal reduction in adjacent slices [61, 62]; hence, the multi-slice acquisition to generate 

the T2 map based on a modified Rapid Acquisition with Relaxation Enhancement (RARE) sequence 

may cause unintended MT effects on each slice compared to single-slice acquisition techniques [61]. 

The T2
* map was generated by a multiple gradient echo (MGE) pulse sequence with the following 

parameters: TR = 2,000 ms; TE = 3.3 ~ 81.2 ms in steps of 4.1 ms; and excitation of 20 slices by multi-

slice acquisition. The T2 and T2
* maps were fitted mono-exponentially from the respective exponential 

curves based on the formula 𝑆(𝑡) = 𝑆0𝑒
−

𝑡

𝑇2 + C and 𝑆(𝑡) = 𝑆0𝑒
−

𝑡

𝑇2∗ + C, using in-house-developed 

MATLAB (MathWorks, Natick, MA, USA) code. After co-registration between the T2 and T2
* maps 

using a 2D rigid transformation of rotation and translation in MATLAB, the T2
*/T2 and T2

*/T2
2 maps 

were calculated, voxel-wise, from the T2 and T2
* maps to separate the distribution of iron clusters based 
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on their size differences. 

For QSM, phase data from the MGE pulse sequences of five tilted orientations were merged to 

generate one final magnetic susceptibility map. The imaging parameters for the MGE sequence of QSM 

algorithm were the same as those used to generate the T2
* map. Temporal phase unwrapping was 

performed using the phase information of the first three echoes. The spatial phase unwrapping was 

performed by the Laplacian-based method [26]. Background field removal was implemented using the 

Laplacian boundary value (LBV) method [27]. The inverse problem of converting five measured field 

maps to one merged susceptibility map was solved by the calculation of susceptibility through multiple 

orientation sampling (COSMOS) technique [63]. For the brain from the 75-year-old female subject, the 

susceptibility map was also generated by morphology enabled dipole inversion (MEDI) from one field 

map [28].  

Neuromelanin-sensitive MRI was performed with a RARE pulse sequence with the following 

parameters: TR = 800 ms; TE = 8 ms; and multi-slice acquisition. The additional MT pulse for 

neuromelanin-sensitive MRI was applied at a flip angle of 600˚ and a frequency offset of 600 Hz. The 

common parameters used for postmortem MRI were as follows: isotropic in-plane resolution of 136 × 

136 μm (field of view = 35 × 35 μm and matrix size = 256 × 256); slice thickness = 0.5 mm. The 

same slice geometry was maintained across each of the pulse sequences for direct mutual comparisons. 

 

Histology 

Histological staining was performed as the gold-standard reference to compare the results from 

postmortem MR relaxometry. To prepare cryosections, tissues were sequentially immersed in 10%, 20%, 

and 30% sucrose solutions in phosphate buffered saline (PBS) until tissues sank in each solution to 

minimize the formation of intracellular ice crystals. After the tissues sank in the 30% sucrose solution, 

the cryoprotected tissues were rapidly frozen in the dry ice box. Adjustment of the angle and position 

of each tissue sample was performed using the corresponding MR images for reference. Cryosections 

were cut using Cryostat (CM1950, Leica Biosystems, Nussloch, Germany) at 50 μm (approximately 

1/10th the thickness of the corresponding MR image). The tissues were photographed during 

cryosectioning to determine the region where dark pigmentation was visible. 

Staining of the ten sectioned slides corresponding to each MR image was performed; Perls’ Prussian 

blue staining was used to assess the distribution of ferric iron molecules, Luxol fast blue staining was 

performed for myelin identification, and Cresyl violet counterstaining was performed to identify 

neurons. For Perls’ Prussian blue staining, a 1:1 mixture of 20% HCl solution and 20% potassium 

ferrocyanide solution was applied to tissue for 30 min. Luxol fast blue staining was performed as 

follows: filtered 0.1% Luxol fast blue solution was applied and slides were placed in a 65 ˚C oven for 
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seven hours, followed by differentiation in 0.05% lithium carbonate solution, then counterstained with 

filtered 1% Cresyl violet solution. The stained slides were scanned using an Olympus Slide virtual 

microscopy (Olympus Optical Co. Ltd., Tokyo, Japan) at 10× magnification. 

 

 

Figure 3.2.1 Monte Carlo simulation for transverse MR relaxation times based on the size of randomly 

distributed paramagnetic spherical particles. (A): T2 values (ms) based on particle size and fractional 

volume; (B): T2
* values (ms) based on particle size and fractional volume; (C): T2/T2

*
,averaged and 

T2
*/T2

*
,averaged to validate the two-fold thresholding of T2; (D): T2

*/T2 values based on particle size and 

fractional volume; (E): The trends of the T2
*/T2 and T2

*/T2
2 ratios based on particle size, with the same 

6% fractional volume; (F): Micrographs of Perls’ Prussian blue staining showing the size of 

neuromelanin pigments (dark brown) and iron molecules (blue). MR = magnetic resonance. 

 

Monte Carlo simulation for the validation of T2 and T2
* threshold values 

To validate the numerical basis of the threshold T2 and T2
* values, Monte Carlo simulations were 

performed, which assess the contribution of randomly distributed paramagnetic clusters in transverse 

MR relaxometries. The spherical clusters had radii of 3, 5, 7, 9, 11, 13, or 15-µm, with fractional 

volumes of 2, 4, and 6% of the entire three-dimensional space. The whole dimensions of the simulation 

space were determined by the radii of spherical clusters and fractional volumes with 50 particles of the 

set radius. The susceptibility of paramagnetic perturbers was set at 2.857 × 10-7 cgs [64]. It should be 

noted that precise recommendations for susceptibility value settings for various forms of iron molecules 

in the SN have not been reported. The present study used a representative value previously reported for 
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ultrasmall iron oxide nanoparticles; thus, the absolute value of transverse relaxation times based on 

simulations may not be representative of experimental values from ex vivo and in vivo measurements. 

Simulations were performed, but were only used to determine the threshold ratio of T2 and T2
* values 

to delineate iron clusters. Specifically, simulation procedures consisted of 60,000 protons randomly 

diffusing, with a diffusion constant of 1 μ m2/ms. They continuously diffused within the three 

dimensional space, passing through the perturbed magnetic field caused by all the clusters in the 

simulation space at step times of 0.1 ms until the echo times of the simulations were reached. The echo 

times for spin-echo simulation were 8 ~ 56 ms in steps of 8 ms; echo times for gradient simulation were 

3 ~ 27 ms in steps of 4 ms. The accumulated phase from the random proton diffusion was calculated 

across the entire simulation space. Corresponding T2 and T2
* values were mono-exponentially fitted 

following signal reduction for both spin-echo and gradient-echo. T2 and T2
* were then plotted against 

the size of the paramagnetic perturbers for each fractional volume. The practical size of neuromelanin 

pigments and deposited iron molecules were identified by microscopy following Perls’ Prussian blue 

staining (Figure 3.2.1F).  

The overall results of the Monte Carlo simulation are shown in Figure 3.2.1. The results of Monte 

Carlo simulations of paramagnetic perturbers with magnetic susceptibility of iron oxide revealed that 

increases of T2 correlated with increases in the radius of the iron clusters with the same fractional 

volumes (Figure 3.2.1A). For T2
*, the value was constant as the radius changed (Figure 3.2.1B). In 

Figure 3.2.1C, to validate the twofold threshold for the T2 versus the T2
* map, thresholding of T2

* and 

T2 values was performed by setting the threshold value of T2,threshold at 2T2
*
,threshold, respectively. The 

threshold value for T2
* could be empirically determined to include clusters of any size in the SN, 

however, iron clusters of larger sizes were excluded from the corresponding T2 thresholding. In this way, 

voxels that simultaneously satisfied the conditions of T2
* < T2

*
,threshold , and T2 > T2,threshold (T2,threshold = 

2T2
*

,threshold) were selected to delineate the area of significant T2 and T2
* mismatch. Therefore, 

conceptually speaking, neuromelanin-iron complex formed an enlarged iron cluster in the SN that 

would satisfy the condition (T2 - T2
* > T2

*
,threshold), and could be separated by subtracting the 

corresponding thresholded T2 mask from the T2
* mask for ex vivo and in vivo results. 

 

T2 and T2
* mismatches assessed by postmortem MRI 

To verify the feasibility of visualizing the neuromelanin distribution at a clinically available resolution, 

postmortem MRI was also performed with a correspondingly lower in-plane spatial resolution (1.09 × 

1.09 × 0.5 mm; matrix size = 32 × 32). The T2
*/T2

2 map was generated by combining the acquired 

low-resolution T2
* map (32 ×  32) with the down-sampled T2 map (32 ×  32). The T2

* map was 

thresholded at a specific value for each sample to include all iron molecules of ferric iron and 
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neuromelanin, as levels of formalin fixation differed between each sample. Correspondingly, the T2
 map 

was generated using a two-fold higher threshold value than the T2
* map, consistent with simulations. 

The manual-ROI mask of the whole SN taken from the T2
* map was overlapped with such binary masks 

to exclude other iron-rich areas outside the SN, such as the red nucleus, then the thresholded T2 mask 

was subtracted from the T2
* mask for both the high- and low-resolution images. In this way, the voxels 

that simultaneously satisfied the conditions of T2
* < T2

*
,threshold , and T2 > T2,threshold (T2,threshold = 2T2

*
,threshold) 

were selected. Based solely on the determined T2
*

,threshold, the corresponding regions of significant T2 

and T2
* mismatch were identified. The distribution of dark neuromelanin pigments was binarized by 

thresholding the RGB channels from the captured image of co-registered cryosectioned block-faces. 

The overlap between the T2 and T2
* mismatch area (T2

*/T2
2 map and T2

*-T2 mask) identified by high- 

and low-resolution MRI and the binarized neuromelanin distribution segmented from the co-registered 

cryosectioned block-faces was quantitatively assessed using Dice’s similarity coefficient. Furthermore, 

the segmented regions of apparent T2 and T2
* mismatches were directly compared with the susceptibility 

map generated by QSM, and the Luxol fast blue myelin staining. 

 

LA-ICP-MS for spatial iron mapping 

Quantification of iron distribution in a 2-dimensional plane was assessed in postmortem brain tissues 

using femto-second laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The 

quadrupole ICP-MS device, iCAP TQ (ThermoFisher Scientific, Bremen, Germany), equipped with a 

femtosecond laser (1,030 nm) ablation system (J200, Applied Spectra Inc, Fremont, CA, USA) was 

used to assess the concentration and distribution of 56Fe and 13C in sectioned tissue (50 μm thick) of 75-

year-old normal female brain and the depigmented brain. The tissue sections were ablated under the 

constant flow of helium gas (0.9 L/min). Argon gas, with a flow rate of 0.7 L/min, was used as a carrier 

gas, which was mixed with the helium after ablation. The spot size of the laser beam was chosen as 50 

μm, directed onto a 28 × 17 mm area of tissue. Line scanning was performed at a velocity of 0.2 mm/s. 

The time-resolved intensity data for each of the two ions were collected by Qtegra software (v. 

2.10.3324.83) provided by the company of the ICP-MS device. The output data from the mass 

spectrometer were exported as single columns into comma-separated-value (.CSV) files for each trace 

element. The in-house-developed MATLAB code was used to convert individual intensity values to 2D 

images showing the concentration and distribution of each element in the tissue sample. To compare 

the concentration of 56Fe between the two samples, the intensity of 56Fe was normalized voxel-wise by 

the ratio of intensities of 13C to 56Fe/13C, where 13C was the internal standard, homogenously distributed 

throughout the brain tissue. 
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In vivo MRI and [18F] FP-CIT PET acquisition 

Eight normal subjects and eight idiopathic Parkinson’s disease patients who met the diagnostic criteria 

were included in this study; the normal subject group was comprised of 26- to 63-year-old adults (mean 

= 48.5, SE = 5.1 years). Parkinson’s disease patients ranged in age from 51 to 67 (mean = 61.5, SE = 

1.8 years). All Parkinson’s disease patients were at Hoehn and Yahr (H-Y) stages I or II, and the duration 

of disease progression was 1~5 years (mean = 2.4, SE = 0.6 years). 

All participants underwent 3T brain MRI (MAGNETOM Skyra, Siemens Medical Solutions, Malvern, 

PA, USA) at Pusan National University Yangsan Hospital. For all in vivo MR images, the same slice 

geometry and orientation were maintained, and imaging parameters were consistent; the isotropic in-

plane resolution was 1 × 1 mm (field of view = 192 × 192 mm, matrix size = 192 × 192), and 

twelve slices were imaged at 2 mm thickness, with a 0.1 mm slice gap. Axial images were obtained 

parallel to the anterior commissure and posterior commissure (AC-PC) line, covering the entire 

midbrain. Among the 12 slices, two slices in which the caudal level of the red nucleus was visible and 

the neighboring section in the caudal direction without the red nucleus being visible were selected to 

better elucidate the differences between normal subjects and Parkinson’s disease patients [65]. 

