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I 

Abstract 

 

 Currently, water treatment is required to provide clean water worldwide. Among many studies 

for water treatment, membrane distillation (MD) is one of the emerging technologies. The MD is a 

process that utilizes the temperature difference between the high-temperature feed solution and the low-

temperature permeate solution, and the vapor generated due to this temperature difference passes 

through the membrane and then finally condenses to become a high-quality distillate. Less thermal 

energy is required for the generation of vapor because of the temperature difference, and almost 100% 

of non-volatile contaminants can be removed. However, if the generated vapor condenses inside of the 

pores, the membrane becomes wet. After the pores are wet, the feed solution can pass directly, reducing 

the removal rate and reducing the lifetime of the membrane. 

 To solve this wetting problem, many studies are focus on the hydrophobicity of the membrane. 

For this, many types of hydrophobic polymers were applied. Mainly used hydrophobic polymers 

include polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and 

polyvinylidene fluoride (PVDF). However, there is a limit to the hydrophobicity a material can exhibit. 

Therefore, various studies have been conducted to improve the hydrophobicity of membranes to 

overcome the limitation. However, various previous studies still need improvement in performance 

decline, fouling, and wetting issues. First, coating methods that have been widely used to date have 

weaknesses such as poor performance and poor stability. Next, as a new method to increase 

hydrophobicity, the method of increasing hydrophobicity by applying a pattern on the surface is in the 

spotlight. However, this method has a problem in that it is difficult to make a pattern and fouling easily 

occurs due to an increase in roughness. 

 To address the performance decline and poor stability in the coating method, the PVDF 

membrane was modified through four steps: pore expansion by a plasma treatment, hydroxylation of 

the membrane by the Fenton reaction, generation, and growth of nanoparticles (NPs) on the 

hydroxylated functional groups in pores, and hydrophobic modification using fluorine chemical. The 

membranes modified by the methods proposed in this study did not lose their hydrophobicity and 

maintained the flux over a significantly longer period MD test. The PVDF membrane modified by 

hydrophobic NPs attached inside enlarged pores exhibited a minimized flux reduction and significantly 

higher antiwetting stability. Sonication was also applied to test the stability of the NPs grown from the 

PVDF membrane. This result support that NPs grown from the hydroxyl functional group on PVDF 

enhance the stability.  

 For overcoming the further performance change, a lot of research is being conducted on 

patterned membranes as a new technology, but it has the disadvantages such as difficulty to prepare a 
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patterned membrane and fouling issue because of pattern on the surface. To overcome the issues in 

patterning studies, the template was used for easy fabrication of patterned membrane, and low surface 

energy was achieved polymerization of hydrophobic chemical on the membrane. To prepare the pattern 

surface, a polyvinylidene fluoride-co-chlorotrifluoroethylene (PVDF-CTFE) membrane was poured on 

a template having a specific structure. It has been found that patterned membranes with hierarchical 

microstructures are more hydrophobic than those with flat surfaces. It was also confirmed that the 

patterned membranes have high resistance in wetting in direct contact membrane distillation (DCMD) 

showing stable performance over a longer period compared to membranes with flat surfaces. However, 

the patterned membrane has the problem of rapid performance decline during fouling testing due to the 

deposition of foulants. In this study, the fouling issue was solved through polymerization with 1H, 1H-

perfluorooctyl methacrylate (FOMA) which makes membrane have low surface energy. After surface 

polymerization with FOMA, it was confirmed that the superhydrophobic patterned membrane showed 

any performance decline in the DCMD process with foulants such as humic acid (HA), alginic acid 

(AA), and bovine serum albumin (BSA). In addition, it was confirmed that it did not get wet for more 

than 7 days in the actual DCMD process due to the higher hydrophobicity due to the lower surface 

energy as well as the rough surface due to the patterned surface.  

            For the last, a new approach to prevent wetting of the membrane was investigated. As the 

reason for the wetting in the MD process, the vapor generated by the temperature difference between 

feed and permeate solution is condensed inside of the pores. To prevent this phenomenon, as a next-

generation technology to prevent wetting, the internal temperature of the membrane increased by 

heating to prevent the vapor from condensing inside the pores. To achieve the heating membrane, a 

PVDF membrane was prepared using a copper mesh as a substrate which has good thermal conductivity, 

and it was possible to prevent wetting by transferring heat during the MD. Sweep gas MD (SGMD) was 

used to confirm the prevention of wetting through heating of the membrane. In the case of proceeding 

without applying heat, it was found that the membrane gets wetted so that feed solution passes through 

dramatically, whereas when the temperature of the membrane was increased by applying heat, it was 

confirmed that the membrane was not wetted over 2500 min. Furthermore, to enhance the thermal 

conductivity of the membrane, carbon nanofiber (CNF) was added into the dope solution before 

fabrication. With CNF, heat can be transferred more efficiently so that wetting could be prevented over 

3500 min in SGMD.
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1. Introduction 

 

1.1 Water treatment technology using membrane 

 

 Because of the population increasing, the consumption of clean water has been increasing 

continuously [1]. The population doubled from 1900 to 1995, but the water demand increased by six 

times [2]. The increase in industrial and agricultural activities also contributes to the increasing water 

consumption. Moreover, freshwater such as river water and groundwater, which are sources of clean 

water, are being contaminated. Seawater desalination is one of the widely used methods for obtaining 

clean water [3-5]. In the Middle East, distillation is an important process that is used to obtain clean 

water via the evaporation and subsequent condensation of pure water vapor [6]. Although distillation 

does not require high pressure, it requires high thermal energy. Moreover, it is disadvantageous due to 

its slower production speed compared to that of other methods [7]. Reverse osmosis (RO) is another 

technology of seawater desalination [8, 9]. In recent decades, the largest seawater RO plant (SWRO) in 

Israel has been the most studied technology. SWRO plant produces approximately 590 Mm3/y of water, 

which is equivalent to approximately 80% of the total industrial and domestic needs of Israel [10]. 

However, RO requires a significantly high pressure to overcome the osmotic pressure of seawater and 

allow pure water to pass through the semipermeable membranes [11].  

 Recently, the membrane distillation (MD) method has gained increasing attention owing to its 

different advantages compared to that of the distillation and RO techniques [12-14]. In the MD process, 

a semipermeable barrier is interposed between the feed and permeate solutions. Pure water vapor is 

produced on the feed side because of the temperature differences between the two solutions. 

Subsequently, the vapor from the feed solution passes through the membrane and condenses in the 

permeate solution. The pores in the membrane provide a path for the vaporized water molecules to pass 

through [15]. MD has several advantages over other water treatment methods. Although MD uses the 

partial vapor pressure difference caused by the temperature difference, the process requires a low energy 

consumption as it is not required to increase the temperature of the feed solution to the boiling point. 

When waste heat is available, the operation cost of MD becomes smaller than that of the water treatment 

method using pressure as a driving force. In addition, when the MD is applied to freshwater, wastewater, 

and seawater treatments, pure water vapor leaving the rest of inorganic and nonvolatile organic 

materials in the feed side is transferred to the permeate side; therefore, the process can have a 

considerably high salt rejection. 
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1.2 Problem statement of MD process 

 

 Considering the nature of the separation process, which requires separation of the vapor from 

the mixed solution using a membrane, the membranes used in the MD must consist of hydrophobic 

materials [16]. When the vapor passes through the pores of the membrane during the operation, the 

temperature difference across the membrane can cause condensation of the vapor in the membrane pores. 

Hydrophobic materials employed in the MD process include polypropylene (PP), polyethylene (PE), 

polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF) [17]. Among them, PVDF is a 

widely used material in MD owing to its high chemical durability, mechanical strength, and thermal 

stability. As the condensed vapor fills the membrane pores, the feed solution including various salts and 

particular materials passes the membrane through the wet pores, causing a sharp decrease in rejection. 

In this stage, the osmotic and operation pressures across the membrane, not the vapor pressure, lead to 

migration of the solution through the membrane, which will not further act as a semipermeable barrier.  

 Numerous studies have been performed to prevent wetting phenomena in the MD process [18]. 

The studies on the development of superhydrophobic membranes with contact angles of (or larger than) 

150° employed a physical method of increase in the roughness of the membrane surface and chemical 

method modifying the surface with nonpolar and low-energy materials [19]. Coating, mixing, layer-by-

layer structures, electrospinning, and chemical vapor deposition (CVD) have been proposed to increase 

the hydrophobicity of the membrane. Efome et al. carried out experiments to improve the performance 

and hydrophobicity of a vacuum MD membrane by preparing the membrane with a mixed dope solution 

of hydrophobic SiO2 particles and polymer [20]. Prince et al. carried out an experiment with a polymer 

solution containing PVDF and nanoclay to form a membrane with a removal rate of 99.97% and a 

contact angle of 154º through electrospinning [21]. Lia et al. added hydrophobically modified SiO2 

nanoparticles (NPs) into a dope solution for electrospinning to obtain a superhydrophobic membrane 

[22]. Zhang et al. dispersed hydrophobic SiO2 particles in toluene and sprayed them onto the membrane 

surface [23]. Through this method, a membrane with a rough surface and large contact angle was 

obtained. Similarly, Zhang et al. [24] modified the surface of PVDF to superhydrophobic by coating 

SiO2 NPs and hydrophobic modification using perfluorooctyltrichlorosilane. Superhydrophobicity was 

also achieved by Xianfeng [25] by casting a PVDF solution and gelation of the surface through 

quenching. In addition, a superhydrophobic membrane with a contact angle larger than 150° could be 

formed through the deposition of poly-(1H, 1H, 2H, 2H-perfluorodecyl acrylate) (PPFDA) on a PVDF 

membrane using the CVD method [26]. 

 However, in the previous studies, the mixing of the hydrophobic material could affect the 

performance of the membrane due to the additionally spiked material, which could affect the formation 
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of pores or membranes and could change the membrane structure [27]. In addition, when a dope solution 

is prepared by mixing with a hydrophobic material, the added materials are surrounded and coated by 

a polymer solution, leading to a loss of hydrophobicity of the materials. In the case of membrane 

preparation through gelation, undesirable pore changes occur in the gelation and drying processes [28]. 

In the method of spraying with hydrophobic particles dispersed in a solvent, the stability between the 

sprayed particles and membrane surface becomes low in a long-term operation and thus the 

hydrophobicity can be lost. In the case of electrospinning, the shape and structure of the membrane can 

be significantly changed by the ambient humidity or conductivity during the application of a voltage in 

the spinning stage [29]. 

 To further increase hydrophobicity, various studies have been conducted. Fluorine-based 

chemicals are widely used for fabricating hydrophobic membrane surfaces. Wei et. al. has performed 

CF4 treatment for a polyethersulfone membrane using plasma radiation [30]. Through plasma treatment, 

the hydrophobicity of the membrane surface has improved with a contact angle up to 120º. However, it 

is not easy to exceed a contact angle of 150º, the standard for superhydrophobicity, using only the 

chemical modification method. Liu et al. have created a patterned cellulose surface by pressing a metal 

mesh on the cellulose membrane and engraving the pattern [17]. Such a patterned membrane followed 

by a chemical modification showed a superhydrophobicity behavior with a contact angle of more than 

150˚. Similar research has been performed by Huang et al., creating a uniform structure on PTFE 

membrane using a nanoimprinting technique under high pressure [31]. After patterning the surface, the 

membrane was further modified by coating hydrophobic TiO2 nanoparticles. However, coating with 

TiO2 particles decreased the performance due to pore blocking. In addition, particles were not stably 

maintained on the membrane surface. The patterned surface has been also created using a spacer 

imprinting method [32-34]. A patterned spacer was carefully placed on a polymeric solution to create a 

certain structure during the coagulation step and imprint the pattern on the membrane. The size and 

shape of the pattern could be easily changed using various spacers. However, using spacers has 

limitations because spacers with higher thickness are much larger than nano or micro size. The 

lithographic technique is another patterning method. Lee et al. have fabricated a membrane with a 

prism-shaped patterned structure on the surface using a mold made by lithographic technology [18]. 
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1.3 Objects of this study 

 

 Firstly, omniphobic PVDF membranes were prepared, and the performances and long-term 

stabilities were evaluated under the condition of direct-contact membrane distillation (DCMD). 