The T2 map was acquired using a multi spin-echo pulse sequence with the following parameters: TR 

= 2,000 ms; TE = 10 ~ 150 ms in steps of 10 ms; no average; and acquisition time = 6 min 26 s. The 

T2
* map was generated using a multiple-gradient-echo pulse sequence with the following parameters: 

TR = 406 ms; TE = 3.14 ~ 29.94 ms in steps of 5.49 ms; flip angle = 20˚; an average calculated based 

on two replicate measurements; and acquisition time = 2 min 36 s. The T2 and T2
* maps were fitted 

voxel-wise with the mono-exponential T2 and T2
* relaxation curve directly from the Siemens scanner to 

maintain reproducibility. For in vivo experiments, single-slice acquisition of T2 maps was impossible 

for several slices due to the limited time of the experiment for those respective patients.  

Neuromelanin-sensitive MRI was performed using a 2D spin-echo sequence with an additional MT 

pulse, with the following parameters: TR = 600 ms; TE = 6.8 ms; an average calculated based on two 

replicate measurements, and acquisition time = 3 min 53 s. For SWI, the magnitude and phase data were 

obtained from the same dataset from the T2
* map with TR = 406 ms and TE = 24.45 ms. The high-pass 

filtered phase image was produced by subtracting the 2D Hanning low-pass filtered phase image from 

the original phase image [66]. As the Siemens MR scanner used in this study employs a “left-handed” 

MR imaging system, the fourth power of the positive phase mask generated from the high-pass filtered 

phase image was multiplied by the magnitude of the corresponding image to generate the SWI.  

All eight Parkinson’s disease patients had received 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-

(4-iodophenyl) nortropane (FP-CIT) positron emission tomography (PET) scans within 6 months of 

their MR scan (mean = 3.5, SE = 0.7 months). PET/CT scans were acquired 180 min after intravenous 
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injection of 5 mCi (185 MBq) of [18F] FP-CIT using a Biograph 40 TruePoint PET/CT scanner (Siemens 

Medical Solutions, Malvern, PA, USA) in the 3D scanning mode. PET images were reconstructed using 

an iterative ordered-subset expectation-maximization algorithm, with a 4 mm Gaussian filter, with a 

reconstructed matrix size of 256 × 256. 

 

 

Figure 3.2.2 The manually drawn boundary (red dotted line) around the short T2
* region with anterior-

posterior length of the SN; SN = substantia nigra. 

 

Image processing and statistical analysis of in vivo MRI 

Consistent with the procedure for postmortem MRI to delineate neuromelanin distribution patterns, 

after performing 2D rigid transformation of rotation and translation for the co-registration using 

MATLAB, the T2
* map was divided by the T2 map, then the voxels of the T2

* map were empirically 

thresholded using a cutoff level of 30 ms, while those of the T2 map were correspondingly thresholded 

at 60 ms (2 × 30 ms), respectively, to generate binary images for all in vivo subjects. The binary images 

were overlapped with a manually segmented ROI around the entire SN (Figure 3.2.2). The binary mask 

from the T2 map was subtracted from that of the T2
* map. In this way, the voxels which satisfied the 

condition of T2 - T2
* > T2

*
,threshold were selected as the areas of significant T2 and T2

* mismatch, 

empirically determined by only the T2
*
,threshold values (30 ms) for all sixteen in vivo subjects. Additionally, 

for the Parkinson’s disease patients, the anterior and posterior portions were divided by transecting each 

side from the anterior median fissure identified by neuromelanin-sensitive MRI [67] to exclude the 

ventromedial regions of iron deposition. Finally, the quantitative analyses were performed, and the 

results were compared between both normal controls and Parkinson’s disease patients. The whole length 

of the mismatch line, which measures the diagonal line-length of whole T2 and T2
* binary mismatch 

mask, was analyzed for all subjects. Also, the dorsal border length of the mismatch line, which measures 

the corresponding line-length only within the posterior portion, was analyzed for Parkinson’s disease 

patients. 
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The intensity of the hyperintense area of neuromelanin-sensitive MRI was normalized by the mean 

value of the background signals. Mean and standard error were estimated for the number of voxels 

within the hyperintense area and the normalized intensity sum within the hyperintense area of 

neuromelanin-sensitive MRI. 

Considering apparent bilateral asymmetry in [18F] FP-CIT PET uptake, a visual assessment of the [18F] 

FP-CIT PET images was performed by an experienced neurologist (J.H. Lee). According to the degree 

of signal reduction in the putamen and caudate nucleus, each side of the brain was categorized as G1 

(mild reduction, limited to the posterior putamen) or G2 (marked reduction, extending to the anterior 

putamen) for all eight Parkinson’s disease patients, generating 16 datasets. 

Statistical comparisons were made between groups by one-tailed, unpaired Mann-Whitney U-tests. p 

values < 0.05 were deemed statistically significant. Normal controls (sixteen bilateral SNs from eight 

subjects) and Parkinson’s disease patients (sixteen bilateral SNs from eight patients, including seven 

SNs classified as G1 and nine SNs classified as G2) were compared based on the following parameters: 

(1) the whole length of the mismatch line from determined by the T2
*-T2 mask; (2) the dorsal border 

length of the mismatch line within the posterior portion based on the T2
*-T2 mask; (3) the number of 

voxels within the hyperintense area of the SN assessed by neuromelanin-sensitive MRI; and (4) the 

normalized intensity sums of the hyperintense areas within the SN determined from neuromelanin-

sensitive MRI. 

Two analyses were performed to compare the size of the SN, which was segmented based on the T2
* 

map, between normal controls and Parkinson’s disease patients. The anterior-posterior length of the SN 

(as shown by green line in Figure 3.2.2), which measures the line-length of the major axis of the oval 

SN mask, and the volume of the SN mask in two selected levels were quantitatively analyzed in both 

groups. These measurements to assess the size of the SN were also compared by one-tailed, unpaired 

Mann-Whitney U-tests, with p values < 0.05 deemed statistically significant. 

 

3.2.3 Results 

 

Neuromelanin-pigmented neurons were abundantly localized in the dorsal area of the SN 

In the 3D reconstructed midbrain structure (Figure 3.2.3A and Figure 3.2.3B), which covers most of 

the SN from rostral to caudal levels (7.5mm thick), a wide distribution of stained ferric iron molecules 

was observed, represented as red dots. Most red dots were concentrated in the SNr based on Perls’ 

Prussian blue staining (Figure 3.2.3C and Figure 3.2.3E). Neuromelanin pigments existed along the 

SNc, indicated by green dots, and the distribution of neuromelanin showed high colocalization with the 

positively-stained region in tyrosine hydroxylase immunohistochemistry, a marker of dopaminergic 
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neurons (Figure 3.2.3D and Figure 3.2.3F). The neuromelanin-pigmented neurons were distributed 

linearly in the caudal and intermediate levels of the SN [9]; their localization was abundant in the dorsal 

area of the SN, especially in the intermediate level. 

 

 

Figure 3.2.3 3D reconstructed midbrain tissue showing deposited ferric iron and neuromelanin 

pigments. (A): 3D reconstructed midbrain tissue captured from the first angle; (B): 3D reconstructed 

midbrain tissue captured from the second angle; (C): Perls’ Prussian blue staining at the caudal level; 

(D): Tyrosine hydroxylase immunohistochemistry at the caudal level; (E): Perls’ Prussian blue staining 

at the intermediate level; (F): Tyrosine hydroxylase immunohistochemistry at the intermediate level. 

Stained tissue sections were 50 𝜇m thick. 

 

MRI signal properties of neuromelanin, ferric iron, and myelinated fibers 

The postmortem multimodal MR images (Figure 3.2.4I-A, Figure 3.2.4II-A, and Figure 3.2.4III-A) 

demonstrated that a separation of the gray matter and white matter was attained in the T1-weighted 

image with an MT preparation pulse, which has been previously validated through direct comparison 

with Luxol fast blue staining [57]. Shortened T2
* (Figure 3.2.4I-B, Figure 3.2.4II-B, and Figure 3.2.4III-

B) and T2 values (Figure 3.2.4I-C, Figure 3.2.4II-C, and Figure 3.2.4III-C) in the SN of the three tissue 

specimens were observed, resulting from the presence of deposited iron, neuromelanin, and myelinated 

fibers. In the brain from the two normal subjects, the QSM, indicating paramagnetic components 

(positive susceptibilities) within the SN, was determined (Figure 3.2.4I-D and Figure 3.2.4II-D). 

Although both samples were obtained from normal subjects, fewer paramagnetic regions were observed 

in the susceptibility map of the sample from the 75-year-old female compared to the 86-year-old female, 

likely due to the age-related accumulation of paramagnetic iron compounds within the SN, which has 
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been shown to occur in normal subjects [1, 68]. In the case of depigmented SN sample obtained from 

the diseased brain, paramagnetic lines were observed across the medial SN and at the boundary between 

the SN and crus cerebri based on the QSM (Figure 3.2.4III-D). In this sample, there was co-localization 

between the paramagnetic lines and hypointense myelinated fibers in the T1-weighted image with MT 

effects, reflecting the iron deposition known to cause loss of neurons and myelinated fibers within the 

brain (Figure 3.2.4III-A). 

 

 

Figure 3.2.4 Postmortem multimodal MRI of the three subjects. (I: 75-year-old normal female; II: 86-

year-old normal female; III: 51-year-old male patient with SN depigmentation). (A): T1-weighted image 

with MT effects; (B): T2
* map (ms); (C): T2 map (ms); (D): The susceptibility map from QSM (I-D: 

QSM-MEDI with inset showing QSM-COSMOS) (ppm). SN = substantia nigra; QSM = quantitative 

susceptibility mapping; MT = magnetization transfer; MEDI = morphology enabled dipole inversion; 

COSMOS = calculation of susceptibility through multiple orientation sampling. 
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Figure 3.2.5 Postmortem multimodal MRI with direct histological validation. (I: 75-year-old normal 

female; II: 86-year-old normal female; III: 51-year-old male patient with SN depigmentation) (A): 

T2
*/T2 map; (B): T2

*/T2
2 map; (C): Image directly captured during cryosectioning; (D): Corresponding 

Perls’ Prussian blue staining image. (Black arrows in B and C of subjects I and II indicate the 

neuromelanin distribution of the analogous dorsal linear pattern within the SN.) MRI = magnetic 

resonance imaging; SN = substantia nigra. 

 

Delineation of neuromelanin-rich regions using combined T2 and T2
* maps 

For the tissue isolated from the three brains (Figure 3.2.5), the overlap of the T2
 and T2

* ratios and 

neuromelanin-rich regions was validated using co-registered images of dark neuromelanin pigments 

from the captured image of cryosectioned block-faces (Figure 3.2.5I-C, Figure 3.2.5II-C, and Figure 

3.2.5III-C), and the results from the imaging of sections following Perls’ Prussian blue staining (Figure 

3.2.5I-D, Figure 3.2.5II-D, and Figure 3.2.5III-D). When the T2
* map was combined voxel-wise with 

the T2 map, the impact of deposited iron molecules on T2
* was significantly reduced in the T2

*/T2 maps 

(Figure 3.2.5I-A, Figure 3.2.5II-A, and Figure 3.2.5III-A) and T2
*/T2

2 maps (Figure 3.2.5I-B, Figure 

3.2.5II-B, and Figure 3.2.5III-B). In the direct comparison of the T2
*/T2

2 maps and the images from the 

histological experiments (Figure 3.2.5I-C, Figure 3.2.5II-C, and Figure 3.2.5III-C), the distribution of 
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dark neuromelanin pigments (Figure 3.2.5I-C, Figure 3.2.5II-C; black arrows) were highly colocalized 

with the regions of low value in the T2
*/T2

2 maps along the dorsal area of the SN (Figure 3.2.5I-B and 

Figure 3.2.5II-B) in the normal brains. However, the dark neuromelanin pigments within the SNc were 

not observed in the image captured from the depigmented SN from the diseased brain (Figure 3.2.5III-

C). Negligible alterations were found in the corresponding region in the T2
*/T2

2 map. Instead, 

paramagnetic myelinated fibers were seen across the medial SN. The iron-positive signature was 

detected along the myelinated fibers in Perls’ Prussian blue staining (Figure 3.2.5III-D). 

 

 

Figure 3.2.6 Neuromelanin segmentation by T2
* and T2 thresholding from the tissue sample obtained 

from a 75-year-old normal female. (I: high-resolution images (matrix size = 256 x 256); II: low-

resolution images (matrix size = 32 x 32)) (A): T2
* map (ms); (B): T2 map (ms); (C): T2

*/T2
2 map; (D): 

T2
*-thresholded mask; (E): T2-thresholded mask; (F): Subtraction of the T2-thresholded mask from the 

T2
*-thresholded mask; (III-A): Image directly captured during cryosectioning; (III-B): The overlap of 

neuromelanin-expected area from the high-resolution T2
*/T2

2 map and binarized neuromelanin 

distribution segmented from the co-registered cryosectioned block-face; (III-C): The susceptibility map 

(ppm); (III-D): Corresponding Luxol fast blue staining image. 

 

In the two brains from the normal subjects, comparison of the T2
*/T2

2 maps (Figure 3.2.6I-C and Figure 
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3.2.7I-C) generated from high-resolution images (matrix size = 256 × 256) revealed a trend consistent 

with what was observed based on the corresponding low-resolution (matrix size = 32 × 32) T2
*/T2

2 

maps (Figure 3.2.6II-C, Figure 3.2.7II-C), though the neuromelanin-rich area was less precisely 

delineated in the low-resolution T2
*/T2

2 map compared to the higher resolution maps. Based on the 

simulations, the threshold values of 16 ms for the 75-year-old female, and 13 ms for the 86-year-old 

female on each T2
* map (Figure 3.2.6I-A and Figure 3.2.7I-A) properly included the region of low T2

* 

values around the SN, and the corresponding threshold values for the T2 maps (Figure 3.2.6I-B and 

Figure 3.2.7I-B) were twice the threshold values of the T2
* maps (32 ms and 26 ms for the two brains).  

 

 

Figure 3.2.7 Neuromelanin segmentation by T2
* and T2 thresholding from the tissue sample obtained 

from an 86-year-old normal female. (I: high-resolution images (matrix size = 256 x 256); II: low-

resolution images (matrix size = 32 x 32)) (A): T2
* map (ms); (B): T2 map (ms); (C): T2

*/T2
2 map; (D): 

T2
*-thresholded mask; (E): T2-thresholded mask; (F): Subtraction of the T2-thresholded mask from the 

T2
*-thresholded mask; (III-A): Image directly captured during cryosectioning; (III-B): The overlap of 

neuromelanin-expected area from the high-resolution T2
*/T2

2 map and binarized neuromelanin 

distribution segmented from the co-registered cryosectioned block-face; (III-C): The susceptibility map 

(ppm); (III-D): Corresponding Luxol fast blue staining image. 
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Figure 3.2.8 The overlap of the T2
* and T2 mismatch area of MRI and binarized neuromelanin 

distribution segmented from co-registered cryosectioned block-faces from normal controls. (I: 75-year-

old normal female; II: 86-year-old normal female) (A): Overlap of the neuromelanin-expected area from 

the high-resolution  T2
*/T2

2 map and histological staining; (B): Overlap of the neuromelanin-expected 

area from the high- resolution T2
*-T2 mask and histological staining; (C): Overlap of the neuromelanin-

expected area from the low-resolution T2
*/T2

2 map and histological staining; (D): Overlap of the 

neuromelanin-expected area from the low-resolution T2
*-T2 mask and histological staining. 

 

The binary region of T2 and T2
* mismatch (Figure 3.2.6I-F and Figure 3.2.7I-F) obtained by subtracting 

the T2-segmented mask (Figure 3.2.6I-E and Figure 3.2.7I-E) from the T2
*-segmented mask (Figure 

3.2.6I-D and Figure 3.2.7I-D) acquired from high-resolution MR relaxometry visualized considerable 

co-localization with the neuromelanin distribution observed from captured image of the cryosectioned 

block-faces (Figure 3.2.6III-A and Figure 3.2.7III-A). Subtraction of the low-resolution T2-segmented 

mask from the T2
*-segmented mask generated blurry binary images (Figure 3.2.6II-F and Figure 3.2.7II-

F), but colocalization was still observed with the neuromelanin distribution patterns. The overlap 

(magenta) of separated neuromelanin from the high-resolution T2
*/T2

2 map (yellow) and the binarized 

neuromelanin distribution (cyan) were used to determine Dice’s similarity correlations for the 75-year-

old female and the 86-year-old female; these values were 0.72 and 0.5, respectively (Figure 3.2.6III-B 

and Figure 3.2.7III-B). The similarities between the high- and low-resolution T2 and T2
* mismatches and 

the binarized neuromelanin distributions (cyan) were consistent for both subjects (Figure 3.2.8). 

In the depigmented SN of the diseased brain, the linear paramagnetic signals across the SN clearly 

visible in the high-resolution T2
*/T2

2 map (Figure 3.2.9I-C) appeared as blurred spots in the low-

resolution T2
*/T2

2 map (Figure 3.2.9II-C). The mismatch between the T2
*-segmented mask (Figure 

3.2.9I-D and Figure 3.2.9II-D) using the threshold value of 9 ms on the T2
* map (Figure 3.2.9I-A and 
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Figure 3.2.9II-A) and the T2-segmented mask (Figure 3.2.9I-E and Figure 3.2.9II-E) using the threshold 

value of 18 ms on the T2 map (Figure 3.2.9I-B and Figure 3.2.9II-B) revealed a gross delineation of 

myelinated fibers across the SN (Figure 3.2.9I-F and Figure 3.2.9II-F). However, due to the absence of 

dorsal neuromelanin pigments in the depigmented SN, Dice’s similarity correlation resulted in a value 

of zero for this tissue sample (Figure 3.2.9III-B). It is also noted that the lateral T2 and T2
* mismatch 

area in both high-resolution and low-resolution T2
*-T2 masks co-localized with the myelin distribution 

(Figure 3.2.9III-D). Such area was not conspicuous in corresponding T2
*/T2

2 map. Thus, observed T2 

and T2
* mismatch area in subtraction mask of the lateral area was also from myelinated fibers within 

the SN, and much shorter than the length of dorsal neuromelanin distribution in normal SN. 

 

 

Figure 3.2.9 Neuromelanin segmentation by T2
* and T2 thresholding from the tissue sample obtained 

from a 51-year-old male patient with SN depigmentation (I: high-resolution images (matrix size = 256 

x 256); II: low-resolution images (matrix size = 32 x 32)). (A): T2
* map (ms); (B): T2 map (ms); (C): 

T2
*/T2

2 map; (D): T2
*-thresholded mask; (E): T2-thresholded mask; (F): Subtraction of the T2-thresholded 

mask from T2
*-thresholded mask; (III-A): Image directly captured during cryosectioning; (III-B): The 

overlap of the neuromelanin-expected area from the high-resolution T2
*/T2

2 map and the binarized 

neuromelanin distribution segmented from the co-registered cryosectioned block-faces; (III-C): The 

susceptibility map (ppm); (III-D): Corresponding Luxol fast blue staining image. 
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Figure 3.2.10 Iron chelation with neuromelanin pigments. I: 75-year-old normal female; II: 51-year-

old male patient with SN depigmentation. (A): T2
*/T2

2 map; (B): Perls’ Prussian blue staining; (C): LA-

ICP-MS imaging of the intensity of 56Fe/13C. Red arrows indicate the visible neuromelanin distribution 

in each image. Green arrowheads indicate the ferric iron distribution in each image. SN = substantia 

nigra; LA-ICP-MS = laser ablation inductively coupled plasma mass spectrometry. 

 

Iron deposition mapping by LA-ICP-MS in the SN 

For a normal brain and the diseased brain with a depigmented SN, the origin of the observed T2 and 

T2
* mismatch areas (Figure 3.2.10I-A and Figure 3.2.10II-A) was further validated by co-localizing the 

spatial distributions of iron clusters determined by Perls’ Prussian blue staining to detect the iron bound 

only to iron metabolism molecules, such as hemosiderin (Figure 3.2.10I-B and Figure 3.2.10II-B) 

(Meguro et al., 2005; Ugarte et al., 2018; De Barros et al., 2019) and LA-ICP-MS imaging to observe 

all molecular forms of iron (Figure 3.2.10I-C and Figure 3.2.10II-C). The location of the T2 and T2
* 

mismatch areas within the SN of the normal brain (Figure 3.2.10I-A, indicated by the red arrows), was 

consistent with respect to both the distribution patterns of neuromelanin pigments determined from 

Perls’ Prussian blue staining (Figure 3.2.10I-B) and elevated 56Fe/13C intensity from LA-ICP-MS 

imaging (Figure 3.2.10I-C). The ventromedial area of the elevated 56Fe/13C signals from LA-ICP-MS, 

indicated by a green arrow, was observed to co-localize with the area of stained ferric iron deposition 

determined from Perls’ Prussian blue staining. 

On the other hand, the diseased brain showed an overall elevation of iron deposition within the SN 

based on LA-ICP-MS (Figure 3.2.10II-C), which was corroborated with Perls’ Prussian blue staining 
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(Figure 3.2.10II-B). The ventromedial T2 and T2
* mismatch areas of the diseased brain (Figure 3.2.10II-

A), especially, were co-localized with both ferric iron deposition along the myelinated fibers observed 

by Perls’ Prussian blue staining and the elevation of 56Fe/13C intensity along the myelinated fibers seen 

in LA-ICP-MS imaging (Figure 3.2.10II-C). 

 

Feasibility of employing T2 and T2
* mismatch clinically 

All in vivo MR images for two selected levels of eight normal controls and eight Parkinson’s disease 

patients are shown in Figure 3.2.11 and Figure 3.2.12, respectively. Representative MR images of in 

vivo experiments on both a normal subject (Figure 3.2.13I-a,b,c,d) and a Parkinson’s disease patient 

(Figure 3.2.13II -a, b, c, d, e, f) are shown, along with the corresponding normal (Figure 3.2.13I-

A,B,C,D) and diseased (Figure 3.2.13II - A, B, C, D, E, F) postmortem examples. The areas of short 

T2
* values were observed to be disproportionally wider compared to areas of short T2 values for both 

postmortem and in vivo SNs. In the T2
* maps of normal SNs (Figure 3.2.13I-B and Figure 3.2.13I-b), 

the dorsal linear line was included in the manually segmented whole SN region. However, the area of 

low T2 values was mainly localized in the ventromedial area of the normal SNs (Figure 3.2.13I-C and 

Figure 3.2.13I-c). Correspondingly, the mismatch regions (Figure 3.2.13I-D and Figure 3.2.13I-d) 

determined by subtracting the T2-segmented mask from the T2
*-segmented mask were consistently seen 

as a linear pattern in the dorsal area of the normal SNs. Then, the whole dorsal mismatch lines which 

appeared along the dorsal area of the SN were marked by blue arrows for normal (Figure 3.2.13I-D and 

Figure 3.2.13I-d) and diseased brains (Figure 3.2.13II-D and Figure 3.2.13II-d). In the cases of diseased 

brains, the linear T2 and T2
* mismatch regions obtained by subtracting the T2- and T2

*-thresholded masks 

were mostly obscured. Furthermore, the region of T2 and T2
* mismatch expanded to a greater degree, 

ventrally. Then, the dorsal border length of the mismatch line within the posterior portion could be 

obtained by excluding the ventral T2 and T2
* mismatch in diseased SN, as representatively shown by 

green arrows in Figure 3.2.13II-E and Figure 3.2.13II-e for diseased SNs. Particularly, in this in vivo 

case of Parkinson’s disease patient, both whole length of the mismatch line and dorsal border length of 

the mismatch line appeared to be asymmetric; their losses were more pronounced on the side ipsilateral 

to the hemisphere exhibiting lower [18F] FP-CIT uptake (Figure 3.2.13II-f). 



  

57 

 

 

Figure 3.2.11 In vivo multimodal MRI for two intermediate levels in normal subjects. Upper- and lower-

case letters show MRI for two levels of each subject. (A, a): Segmented hyperintense area from 

neuromelanin-sensitive MRI; (B, b): Neuromelanin-sensitive MRI; (C, c): SWI; (D, d): T2
* map (ms); 

(E, e): T2 map (ms); (F, f): T2
*-thresholded mask; (G, g): T2-thresholded mask; (H, h): Subtraction of 

the T2
*-thresholded mask from the T2-thresholded mask. MRI = magnetic resonance imaging, SWI = 

susceptibility-weighted imaging, SN = substantia nigra. 
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Figure 3.2.12 In vivo multimodal MRI for two intermediate levels in Parkinson’s disease patients. 