Omniphobic NPs were dip-coated on the PVDF membrane surface prepared by non-solvent induced 

phase separation (NIPS). To enhance the stability of the NPs on the surface, a membrane was prepared 

by a method involving the Fenton-reaction, formation of NPs, and their hydrophobic modification. The 

Fenton-reaction was used to form -OH functional groups on the PVDF membrane surface where 

tetraethyl orthosilicate (TEOS) grew to SiO2 NPs [35-37]. The omniphobic modification was then 

completed through the reaction of the surface of SiO2 with 1H, 1H, 2H, 2H-

perfluorooctyltriethoxysilane (FAS), thereby forming a superhydrophobic membrane. Finally, to 

minimize the flux reduction from the modification and maximize the stability during the operation, the 

membrane pores were expanded by a plasma treatment [38] and NPs were grown in the expanded pores, 

followed by modification of the NPs with FAS. The performances of the prepared superhydrophobic 

membranes were compared with those of the pure PVDF membrane. For the stability measurement, 

sonication and recycling test were carried out. 

 Secondly, a poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) patterned 

membrane was fabricated using a templet made up of aluminum which had micro sized structures on 

the surface. Furthermore, this PVDF-CTFE was modified with 1H,1H-perfluorooctyl methacrylate 

(FOMA) through atom transfer radical polymerization (ATRP) to achieve low surface energy [39, 40]. 

PVDF-CTFE was chosen because the Cl functional group in the polymer chain could form a bond with 

other chemicals. To evaluate the fouling issue of the prepared membrane, humic acid (HA), alginic acid 

(AA), and bovine serum albumin (BSA) were chosen as representatives of humic substances, 

polysaccharides, and proteins, respectively [41-44]. They are components of natural water sources. This 

study can be used as fundamental research for combining chemical and surface engineering to enhance 

wetting and fouling resistance against various foulants to improve the overall MD performance. 

 Finally, as a new approach to prevent the wetting in MD, condensation of vapor causing the 

wetting was prevented by raising the temperature of the membrane. Many studies have been conducted 

to increase the hydrophobicity of the membrane to prevent wetting in MD, but as a fundamental solution, 

in this study, membrane temperature was maintained higher than the feed solution temperature which 

could prevent condensation of the vapor. To achieve this, the copper mesh was used as a substrate to 

prepare a membrane that has thermal conductivity. With this thermal conductive membrane, it was 

possible to increase the temperature of the membrane by directly applying heat during MD. Through 

this, the vapor condensation could be prevented longer period. In addition, due to the high temperature 
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inside the membrane, the movement of the vapor was accelerated, resulting in improved performance. 

Furthermore, to further improve the thermal conductivity inside the membrane, heat transfer could be 

improved by adding CNF to the dope polymer. The heat transferred to the copper mesh was able to 

transfer heat more effectively to the membrane through the CNF spread inside the polymer and prevent 

the wetting for a longer time. 
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Chapter. 2 
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2. Background 

 

2.1 Basic theory of the membrane 

 

2.1.1 Fabrication of membrane  

 

2.1.1.1 non-solvent induced phase separation (NIPS) 

 

 The NIPS method is one of the simplest and most frequently used methods used to cast 

membranes. This method uses the principle that when a solvent and a nonsolvent contact, they exchange 

with each other and form pores like in Figure 2.1 [45]. This principle was first introduced by Kesting 

to fabricate porous membranes [46]. The membrane prepared by exchanging this solvent and non-

solvent is mainly used to prepare microfiltration membranes or ultrafiltration membranes, and many 

commercially available membranes are being prepared through this method. 

 To prepare a membrane through the NIPS method, first, a polymer solution was prepared by 

dissolving into the solvent. After the polymer solution becoming a homogeneous state, the polymer 

solution was fabricated into the required shape (flat or hollow fiber type) and then immersed into the 

non-solvent [47]. When polymer solution is contacted with non-solvent, an exchange occurs between 

the solvent and non-solvent, which will lead to the composition. As a result, the solubility limit of the 

solvent is exceeded, and finally, the polymer will be precipitated causing by liquid-liquid separation. 

Simultaneously, the non-solvent starts to occupy the place where the solvent was, and pores are formed. 

The pores are formed in two structures according to the difference in the exchange rate between the 

solvent and the non-solvent. First, exchange occurs very fast because of high interaction between 

solvent and non-solvent, the finger-like structure generated from the surface and finally an asymmetric 

membrane is formed [48]. The membranes prepared in this way are frequently used in the field of RO 

or UF. Conversely, if the exchange between solvent and nonsolvent occurs slowly, the symmetrical 

membrane with a sponge-like structure is formed [49].  
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Figure 2. 1 Exchange between solvent and non-solvent in NIPS process. 

 

2.1.1.2 Thermal-induced phase separation (TIPS) 

 

 The fabrication of membrane using NIPS described in 2.1.1.1 is widely used because it is 

simple, but because of the exchange between solvent and non-solvent, membranes have relatively large 

pores size. In addition, since the amount of polymer that can be dissolved in a solvent is limited, a high-

concentration polymer solution cannot be prepared. Because of this low polymer concentration, the 

membrane prepared by the NIPS method has low mechanical strength. To overcome this large pore size 

and low mechanical strength, another technique has been conducted. TIPS method is one of the 

fabricating methods which can solve the problems that the NIPS method has. In the TIPS process, the 

polymer solution is prepared with higher concentration by applying heat in which the polymer can be 

dissolved in a solvent more than at room temperature. This hot polymer solution will form a membrane 

caused by the phase separation through cooling (Figure 2.2). Therefore, in the TIPS process, the 

solidification and cooling conditions are very important factors for pore forming of the membrane [50]. 

As the dissolved polymer cools at a high temperature, it forms crystals. If the cooling rate is slow, the 

crystallization proceeds slowly, which is a good condition for quartz growth. Conversely, if the cooling 

rate is fast, small quartz is formed. The TIPS process, in which such a high-concentration polymer 

solution forms a membrane through heat exchange, has the advantage of having high mechanical 

strength and strong chemical resistance. However, it should maintain high heat during casting, and it is 

difficult to control the size of pores compared to NIPS. 

 

 

Figure 2. 2 Membrane fabrication caused by temperature difference in TIPS process. 
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2.1.1.3 Vapor-induced phase separation (VIPS) 

 

 It was first reported by Zsigmondy and Bachmann in 1918 and then developed by Elford in 

1937. Since then, VIPS has been established as a representative method for producing polymer 

membranes along with NIPS and TIPS [51]. Compared to NIPS, a characteristic of VIPS is that the 

non-solvent phase is gaseous (Figure 2.3). Since the non-volatile non-solvent is originally contained in 

the volatile solution, evaporation during the control process results in a non-solvent concentration. This 

is a method using the fact that phase separation is achieved through the ingestion of non-solvent rather 

than solvent effluent, and the polymer is finally precipitated from the casting solution to form a 

membrane. Due to this manufacturing method, the polymer membrane prepared by VIPS has the 

advantage of pore control through a relatively easy process. Therefore, membranes manufactured by 

VIPS are widely used for a variety of applications. For example, porous membranes are used for water 

filtration, and high-density membranes are usually applied for gas separation. In terms of materials, 

PVDF membranes made through VIPS are also used for protein adsorption, and PS membranes can be 

efficiently used for MD. However, membranes made with VIP are still limited for commercial use. 

 

 

Figure 2. 3 Solvent-non-solvent exchange in vapor chamber during VIPS process. 

 

2.1.2 Type of membrane  

 

2.1.2.1 Flat-sheet type 

  

 The flat-sheet type membrane is the most widely used type of membrane, and its preparation 

is simpler than the hollow fiber described in the next section [52]. First, to prepare a flat membrane, 
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prepare a support layer. Research without a support layer is also being conducted, but when a membrane 

is made using the only polymer, the mechanical strength is weak, so a support layer is generally used 

for long-term experiments. At this time, non-woven or woven fabric is generally used as the support 

layer. In the case of the fabric used as the support layer, various materials are used, and since the porosity 

of the support has a great influence on the performance of the membrane, performance evaluation using 

various support layers is also underway. After fixing the support layer on the glass plate, the polymer 

solution was poured onto the substrate and spread the polymer solution to a certain thickness. At this 

time, a certain thickness can be applied using a spin coater or casting knife to spread the polymer 

solution to a certain thickness on the support layer. After that, it can be put in a coagulation bath to form 

a membrane. Much research has been done to alter the coagulation fluid and alter the pore shape and 

size of the membrane as described in 2.1.1.1. The prepared flat membrane is used to fabricate a module 

for water treatment. At this time, to increase the degree of packing of the module, a flat membrane is 

manufactured through various methods. 

 

2.1.2.2 Hollow fiber type 

  

 There is a hollow fiber membrane in the shape of a straw, which is a different type of membrane 

from the flat membrane introduced earlier. Due to this shape, hollow fiber modules generally exhibit a 

large surface area per unit volume [53]. The hollow fiber module has a packing capacity of up to 500 – 

9000 m2/m3, providing higher productivity per unit volume compared to flat membranes. In addition, 

the hollow fiber is mechanically self-supporting and has excellent flexibility, so it is easy to manufacture 

modules for various fields. To make such a hollow fiber membrane, a tool called a spinneret is first used 

to create a shape. The prepared polymer solution passes through the spinneret to form a straw shape. 

By flowing a non-solvent inside and outside the hollow fiber membrane, it causes precipitation and 

maintains the shape to form the membrane. The inside of the hollow fiber thus formed is called the 

lumen side and the outside is called the shell side. The pore structure of the membrane varies depending 

on the nonsolvent if the NIPS method is used as the flat membrane and depends on the cooling 

temperature if the TIPS method is used. 

 As described above, the hollow fiber membrane has the advantage of having a large surface 

area per unit volume and easy handling. To overcome these shortcomings, various studies are being 

conducted in recent years, such as a technology of applying a support layer to a hollow fiber and 

improving the performance by forming a structure on the surface. 
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2.2 Various water treatment technology using membrane  

 

2.2.1 Distillation 

 

 Seawater desalination is the most widely used technique to produce clean water. Distillation 

has been started use since the 4th century BC. As modern desalination systems, it has been established 

in the late 19th century. Since the 1950s, desalination systems in the Middle East have grown even 

bigger as the demand for clean water has increased due to population growth. As a basic principle, it is 

a method to obtain clean water by evaporating seawater and collecting only the vapor like in Figure 2.4. 

Representatively, it could be classified into MSF (Multi-stage Flash Distillation), MED (Multi-Effect 

Distillation), and MVC (Machine Vapor Compression Distillation) methods [54]. 

 

 

Figure 2. 4 Schematic diagram of distillation process. 
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2.2.2 Forward osmosis (FO) 

 

 FO is a membrane water treatment technology that utilizes natural osmotic pressure [55]. 

When salty water is purified through the membrane, the difference of two solutions on both sides of the 

membrane generate osmotic pressure (Figure 2.5). The different solutions used in FO are classified into 

concentrated draw solution (DS) and feed solution (FS). The difference in osmotic pressure between 

these two solutions causes clean water to flow from FS to DS. As water passes from FS to DS, the 

diluted DS is concentrated again to recycle the extraction solute and produce purified water. The 

disadvantage of FO is the international concentration polarization (ICP), which promotes reduced water 

flux due to the structural properties of the membrane. Therefore, the number of studies related to 

improving both the active and support layers of FO membranes is increasing in the field of application.  

 

 

Figure 2. 5 Draw and feed solution for FO system. 

  

2.2.3 Reverse osmosis (RO) 

 

 The distillation process has disadvantages like high thermal energy for evaporation and low 

production efficiency. Therefore, various studies have been conducted to solve these shortcomings 

using membranes. Among many technologies, RO has been widely used for seawater desalination 

(Figure 2.6). Regarding RO, research has been conducted since 1985 [56]. Cadotte focused on 
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composite RO membranes by conducting research on the materials of membranes used in RO. The RO 

membrane using the chemical properties of cellulose acetate (CA) has the advantage of a very high salt 

removal rate (98%) so that many studies had been conducted in 1950, but the disadvantage of low 

performance due to the problem of small pores could not be solved. Therefore, research on making RO 

membranes using Cellulose triacetate (CTA), a material that can withstand in a wide range of pH and 

temperature, has been conducted [57]. It was considered an excellent material because it has high 

chemical and biological resistance, but it did not solve the problem of a sharp decrease in performance 

due to serious compaction at a high pressure of 30 bar. Therefore, although RO membranes using CA 

were manufactured after that, their vulnerability to microbial contamination, durability, and limited 

application range were still problems to be solved. 