Upper- and lower-case letters show MRI for two levels of each subject. (A, a): Segmented hyperintense 

area from neuromelanin-sensitive MRI; (B, b): Neuromelanin-sensitive MRI; (C, c): SWI; (D, d): T2
* 

map (ms); (E, e): T2 map (ms); (F, f): T2
*-thresholded mask; (G, g): T2-thresholded mask; (H, h): 

Subtraction of the T2
*-thresholded mask from the T2-thresholded mask; (I, i): Subsection (red line) of 

the anterior and posterior portions from neuromelanin-sensitive MRI; (J, j): Subsection (red line) of the 

mismatch line from the T2
*-T2 mask; (K, k): Remaining mismatch line in the posterior portion of the 

SN; (L): Corresponding [18F] FP-CIT PET image; (M): The segmented area based on the [18F] FP-CIT 

PET image. MRI = magnetic resonance imaging, SWI = susceptibility-weighted imaging, SN = 

substantia nigra; [18F] FP-CIT PET = 18F-N-(3-fluoropropyl)-2β -carbomethoxy-3β -(4-iodophenyl) 

nortropane positron emission tomography. 
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Figure 3.2.13 Schematic flow diagram for postmortem and in vivo MRI analysis. I-A to I-D: Normal 

postmortem SN; I-a to I-d: Normal in vivo SN; II-A to II-F: Diseased postmortem SN; II-a to II-f: 

Diseased in vivo SN. (A, a): Neuromelanin-sensitive MRI and transections (red line) of the anterior and 

posterior portions from the anterior median fissure (orange arrow) for diseased brains; (B, b): T2
* map 

(ms) and manually drawn boundary (red dotted line) around the short T2
* region; (C, c): T2 map (ms); 

(D, d): The whole length of the mismatch line from the T2
*-T2 mask; (II-E, II-e): The dorsal border 

length of the mismatch line from the T2
*-T2 mask; (II-F): Image directly captured during cryosectoining; 

(II-f): Corresponding [18F] FP-CIT PET image for a Parkinson’s disease patient . MRI = magnetic 

resonance imaging; SWI = susceptibility-weighted imaging; [18F] FP-CIT PET = 18F-N-(3-

fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane positron emission tomography. 

 

The observed dorsal linear mismatches (Figure 3.2.13I-D and Figure 3.2.13I-d) were generally 

maintained except a few sides (one ~ two among four sides in subjects of V, VII, and VIII) as shown in 

Figure 3.2.11H and Figure 3.2.11h for normal subjects. However, such mismatches were shortened for 

most of Parkinson’s disease patients (Figure 3.2.12H and Figure 3.2.12h). The dorsolateral nigral 

hyperintensity based on SWI was visually detectable in all normal controls (Figure 3.2.11C and Figure 

3.2.11c). The dorsal hypointense boundary observed in the SWI of normal controls was considerably 

colocalized with the linearly short T2
* region. While SWI of Parkinson’s disease patients mostly showed 

an apparent loss of dorsolateral nigral hyperintensity, but weak hyperintensity still remained in subjects 

of II and VIII (Figure 3.2.12II-C and Figure 3.2.12VIII-C). In in vivo neuromelanin-sensitive MRI 



  

60 

 

(Figure 3.2.13I-a and Figure 3.2.13II-a), the signal contrast between the hyperintense SNc and 

surrounding areas appeared more apparent in the representative case of normal control compared to the 

representative case of Parkinson’s disease patient. The observed dorsal linear pattern was not clearly 

resolved in other methods of calculating the ratios (T2
*/T2, T2

*/T2
2) in normal subjects and Parkinson’s 

disease patients likely due to the comparably lower resolution of clinical 3T MR imaging (Figure 3.2.14); 

this is consistent with postmortem low-resolution imaging. 

 

 

Figure 3.2.14 In vivo T2 and T2
* ratios for two levels of normal subjects and Parkinson's disease patients. 

(1): normal subjects; (2): Parkinson’s disease patients. (I-VIII: subjects 1-8, displayed in the same order 

as in Figure 3.2.11 and Figure 3.2.12). (A): T2
*/T2 map of one level; (B): T2

*/T2
2 map of one level; (C): 

T2
*/T2 map of another level; (D): T2

*/T2
2 map of another level. 
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Table 3.2.1 Quantitative values from T2 and T2
* mismatch and neuromelanin-sensitive MRI technique. 

Group 

Whole 

length of 

mismatch 

line (mm) 

Dorsal 

border 

length of 

mismatch 

line (mm) 

Hyperintense 

area in 

neuromelanin-

sensitive MRI 

(voxels) 

Intensity sum 

of 

hyperintense 

area from 

neuromelanin-

sensitive MRI 

(a.u.) 

Anterior-

posterior 

length of 

the SN 

(mm) 

Volume 

of the SN 

mask 

(mm3) 

Normal 9.0±0.5 . 30.2±2.0 34.5±2.4 11.9±0.2 132.0±4.9 

Parkinson’

s disease 
5.5±0.4 . 27.2±1.9 29.8±2.1 12.0±0.3 124.8±4.0 

G1 grading 

from PET  
6.4±0.7 4.2±0.6 30.6±2.3 33.6±2.5 . . 

G2 grading 

from PET  
4.8±0.5 2.6±0.5 24.5±2.7 26.9±3.0 . . 

The values (Mean ± SE) are the whole length of the mismatch line, the dorsal border length of the 

mismatch line, the hyperintense area from neuromelanin-sensitive MRI, intensity sum of the 

hyperintense area from neuromelanin-sensitive MRI, the anterior-posterior length of the SN, and the 

volume of the SN mask in normal controls, Parkinson’s disease patients, and those categorized as G1 

or G2 based on PET scans. MRI = magnetic resonance imaging, SN = substantia nigra, PET = positron 

emission tomography. 

 

For the statistical analysis, the quantitatively measured values (means ±  SE) for each group are 

summarized in Table 3.2.1. The whole length of the T2 and T2
* mismatch line was significantly shorter 

in Parkinson’s disease patients (5.5 ± 0.4 mm) compared to the normal controls (9.0 ± 0.5 mm) with 

p value < 0.005 (Figure 3.2.15A). However, two measurements obtained from neuromelanin-sensitive 

MRI were not significantly different between normal controls and Parkinson’s disease patients (Figure 

3.2.15B and Figure 3.2.15C). Specifically, the number of voxels within the hyperintense area of the SN 

was 30.2 ± 2.0 in normal controls and 27.2 ± 1.9 in Parkinson’s disease patients with non-significant 

p value of 0.2219. The normalized intensity sum of the hyperintense area within the SN was 34.5 ± 

2.4 a.u. in normal controls and 29.8 ± 2.1 a.u. in Parkinson’s disease patients with non-significant p 

value of 0.1241. 
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Figure 3.2.15 In vivo MRI of normal controls and Parkinson’s disease patients. (A): Bar graph of the 

whole length mismatch line determined from the T2
*-T2 mask in normal controls and Parkinson’s disease 

patients; (B): Bar graph of the hyperintense region derived from neuromelanin-sensitive MRI in normal 

controls and Parkinson’s disease patients; (C): Bar graph of the intensity sums of the hyperintense 

region from neuromelanin-sensitive MRI in normal controls and Parkinson’s disease patients. Normal 

controls and Parkinson’s disease patients was compared by one-tailed unpaired Mann-Whitney U-test; 

**: p value < 0.005, N.S.: non-significant p value > 0.05. 

 

Data from the in vivo MRI measurements are compared for the three groups (normal, G1, and G2) 

based on [18F] FP-CIT PET scan results in Figure 3.2.16. The measurements on the whole length of the 

linear T2 and T2
* mismatch was both significantly different between normal and G1 and between normal 

and G2 (Figure 3.2.16A). But such difference was insignificant between G1 and G2, where both are 

groups from Parkinson’s disease. Whereas, the dorsal border length of the mismatch line within the 

posterior portion was 4.2 ± 0.6 mm in G1 and 2.6 ± 0.5 mm in G2, with a considerable difference 

between the two groups with p value < 0.05 (Figure 3.2.16B). On the other hands, differences in the 

measurements based on neuromelanin-sensitive MRI were not consistent among the three groups 

(Figure 3.2.16C and Figure 3.2.16D). 

 

3.2.4 Discussions and Conclusions 

Through direct correlational analyses of postmortem histology, we have previously shown that the 

neuromelanin-iron complex has a significant effect in reducing T2
*, but not T2 values [22, 57]. In this 

study, we further expanded the utility of such ideas by (1) validating the hypothesis that the T2 and T2
* 

mismatches are useful for detecting differences in dorsal neuromelanin populations between normal 

and depigmented SNs. Direct comparison of the T2 and T2
* mismatch area obtained from MRI and 

assessment of neuromelanin distribution observed from captured image of the cryo-section block-faces 

in postmortem tissues showed consistent similarities (higher than those from conventional 

neuromelanin-sensitive MRI) for the two normal SN samples, but not for the depigmented SN sample. 
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(2) Also, the elevated iron signals identified by LA-ICP-MS were co-localized with neuromelanin 

distribution detected from histology, further confirming iron chelation on neuromelanin in normal SN. 

(3) Finally, in vivo assessments using 3T MRI demonstrated the clinical feasibility of utilizing the length 

of the T2 and T2
* mismatch to distinguish between the dorsal region of normal and diseased SNs. The 

dorsal linear mismatch that we observed in the brains of normal subjects was consistent with the 

findings from postmortem MR relaxometry, despite the potential angular and the resolution discrepancy 

in imaging acquisition between postmortem and in vivo MRI as shown in Figure 3.2.13. The degradation 

of this dorsal linear T2 and T2
* mismatch was observed in both postmortem and in vivo studies of 

diseased SNs. 

 

 

Figure 3.2.16 In vivo MRI of three groups categorized from [18F] FP-CIT PET. (A): Bar graph of the 

whole length of the mismatch line based on the T2
*-T2 mask in normal, G1, and G2 categories; (B): Bar 

graph of the dorsal border length of the mismatch line based on the T2
*-T2 mask in G1, and G2 categories; 

(C): Bar graph of the hyperintense region assessed by neuromelanin-sensitive MRI in normal, G1, and 

G2 categories; (D): Bar graph of the intensity sums of the hyperintense region from neuromelanin-

sensitive MRI in normal, G1, and G2 categories. Normal controls and Parkinson’s disease patients were 

compared by one-tailed unpaired Mann-Whitney U-test; *: p value < 0.05, **: p value < 0.005, N.S.: 

non-significant p value > 0.05. 
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Our unique methodology allowed us to develop and optimize a novel preliminary in vivo MRI 

biomarker through ex vivo experimentation. To detect the neuromelanin-rich SNc at clinically available 

resolution, we verified the region of T2 and T2
* mismatch using low-resolution postmortem relaxometry. 

Furthermore, Monte Carlo simulations were performed to validate the rationale of thresholding T2 and 

T2
* values. Despite the challenges involved in interpreting the low-resolution images obtained from in 

vivo MR relaxometry, the mismatch between the T2- and T2
*-thresholded masks highlighted the 

differences in the dorsal area of the SN between the normal subjects and the Parkinson’s disease patients. 

Through objective analysis, we observed that although the anterior-posterior length of the SN and the 

area of the SN mask were comparable between normal controls and diseased brains (Table 3.2.1 and 

Figure 3.2.17), the whole length of the mismatch line from the T2
*-T2 mask was significantly shortened 

in the diseased brain compared to the normal controls. 

 

 

Figure 3.2.17 The quantitative measurement of SN size in normal controls and Parkinson’s disease 

patients. Anterior-posterior lengths of the SN in normal controls and Parkinson’s disease patients and 

the volume of the SN mask in normal controls and Parkinson’s disease patients. Normal controls and 

Parkinson’s disease patients was compared by one-tailed unpaired Mann-Whitney U-test; N.S.: not 

significant p > 0.05. MRI = magnetic resonance imaging; SN = substantia nigra. 

 

The linear T2 and T2
* mismatch region along the dorsal area of the SN exhibited short T2

* values and 

appeared as a prominent hypointense signal in SWI. Neuromelanin-enriched subdivisions are comprised 

of the pars medialis, pars lateralis, and dorsal tier, aligned along the dorsal area of the SN [9, 69]. In our 

study, using 3D histological reconstruction, abundant neuromelanin-pigmented neurons were observed 

to be linearly distributed in the dorsal area of the SN. Some authors have suggested that the medial 

lemniscus or intrinsic microvessels contribute to the linear hypointensity in the dorsal area [50, 70]. 

Further studies using QSM will confirm the identification of paramagnetic neuromelanin in the 

hypointense dorsal area of the SN against the medial lemniscus, which is the component of white matter 

with the diamagnetic property. Our postmortem QSM results from the brains of the two normal subjects 
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showed dorsal linear neuromelanin distribution as paramagnetic molecules. The microvessels running 

along the caudolateral circumference of the red nucleus cannot account for the hypointensity observed 

throughout the whole dorsal area of the SN. Therefore, neuromelanin-related contrast could contribute 

to the hypointense boundary surrounding the dorsolateral nigral hyperintensity or the swallow tail sign, 

which seemed to correspond to nigrosome 1 in SWI. 

Parkinson’s disease patients typically had shorter mismatch lines than the normal subjects. The 

linearity along the dorsal area tended to be obscured, which was corroborated with a decreased uptake 

of [18F] FP-CIT in PET scans, which identifies dopamine transporters. The shorter length of the 

mismatch line exhibited more dramatic reductions in [18F] FP-CIT signals. However, the shortened 

dorsal linear mismatch region may not be fully explained by loss of neuromelanin alone. The 

distribution of reactive iron molecules sequestered in the form of ferritin or hemosiderin within the SN, 

which accumulate in neurons, glia, and particularly in oligodendrocytes, extends into the dorsal area of 

the SNc [60]. These iron clusters could also cause the shortening of T2 values in the corresponding 

region and they may contribute to shortening dorsal T2 and T2
* mismatch lines as well. However, it 

should be carefully considered that although neuromelanin-iron complexes are primarily localized in 

dopaminergic neurons, extra-neuronal neuromelanin-iron complexes released by degenerating neurons 

are associated with the progression of Parkinson’s disease [71]. 

In some in vivo cases, the T2 and T2
* mismatch region has also been identified in the ventral part of the 

SN. Excessive accumulation of certain types of iron molecules can form iron clusters of a larger size to 

alter T2 and T2
* values disproportionately, further generating T2 and T2

* mismatch; this was validated by 

the Monte Carlo simulation to investigate the impact of cluster size of spherical paramagnetic perturbers 

on MR T2 and T2
* values. Within the ex vivo depigmented SN, the myelinated fibers colocalized with 

ferric iron and appeared to exhibit paramagnetic properties through QSM, although myelin has 

conventionally been considered a diamagnetic molecule [72]. The myelinated, large-diameter fibers 

running through the SN may additionally contribute to the identification of T2 and T2
* mismatch. 

Impaired iron transport may cause accumulation of iron deposits along the myelinated fibers as 

Parkinson’s disease progresses [73]. Elevated iron signals along the ventral myelinated fibers were 

observed by both Perls’ Prussian blue staining and LA-ICP-MS imaging, confirming such iron deposits 

near myelinated fibers. Taken together, the cytoarchitectural components of the SN, including 

neuromelanin, ferric iron, and myelinated fibers may altogether affect MRI signal properties, 

complicating interpretation of the results of in vivo studies. Reflecting the importance of topological 

interpretation of observed T2 and T2
* mismatch region, the comparisons of dorsal border length of the 

mismatch lines within posterior portion (excluding T2 and T2
* mismatch in ventral part of SN) showed 

a significant difference between G1 (mild reduction) and G2 (marked reduction) groups among the 
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patients, although the difference of the whole length of the mismatch line was insignificant between 

two groups. Thus, the topographical and morphological alterations in the T2 and T2
* mismatch region 

observed in Parkinson’s disease patients should be determined through the extensive study of the related 

histopathology. 

For in vivo experiments assessed at 3T, low-resolution and low sensitivity of T2 and T2
* maps compared 

to 7T postmortem MRI may account for the blurred T2
*/T2 and T2

*/T2
2 maps. This made it difficult to 

clearly delineate neuromelanin-rich regions; therefore, we instead leveraged the mismatch between the 

T2 and T2
* maps by subtracting the thresholded T2 mask from the T2

* mask to allow for more robust 

analysis of 3T in vivo datasets. High-resolution images acquired with 7T in vivo MRI may further 

improve the quality of the T2
*/T2 and T2

*/T2
2 maps to allow for better visualization of neuromelanin 

distribution and should be assessed in future investigations. 

Neuromelanin-sensitive MRI methods have been utilized for evaluating the pathological changes 

induced by Parkinson’s disease within the SNc. The first group to apply this methodology used a 2D 

T1-weighted fast spin-echo sequence to visualize the SN and locus coeruleus of subjects [14]. Others 

have also utilized similar fast spin-echo sequences with additional MT preparation pulses and various 

gradient echo sequences to overcome the limitations of the 2D fast spin-echo technique [17, 47, 50, 74, 

75]. A recent study validated the clinical utility of neuromelanin-sensitive MRI by comparing 

postmortem brain tissue morphology and dopamine release measured with PET, and changes in cerebral 

blood flow [48]. The SNc volume measurements from neuromelanin-sensitive MRI have showed the 

significant reductions in Parkinson’s disease patients [76, 77]. However, conventional methods are not 

fully quantitative and are limited by low-resolution images [78]. Besides neuromelanin, increased iron 

deposition in the SN can also enhance neuromelanin-related T1 contrast [79]. In this study, the 

differences observed in neuromelanin-sensitive MRI were not consistent between normal control and 

Parkinson’s disease brains. Such insignificant differences between normal controls and Parkinson’s 

disease patients in neuromelanin-sensitive MRI may be attributed to facts that the duration of disease 

progression was relatively short (mean = 2.4 years, SE = 0.6 years) and the Hoehn and Yahr (H-Y) 

stages were rather early (I or II) for Parkinson’s disease patients recruited in the current study. 

Combined T2 and T2
* relaxometry-based neuromelanin MRI may have the potential to monitor 

pathophysiological changes associated with Parkinson’s disease progression, which involves the loss 

of neuromelanin, coupled with iron accumulation. This complementary approach employing 

conventional neuromelanin-sensitive MRI and a novel technique based on transverse MR relaxometry 

will improve the evaluation of neuromelanin contents in the SN. In conclusion, the quantitative 

measurement of T2 and T2
* mismatch regions is a potential MRI biomarker to assess SN pathology in 

Parkinson’s disease. Studies with a larger number of age-matched, elderly, normal subjects and 
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Parkinson’s disease patients with diverse disease severity scores, higher magnetic field imaging, and 

accompanying histopathological examinations are required to further validate the clinical utility of this 

approach.  

The original source of Chapter 3.2 is the article, Lee, H., Baek, S. Y., Kim, E. J., Huh, G. Y., Lee, J. 

H., & Cho, H. (2020). MRI T2 and T2* relaxometry to visualize neuromelanin in the dorsal substantia 

nigra pars compacta. NeuroImage, 211, 116625.. 
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Chapter 4. Iron deposition on the myelinated fibers 

 

4.1 Pathological validation of paramagnetic lesions in the white matter of 

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia 

 

4.1.1 Introduction 

 

Adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia (ALSP) is an 

autosomal dominant disease resulting from mutations in the colony-stimulating factor 1 receptor 

(CSF1R) gene [80]. The clinical presentation of ALSP includes personality and behavioral changes, 

dementia, parkinsonism, and seizures [80, 81]. The presence of myelin loss, which spares the subcortical 

U-fibers, reactive astrocytosis, axonal spheroids, and pigmented microglia in the white matter (WM) 

are pathological hallmarks [81].  

Magnetic resonance imaging (MRI) typically shows T2 hyperintense lesions in the periventricular, 

callosal, and deep WM, with frontal or frontoparietal predominance, and cerebral cortical atrophy 

corresponding to the WM lesions, as well as enlarged ventricles [80]. Thinning of the corpus callosum, 

abnormal signal intensity in the pyramidal tracts, diffusion-restricted lesions, and calcifications in the 

WM are characteristic MRI findings of ALSP [81]. Although these MRI features are supportive of a 

diagnosis of ALSP, they are not specific to ALSP, and may be suggestive of several alternate diagnoses, 

including multiple sclerosis (MS) and other demyelinating disorders [82]. 

It has been proposed that susceptibility-weighted imaging (SWI) is a sensitive technique for 

identifying iron depositions in WM pathological lesions in patients with MS [83]. The presence of 

pigmented microglia/macrophages in the WM lesions is particularly relevant in terms of MS pathology 

[84]. Similarly, iron-positive macrophages were found in ALSP brains and involved oxidative stress [80, 

85]. In addition, calcifications in the WM can be detected in some patients with ALSP [81]. Therefore, 

SWI can be a useful complementary tool for identifying pathological mineral deposits in the WM 

lesions in ALSP.  

Herein, we identified four adult-onset leukoencephalopathy with neuroaxonal spheroids and 

pigmented glia (ALSP) cases with CSF1R mutations who underwent SWI at 3T MRI and found the 

characteristic susceptibility-related phase contrast in the frontal white matter. To investigate the origin 

of the SWI contrast, postmortem brain from ALSP patient was examined using both 7T MRI and 

histopathology. 
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Table 4.1.1 Clinical and genetic findings of four patients with ALSP. 

* died at the age of 58 

 

4.1.2 Methods 

 

All enrolled patients carrying CSF1R mutations (NM 005211.3, NP 005202.2) underwent 3T MRI in 

vivo (Verio, Siemens, Erlangen, Germany). T2-weighted images (T2WI) were acquired using a 2D turbo 

spin echo sequence with TR = 3400−5000 ms, TE = 84−110 ms, and flip angle = 120−150º. SWI was 

performed with TR = 28 ms, TE = 20 ms, and flip angle =15º in a 3D gradient echo sequence. The phase 

shift value in this study was for a left-handed coordinate system, which was positively correlated with 

iron levels. Routine brain CT scan was performed in three patients. This study was approved by 

Institutional Review Board. MRI and genetic analysis were performed after obtaining informed consent 

from all patients. 

To validate SWI contrast, postmortem 7T MRI (Bruker, Karlsruhe, Germany) and a histopathological 

correlation study was performed in one case (case 1) after obtaining informed consent for the use of 

brain tissue prior to death. Formalin-fixed cortical tissue block from one of the frontal lobes was used 

for ex vivo experiments. A 2D multi-gradient echo sequence was used to obtain SWI with TR = 2000 

ms, TE = 3.1−40 ms (10 echoes, increment = 4.1 ms), flip angle = 30º, field of view = 35 × 35 mm, 

matrix size = 256 × 256, in-plane resolution = 0.136 × 0.136 μm, slice thickness = 0.5 mm, and the 

number of slices = 20. For SWI, the four times of positive mask produced from phase image (-π to π) 

were multiplied to the magnitude image. For quantitative susceptibility mapping (QSM), a susceptibility 

map was calculated from the complex phase information of the first three echoes of the gradient echo 

sequence [86]. For comparison, postmortem SWI was also obtained from a control brain of an individual 

without a history of neurological disease who had joined the Pusan National University Anatomical 

Donation Program and signed the informed consent.  

Patien

t 
Sex 

Age of 

onset (yr.) 

Age at 

MRI (yr.) 
Clinical Symptoms CSF1R Mutation 

 1* M 51 55 

dementia, apathy, irritability, 

parkinsonism, gait disturbance, 

seizure 

c.2381T>C, p.I794T 

2 M 52 56 
dementia, apathy, violence, gait 

disturbance, seizure 

c.2675_2683del, 

p.C892_A895del 

3 F 60 61 dementia, apathy, seizure c.2381T>C, p.I794T 

4 F 56 58 dementia, apathy, parkinsonism c.2442+5G>A 



  

70 

 

After MRI scanning, the tissue block was sectioned at 8-μm thickness in accordance with 500-μm-

thick ex vivo MR images. The sectioned slices were serially stained with hematoxylin and eosin (H&E) 

staining, Luxol fast blue staining (LFB), Perl's Prussian blue staining, ferritin IHC (polyclonal anti-

ferritin light chain antibody, rabbit, 1:400; Abcam), CD68 IHC (monoclonal CD68 antibody, mouse, 

1:300; Dako). Olympus virtual slide microscopy (Olympus, Tokyo, Japan) was used to scan all stained 

slides with a pixel size of 0.6836 μm2. 

 

 

Figure 4.1.1 T2-weighted images and Susceptibility-weighted images on ALSP cases. In all ALSP cases, 

T2-weighted images shows symmetric bifrontal white matter hyperintensities with sparing of the 

subcortical U fibers and frontal-predominant atrophy. Susceptibility-weighted images demonstrate the 

characteristic ‘tree silhouette-like’ hypointense configuration of the frontal subcortical white matters. 
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4.1.3 Results 

 

The demographic and clinical features from four patients are summarized in Table 4.1.1. The mean 

age at onset was 54.7 ± 4.1 years (range 51−60 years). Initial symptoms included personality and 

behavior changes (cases 1, 2, and 3), and parkinsonism (case 4). At the time of evaluation, all patients 

had neuropsychiatric symptoms including apathy or irritability, and they were diagnosed with dementia. 

Two patients showed parkinsonian features (cases 1 and 4). Three patients had recurrent seizures (cases 

1, 2, and 3). Mutations in CSF1R were all located in the intracellular tyrosine-kinase domain of CSF1R 

encoded by exons 12−22 [87], and included a known missense mutation (c.2381T>C, p.I794T in cases 

1 and 3), a novel splice donor site mutation (c.2442+5G>A in case 4), and a novel in- frame deletion of 

a single-codon (c.2675_2683del, p.C892_A894del in case 2). 