 To solve the CA problem, Richter and Hoehn first started the study of hollow fiber 

manufacturing using an asymmetric membrane using polyamide (PA) [58]. PA has achieved great 

commercial success as a hollow fiber form that is significantly more durable and stable than CA and 

can be efficiently packaged. However, PA was found to be ozone and chlorine for a week, so more 

research was needed. Asymmetric membranes using polypiperazine-amides were also studied in 

another attempt to fabricate membranes with similar performance to CA and resistance to chlorine 

attack [11]. Although polypiperazine-amide membranes were found to have good chlorine resistance, 

they exhibited relatively low rejection rates (<95%). 

 A lot of research is being done to solve the problem of RO, and recently, as an innovative 

method to solve this problem, a method of making a thin membrane complex membrane (TFC) 

membrane produced through two steps has been developed [59]. It is a membrane having a large pore 

polysulfone (PSF) support layer and a thin barrier layer and has a high removal rate and performance. 

TFC was first developed by Francis, and the PSF used as the support layer was chosen as the material 

for the support layer because it is resistant to compression and resonant fluxes. Also, the material was 

an excellent candidate for a backing layer because it was durable in acidic conditions. Furthermore, 

since PSF has resistance to alkali, more various modifications could be attempted. The first attempt is 

to synthesize aliphatic and aromatic diamines. However, this reforming method loses the high salt 

removal rate that TFC membranes have. In another attempt, Cadotte found that high removal rates could 

be achieved using aromatic acyl halides and monomeric aromatic amines [60]. Using these two 

chemicals has great advantages over other methods as no acid acceptors or surfactants are required. The 

acyl halide used here is easy to polymerize and crosslink, and this crosslinked aromatic polyamide TFC 

RO membrane has been extensively studied and was widely used until the 1980s. 
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Figure 2. 6 Water treatment using hydraulic pressure in RO. 

 

2.2.4 Membrane distillation (MD) 

 

 MD has been studied as a third-generation desalination technology that is different from the 

desalination technology introduced earlier [61]. MD which is a thermally driven separation process 

purifies using vapor volatilized by the temperature difference between feed and permeate solution. 

Because of this temperature difference, MD has the advantage of high thermal energy efficiency because 

it does not require energy to boil the feed solution. This MD process was first studied by Bodell in 1963 

[62]. The MD system which Bodell conducted, a silicone membrane was used which is difficult to 

confirm the shape or condition of the pores. He used the vacuum to generate vapor more efficiently, but 

as a result, the membrane tube was broken, and normal operation could not be confirmed. Later, in 1967, 

Weyl conducted research on MD to improve water purification efficiency in seawater desalination [63]. 

A flux of 1 LMH could be obtained using a PTFE membrane (3.2 mm thick, pore size 9 µm), but it did 

not receive much attention because it was significantly lower than the RO process with a flux of 5 to 

75 LMH at that time. In the 1960s, he first published on the basic theory of distillation and DCMD [64]. 

Since then, research on MD has been actively conducted, and additional studies have been conducted 

to understand the module design and temperature and concentration polarization phenomena for MD 
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[65]. In addition, for commercial use of MD, an experiment was conducted to fabricate and apply 

Membrane manufactured by The Swedish Development Co. as a module. Since then, MD has been 

applied in many fields and various studies have been conducted, and it has been shown that in 1997 

there was an increase of about 2 times compared to 1990. 
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2.3 Various type of MD 

 

 

Figure 2. 7 Schematic diagram of (a) DCMD, (b) AGMD, (c) SGMD, and (d) VMD. 

 

2.3.1 Direct Contact Membrane Distillation (DCMD) 

 

 DCMD has been studied because of its easy installation compared to other MD processes [66]. 

As shown in Figure 2.7 (a), the hot feed solution is in direct contact with the hot membrane side. On 

the opposite side, a cold permeates solution flows in direct contact, and water vapor is generated in the 

feed solution due to the temperature difference between the two solutions. The generated vapor moves 

to the permeate side through the pores due to the pressure difference across the membrane, and as a 

result, it is condensed by the permeate solution. Since only the generated vapor can pass through, the 

membrane used in MD uses a hydrophobic material, so the feed solution cannot penetrate the membrane. 

As mentioned above, DCMD is a simple method and is widely used in various fields such as the food 

industry, desalination process and aqueous solution concentration. However, the biggest disadvantage 
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of DCMD is that the feed solution and permeate solution are in contact with the membrane, so heat loss 

is large due to conduction. 

 

2.3.2 Air gap Membrane Distillation (AGMD) 

  

 To reduce heat loss caused by direct contact between feed and permeate solution, the air layer 

is created between the permeate side of the membrane and the cold condensing plate, and the vapor 

generated from the feed solution is penetrated and finally condensed on the cold condensing plate which 

will be collected into the separate tank (Figure 2.7 (b)). Because of the gap between the membrane and 

the cold condensing plate, heat loss is lower compared to DCMD. However, since the driving force for 

evaporating the feed solution is water vapor generation by pure thermal evaporation, there is a 

disadvantage that the flow rate is relatively low. In this process, feed temperature, flow rate, 

concentration, and degassing are important factors. 

 

2.3.3 Sweep gas Membrane Distillation (SGMD) 

 

 Another MD method is SGMD using sweep gas (Figure 2.7 (c)). As you can see in the picture, 

SGMD is a method to induce evaporation by flowing an inert gas to the side of the membrane [67]. It 

is a useful method for removing volatile compounds because it uses gas, so heat loss is small, and 

because it flows continuously, the mass transfer coefficient is high. Also, as the speed of the sweep gas 

increases, the concentration polarization decreases, and the performance improves. However, this 

method does not receive much attention compared to DCMD because it has the disadvantage that the 

sweep gas must be continuously circulated, and a considerable cost is required to re-condensate the 

evaporated flowing vapor. 

 

2.3.4 Vacuum Membrane Distillation (VMD) 

 

 VMD is the least studied method compared to other MD processes [68]. As a basic principle 

of MD, unlike obtaining a clean permeate by re-condensing the vapor generated due to the temperature 

difference between two solutions, VMD is a method to induce evaporation of the feed solution by 

applying a vacuum to the permeate (Figure 2.7 (d)). The vapor evaporated in this way is condensed in 
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the condenser outside the module and collected. Therefore, compared to other MD processes, VMD has 

high performance to directly induce evaporation and has advantages of low heat loss because the 

capacitor is separated. However, relatively few studies have been conducted because of the 

disadvantages that complex technology is required to operate it and high cost is required to apply a 

vacuum. However, since it is a method that uses direct evaporation through the vacuum, it is widely 

used in the process of treating raw water containing volatile substances. As a representative example, a 

lot of research is in progress as a process for separating ethanol. In Bandini's study [69], VMD was also 

found to be about 10 times more efficient in ethanol separation than AGMD. 
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2.4 Statement of MD 

 

2.4.1 Basic concept of MD 

 

 MD is a thermally driven separation process in which a specific component of a high-

temperature mixed solution, which is in contact with one side of a hydrophobic membrane, evaporates 

and transports through the membrane in the form of vapor and condenses on the other side at a low 

temperature [64]. This process separates the specific component from the mixed feed solution. When 

the MD is applied to freshwater, wastewater, and seawater treatments, pure water vapor leaving the rest 

of inorganic and nonvolatile organic materials in the feed side is transferred to the permeate side; 

therefore, the process can have a considerably high salt rejection. MD has several advantages over other 

water treatment methods. Although MD uses the partial vapor pressure difference caused by the 

temperature difference, the process requires a low energy consumption as it is not required to increase 

the temperature of the feed solution to the boiling point. When waste heat is available, the operation 

cost of MD becomes smaller than that of the water treatment method using pressure as a driving force. 

 Considering the nature of the separation process, which requires separation of the vapor from 

the mixed solution using a membrane, the membranes used in the MD must consist of hydrophobic 

materials. Hydrophobic materials employed in the MD process include polypropylene (PP), 

polyethylene (PE), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). Among them, 

PVDF is a widely used material in MD owing to its high chemical durability, mechanical strength, and 

thermal stability.  

 

2.4.2 Weakness of MD 

 

 When the vapor passes through the pores of the membrane during the operation, the 

temperature difference across the membrane can cause condensation of the vapor in the membrane pores 

(Figure 2.8) [70]. As the condensed vapor fills the membrane pores, the feed solution including various 

salts and particular materials passes the membrane through the wet pores, causing a sharp decrease in 

rejection. In this stage, the osmotic and operation pressures across the membrane, not the vapor pressure, 

lead to migration of the solution through the membrane, which will not further act as a membrane. 
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Figure 2. 8 Wetting mechanism in MD system.  

 

 To solve this wetting problem, hydrophobic materials have been used for fabricating the 

membrane. As shown in Figure 2.9, many MD studies started to increase rapidly from the year 2000. 

However, research to prevent wetting has recently received a lot of attention and has been conducted. 
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Figure 2. 9 Publication trend for MD and wetting. 

 

2.4.3 Various technique for enhancement of membrane hydrophobicity/omniphobicity 

 

Various studies are conducted to improve hydrophobicity which is water repelling property 

during MD. Furthermore, an omniphobic surface that repels both water (i.e., hydrophobic) and low 

surface tension liquids such as oil (i.e., oleophobic) has been studied [71]. 

Omniphobic surfaces can be prepared by creating surfaces with low surface tension and fine 

reentrant structures, which together promote the existence of metastable Cassie-Baxter states for liquid-

solid-vapor interfaces. To achieve this hydrophobic/omniphobic surface, several types of modification 

on the membrane have been studied.  
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2.4.3.1 Additive 

 

 It is a very simple method used to modify the membrane, and the membrane can be prepared 

by adding additional hydrophobic material to a polymer solution. PTFE is a frequently used material. 

PTFE is a highly hydrophobic polymer and is also used as a material for membranes. Even though 

PTFE is hydrophobic, it has a disadvantage which is difficult to fabricate as a membrane due to its 

excellent durability. Therefore, very high pressure is required to make PTFE into a membrane, and it is 

very difficult to make a desired pore shape or size. For this reason, PTFE, which has high hydrophobicity, 

is used as an additive using nano particles. In addition, SiO2 particles are easy to prepare on a lab scale 

and are easy to modify the surface. Because of these advantages, SiO2 particles are widely used as 

additives by preparing a hydrophobic material through additional hydrophobic chemicals and 

modification from OH functional groups on the surface. Several types of additives for hydrophobicity 

and CA values are introduced in Table 2.1. However, the method of modifying the membrane using this 

additive has the disadvantage that the pores of the membrane can be changed, compared to very easy. 

Additives can change the size or shape of pores due to interaction when casting mixed with a dope 

solution, which makes direct comparison with membranes prepared without additives difficult. In 

addition, when additives are added to the polymer solution, the hydrophobic properties of its own are 

buried in the polymer, making it difficult to expect full modification performance. 

 

Table 2. 1 Type of additive in studies. 

Polymer 

Concentration 

(wt%) 

Additive 

Concentration 

(wt%) 

Contact 

angle 

(˚) 

Ref 

PVDF 11 SiO2 3 97 [72] 

PSF 25 FPA 3 >150 [73] 

PS 10 PS 4 151 [74] 

PVDF 15 PTFE 12 151 [75] 

PVDF 20 Silica 10 163 [76] 

PVDF-co-

HFP 
18 Graphene 10 162 [77] 
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PVDF 12 Clay 8 154 [21] 

PVDF 12 

Graphene 

Platelet 

powder 

20 151 [78] 

PVDF-co-

HFP 
20 

Carbon 

nanotube 
3 >150 [79] 

PVDF 15 
Silver 

nanoparticles 
2 151 [80] 

PVDF 13 MOF 5 133 [81] 

 

2.4.3.2 Coating 

 

 Like additive modification, as a widely used modification process, there is a coating method 

in which a hydrophobic material is attached to the surface of the prepared membrane. As a method of 

attaching a material having hydrophobicity to the surface of the membrane, it is a method of making 

the surface hydrophobic by putting the prepared membrane in a solution in which the hydrophobic 

material is dispersed. This is very simple and does not affect the performance of the membrane itself, 

making it a widely used modification method compared to additives (Table 2.2). The coated membrane 

shows high hydrophobicity due to the hydrophobic material on the surface. However, the hydrophobic 

material can be detached from the surface during actual operation and the membrane is gradually losing 

its hydrophobicity. To solve this problem, many methods have been studied for a more stable 

hydrophobic surfaces. Typically, PDMS is used as a method of attaching hydrophobic particles to the 

surface using a material having strong adhesion to the surface.  

 

Table 2. 2 Various coating materials for hydrophobicity of membrane. 