 

 

Figure 4.1.2 Schematic flow diagram for postmortem and in vivo MRI analysis. The region of the in 

vivo 3T MRI scan for case 1 (A) corresponds to the region shown in the ex vivo brain tissue (B) and 7T 

MRI scan (C). (D-i) Axonal spheroids in the frontal subcortex. (D-ii) Staining of serial sections with 

hematoxylin and eosin (H&E) staining, Luxol fast blue staining (LFB), Perl's Prussian blue staining 

(counterstained with nuclear fast red), ferritin immunohistochemistry (IHC), and CD68 IHC. (D-iii) 

Abundant CD68-positive, ferritin-positive cells. (D-iv) Infrequent positive staining for iron by Perl’s 

Prussian blue staining. 

http://e-jmd.org/journal/view.php?doi=10.14802/jmd.15058#t1-jmd-15058
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In all patients, brain MRI showed frontal predominant atrophy and bifrontal periventricular, callosal, 

and deep WM lesions with sparing of the subcortical U fibers (Figure 4.1.1). In case 1, WM changes, 

cortical atrophy, and dilation of the lateral ventricles were more widespread. In case 4, periventricular 

WM changes were asymmetric, with more severe involvement on the contralateral side of the more 

severely affected limb. Diffusion-restricted or gadolinium-enhanced lesions were not detected in any 

case. No signal abnormalities were noted in the brainstem, cerebellum, or basal ganglia. SWI revealed 

the characteristic “tree silhouette-like” hypointense configuration of the frontal gyri alongside T2 

hyperintense WM lesions (Figure 4.1.1). On the phase images, the areas corresponding to linear 

hypointensity on SWI were seen as hyperintense (positive phase) which suggested a paramagnetic 

nature (Figure 4.1.2). Calcification was not identified in the corresponding areas. 

 

 

Figure 4.1.3 Postmortem MRI for ALSP brain with histological validation. Postmortem MRI for ALSP 

brain (A) manifests marked hypointensity on susceptibility-weighted images (SWI) with a positive 

phase shift on phase image and positive susceptibility values on quantitative susceptibility mapping 

(QSM) in contrast to the control brain (B). The signal hypointensity on postmortem SWI (C) is 

correlated with the density of white matter stained with Luxol fast blue (LFB, D). White box (*) on 

SWI defines where histologic images are taken at higher magnification (i~iv). (i) LFB staining shows 

symmetrical central myelin pallor with relatively preserved U fibers. (ii) CD68-positivity is most 

abundantly located in central demyelinating white matters. (iii, iv) Ferritin immunoreactivity is mainly 

observed in the CD68-positive zones and the white matter–cortical grey matter junction. 
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Postmortem MRI of ALSP brains revealed paramagnetic properties of the WM layers, in contrast to 

the control brain (Figure 4.1.3a and Figure 4.1.3b). These appeared as marked hypointense regions on 

SWI, with a positive phase shift on phase images and positive susceptibility values on QSM. Such 

paramagnetic signals were most prominent in the subcortical U-fibers. LFB staining showed 

symmetrical central myelin pallor with relatively preserved U fibers (Figure 4.1.3d and Figure 4.1.3e). 

In these areas, few axonal spheroids were present. CD68-positive microglial cells were most abundantly 

located in central demyelinating lesions (Figure 4.1.3f). Ferritin IHC staining was mainly observed in 

the CD68-positive zones and the WM–cortical grey matter junction (Figure 4.1.3g and Figure 4.1.3h). 

Co-registration between postmortem MRI and histology demonstrated that the signal hypointensity on 

postmortem SWI was correlated with the density of WM stained with LFB (Figure 4.1.3c and Figure 

4.1.3d). However, positive staining for iron by Perl’s Prussian blue staining was infrequently found in 

the corresponding paramagnetic WM lesions. There were no dystrophic calcifications. 

 

4.1.4 Discussions and Conclusions 

 

To date, the SWI findings of ALSP have not been described. SWI demonstrated the prominent 

susceptibility-related phase contrast with a tree silhouette-like configuration in the frontal subcortical 

WM, accompanied by striking frontal atrophy. This unique tissue contrast on SWI may help to 

characterize ALSP further. 

The characteristic SWI abnormalities observed may be associated with the location of WM lesions. 

The prominent SWI contrast regions colocalized with iron-rich WM regions in the normal brain. Iron 

concentrations are higher in the frontal than in occipital regions, and are prominent in the subcortical 

U-fibers [83, 88]. In our postmortem study, the higher spatial resolution obtained with 7T MRI further 

clarified the topographical details of the hypointense signals. The phase and susceptibility maps of the 

postmortem brain tissue disclosed paramagnetic properties in remnant U-fibers. In the normal brain, on 

the contrary, the WM showed diamagnetic susceptibility.5 Similar MRI abnormalities in the WM lesions 

have recently been described in patients with MS and progressive multifocal leukoencephalopathy 

(PML) [84, 89]. In MS, higher amounts of iron were found at the WM–cortical grey matter junction, 

reflected by transverse relaxivity, R2
*, and phase images. Iron deposits were found surrounding the core 

of the focal WM lesions, and colocalized with ferritin- and iron-enriched activated 

microglia/macrophages [84]. PML often occurs at the subcortical–juxtacortical WM involving the U-

fibers [89]. SWI hypointensities potentially explained by iron deposition were observed within the 

cortex and/or U-fibers adjacent to the multifocal WM lesions of PML patients [89]. Compared with MS 

and PML, a contiguous linear pattern confined to subcortical WM is a unique feature of ALSP.  
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The paramagnetic properties of WM in our patients might also be caused by ferritin-positive microglia. 

In the postmortem WM tissue, ferritin immunoreactivity colocalized with CD68-positive microglia 

showing a dystrophic and degenerating phenotype [89]. In general, ferritin IHC demonstrates iron in 

microglia [90, 91]. Accumulation of ferritin-bearing microglia can cause an increase in susceptibility. 

However, the distribution of ferritin did not precisely match the MRI contrast. Ferritin immunoreactivity 

was found mainly in the periphery of the remnant U-fibers, particularly in severely demyelinated WM 

fibers. The distribution of ferritin was not accompanied by sufficient quantities of iron in Perl’s Prussian 

blue staining to induce significant MRI signal changes. In fact, it has previously been reported that the 

WM lesions in ALSP brains stained variably for iron [80, 85, 92]. In some cases, only rare cells were 

positive for iron stains [92]. It is unclear whether increased expression of ferritin in ALSP is associated 

with increased iron uptake [90]. Further studies using chemical assessment of iron concentration or X-

ray fluorescence, a more powerful assay for mapping the true iron distribution, is needed to confirm the 

origin of the magnetic susceptibility [83]. 

Non-iron factors, such as changes in subcortical WM architecture, may also alter SWI phase contrast 

behavior. Myelin is the dominant source of anisotropic volume susceptibility in the WM [93]. The phase 

of the gradient echo sequence depends on the orientation of the myelin sheet with respect to the main 

magnetic field [82, 84, 93]. Demyelination of central WM-sparing iron-rich U-fibers seems to underlie 

the complicated susceptibility layers, which may lead to local phase changes in the MR phase images.  

This study is limited by the small sample size. SWI was not always performed in all patients with 

ALSP, which may have created a bias. Since we did not use DAB intensification, our histopathological 

studies may have underestimated the actual iron levels [94]. Indeed, deoxyhemoglobin, an in vivo iron 

source of SWI contrast, was absent in postmortem specimens [84].  

Although questions remain on how ferritin-positive microglia affect MRI signals, the WM architecture 

changes due to demyelination of the central WM-sparing U-fibers may mainly contribute to the 

paramagnetic susceptibility contrast. 

The original source of Chapter 4.1 is the article, Kim, M., Lee, H., Cho, H. J., Young Chun, S., Shin, 

J. H., Kim, E. J., ... & Lee, J. H. (2017). Pathologic correlation of paramagnetic white matter lesions in 

adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Journal of Neuropathology 

& Experimental Neurology, 76(11), 924-928.. 
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4.2 Accumulated iron on the myelinated fibers of the oculomotor nerve in the 

brain of progressive supranuclear palsy 

 

4.2.1 Introduction 

 

The common pathological characteristics of Parkinsonism are elevated iron deposition with neuronal 

degeneration in the substantia nigra (SN) [5, 95]. Several studies have investigated the neurochemistry 

of iron-containing molecules involved in the pathology of Parkinsonism [96, 97]. Labile iron in the 

brain is associated with the generation of hydroxyl radicals and reactive oxygen species, leading to 

oxidative stress and cellular damage [1, 98]. Specifically, high iron accumulation in the SN associated 

with disease progression results in detrimental damage to neuromelanin-containing dopaminergic 

neurons [99, 100]. Iron accumulation in the SN can be visualized and monitored using in vivo magnetic 

resonance imaging (MRI) using iron-sensitive sequences. R2
* (1/T2

*) map and quantitative susceptibility 

mapping (QSM) have been applied to quantify the iron concentration within the SN of patients of 

Parkinson’s disease (PD) and other Parkinsonian syndromes, including progressive supranuclear palsy 

(PSP), and compared to those in healthy controls [101]. 

PSP is a degenerative parkinsonism characterized by hyperphosphorylated tau protein pathology and 

neuronal cell loss in cortical and subcortical structures, including the SN and midbrain structures, globus 

pallidus, and subthalamic nucleus [102, 103]. Supranuclear vertical gaze palsy with significant midbrain 

atrophy has been recognized as a cardinal feature of PSP [104, 105]. Iron accumulation within the PSP 

brain also serves as a potential biomarker in in vivo MRI studies, and it has the ability to help distinguish 

patients with PSP from normal controls [101, 106, 107]. Significant increases in iron-related signals 

have been found in the SN, red nucleus (RN), and globus pallidus of patients with PSP [101]. In 

postmortem MRI studies with pathological validation, the microstructural destruction of the borders 

and internal architecture of the SN is far greater in PSP than that in PD [108, 109]. In FLASH MR 

images, the hypointense pixels near the boundary of the RN that adjoin the hypointense pixels of the 

SN resulted in less delineation between the structures of the PSP midbrain [108]. However, the exact 

underlying pathology of these alterations is unknown. 

This work focuses on verifying the histological origin of increased MR susceptibility contrast between 

the SN and RN in the PSP midbrain and on ascertaining its utility as an in vivo diagnostic marker for 

PSP brains, which can differentiate these patients from healthy controls and patients with PD. 7T high-

resolution postmortem MRI of PSP and normal brains along with mutually independent iron 

characterization techniques including histopathology and mass spectrometry were collectively 
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investigated. 3T in vivo iron-related MRIs of the brains of healthy controls, PD, and PSP were compared. 

 

4.2.2 Methods 

 

This study was approved by the Pusan National University Yangsan Hospital and Ulsan National 

University of Science and Technology institutional review board. All procedures, including the in vivo 

MRI, postmortem MRI, mass spectrometry, and histopathological analysis were conducted according 

to the guidelines of the Helsinki Declaration. The images were processed using in-house developed 

MATLAB codes (version R2016a, MathWorks, Natick, MA, USA). 

 

Postmortem MRI and histopathological analysis 

Midbrain specimens of an 86-year-old female without any neurodegenerative disease were acquired 

from the Pusan National University Anatomical Donation Program. A diseased midbrain tissue, which 

was characterized by severe midbrain atrophy, frontotemporal lobar degeneration, tau pathology, and 

depigmentation in the SN, from a 67-year-old male diagnosed with PSP was obtained from the Pusan 

National University Hospital Brain Bank. The formalin-fixed midbrain samples were stored in a 4 ℃ 

refrigerator for more than 2 years for sufficient stabilization of MR properties [110, 111]. Formalin 

fixation redistributes iron within the tissues [59]. Although it may alter the staining intensity and the 

absolute transverse relaxometry values (R2
*) in postmortem MR images, the contrast of postmortem 

SWI, R2
*, and QSM within brain tissues were maintained from in vivo MRI [59, 112]. 

Two tissues were placed in 50 mL syringes separately after removing air bubbles because bubbles 

around the tissue surface cause susceptibility artifacts on MR images. High-resolution MR acquisitions 

were performed on tissues using 7T preclinical MRI (Bruker, Karlsruhe, Germany) at Ulsan National 

University of Science and Technology to validate the origin of the in vivo MRI contrast. SWI, R2
* map, 

and QSM were used to evaluate iron and myelin contents in 2D multiple gradient echo sequence 

acquired using the following parameters: repetition time (TR) = 2,000 ms, echo time (TE) = 3.3-81.2 

ms (20 echoes with ΔTE = 4.1 ms), flip angle = 30°, field of view = 35 × 35 mm, matrix size = 256 

× 256, slice thickness = 500 𝜇m, and number of slices = 20. The slice geometry was perpendicular to 

the main magnetic field. SWI was acquired using magnitude and phase images of TE = 15.6 ms. The 

R2
* map was obtained from the magnitude image by mono-exponential fitting of the T2

* transverse 

relaxation curve on each voxel. QSM was reconstructed from phase images of five tilted orientations 

using the Laplacian boundary value (LBV) algorithm for background field removal and calculation of 

susceptibility through multiple orientation sampling (COSMOS) [27, 63]. T1-weighted images were 

also acquired with 2D RARE sequence for co-registration with histological analysis using the following 
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parameters: TR = 800 ms, TE = 8 ms, flip angle = 30°, field of view = 35 × 35 mm, matrix size = 256 

× 256, slice thickness = 500 𝜇m, and number of slices = 20. 

After the MR scan, tissue samples were subjected to histopathological analysis, which is a gold 

standard to demonstrate the effect of underlying elements on the corresponding MR images. For the 

tissue cryoprotection, to minimize osmotic stress and ice formation during cooling, tissues were 

sequentially embedded in 10%, 20%, and 30% sucrose in Phosphate-buffered saline solution until they 

sank. Thin slides of 50 𝜇m thickness were generated using a cryostat (CM1950, Leica Biosystems, 

Nussloch, Germany). Ten sectioned slides (thickness 50 𝜇m) were prepared from one corresponding 

MR image (thickness 500 𝜇 m). Of ten sections, three adjacent slides were used serially for Perls’ 

Prussian blue staining, Luxol fast blue staining, and LA-ICP-MS, respectively. 

Perls’ Prussian blue staining was performed for detecting ferric iron distribution. For Perls’ Prussian 

blue staining, the slides were incubated in a 1:1 mixed solution of 20% HCl and 20% potassium 

ferrocyanide for 30 min. Luxol fast blue staining was performed to identify the distribution of 

myelinated fibers by soaking the tissues in 0.1% filtered Luxol fast blue solution at 65 ℃ in an oven 

overnight and counterstained with 0.1% cresyl violet acetate solution. The histological slides were 

imaged using Virtual Microscope (Olympus Optical Co. Ltd, Tokyo, Japan). 

LA-ICP-MS was conducted to detect all molecular forms of iron within brain tissues on the slide that 

was neither stained with Perls’ Prussian blue nor Luxol fast blue. Two-dimensional images of 56Fe and 

13C intensity were obtained by line scan using a quadrupole ICP-MS device, iCAP TQ (ThermoFisher 

Scientific, Bremen, Germany) with a femtosecond laser (1,030 nm) ablation system (J200, Applied 

Spectra, Inc, Fremont, CA, USA). For the comparison of iron concentration between tissues, 56Fe 

intensity was normalized by 13C intensity to compensate sample-to-sample variations in laser ablation 

measurements, as 13C is a suitable internal standard for quantitative elemental bio-imaging [113]. 

 

Table 4.2.1 Demographic and clinical characteristics of PD, PSP, and healthy control groups. 

 PD PSP Control 

Subjects (M/F) 3/2 4/1 2/3 

Age (years) 61.2 ± 3.7 64.2 ± 2.2 61.0 ± 2.7 

Disease duration 

(years) 
4.8 ± 3.1 3.4 ± 0.5 - 

H-Y stage 2.0 ± 0.5 3.4 ± 0.5 - 

Data are shown as mean ± standard deviation. Control = healthy control; H-Y = Hoehn & Yahr; PD = 

Parkinson’s disease; PSP = Progressive supranuclear palsy. 
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For direct comparisons, postmortem MRI was co-registered with corresponding histological results 

and LA-ICP-MS images. Due to the different spatial resolutions among images, MR images and images 

of 56Fe and 13C intensity from LA-ICP-MS were up-sampled by bicubic interpolation before co-

registration. The two-dimensional rigid transformation of rotation and translation was performed on up-

sampled MR images and up-sampled images of 56Fe and 13C intensity from LA-ICP-MS to match the 

images of Luxol fast blue staining. The same transformation method was also used for the co-

registration of the image of Perls’ Prussian blue staining to the image of Luxol fast blue staining. 

 

 

Figure 4.2.1 The delineation of ROI surrounding the region between SN and RN in SWI. A: 

Representative case (61F) of the healthy control group. B: Representative case (60M) of the PD group. 

C: Representative case (66M) of the PSP group. The orange dotted line showed the boundary of SN. 

The blue dotted line showed the boundary of RN. The green dotted line showed the ROI surrounding 

the region between SN and RN. PD = Parkinson’s disease; PSP = progressive supranuclear palsy; RN 

= red nucleus; ROI = region of interest; SN = substantia nigra; SWI = susceptibility-weighted imaging. 

 

In vivo MRI 

Five patients with PSP, along with five age-matched patients with PD and five age-matched healthy 

controls, were included in this study. The demographic features of all participants are summarized in 

Table 4.2.1. Patients were clinically diagnosed by a movement disorder neurologist in accordance with 

the established criteria for each disorder [114, 115]. Although there was no significant difference in age 

and disease duration between patients with PD and those with PSP, the H-Y stage was significantly 

higher in patients with PSP (p = 0.008). All subjects provided informed consent and underwent 3T in 

vivo MRI (Magnetom Skyra, Siemens, Erlangen, Germany) at Pusan National University Yangsan 

Hospital. SWI, R2
* map, and QSM were taken with a 2D gradient echo sequence using the following 

parameters: TR = 2,030 ms, TE = 3.1-29.9 ms (6 echoes with ΔTE = 4.8, 5.5, …, 5.5 ms), flip angle = 

60 °, field of view = 192 × 192 mm, matrix size = 192 × 192, slice thickness = 2 mm, and number 
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of slices = 60. SWI was acquired using the magnitude and phase images of TE = 24.6 ms. The R2
* map 

was obtained using the same technique of postmortem MRI. QSM was reconstructed using MATLAB-

based software, STI-Suite (version 3.0, University of California, Berkeley, CA, USA, 

https://people.eecs.berkeley.edu/~chunlei.liu/software.html). Among the 60 slices, the slice of the 

second level in the rostral direction showing the SN with a clear shape of the RN was consistently 

selected for each subject for the analysis. 

The line profile of normalized SWI intensity, R2
*, and QSM across the SN and RN were plotted along 

the two different lines for each group (right and left sides of five subjects in each group). SWI intensity 

was normalized by the maximum intensity value of each line profile. The white matter region between 

the SN and RN was manually delineated in SWI by H.L. as shown in Figure 4.2.1. The quantitative 

values of R2
* and QSM within the region between the SN and RN using the same ROI from SWI were 

compared among the three groups using a Kruskal-Wallis H test. Bonferroni correction was performed 

for multiple comparisons with significance levels of 0.05/3=0.0166. 

 

 

Figure 4.2.2 Histopathology and LA-ICP-MS with multimodal MRI on the postmortem SN of an 86-

year-old normal female. (A): Luxol fast blue staining; (B): Perls’ Prussian blue staining; (C): 56Fe/13C 

intensity from LA-ICP-MS imaging (a.u.); (D): SWI; (E): R2
* map (1/s); (F): QSM (ppb); White and 

black arrows indicate myelinated fibers at anterior SN and oculomotor nerve. Orange asterisk shows 

the structure of nigrosome-1. CC = crus cerebri; LA-ICP-MS = laser ablation - inductively coupled 

plasma - mass spectrometry; QSM = quantitative susceptibility mapping; SN = substantia nigra; SWI = 

susceptibility-weighted imaging. 
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4.2.3 Results  

 

Postmortem study 

The co-registered results of multimodal high-resolution MRI, histopathology, and the two-dimensional 

image of iron distribution from laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-

MS) of the postmortem normal and PSP brains are presented in Figure 4.2.2 and Figure 4.2.3, 

respectively. 

Overall, the myelinated fibers at the anterior SN and third cranial nerve (oculomotor nerve) fascicles 

were observed in Luxol fast blue staining (white arrow for myelinated fibers at the anterior SN and 

black arrow for the oculomotor nerve fascicles in Figure 4.2.2A and Figure 4.2.3A). Ferric iron 

deposition was detected using Perls’ Prussian blue staining (Figure 4.2.2B and Figure 4.2.3B). The 

stained ferric iron was broadly distributed within the SN. The region of elevated intensity for 56Fe/13C 

in LA-ICP-MS imaging (Figure 4.2.2C and Figure 4.2.3C) corresponded with the areas of the stained 

ferric iron deposits (blue blush in Perls’ Prussian blue staining) [116]. 

 

 

Figure 4.2.3 Histopathology and LA-ICP-MS with multimodal MRI on the postmortem SN of a 67-

year-old male with PSP. (A): Luxol fast blue staining; (B): Perls’ Prussian blue staining; (C): 56Fe/13C 

intensity from LA-ICP-MS imaging (a.u.); (D): SWI; (E): R2
* map (1/s); (F): QSM (ppb). (G) The 

overlap (red) between myelinated fiber (blue) and hypointense SWI area (green). White and black 

arrows indicate myelinated fibers at anterior SN and oculomotor nerve. CC = crus cerebri; LA-ICP-MS 

= laser ablation - inductively coupled plasma - mass spectrometry; PSP = Progressive supranuclear 

palsy; QSM = quantitative susceptibility mapping; SN = substantia nigra; SWI = susceptibility-

weighted imaging. 
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In the case of the normal brain, the area of deposited iron corresponded to the hypointense pixels in 

susceptibility-weighted imaging (SWI) (Figure 4.2.2D), and large R2
* values were correspondingly 

observed in the same area (Figure 4.2.2E). In the QSM (Figure 4.2.2F), ferric iron deposition was shown 

as paramagnetic molecules. The structure of the so-called nigrosome-1 (the area of the orange asterisk) 

was detected as a hyperintense area in the SWI. This area was also described as an oval-shaped area 

with lower R2
* values and susceptibility compared to those of surrounding tissues. Nigrosome-1 had 

lightly stained iron distribution in Perls’ Prussian blue staining and a low intensity of iron (56Fe/13C). 

The R2
* map and QSM further showed linear myelinated fibers with moderately high values distributed 

in the anterior SN (white arrow in each image). No iron accumulation along the oculomotor nerve 

fascicles (black arrow) was observed on iron-related MRI or 56Fe/13C from LA-ICP-MS. 

In the case of PSP, the volume atrophy of the midbrain was apparent compared to that in normal SN. 

Similar to a normal SN, iron deposition was identified as large R2
* values in Figure 4.2.3E. In particular, 

the region with both large values in the R2
* map and positive susceptibility values in the QSM (Figure 

4.2.3F) included the oculomotor nerve (black arrow) fascicles and myelinated fibers in the anterior SN 

(white arrow) identified from Luxol fast blue staining. The 56Fe/13C intensity from LA-ICP-MS also 

showed a significant iron signal in the area of myelinated fiber at the anterior SN and oculomotor nerve 

fascicles, directly indicating iron accumulation along the oculomotor nerve. The spatially overlapped 

region (red) between segmented myelinated fibers from Luxol fast blue staining (blue) and hypointense 

regions from SWI (green) is shown in Figure 4.2.3G. On the other hand, such iron distribution along 

the myelinated fibers in the PSP brain was not sensitively stained in the Perls’ Prussian blue staining 

(Figure 4.2.3B). 

The myelinated fibers of the oculomotor nerve detected in Luxol fast blue staining were not 

distinctively shown in the R2
* map and QSM as indicated by red arrows. The mild iron concentration 

along myelinated fibers in the two control cases was not enough to overwhelm the effect of diamagnetic 

myelinated fibers in QSM, which was clearly observed in 67-year-old male PSP brains. 

 

In vivo MRI 

For in vivo MRI, representative MR images of the SWI, R2
* map, and QSM showing rostral SN in 

healthy control, PD, and PSP groups are presented in Figure 4.2.4. The values of R2
* map and QSM in 

SN were highest in patients with PSP, followed by patients with PD and then healthy controls. Marked 

atrophy of the midbrain was observed in all patients with PSP compared to those of healthy controls 

and patients with PD in the same field of view. In the SWI, a clear hyperintense boundary was identified 

in the region between the hypointense SN and the hypointense RN in healthy controls and patients with 

PD (Figure 4.2.4A-I and Figure 4.2.4B-I). However, in the case of PSP, the hypointense area was shown 
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at the areas bridging the SN and RN as an atypical connection between two tissues with blurred 

boundaries (Figure 4.2.4C-I). This connection was also identified in the R2
* map and QSM of patients 

with PSP (Figure 4.2.4C-II and Figure 4.2.4C-III). 

 

 

Figure 4.2.4 The representative MRI showing the SN and RN. A: Representative case (61F) of the 

healthy control group. B: Representative case (60M) of the PD group. C: Representative case (66M) of 

the PSP group. The red arrows in Figure C-I show the hypointensity in the region between SN and RN. 