Membrane 

Concentration 

(wt%) 

Coating 

materials 

Coating 

method 

Contact 

angle 

(˚) 

Ref 

PTFE - P(PFDA-co- Dip-coating 149 [82] 
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EGDA) 

PTFE 10 PVA Electrospinning 

148 

(oil) 

[83] 

Regenerated 

cellulose 

100kDa 

- MWCNT 
Filtration in 

stirred UF unit 
109.1 [84] 

Cellulose - 
Lignin; nano-

silica 
Dip-coating 155o [85] 

PTFE/PET 

pore size 

0.22µm 

- 

Fluorinated 

palygorskite 

(PAL) 

Spraying 163.9o [86] 

PAN 8.5% 
Nanocluster 

Ag 

Chemical 

deposition 
156.7o [87] 

 

In the case of the coating material introduced above, it is generally in the form of a solution. 

Furthermore, various studies are being conducted on coating using particles to achieve hydrophobic or 

omniphobic surfaces by forming a nano/micro size of structure on the surface. Among them, research 

using SiO2 particles is being actively conducted compared to studies using other particles because of 

mild conditions and easy modification. In addition, the particle size can be variously adjusted according 

to the conditions for synthesizing. As shown in Tables 2.3 and 2.4, a typical reaction is started using 

TEOS to prepare SiO2 particles, and the desired particle size can be created by changing various 

conditions such as solvent, catalyst, and temperature. As solvents (DI and EtOH), the larger the amount 

of DI, the smaller the particle size is formed. On the other hand, with increasing the amount of ammonia 

as a catalyst, the particle size increases. Furthermore, the catalyst can be selected with an acid solution 

like HCl, H2SO4, nitric acid, or acetic acid. By changing the catalyst, the pH of the solution is changed 

which leads to the change of particle size. In addition, it can be seen in Table 2.4 that the particle size 

decreases as the temperature increases. Because of these various advantages like the convenience of 

size control or mild condition for synthesis, SiO2 particles are frequently applied for increasing 

hydrophobicity/omniphobicity of the membrane. However, this coating modification also has a 

disadvantage such as the sharp flux decline because of the pores clogging and losing hydrophobicity 

during the MD process because of low interaction between particles and membrane surface. 
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Table 2. 3 Size difference of silica nanoparticles with solvent. 

Material Solvent 

Catalyst 

(ml) 

Size 

(nm) 

Ref TEOS 

(ml) 

DI 

(ml) 

EtOH 

(ml) 

200 400 500 

50 

(NH4OH) 

300 [88] 

200 500 500 

50 

(NH4OH) 

200 [88] 

200 700 500 

50 

(NH4OH) 

100 [88] 

18 6.4 20 

36 

(Acetic acid) 

150 [89] 

6.9 - 15 

0.5 

(NH4OH) 

93 [90] 

6.9 - 15 

1 

(NH4OH) 

162 [90] 

6.9 - 15 

1.5 

(NH4OH) 

214 [90] 

1 - 50 

10 

(NH4OH) 

320 [91] 

1.5 - 50 

3 

(NH4OH) 

110 [92] 

1 45 20 

10 

(NH4OH) 

740 [93] 
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1 4 - 

4 

(Acetic acid) 

2000 [94] 

8 35 100 

1 

(Nitric acid) 

190 [95] 

8 35 100 

1 

(HCl) 

310 [95] 

8 35 100 

1 

(H2SO4) 

277 [95] 

 

Table 2. 4 Silica nanoparticles generation with different temperature. 

Material Solvent 

Catalyst 

Temperature 

(˚C) 

Size Ref 

TEOS DI EtOH 

0.045 

(mol/L) 
3 8 

14 

(NH4OH) 

30 372 [96] 

0.045 

(mol/L) 

3 8 

14 

(NH4OH) 

50 345 [96] 

0.045 

(mol/L) 

3 8 

14 

(NH4OH) 

70 324 [96] 

8 

(ml) 

35 100 - 100 175 [95] 

8 

(ml) 

35 100 - 650 154 [95] 

 

2.4.3.3 Chemical grafting 
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 Unlike the previous methods, chemical grafting can change the membrane properties which 

will make the membrane surface hydrophobic without physical changes. To prevent wetting during MD, 

the membrane is synthesized with hydrophobic chemicals from the specific functional group. Typically, 

a polymer having a Cl functional group such as PVC has the advantage of being very easy to modify 

using radical polymerization kwon as ATRP. However, in the case of a polymer without a functional 

group capable of such synthesis, chemical modification is difficult, and studies using various methods 

are being conducted to solve this problem (Table 2.5). Typically, plasma or Fenton-reaction was applied 

for polymerization. Both modification methods can produce radicals on the membrane even without the 

specific functional group. However, in the case of such chemical grafting, as described above, an 

additional process is required, and wastewater is generated during the process. 

 

Table 2. 5 Chemical grafting using several types of methods. 

Membrane Grafting materials Grafting method 

Contact 

angle 

(o) 

Ref 

Ceramic Fluorinated silanes Condensation 150 [97] 

PET Polypentafluorostyrene Plasma 102 [98] 

Ceramic Perfluorodecyltriethoxysilane Condensation 160 [99] 

Zirconia Hydroxyethyl acrylate Condensation 140 [100] 

PVDF N-octyltriethoxysilane Plasma 121 [101] 

Zirconia Perfluorodecyltriethoxysilanes Condensation 180 [99] 

PEG Styrene 
Radical 

polymerization 
- [102] 

Bamboo 

flour 
Methyl methacrylate 

Radical 

polymerization 
128 [103] 

PP HEMA; GMA ATRP 179 [104] 

PET Triethoxyvinylsilane 

Photoinduced 

graft 

polymerization 

104.9 [105] 

PVC Poly ethyl acrylate 
Free radical graft 

copolymerization 
95.4 [106] 

PVDF CNT Covalent bonding 131 [107] 
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2.4.3.4 Plasma treatment 

 

Plasma treatment is a dry process that involves physical modification of pores as well as 

modification of functional groups on the surface of the membrane. Basically, plasma treatment is used 

to impart desired properties to a surface or to enlarge pores on a surface. During plasma treatment, the 

monomers on the membrane surface evaporate to form radicals, so most of them start under vacuum 

conditions. This is because water molecules present in the atmosphere can react with the membrane 

during plasma treatment and attach to hydroxyl functional groups. When the hydrophobic materials 

such as CF4 spread on the surface with plasma, the reaction starts from the generated radicals (Table 

2.6). This reaction takes place only on the surface, and since it is a reaction using radicals, it can be 

reacted very quickly. This plasma treatment method makes it possible to easily synthesize various 

monomers on the surface of the membrane, but it has disadvantages in that expensive machines are 

required for synthesis and the environment is difficult to control and if the pretreatment process (vacuum 

stage) is not proper, the immediate reaction can cause unwanted synthesis such as dust particles or other 

substances. 

 

Table 2. 6 Hydrophobic modification using plasma treatment. 

Polymer Plasma materials Contact angle Ref 

PES CF4 125 [108] 

Nylon CF4 135 [108] 

PVDF CF4 101 [109] 

poly (L-lactide) CF4 116 [110] 

Si C4F8 112 [111] 

PAN Perfluorodecyl methacrylate 132 [112] 

PVDF O2, CF4 117 [113] 

PVDF CF4 162 [114] 

Poly-L-lactic acid CF4 135 [110] 

Polyacrylonitrile 

(PAN) 
CF4 148 [115] 
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2.4.3.5 Chemical vapor deposition (CVD) 

 

CVD technique is a strong tool for fabricating microporous membranes or thin SiO2 films by 

modifying inorganic materials. In general, CVD which involves gaseous reactants is performed on the 

surface of a heated substrate. CVD is a technology capable of structural control on a nano scale, and for 

MD processes, it can be used to create a hydrophobic membrane by dip coating a typical organosilane-

based solution like in Table 2.7. With CVD modification, the chemical can cover the rough surface 

uniformly compare with the physical modification method. However, there are many parameters to 

consider implementing a CVD process, such as the type, concentration, boiling point, time, and volume 

of the organosilane. Therefore, it is a technology that is difficult to set, but it has the advantage of being 

able to form a very thick coating layer through the CVD method and that it can be modified 

simultaneously by using various materials of interest. 

 

Table 2. 7 CVD process with various hydrophobic materials. 

Polymer 

Concentration 

(wt%) 

CVD materials 

Contact 

angle 

(o) 

Ref 

Bamboo non-

woven fabric 
- Hexafluorobutyl acrylate >150 [116] 

PA6(3)T 22 PPFDA 151 [117] 

PVDF/ZnO 

 

- 

Perfluorooctyltriethoxysilane 151 [118] 

PP - 
Heptadecafluorodecyl 

acrylate 
154 [119] 

PAN 8 Divinylbenzene DVB 149 [120] 

Millipore 

Isopore  
- 

Perfluorodecyl acrylate 

(PFDA) 

 divinylbenzene (DVB) 

122 [121] 
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PVDF 5 Methyltrichlorosilane 141 [122] 

Cotton fabric  Aniline 156 [123] 

 

2.4.3.6 Patterning the membrane surface 

 

 Although many modification methods have been applied to fabricate the membrane with high 

hydrophobicity to prevent wetting during MD, among them, a technique that creates a pattern on the 

surface of the membrane is newly applied for increasing the roughness of the surface (Table 2.8). The 

common method to create the pattern is using a mold that has a specific structure itself and then a 

patterned membrane can be fabricated using the NIPS method, in which a polymer solution is poured 

on the mold and soaked in a coagulation bath [124]. However, while the NIPS process, the exchange 

between solvent and non-solvent acts as an important factor in the formation of pores. For this reason, 

the pores on the side where the polymer solution contact with the mold are formed very small, and the 

surface pores on the opposite side directly in contact with the coagulation solution are formed very large. 

Because of the small pore size on the pattern side, the patterned membrane fabricated with the NIPS 

process has poor performance. To overcome this problem, various studies have been conducted, for 

example, the imprinting technique which can be obtained a certain structure on the active layer directly 

[125]. The imprinting technique which can be applied on a fabricated membrane physically changes the 

surface structure by applying the pressure so that it can be done simply compare with the mold method. 

As another technique, the VIPS method was applied to fabricate the homogenous patterned membrane. 

[126]. Even though this method also uses a mold, it is possible to form a pore with a very uniform size 

by inducing phase separation between evaporating water and the solvent as explained in 2.1.1.3. Like 

in Table 2.8, various type of research is being conducted to increase hydrophobicity by forming a pattern 

on the membrane surface, the patterned membrane has a certain disadvantage which is the fouling. On 

the rough surface, fouling can easily accumulate which leads to performance decline during the MD 

process [124]. To solve this fouling problem on the patterned membranes, various studies have been 

conducted to achieve low surface energy through additional modification on patterned membranes such 

as the modification methods introduced in previous sections. 

 

Table 2. 8 Several types of pattern surface on membrane 

Polymer Structure Size 
Patterning 

method 

Contact 

angle 
Ref 
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(o) 

PTFE parallel line 
Widths of 606 nm, 

Heights of 100 nm 
Nanoimprinting 125 [125] 

Cellulose Pillar 

Widths of 349.5 nm, 

 Heights of 70.7 nm 
Pressing 130 [127] 

PDMS 
Square 

microchannel 
Widths of 50 nm Lithography 112 [128] 

OSTE 
Square 

microchannel 

Widths of 40 nm, 

Heights of 80 nm 
UV 115 [129] 

PP Hemisphere Micro size Deposition 113 [130] 

PDMS Cluster 3 µm 
Electrostatic 

atomization 
91.3 [131] 

PVDF Corrugated Micro size Bubbling 106 [132] 

Nafion Microchannel 

Width is 19 µm,  

Height of 20 µm 

Hot embossing - [133] 

PVDF Square pillar Micro size Imprinting 154 [134] 
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Abstract 

 

 In this study, modifications of polyvinylidene fluoride (PVDF) membranes were carried out to 

improve both hydrophobicity and stability through four steps: pore expansion by a plasma treatment, 

hydroxylation of the membrane by the Fenton reaction, generation, and growth of nanoparticles (NPs) 

on the hydroxylated functional groups in pores, and hydrophobic modification. The membranes 

modified by the methods proposed in this study did not lose their hydrophobicity and maintained the 

flux over a significantly longer period. The PVDF membrane modified by hydrophobic NPs attached 

inside enlarged pores exhibited a minimized flux reduction and significantly higher antiwetting stability. 
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3.1 Materials and Methods 

 

3.1.1 Materials 

  

 PVDF polymer (Solef 1015/1001) was purchased from Solvay. Triethyl phosphate 99.5% 

(TEP) used as a solvent was purchased from Sigma. Methanol (99.5%), ethanol (95%), and n-hexane 

(99%) were purchased from Daejeong. Tetraethylorthosilicate (TEOS) (99%), FAS (97%), and 

NH3·H2O (28%) were purchased from Sigma to synthesize the NPs and provide hydrophobic NPs. 

FeSO4·7H2O (99.5%), H2O2 (30%), and H2SO4 (95%) were purchased from Sigma for the Fenton 

reaction. Sodium dodecyl sulfate 98% (SDS) was purchased from Sigma as a surfactant to accelerate 

the membrane wetting during the DCMD operation. All the reagents were used as received without 

further purification. 

 

3.1.2 Preparation of membrane 

  

 A dope solution was prepared by dissolving PVDF polymer (15 wt%) in a triethyl phosphate 

(TEP) solvent (85 wt%) [135]. The dope solution was purged with nitrogen gas for 30 min to remove 

air bubbles trapped in the solution. Subsequently, the solution was mechanically stirred at 80ºC for 24 

h to obtain a homogeneous solution. Subsequently, the solution was cooled down at room temperature. 

The polymer dope solution was cast on a polyethylene terephthalate (PET) substrate wrapped on a glass 

plate with a casting knife with a thickness of 150 µm, and then the solution cast on the PET was 

immediately put in an ethanol bath. After the immersion for 12 h, the membrane was taken out and 

immediately soaked in methanol for 1 h, in 1-hexane for 1 h, and then taken out. The membrane was 

dried in an oven at a temperature of 60ºC. 

 

3.1.3 Modification of membrane  

 

3.1.3.1 Membrane surface modification by the dip-coating method 

  

 SiO2 NPs were prepared using TEOS, modified with FAS, and then introduced onto the surface 
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of the PVDF membrane by the dip-coating method to form a hydrophobic membrane surface. For the 

preparation of the SiO2 NPs, 1 mL of TEOS was mixed with 25 mL of ethanol (denoted as solution A). 

As a second solution (solution B), 25 mL of ethanol were mixed with 10 mL of NH3·H2O. When the 

prepared solutions A and B were mixed and reacted for 12 h, SiO2 NPs with uniform sizes were formed. 

The hydrophobic modification of the NPs was carried out by adding 1% FAS to the prepared SiO2 NP 

solution. The modification was carried out through a reaction between the OH group of SiO2 and 

ethoxysilane functional group of FAS. After the formation of the hydrophobic NPs, the surface of the 

PVDF membrane was modified by dipping the membrane into the NP solution. To investigate the 

difference in the degree of modification according to the dip-coating time, the coating time was varied 

in the range of 0.5 to 4 h. 

 

3.1.3.2 Modification by NP growth on the membrane surface 

  

 SiO2 NPs were grown on the membrane surface to obtain a hydrophobic membrane with an 

improved stability. A dried PVDF membrane was placed together with 1.4 g of FeSO4·7H2O, 6 g of 

H2O2, 50 mL of ethanol, and 50 mL of deionized (DI) water in a reactor. By purging with nitrogen gas 

for 30 min, the temperature of the solution in the reactor was increased to 50°C, at which the Fenton 

reaction was carried out in the reactor for 1 h. During the Fenton reaction of ferrous ions and hydrogen 

peroxide, OH functional groups could be formed on the PVDF membrane surface by the oxidizing 

power of the ·OH radicals generated from the Fenton reaction. After the reaction was completed, the 

membrane was taken out, washed with H2SO4 and DI water, and then dried using methanol and n-

hexane.  

 When TEOS reacts with the OH functional groups generated on the PVDF surface, NPs grow 

at the hydroxylated groups and increase their sizes. 50 mL of ethanol were poured onto the hydroxylated 

surface of the PVDF membrane, and then 1 mL of TEOS was added and stirred. After a sufficient 

stirring, 10 mL of an NH3·H2O solution were added to enable the NP growth. The growth time was 

varied (4, 6, and 12 h) to compare the hydrophobic properties according to the degree of particle growth. 

After the growth reaction of the particles was completed, 1% FAS in 50 mL of the ethanol solution was 

poured and stirred for 12 h for the hydrophobic modification of the NPs. The modified membrane was 

then taken out and dried. 

 

3.1.3.3 Plasma treatment to increase the surface pore size and further omniphobic 
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modification 

  

 To control the surface pore size of the prepared PVDF membrane, an atmospheric plasma 

equipment (A.P.P. Co., Ltd.) was used. A dried membrane was attached to the stage of the plasma 

apparatus using O2 and Ar gases. The distance between the surface of the membrane and head of the 

plasma apparatus was set to approximately 0.3 cm. The surface was exposed at 150 W for 60 s. The 

PVDF membrane with the increased pore size by the plasma treatment was hydrophobically modified 

according to the method in Section 3.1.3.2. 

 

3.1.4 Characterization 

  

 The surfaces and morphologies of the pure and modified PVDF membranes were investigated 

by scanning electron microscopy (SEM). The membranes, consecutively immersed in methanol and n-

hexane and dried in an oven at 60°C for 24 h, were fixed on a sample holder with a carbon double sticky 

tape and their surfaces were coated with Pt. The Pt coating was carried out using a turbo-pumped high-

resolution chromium sputter coater (K575X, EMITECH, Lohmar, Germany) for 1 min at 2 × 10-3 mbar 

and 20 mA. All the samples were observed at a magnification of 5000.  

 Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy was used to 

evaluate the changes in chemical properties resulted from the modification of the membrane surface. 

The PVDF membrane was analyzed using a diamond ATR crystal. Prior to the analysis of the 

membranes, the instrument was purged with nitrogen for 24 h. The spectra were measured at a resolution 

of 4 cm-1 in the range of 600 to 4000 cm-1. The OMNIC software (version 8.1) was used as a spectrum 

analysis program.  

 Chemical properties were confirmed using an X-ray photoelectron spectroscopy (XPS, 

Thermo Fisher, UK) with Kalpha (1486.6 eV). In XPS analysis, a double-focusing hemispherical 

analyzer was used. The pass energy was measured in a vacuum as 50 eV with a binding energy step size 

of 0.1 eV. 

 To evaluate the hydrophobicity of the pure and modified membrane surfaces, their contact 

angles were measured using a Phoenix 300 Plus instrument (Surface & Electro Optics Co. Ltd., Korea). 

The surface contact angle was measured using the sessile drops method. For comparison of the pure 

PVDF membrane with the superhydrophobic PVDF membranes, two coupons were used for each 

membrane type; the contact angle was measured 20 times per coupon, and then the values were averaged. 
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The thickness of the membrane was measured using a Digital thickness gauge (Mitutoyo, Japan). 

Thickness was measured 10 times and then averaged.  

 For pore size measurement, PMI's pore size measuring device (CFP-1500AEL) was used. The 

wet up/dry up method was used to measure pore size distribution and mean pore size. Before 

measurement, all membranes were prepared in wet condition and mounted on the instrument cell. 

Starting at 0 psi, the pressure was gradually increased until 50 psi. Pressure recorded the section where 

the first bubble point is taken, and then measure the wet-up state by measuring the flow rate in real time. 

After finishing wet up measurement, pressure was decreased and then the pore size distribution could 

be measured by checking the flow rate in the dry up state. 

 

3.1.5 DCMD performance test 

 

 An operation in the DCMD mode was carried out to evaluate the performances and 

antiwettabilities of the membranes. Membrane samples were mounted in a cell with an effective area 

of 4 × 6 cm2, the feed and permeate solutions flowed counter-currently along the membrane. The feed 

solution of 1 M NaCl at 70°C was circulated along the membrane surface using a gear pump at 1 Lmin-

1. As a permeate solution, DI water maintained at 25°C was also circulated by contacting the other 

membrane surface using a gear pump at 1 Lmin-1. To maintain the feed concentration after the start of 

the operation, DI water was added to the feed solution with an amount equal to that of the produced 

permeate. After 2 h of operation, for comparing the omniphobicity between the membranes, SDS was 

spiked in the feed to 0.2 mM, and then 0.2 mM of SDS were added every 30 min. Therefore, the SDS 

concentration in the feed was gradually increased to accelerate the wetting [136]. The flux was 

calculated using the change in weight of the permeate over the operated time, as shown in Eq. 1. In 

addition, the salt flux (SF), which is the amount of salt passing from the feed to the permeate per unit 

area and time, was calculated using Eq. 2. 

 

𝐽𝑤 =  
∆ weight

∆ time ×effective membrane area ×water density
 (

L

m2h
 (LMH))  Eq. (1) 

𝑆𝐹 = (
∆ 𝐶𝑝 ∆𝑉𝑝

∆ time×effective membrane area
 ) (

g

m2h
 (GMH))       Eq. (2) 

 

where Cp and Vp are the changes in concentration and volume of the permeate, respectively. 

 

3.1.6 Stability test of the modified membranes 
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 The hydrophobic stability of the membrane after the hydrophobic modification was 

investigated using ultrasonic equipment (Cole Parmer Co.). A 3 × 3 cm2 membrane was immersed in 

100 mL of an ethanol solution for complete wetting, followed by sonication for 30 min with an energy 

of 288000 J. After the sonication treatment, the stability of the membrane was evaluated by the 

remaining number of particles on the surface through SEM and CA. For the further stability comparison, 

weight of the NPs was measured using certain size of membrane. Virgin, dip-coating, and plasma + 

growth membranes were prepared with 1 x 1 cm2 of size. Then, the weight of each membrane was 

measured 3 times for exact comparing. Finally, to verify the stability in actual MD process, plasma + 

growth membrane was applied for 5 times separately without any treatment and then flux and SF were 

calculated. 
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3.2 Results and Discussion 

 

3.2.1 Morphologies of the pure and surface modified PVDF membranes 

 

 

Figure 3.1 Pore size distribution and mean diameter of (a) pure PVDF, (b) PVDF after plasma 

treatment, (c) dip-coating 4 h, (d) no plasma + growth 12 h, and plasma + growth 12 h. 

  

 The pore size distribution and mean diameter were measured to confirm the change of pore 

according to the modification. As can be seen in Figure 3.1 (a), pure PVDF has a mean diameter of 1.76 

µm. Figure 3.1 (b) shows that the value increased to 2.2 µm after plasma treatment. In the case of the 

modification by dip-coating 4 h, the mean diameter of 0.65 µm is shown in Figure 3.1 (c). This is 

because the hydrophobic NPs accumulate on the surface and the first bubble point is observed when the 

pressure is increased to measure the pore size and it seems to be measured at a smaller value than the 

pore size of the membrane itself. In the case of Figure 3.1 (d) using the no plasma + growth 12 h method, 

it can be confirmed that 0.69 µm. This is due to the growth of NPs, which can be seen as filling the pore 

with NPs and reducing the pore size. As a method to solve this problem, plasma treatment was applied 

on the membrane. Effect of plasma treatment is confirmed in Figure 3.1 (e) that the pore size of 0.82 

µm which is larger than no plasma + growth 12 h membrane. 
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Figure 3.2 SEM surface images of the membranes modified using the dip-coating method over 

coating times of (a) 0, (b) 0.5, (c) 1, (d) 2, and (e) 4 h.  

 

 To verify membrane pore changes visually, the surface morphologies of the membranes were 

investigated after the dip-coating modification with SEM. SiO2 NPs prepared from TEOS were surface-

modified with FAS. The pure PVDF membrane was then immersed in the solution containing the 

hydrophobic NPs. Figure 3.2 shows the surface changes with the increase in the coating time. Figure 

3.2 (b) shows hydrophobic SiO2 NPs with sizes of approximately 500 nm on the surface of the PVDF 

membrane after 0.5 h of coating. A larger number of NPs were observed on the surface when the coating 

time was increased to 2 h (Figure 3.2 (d)). When the coating time was increased to 4 h, the membrane 

surface was fully covered with NPs (Figure 3.2 (e)). 
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Figure 3.3 SEM surface images of the membranes modified by the NP growth on the hydroxylated 

membrane surface with different growth times of (a) 0, (b) 4, (c) 6, and (d) 12 h (without plasma 

pretreatment). 