(I): SWI; (II): R2
* map; (III): QSM. PD = Parkinson’s disease; PSP = progressive supranuclear palsy; 

QSM = quantitative susceptibility mapping; SN = substantia nigra; SWI = susceptibility-weighted 

imaging; RN = red nucleus. 

 

In Figure 4.2.5, the respective line profiles of normalized SWI intensities are presented across the SN 

and RN along the two separate lines of the three groups, as shown in Figure 4.2.5A. To visualize the 

selectivity of such lines to myelinated white matter, the myelin of the oculomotor nerve fascicles passing 

by the RN and the myelin in the anterior SN were connected by red lines in Luxol fast blue staining, as 
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shown in Figure 4.2.5B. Ten line profiles of healthy controls along both red and blue lines in the SWI 

(Figure 4.2.5C-I and Figure 4.2.5C-IV) showed hyperintensity in the white matter region (WM in the 

x-axis) bridging the SN and RN. Hyperintense areas were also maintained in the white matter region 

between the SN and RN in patients with PD (Figure 4.2.5C-II and Figure 4.2.5C-V). Conversely, for 

patients with PSP, the SN, RN, and white matter region between the two tissues were hypointense, 

which resulted in blurred structural boundaries (Figure 4.2.5C-III and Figure 4.2.5C-VI). The line 

profiles for R2
* and QSM values along the blue line in SWI are presented in Figure 4.2.6. The line 

profiles of R2
* and QSM showed a concave pattern in the region between the SN and RN in both healthy 

controls and patients with PD, but such trend was significantly decreased in patients with PSP. 

 

 

Figure 4.2.5 The line profile of normalized SWI intensity across the SN and RN. (A): SWI (B): Luxol 

fast blue staining with red lines for myelin distribution; (C-I), (C-IV): The line profile of normalized 

SWI intensity of healthy controls; (C-II), (C-V): The line profile of normalized SWI intensity of patients 

with PD; (C-III), (C-VI): The line profile of normalized SWI intensity of patients with PSP. The line 

profiles of (C-I~C-III) were delineated along the red line in SWI. The line profiles of (C-IV~C-VI) were 

delineated along the blue line in SWI. PD = Parkinson’s disease; PSP = progressive supranuclear palsy; 

SN = substantia nigra; RN = red nucleus; WM = white matter between SN and RN. 

 

The mean and standard deviation of R2
* and QSM values in the region bridging the SN and RN were 

compared among the three groups (Table 4.2.2). R2
* and QSM values of PSP were significantly higher 

than those of the other two groups (R2
*: p = 0.008 with controls, p = 0.008 with PD; QSM: p = 0.008 

with controls, p = 0.008 with PD). However, the differences in R2
* and QSM values between controls 

and PD groups were negligible (p = 0.421 and p = 1, respectively) in the region bridging the SN and 
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RN. For the datasets with separated left and right sides of the brain, R2
* and QSM values of PSP were 

more significantly distinguishable from those of other two groups, as demonstrated by the p-values in 

parentheses. 

 

 

Figure 4.2.6 The line profiles across SN and RN. A is for the representative case of a group of healthy 

controls. B is for the representative case of the PD group. C is for the representative case of the PSP 

group. The line profiles were delineated along the same blue line used in SWI (Figure 4.2.5A) of each 

subject. (I): The line profile of normalized SWI intensity; (II): The line profile of R2
* (The same plot of 

A-II and B-II with magnified y-axis was exhibited as inset figure); (III): The line profile of QSM. PD = 

Parkinson’s disease; PSP = Progressive supranuclear palsy; QSM = quantitative susceptibility mapping; 

RN = red nucleus; SN = substantia nigra; SWI = susceptibility-weighted imaging; WM = white matter 

region between SN and RN. 

 

4.2.4 Discussions and Conclusions 

 

The main finding in this study is that iron deposition along the myelinated fibers at the anterior SN 
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and oculomotor nerve fascicles in the brain of patients with PSP can be visualized using multiple 

independent approaches, such as 7T postmortem MRI, histological analysis, mass spectrometry, and in 

vivo 3T MRI. Our postmortem examinations showed that the increased MR susceptibility contrast 

between the SN and RN identified in patients with PSP is likely to originate from excessive iron 

deposition along the myelinated nerves between these two structures. To our knowledge, this is the first 

report demonstrating a higher level of iron deposition along the myelinated fibers at the anterior SN and 

oculomotor nerve fascicles in the vicinity of the SN and RN of patients with PSP compared to those of 

patients with PD and normal controls by using R2
*, QSM, and LA-ICP-MS. 

 

Table 4.2.2 Comparison of R2
* and QSM in the region between SN and RN among PD, PSP, and control. 

 Control PD PSP 

Kruskal-

Wallis 
post-hoc (p) 

𝝌𝟐 p 
Control vs. 

PD 

Control vs. 

PSP 
PD vs. PSP 

R2
* 

values 

(s-1) 

33.7 ± 

1.6 

37.3 ± 

5.6 

54.9 ± 

8.0 
9.8 0.008* 

0.421 

(0.473) 

0.008* 

(< 0.001**) 

0.008* 

(0.002**) 

QSM 

(ppb) 

31.2 ± 

15.4 

34.1 ± 

11.9 

116.2 

± 23.7 
9.4 0.009* 

1 

(0.910) 

0.008* 

(< 0.001*) 

0.008* 

(< 0.001**) 

Data are shown as mean ± standard deviation. 

Post-hoc (p) = p-values from post-hoc analysis of Mann-Whitney U test. 

*: p < 0.05 (For post-hoc analysis, *: p < 0.05/3 and **: p < 0.005/3 after Bonferroni correction). 

Control = healthy control; PD = Parkinson’s disease; PSP = Progressive supranuclear palsy; SN = 

substantia nigra; RN = red nucleus. 

 

Atrophy of the midbrain, which is a recognized characteristic in patients with PSP, may shorten the 

gap between the SN and RN. The shortened gap between the SN and RN probably causes an atypical 

connection between the two structures with blurred boundaries in low-resolution on in vivo MRI. 

Regardless of the volume loss in PSP brain, the fibers of oculomotor nerve would still present between 

the SN and RN. In our postmortem examinations of the PSP midbrain, Luxol fast blue staining showed 

the distribution of myelinated fibers at the anterior SN and the oculomotor nerve fascicles, which had a 

considerably high iron (56Fe/13C) signal intensity in the LA-ICP-MS image. The corresponding area had 

large R2
* values and positive susceptibility values in the QSM. The spatial overlap between myelinated 
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fibers from Luxol fast blue staining and the hypointense region in SWI demonstrated that the myelinated 

fibers with high iron concentration were non-invasively observed in the iron-related MRI. However, 

Perls’ Prussian blue staining, which is the conventional method used to determine the distribution of 

ferric iron within brain tissues, was less sensitive for staining myelin-associated iron. 

It is still unclear why there is a high concentration of iron deposits along the myelinated fibers of the 

oculomotor nerve in association with PSP progression. There are several possible explanations for this 

abnormal iron deposition. 1) In human studies, high levels of iron have been reported to co-localize 

with hyperphosphorylated tau aggregates [117]. Tau-containing globose neurofibrillary tangles are 

prevalent in the PSP midbrain, including in the oculomotor nerve complex [118]. 2) Anatomically, the 

fibers of the oculomotor nerve fascicles from the nucleus pass by the RN and SN, and these two 

structures contain a high level of iron concentration [109]. Excessive iron accumulation within both the 

SN and RN can also cause abnormal iron deposition along the nearby myelinated fiber. 3) The 

vulnerability of myelinated fibers and oligodendrocytes to oxidative stress may be further accelerated 

by their high iron environment as myelination and axon maturation require iron consumption [60, 119]. 

The dysfunction of the iron homeostasis mechanism in myelinated fibers, such as impaired iron 

transportation of the iron transport tract and imperfect iron excretion from the neurons, can cause high 

iron deposition along the associated myelinated fibers [73, 120]. The increased iron level along the 

myelinated fiber of the oculomotor nerve is likely to result in neuronal damage with disease progression 

[99]. 

Although white matter, including myelinated fibers, is originally considered the main diamagnetic 

source in the brain due to its heavy phospholipid component, a high level of iron-containing molecules 

is also stored in myelin and oligodendrocytes as they have high iron requirements [121]. As 

demonstrated in the present study, iron deposition along the myelinated fiber around the SN can be a 

specific endogenous iron cluster, because the overloads of iron deposition along myelinated fibers 

overwhelm diamagnetism and induce paramagnetism as a myelin-iron complex [121, 122]. Moreover, 

various forms of endogenous iron clusters are distributed within the SN, including the neuromelanin-

iron complex, reactive ferric irons in neurons and glial cells, pathological hallmarks of disorders apart 

from iron such as α-synuclein or tau, and the heme iron in microvessels crossing the SN [16, 70, 75, 

123]. All these endogenous iron clusters within the SN need to be interpreted with care in in vivo iron-

related MR contrast. 

This study had several limitations. First, the postmortem sample size was small. However, a previous 

postmortem study on the SN of control and PSP brains showed consistent hypointensity between the 

SN and RN only in the PSP brain [108]. Second, we have not presented the corresponding images from 

postmortem PD midbrains for direct comparison between PD and PSP midbrain tissues. In PD, the most 
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severely affected regions are reported to be nigrosomes, containing most dopaminergic neurons, at the 

posterior SN [124]. The evaluation of the presence of nigrosome-1 in the posterior SN (rather than the 

anterior SN in the analysis of PD brain) in MRI has been utilized as a promising biomarker for PD 

diagnosis. Third, the disease severity (H-Y stage) was different between patients with PD and PSP, 

which may influence MR contrast. PSP is known to progress more rapidly than PD, and it is difficult to 

match disease duration and H-Y stage together between the two groups [125]. Further investigation 

should be pursued on a larger number of subjects with no significant differences in age, sex, and disease 

severity in each group. Histopathological validation is also recommended for postmortem PD and PSP 

brains with a large sample in future studies. 

In conclusion, the current study has demonstrated excessive iron deposition along the myelinated fiber 

at the anterior SN and the third cranial nerve (oculomotor nerve) in the PSP brain, applied this 

knowledge to understand the in vivo iron-related MR contrast seen in patients with PSP, and compared 

it to those of healthy controls and patients with PD. Consequently, it was found that the connection 

between the SN and RN in in vivo SWI, R2
* map, and QSM in patients with PSP can be a useful MR 

biomarker in the differential in vivo diagnosis of patients with PSP from healthy controls, patients with 

PD, and other patients with atypical Parkinsonian syndrome. 

The original source of Chapter 4.2 is the article, Lee, H., Lee, M. J., Kim, E. J., Huh, G. Y., Lee, J. H., 

& Cho, H. (2021). Iron accumulation in the oculomotor nerve of the progressive supranuclear palsy 

brain. Scientific reports, 11(1), 1-9.. 
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Chapter 5. Conclusions 

 

5.1 Summary 

 

In this thesis, multi-color iron magnetic resonance (MR) imaging techniques for non-invasive 

classification of the iron states and the separation of the various iron forms in the brain tissues were 

developed for the differential diagnosis of iron-related neurodegenerative diseases, such as Parkinson’s 

disease (PD), progressive supranuclear palsy (PD), Perry syndrome (PS), and Adult-onset 

leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). The potential of multi-color 

iron MR imaging technique utilized for clinical imaging biomarkers was quantitatively investigated 

through the demonstration of its in vivo feasibility and implication on the diagnosis of patient groups 

from healthy subjects. 

 

5.2 Limitations and Future works 

 

This study has limited sample sizes of postmortem brain tissues and enrolled subjects. Especially, PD 

postmortem brain was not included in the study. Because formalin fixation on biological tissue can 

change the chemical environment through modifying the structure of the molecules, its effect should be 

considered for the comparison between the results of in vivo and ex vivo examinations. In in vivo 

research, the disease severities, such as Unified Parkinson’s Disease Rating Scale part III (UPDRS III) 

or Hoehn and Yahr (H-Y) stage, were significantly different between the patients of PD and PSP, which 

can affect magnetic resonance imaging (MRI) contrast. Because the progression of PSP is more rapid 

compared to PD, matching disease duration and H-Y stage for both groups is not easily achieved in the 

subject enrollment. 

For the future work of in vivo application to detect neuromelanin-iron complex in the substantia nigra, 

a higher-resolution image comparable to postmortem experiments will be obtained using 7T in vivo 

MRI. Further analysis will be conducted on the subjects with a larger number, including sex- and age-

matched control and patient groups with various disease severities. Histopathological validation will be 

performed for the postmortem brains of PD, PSP, and other Parkinsonian syndromes with large amounts 

of samples. The advanced research will be implemented to validate the alteration of MR signal with the 

presence of beta-amyloid or tau according to the Alzheimer’s disease progression. 
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