 

 To improve the stability of the NPs on the membrane surface, NPs were grown from the 

membrane surface. Figure 3.3 shows the surfaces of the membranes modified by the Fenton-reaction 

which leads to OH functional groups on the membrane surface. From this OH functional group, SiO2 

NPs grew, and subsequent reaction of the NPs with FAS had been done. The SEM image showing the 

NPs grown for 4 h on the surface of the PVDF membrane reveals that the particles were not completely 

grown and had various sizes, which shown smaller than 500 nm (Figure 3.3 (b)). When the growth 

(reaction) time increased to 6 h, the sizes of the SiO2 particles on the membrane surface increased, more 

particles were grown on the surface, and more membrane pores were blocked by the NPs (Figure 3.3 

(c)). With 12 h of growing time, the particles almost covered the surface with various size (Figure 3.3 

(d)). Because of growing procedure, NPs has various size which is totally different compare with dip-

coating method (Figure 3.2). When NPs were synthesize only using TEOS, SiO2 NPs showed uniform 

size (around 500 nm) because TEOS reacted only each other. However, with the membrane after Fenton-
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reaction, OH functional group on the membrane also involved in the NPs synthesis which leads to the 

various size of NPs. Even though SiO2 NPs can be prepared with various size after changing the 

synthesizing condition, growing procedure with OH functional group induce the size variation 

automatically so that surface can have nano/micro structure itself which will increase omniphobicity 

effectively. 

 

 

Figure 3.4 Figure. SEM surface images of the membranes modified by the NP growth on the 

hydroxylated membrane surface with different growth times of (a) 0, (b) 4, (c) 6, and (d) 12 h 

(with the plasma pretreatment).  

  

 To maximize the stability of the NPs and enhance the performance, the pores of the membrane 

were expanded by the plasma treatment. The membrane was then modified using the previously 

described NP growth method. As shown in Figure 3.4 (a), the surface pores of the plasma-treated 

membrane were larger than those of the pure PVDF (Figure 3.2 (a)). With growing time of 4 h (Figure 

3.4 (b)), the NPs were grown not only on the membrane surface but also inside the enlarged pores. After 
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6 h of growing (Figure 3.4 (c)), SiO2 particles were more abundant on the surface and inside, and after 

12 h (Figure 3.4 (d)), the surface and pores were covered and filled with NPs. This shows that after the 

plasma treatment, the NPs grew not only on the surface but also inside the membrane, providing a high 

stability of the modified membrane during the long-term operation and enhanced performance because 

of enlarged pore size. Furthermore, the SiO2 NPs were synthesized in various size like in Figure 3.3. 

Same as before, OH functional group acted as starting point of SiO2 synthesis.  

  

 

Figure 3.5 Cross-section images of (a) pure PVDF (top), (b) pure PVDF (center of membrane), (c) 

dip-coating 4 h (top), (d) dip-coating 4 h (center of membrane), (e) plasma + growth 12 h (top), 

and (f) plasma + growth 12 h (center of membrane). 

 

 We also measured cross-section images to identify NPs that were growing in the pore, and then 
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we compared with the above result. Pure PVDF membrane shows a sponge-like structure (Figure 3.5 

(a, b)). After the dip-coating 4 h modification, NPs are accumulated on the surface of the membrane 

like a layer (Figure 3.5 (c)). However, in the middle part of the membrane, there is very small number 

of NPs found in Figure 3.5 (d). In the case of dip-coating, it is confirmed that the particles do not 

penetrate the sponge-like structure because it only covers the surface. In plasma + growth 12 h case, 

NPs were growing in the inner pores as compared to dip coating (Figure 3.5 (e, f)). 

 

 

Figure 3.6 Size distribution of SiO2 NPs from dip-coating 4 h and plasma + growth 12 h 

membranes. 

 

 To analyze the size of the NPs, size distribution analysis was conducted (Figure 3.6). For the 

NPs from dip-coating method and plasma method, membrane after modification was prepared and 

sonicated in the EtOH to get the NPs in the solution. After sonication, detached NPs were dispersed in 

the EtOH which was used for distribution analysis. In the case of dip-coating, NPs were formed before 

coating and the membrane was covered after hydrophobic modification (Figure 3.2). From the results 

of the size distribution analysis, it can be confirmed from the Figure 3.6 that it has a constant particle 

size about 500 nm. In the case of plasma + growth method, we can confirm visually that the size of 
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particles on the surface is not constant by SEM (Figure 3.4). The particles grow from the surface and 

are not constant depending on the surface position of the membrane. As a result of size distribution, it 

spreads to 300 ~ 600 nm. 

 

 

Figure 3.7 Mass increasement of pure, dip-coating 4 h, and plasma + growth 12 h membranes. 

 

 Furthermore, In the case of the content of NPs, it is difficult to measure accurately, so we will 

explain the change of membrane weight and cross-section analysis as an indirect method (Figure 3.7). 

Pure PVDF, dip-coating 4 h, and Plasma + growth 12 h membranes were prepared at 1 × 1 cm, 

respectively, and the degree of NPs on (or in) the membrane was indirectly shown through the increase 

in weight. Figure 3.7 shows 0.044 g for pure membranes. In the case of dip-coating 4 h, 0.063 g was 

observed, which is about 40% higher than that of the pure PVDF membrane. In the case of plasma + 

growth 12 h, it was explained that NPs grow inside the pores so that there are more particles. As can be 

seen in the Figure 3.7, more weight change is observed (0.07 g, 60% increase) than coating. 

 

3.2.2 FTIR spectroscopy, XPS, and contact angle measurements of the pure and surface 
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modified PVDF membranes 

 

 

 

 

Figure 3. 8 FTIR spectra of pure PVDF and SiO2 NPs. 

 

 The changes in the chemical characteristics of the membranes originated from the surface 

modification were investigated using FTIR spectroscopy. Figure 3.8 shows the changes in FTIR spectra 

with the increases in the coating and growth times in the coating and NP growth methods, respectively. 

The PVDF membrane exhibited characteristic peaks around 1400 cm-1 associated with -CH2 and peaks 

around 1180 cm-1 associated with -CF2 [137]. NPs are composed mainly of Si–O–Si bonds, and thus 

their FTIR spectra showed broad peaks around 1050 cm-1 [138]. 
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Figure 3. 9 FTIR spectra of membranes modified by the dip-coating method for 0.5, 1, 2, and 4 h. 

 

 As the NPs covered the membrane surface after the coating (Figure 3.9), the Si–O–Si peak 

gradually increased overwhelming the PVDF peak at 1180 cm-1, which was relatively buried at 1050 

cm-1. After the 4 h of coating, the FTIR spectra of the modified membrane were like that of the pure 

NPs, which implies that the membrane surface was almost completely covered by the NPs. 
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Figure 3. 10 FTIR spectra of the membranes modified by the NP growth method for 4, 6, and 12 

h (without plasma pretreatment). 

 

 The membranes modified by the NP growth on their surfaces (Figure 3.10) exhibited decreased 

PVDF peaks at 1400 and 1180 cm-1 with the increase in the growth time, as in the case of the coating 

method. This was attributed to the faster deposition of PVDF through the grown NPs on the surface. 

This tendency also occurred in the modified membrane after the pores were enlarged through the plasma 

treatment. 



50 

 

Figure 3. 11 FTIR spectra of the membranes modified by the NP growth method for 4, 6, and 12 

h (with the plasma pretreatment). 

 

 The PVDF peak gradually disappeared with increasing growing time, and thus almost the same 

peak as that of the NPs was observed for the growth time of 12 h (Figure 3.11). The comparison of the 

FTIR spectra at the growth time of 12 h with and without the plasma pretreatment shows that the FTIR 

spectrum of the membrane after the plasma treatment is more like that of the NPs. When the pore size 

was increased, the NPs were accumulated from the inside of the pores and thus more NPs were exposed 

to the feed side of the membrane [139]. 
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Figure 3. 12 FTIR spectra of the pure PVDF, dip-coating 4 h after sonication, and plasma + growth 

12 h after sonication. 

 

 Through the plasma treatment, the change of surface after treatment of pure PVDF membrane 

was confirmed FTIR. As shown in Figure 3.12, it was confirmed that there was no chemical change on 

the surface of the membrane through FTIR. This seems to be the result of proving that the plasma 

treatment did not cause any chemical change. Therefore, the FTIR spectra confirmed the chemical 

changes in the membrane surfaces upon the modification.  
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Figure 3. 13 XPS spectra of C1s, F1s, O1s, and Si2p of membranes. (a) pure PVDF, (b) PVDF 

after Fenton reaction, (c) plasma + growth 12 h. 

 

 XPS was measured to confirm the chemical change before and after the modification of the 

membrane. As can be seen in the Figure 3.13, only PVDF can detect C-C (286 eV) and CF2 (291 eV) 

peaks. After the Fenton-reaction, OH bonds are formed on the surface, and a new peak of C-OH (284 

eV, 531 eV) is found. Thereafter, because of the formation of particles through the growth treatment, a 

new Si-O (104 eV) peak was observed on the surface, thereby confirming the particles on the surface. 

 With FTIR and XPS results in Figure 3.8 to 3.13, it was confirmed that the membrane surface 

was successfully modified by chemical modification with Fenton-reaction, plasma treatment and 

growing procedure. 

 



53 

 

Figure 3. 14 CA measurement of pure PVDF membrane and after plasma treatment. 

 

 To verify the effect of plasma on hydrophobicity, pure membrane was compared with plasma 

treated membrane. The CA value of the membrane was slightly decreased after plasma treatment (Figure 

3.14). The decrease in the contact angle, even without the chemical change of the surface like in Figure 

3.12, can be seen as the enlargement of the surface pore size. As the pore size of the surface increased, 

the decrease of CA could be confirmed. 
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Figure 3. 15 CA value of the pure membrane and PVDF membranes modified with the dip-coating 

and NP growth methods with and without the plasma pretreatment. 

 

 Figure 3.15 shows that the pure PVDF membrane had a contact angle of 128º. The contact 

angle increased with the coating or growth time. Upon the 0.5 h of coating by the dip-coating method, 

the contact angle increased to 137º, while those after 1, 2, and 4 h were increased to 143, 159, and 162º, 

respectively. This shows the hydrophobicity increase as the hydrophobic NPs covered the surface. In 

addition, the contact angles between the coating times of 2 and 4 h were not significantly different; the 

surfaces were almost completely covered, as shown in the SEM images. The 4 h of NP growth increased 

the contact angle to 142º, while after 6 and 12 h, the contact angles increased to 147° and 157°, 

respectively. The SEM images suggest that the surface hydrophobicity increased as the surface was 

gradually covered with NPs. When the NPs were grown after the plasma pretreatment, the value was 

lower than that in the case of the coating treatment. The 4 h of treatment increased the contact angle of 

the membrane by 10º. The angle increased to 151 and 154º after 6 and 12 h, respectively. This shows 

that all the modification methods employed in this study increased the contact angle. 

 



55 

3.2.3 DCMD performances of the pure and surface modified PVDF membranes 

 

 

Figure 3. 16 Water fluxes and SFs of the pure and modified PVDF membranes with coating 

method in the DCMD mode. 

 

 The performances of the pure and modified membranes were evaluated in the DCMD mode 

to investigate the effect of the omniphobicity change from the surface modification on the prevention 

of wetting phenomena in MD. When the flux was stabilized with the feed solution of 3.5 wt% NaCl at 

70°C, 0.2 mM of SDS were added every 30 min to accelerate the wetting of the membranes and verify 

the omniphobicity of the membrane. 

 The flux of the pure PVDF membrane was stabilized after 2 h and maintained at 41 LMH 

(Figure 3.16). However, the flux immediately decreased, and the SF increased when SDS was spiked. 

Between the feed with the high temperature/concentration and permeate with the low 

temperature/concentration, differences in vapor pressure and osmotic pressure exist owing to the 

differences in temperature and concentration across the membrane, respectively. During the MD 

operation, water transports from the feed to the permeate due to the partial vapor pressure difference 

between the two sides of the membrane. However, when the membrane becomes wet, the DI water of 

the permeate with a low concentration moves to the feed due to the osmotic pressure difference. The 

reduction in flux and increase in SF in the pure PVDF membrane after the first spiking of SDS were 

due to the movement of water in the opposite direction, originated from the partial vapor pressure and 

osmotic pressure differences, which imply that the membrane was wet. 

 The same phenomenon was observed even when the dip-coating was carried out for 0.5 and 1 

h. The fluxes of the membranes modified for 0.5 and 1 h were 31 and 25 LMH, respectively, lower than 
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that of the pure membrane. The gradual flux decrease with the increase in the coating time could be 

explained as the surface was gradually covered by NPs and thus the surface porosity of the membrane 

was reduced. As the SiO2 NPs covered the membrane surface after 1 h, the increase in omniphobicity 

was confirmed by the contact angle measurement. However, it seems that the increase in the contact 

angle did not significantly contribute to the prevention of the wetting phenomenon when the DCMD 

operation was performed, as shown by the SF behavior. After the 2 h of dip-coating, most of the 

membrane surface was covered with hydrophobic particles, observed by SEM. The membrane was 

slightly more resistant to wetting than the membranes modified for 0.5 and 1 h. However, the flux began 

to decrease at approximately 8000 s. Similarly, the membrane coated for 4 h exhibited a flux of 

approximately 15 LMH, which decreased at approximately 8500 s. With the increase in the coating time, 

the surface was covered with the SiO2 NPs and the wetting was gradually delayed even after adding the 

SDS solution. However, the SFs for the coating times of 2 and 4 h were slightly decreased compared to 

those at 0.5 and 1 h. The membranes modified for 0.5 and 1 h were completely wetted, and thus the salt 

passed through them in the liquid phase, not in the vapor phase, from the feed to the permeate and 

increased the SF. When the membranes were modified for 2 and 4 h, some pores of the membranes were 

slightly wetted leading to blockage of water vapor paths, but the condensed water-filled pores were not 

connected to each other from the feed surface to the permeate surface. With these results, dip-coating 

membrane showed that omniphobicity didn’t increase enough to prevent the wetting while MD process. 

 

 

Figure 3. 17 Water fluxes and SFs of the pure and modified PVDF membranes with growing 

method in the DCMD mode. 

 

 When the membrane was modified by the NP growth on its surface, the flux of the membrane 

modified for 4 h was 21 LMH at the steady state, which decreased immediately after the addition of 
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SDS (Figure 3.17). The growth of NPs for 4 h was not sufficient to increase the membrane 

omniphobicity for preventing the wetting of the membrane. When the growth times increased to 6 and 

12 h, the fluxes decreased to approximately 15 and 6 LMH, respectively; further, the fluxes slightly 

decreased after the second and third additions of SDS, respectively. This shows that the NPs generated 

on the surface reduced the flux due to the coverage and clogging of the surface pores, but increased the 

omniphobicity, preventing the wetting of the membrane for some period. 

 

 

Figure 3. 18 Water fluxes and SFs of the pure and modified PVDF membranes with plasma and 

growing in the DCMD mode. 

   

 The performances of the membranes modified by enlarging the pores in their surfaces with the 

plasma treatment and growing the NPs in the pores to increase the stability of the NPs during the 

operation were investigated (Figure 3.18). The membrane modified for 4 h with the plasma pretreatment 

yielded a decreased flux after the two cycles of addition of SDS, leading to an enhanced wetting 

resistance compared with those of the pure membrane, membranes modified with the dip-coating, and 

membrane modified for 4 h without plasma treatment. For the membrane modified for 6 h, the initial 

flux of 16 LMH slightly decreased after the two cycles of addition and clearly decreased after the three 

cycles of addition. The flux of the membrane modified for 12 h was 16 LMH without any difference 

from that of the membrane modified for 6 h; the flux was maintained until the fourth addition of SDS. 

The change in SF was not noticeable in this case as the membrane was not wetted because of 

omniphobic property.  

 Furthermore, the membrane modified by the NP growth on its surface with the plasma 

pretreatment had a smaller thickness (0.2575 ± 0.0065 mm) than that of the membrane modified by the 

NP growth method without the plasma treatment (0.3421 ± 0.0076 mm), leading to the smaller decrease 
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in water flux owing to the smaller resistance during the passage of vaporized water. This implies that 

the SiO2 NPs grown in the pores as well as on the surface significantly improved the omniphobicity of 

the PVDF membrane which lead to the stable performance without wetting even after adding the SDS 

solution [140]. 

 

3.2.4 Stabilities of the pure and surface modified PVDF membranes 

 

 The previous results showed that the hydrophobic modification through dip-coating had a 

remarkable effect increasing the hydrophobicity of the surface. However, as the hydrophobic NPs 

physically covered the membrane, the structural integrity was unstable during the DCMD operation. 

Compared with the dip-coating method, which involved the simple placing of NPs on the membrane 

surface, the NP growth method with the Fenton reaction effectively prevented the membrane from 

wetting in the DCMD operation by increasing the stability of the particles. 

 

 

Figure 3. 19 Stability test through sonication for 30 min: (a) pure PVDF membrane, (b) membrane 

modified by dip-coating for 4 h, (c) membrane after 30 min of sonication of the sample in (b), (d) 

PVDF membrane after the plasma treatment, (e) membrane modified by the NP growth for 12 h 

(with the plasma pretreatment), and (f) membrane after 30 min of sonication of the sample in (e). 

 

 As a direct method to confirm the stability, the modified membranes were ultrasonically 

processed and investigated using SEM (Figure 3.19). With the membrane after dip-coating for 4 h, 

membrane has fully covered surface by NPs (Figure 3.19 (a) and (b)). Figure 3.19 (c) shows that the 
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NPs were completely detached from the membrane surface after the sonication of the membrane 

modified with the dip-coating method. This indicates that the membrane was physically covered with 

the NPs, and thus the modified membrane was not stable owing to the absence of adhesion force 

between the membrane and particles. On the other hand, the SEM image in Figure 3.19 (f) shows that 

the membrane after the plasma pretreatment followed by modification with the growth method did not 

exhibit any difference in surface morphology after the sonication. It is worth noting that not only the 

NPs grown inside the pores but also the NPs on the surface remained even after the sonication treatment. 

This study shows that the Fenton-reaction on the surface carried out to create reactive functional groups 

and enable NP formation at the generated reaction sites is effective to preserve the stability of the NPs 

during the operation. Furthermore, the stability could be further improved by the pore enlargement by 

the plasma pretreatment. 

 

 

Figure 3. 20 Contact angle difference after sonication treatment. 

 

 Furthermore, the CA of the membrane surface was measured after sonication treatment to 

verify the stability of the NPs on the membrane (Figure 3.20). In the case of the dip-coated membrane, 

surface CA decreased to a similar value with pure PVDF membrane which can be explained with SEM 
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results in Figure 3.19 (c). During sonication, NPs on the membrane were detached which leads to loss 

of hydrophobicity. Instead of the dip-coated membrane, plasma + growing membrane showed excellent 

stability even after the sonication treatment. As can be seen in Figure 3. 19 (f), the membrane surface 

is still covered by NPs which are strongly stable because of chemical bonding between membrane and 

NPs.  

 

 

Figure 3. 21 Long-term DCMD test with plasma + growth 12 h membrane for 7 days. 

 

 For verifying the stability of the plasma + growing membrane, long-term process was 

conducted in the same method as the DCMD operating conditions in this chapter. In case of feed 

solution, 3.5 wt% NaCl solution of 70°C was prepared and flowed to the active layer with 1 LPM. DI 

as a permeate was maintained at 25°C and flowed to the opposite side of the feed with 1 LPM. The flux 

and SF were calculated by operating for 2 h. For feed solutions, DCMD was maintained at constant 

concentration during operation. Figure 3.21 shows that flux and SF remain constant during DCMD 

operation over 7 days. 
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Figure 3. 22 Recycling DCMD experiment with plasma + growth 12 h. 

 

 For the recycling experiment, PVDF with plasma + growth 12 h modified membrane had been 

used for 5 times to confirm the stability of the hydorphobiity (Figure 3.22). As in the previous DCMD 

experiment, 3.5 wt% NaCl solution was used as a feed solution at 70°C, and DI was passed through the 

membrane at 25°C with 1 LPM each. After the experiment, the membrane was taken out from cell and 

immersed in ethanol and n-hexane for 1 hour each time. After removing from n-hexane, it was dried at 

room temperature and applied again to DCMD. Figure 3.22 shows that the flux and salt flux remain 

constant in the repeated experiment over 5 times. 
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3.3. Conclusions 

 

 In this chapter, PVDF membranes were modified through pore expansion, hydroxylation, and 

growth of hydrophobic NPs in the membrane pores to prevent the wetting phenomenon. The 

performances of the membranes were evaluated under accelerated wetting conditions. The efficiency 

of each step during the membrane preparation was evaluated by comparing the membranes fabricated 

by the three different methods. First, the surface of the PVDF membrane was modified by dip-coating 

to simply place the hydrophobic NPs on the membrane surface. Second, NPs were grown at the –OH 

functional groups of the PVDF membrane, produced by the Fenton reaction, to increase the stability of 

the particles. Third, NPs were grown in the PVDF membrane pores prepared by the plasma treatment 

to reduce the flux decrease and maximize the stability of the NPs.  

 The dip-coating using the SiO2 NPs provided a contact angle of 162º, i.e., a superhydrophobic 

surface. However, the DCMD results showed that the coatings with the NPs physically placed on the 

surface did not have a significant effect to prevent the wetting, owing to the loss of NPs with no surface 

adhesion during the operation. Furthermore, after adding the SDS solution, surface showed that direct 

wetting because of low omniphobicity. 

 In the membranes with NPs grown on their surfaces where functional groups of OH were 

generated by the Fenton-reaction, the NPs were not detached during the operation and the 

hydrophobicity was maintained. This ensured the flux remained stable in the three cycles of addition of 

SDS which means that membrane has omniphobic surface. Consequently, the wetting phenomenon was 

prevented. However, the flux was reduced as the particles covered the pores and increased the total 

membrane thickness. When the plasma pretreatment was applied in addition to the modification method, 

the flux decrease was reduced by the reduction in the total thickness and the NPs grown inside the pores 

had an excellent stability during the operation and even under the sonication condition. This suggested 

that the omniphobicity increased not only on the surface but also inside the membrane. 
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Chapter. 4 

Wetting resistance: 

Patterning 
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Abstract 

 

 In this chapter, new technique was applied to prevent the wetting in MD. In the previous 

chapter, various methods were used to solve the limitations of the coating method which are low 

interaction between coating materials and membrane and decline of performance because of the pore 

blocking. However, to achieve the hydrophobic surface using the method describe in the former chapter, 

it requires an additional process, and these processes requires many procedures and time. To solve these 

problems and prevent wetting, in this chapter, patterned membrane was fabricated using a templet and 

further modified with chemical reaction to prevent wetting in MD. The polymer used in this chapter for 

chemical modification is PVDF-CTFE, which is similar in hydrophobicity to PVDF, but has a Cl 

functional group, which has the advantage of being very easy to chemically modify. For chemical 

modification, FAS was polymerized using ATRP process which makes membrane with low surface 

energy. The patterned surface after modification was compared with the non-patterned membrane to 

verify the anti-wetting property through MD. Furthermore, fouling issue caused by rough surface also 

compared by using foulant in feed solution. Because of the low surface energy after FAS polymerization, 

hydrophobic patterned membrane showed remarkable stability in fouling test. 
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4.1 Materials and Methods 

 

4.1.1 Materials 

  

 In this study, PVDF-CTFE (SOLEF 31508/1001, Solvay) was dissolved in dimethylacetamide 

(DMAc) (Dajeong, 99.5%) and used as a casting solution. For surface modification of the membrane, 

2-hydroxyethyl methacrylate (HEMA) (Sigma-Aldrich, 99%) and FOMA (Alfa aesar, 97%) were used. 

DI water and 1,4-dioxane (Sigma-Aldrich, 99.5%) were used for dissolving HEMA and FOMA, 

respectively. α-Bromoisobutyryl bromide (BiBB), triethanolamine (TEA, 99%), and dichloromethane 

(DCM, 99.5%) were utilized for BiBB reaction (Sigma-Aldrich), generating an initiating group for 

subsequent ATRP reaction. As a catalyst and ligand for ATRP reaction, CuBr, and N,N,N′,N′′,N′′-

Pentamethyldiethylenetriamine (PMDETA, 99%) were obtained from Sigma-Aldrich. HA, AA, and 

BSA (Sigma-Aldrich) were used as foulants. NaCl (Alfa aesar, 99%) was used as a salt in feed stream 

solution. 

 

4.1.2 Preparing patterned or flat membrane for MD 

 

 

Figure 4. 1 Schematic diagram of casting patterned membrane on templet. 

 

 The preparation of the patterned PVDF-CTFE membrane (P-CTFE) is described in Figure. 14. 

Firstly, PVDF-CTFE solution was prepared by dissolving 25 wt% polymer in DMAc solvent. The 

solution was then poured onto a templet made of aluminum (Al). In this study, test piece’s structures 

were engraved on the templet. These structures were uniformly arranged in a shape of number eight. 

Lines that made up the structure were connected continuously. The farthest distance of the line at the 
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top and the bottom on each structure was 200 µm. The middle part looking like a bottleneck had 60 µm. 

Each structure had a line thickness of 100 µm and a height of 40 µm. It was arranged at a constant 

distance of about 60 µm.  

 After that, the templet was covered with woven fabric. A constant thickness was maintained 

using a casting knife. The polymer-embedded woven fabric on the templet was soaked into EtOH 

solution immediately and kept it for 24 h at room temperature. After soaking in EtOH, the membrane 

was soaked again in n-hexane for 2 h. Finally, the membrane was taken out for drying at room 

temperature for 24 h. In the case of a flat PVDF-CTFE membrane (F-CTFE), the membrane was 

prepared using the same procedure with P-CTFE on a glass plate instead of the patterned templet. 

 

4.1.3 Membrane modification 

 

 

Figure 4. 2 Diagrammatic representation of chemical modification of PVDF-CTFE with (a) 

FOMA and (b) HEMA, BIBB, and FOMA in series. 

 

 The surface of the membrane was modified with FOMA to improve its hydrophobicity. 

Chemical modification was carried out in two ways through the ATRP method. First, the FOMA was 

directly grafted on the surface of the PVDF-CTFE membrane. FOMA was then polymerized by 

extending linearly from the surface (Figure 4.2 (a)). Second, to grow FOMA from the surface in the 

form of branch, the membrane was sequentially modified with HEMA, BIBB, and FOMA (Figure 4.2 

(b)). 
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4.1.3.1 HEMA modification for OH functional group 

  

 HEMA was used to create -OH functional groups on the PVDF-CTFE membrane surface using 

the ATRP process, which caused the reaction between the Cl functional group of PVDF-CTFE and the 

C=C bond of HEMA [141]. Initially, 1 ml of PMDETA was added to 200 ml of DI water. The PVDF-

CTFE membrane was then immersed in the above solution. After adding 1 g of CuBr, the mixture was 

purged with nitrogen and reacted at room temperature for 2 hours. After completion of the reaction, the 

membrane was taken out and rinsed thoroughly with DI. Due to this process, -OH functional groups 

were formed at the position of chlorine of PVDF-CTFE, making the membrane surface hydrophilic. 

This membrane was named PVDF-CTFE-PHEMA in Figure 4.2 (b). 

 

4.1.3.2 BiBB modification for Br functional group 

 

 PVDF-CTFE-PHEMA was further modified with BiBB to generate Br on the surface [142]. 

For additional Br groups on the membrane surface, -OH functional groups on the PVDF-CTFE-PHEMA 

were reacted with BiBB (as shown in Figure 4.2 (b)). The prepared membrane was immersed in 200 ml 

of DCM. After that, 1 ml of TEA was added. The mixture was then stirred at 0°C. Next, 1 ml of BiBB 

was added and reacted for 1 hr. Thereafter, the temperature of the solution was adjusted to room 

temperature and reacted for an additional 12 hr. After this process, the membrane was taken out and 

washed with methanol thoroughly. Finally, the membrane was modified with FOMA according to the 

method described in 4.1.3. 

 

4.1.3.3 FOMA modification for further hydrophobicity 

 

 In this study, FOMA with a long chain fluorine group was utilized as a chemical agent to make 

surface energy of the membrane low. Cl of PVDF-CTFE and double bond of FOMA reacted through 

ATRP bonding. Membranes prepared in section 4.1.2. were put into a mixture of 200 ml of 1,4-dioxane 

and DI solution (1:1). After that, 1 ml of PMDETA was added and purged with nitrogen. After increasing 

the temperature to 60°C, 1 g of CuBr was added and reacted for 12 hr. Thereafter, the modified 

membrane was washed with DI water thoroughly. 
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4.1.4 Membrane characterization 

 

 Scanning electron microscopy (SEM) (S-4800, Hitach High-Technology) was used to 

investigate surface morphologies and structures. The membrane was immersed in ethanol for 2 hr. It 

was then immersed in n-hexane for another 2 hr. After that, the membrane was dried at room temperature 

for 24 hr. The membrane surface was analyzed under various magnification. Porosity of the membrane 

was evaluated using a mercury porosimetry method (MicroActive AutoPore V 9600, Micrometrics. Co). 

 Regarding chemical analysis, an attenuated total reflectance Fourier-transform infrared (ATR-

FTIR) (Nicolet 6700, Thermo Fisher, UK) was used to confirm chemical changes after modification of 

membrane surface. The prepared membrane was analyzed using a diamond ATR crystal. Spectra were 

measured in the range of 1000 to 1800 cm-1 at a resolution of 4 cm-1. Chemical properties were 

confirmed using an X-ray photoelectron spectroscopy (XPS, Thermo Fisher, UK) with Kalpha (1486.6 

eV). In XPS analysis, a double-focusing hemispherical analyzer was used. The pass energy was 

measured in a vacuum as 50 eV with a binding energy step size of 0.1 eV. 

 To evaluate hydrophobicity of the surface, a comparative study was performed using a contact 

angle (CA) measuring device. First, 5 µl of water droplet was placed on the membrane surface using a 

sessile-drop method. The contact angle of the water droplet was then recorded with a Phoenix 300Plus 

instrument (Surface & Electro Optics Co. Ltd., Korea). After the water droplet was kept on the 

membrane surface for 30 minutes, change in CA value was then measured. This experiment was 

performed 10 times for each sample to obtain an average value. 

 

4.1.5 DCMD performance of membranes 

 

 DCMD was performed to evaluate performance of the membrane in terms of water flux and 

salt flux. Each membrane was mounted on a test cell with an effective area of 2.5 x 4 cm. As a feed 

solution, 3.5 wt% NaCl was used. Its temperature was maintained at 70°C. It was circulated to one side 

of the membrane at a rate of 0.5 LPM. For permeate stream, DI water at 25°C was used at a flow rate 

of 0.5 LPM to the opposite side of the membrane. Both streams flowed counter-currently. To determine 

wetting tendencies of pristine and modified membranes, membranes were operated for 7 days. 

Conductivity of the permeate was measured in real time simultaneously. During the DCMD process, it 

was found that the membrane was wet at the point where the salt permeated and the conductivity of 

permeate stream rapidly increased. The experimental run was continued until the salt permeated through 

the membrane. The wetting time was then compared. Salt flux (SF) was calculated based on the change 
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of volume (converted from mass, ∆Vp) and concentration (converted from conductivity, ∆Cp) of the 

permeate. Calculations for flux and SF were performed using Eq. (3) and (4): 

 

𝐹𝑙𝑢𝑥 =  
∆ weight

∆ time ×effective membrane area
 (𝐿

𝑚2ℎ ⁄ (LMH))    Eq. (3) 

𝑆𝐹 = (
∆ 𝐶𝑝 ∆𝑉𝑝

∆ time×effective membrane area
 ) (

𝑔
𝑚2ℎ⁄  (GMH))       Eq. (4) 

 

4.1.6 Fouling measurement 

 

 As the roughness of the membrane increases, fouling occurs easily. To confirm the effect of 

hydrophobicity, the fouling test was conducted using HA, BSA, and AA. DCMD is performed in the 

same condition as before instead of by preparing a 100 ppm foulant solution as a feed solution. The flux 

was calculated using Eq. (3), and the obtained values were compared by normalizing based on the 

maximum value. 
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4.2 Results and Discussion 

 

4.2.1 Morphologies of the F-CTFE and P-CTFE membranes 

 

 

Figure 4. 3 SEM images of (a) P-CTFE surface, (b) magnified image of (a), (c) cross-sectional 

image of P-CTFE, (d) F-CTFE surface, (e) magnified image of (d), and cross-sectional image of 

F-CTFE. 

 

 F-CTFE and P-CTFE surface and cross-sectional images were observed by SEM (Figure 4.3). 

As shown in Figure 4.3 (a), structures on P-CTFE membrane surface had an internal distance of 230 

µm at top and bottom. The distance between the center and membrane surface was 65 µm. Each 

structure had a line thickness of 85 µm (Figure 4.3 (b)) and 30 µm in height (Figure 4.3 (c)). The size 

of the structure of the P-CTFE membrane is smaller than the size of the Al templet. In general, when a 

polymer solution soaks into the non-solvent, shrinkage occurs due to phase separation. Due to this, the 

size of the structure is smaller than that of the templet, and the distance between the structures is 

increased. In general, hierarchical microstructures can increase the hydrophobicity of the surface by 

generating air layer (famously known as air pockets) at the membrane interface [143, 144]. However, 

when fabricating a micro-pillared structure using a patterned template, if the height of the structure is 

increased, the structure can get stuck in the template while peeling it off from the template, causing 

structure failure. To tackle these issues, the test piece structure shown in Figure 4.3 (a) was chosen in 
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this study. Micro-pillars were connected to each other to provide physical stability. Since many 

structures were arranged on the surface, the surface roughness would higher than that of a line-pattern 

structure. In contrast, F-CTFE had a smooth surface (Figure 4.3 (d) and (e)). Because of this test piece 

structure on the membrane, P-CTFE (62.4 nm) had rougher surface than F-CTFE (25.9 nm). Cross-

section images (Figure 4.3 (c) and (f)) revealed that both membranes had a sponge-like structure. This 

sponge-like structure was the result of using EtOH as a coagulation bath [145]. Unlike a finger-like 

structure known to occur because of instantaneous de-mixing when DI was used as a coagulation bath, 

sponge-like structure of a constant size was formed throughout the membrane due to a delayed de-

mixing between the solvent and the non-solvent. In addition, since the polymer solution of the same 

concentration was used to cast F and P-CTFE membranes, a sponge-like structure having a similar pore 

size was formed. 
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Figure 4. 4 SEM images of (a) P-CTFE surface, (b) magnified image of top side of pattern 

structure, (c) magnified image of bottom side of pattern structure, (d) F-CTFE surface, and (e) 

magnified image of (d). 

 

 In general, when preparing the patterned membrane using a template (mold), a pattern is 

generated on the surface where the polymer solution contact with the template, which causes a 

difference in the exchange rate between the solvent and the non-solvent (in Section 2.4. 3.6). Due to 

this speed difference, pores on the patterned side are relatively small, and large pores are formed on the 

side in contact with the coagulation bath solution, forming an asymmetric membrane. The VIPS method 
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is a one technique to solve this problem, but in this study, EtOH was used as a coagulation solution to 

prepare a symmetrical membrane by inducing delay-demixing (in Section 2.1.1.1). As can be seen in 

Figure 4.3 (c), pores of a uniform size are formed, and as in 4.4 (b) and (c), the surface pores at the top 

and bottom of the pattern structure are formed with similar sizes. In the case of the surface of the F-

CTFE membrane prepared through a similar method with patterned membrane, it has similar pore size 

with P-CTFE (Figure 4.4 (e)). Through this, it can be expected that the hydrophobicity of the surface 

will be determined by the roughness, not by the pore size difference between F-CTFE and P-CTFE.  

 

4.2.2 FTIR and XPS measurement of the pure and modified membranes 

 

  

Figure 4. 5 FTIR spectra of (a) PVDF-CTFE, PVDF-CTFE-PHEMA, PVDF-CTFE-PHEMA-Br, 

PVDF-CTFE-PHEMA-Br-PFOMA, and PVDF-CTFE-PFOMA and analysis deconvoluted 

spectrum of (b) PVDF-CTFE-PHEMA-Br, and (c) PVDF-CTFE-PHEMA-Br-PFOMA for 1780-

1680 cm-1 region. 

 

 FTIR was used to analyze chemical bonds on the prepared membrane’s surfaces. As shown in 

Figure 4.5 (a), FTIR spectra of the PVDF-CTFE membrane modified with FOMA had a new peak 

formed at 1750 cm-1. The membrane modified with HEMA (Figure 4.5 (a)) showed a peak 

corresponding to C=O bond from HEMA at 1720 cm-1 [146]. The PVDF-CTFE-PHEMA has OH 
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functional groups. To generate additional reacting sites for ATRP reaction, OH groups of HEMA were 

reacted with BiBB to produce Br functional groups at the end of grafting polymers. After reaction of 

BiBB onto PVDF-CTFE-PHEMA, the C=O peak shifted to 1730 cm-1 (Figure 4.5 (b)) [147]. This is 

because the carbonyl group of BiBB and the ester group of HEMA exist together [148, 149]. Due to 

this, the peak shifted to a high wavenumber, unlike PVDF-CTFE-PHEMA which showed a peak at 

1720 cm-1. This confirms the successful modification with HEMA and BiBB onto the membrane surface. 

After BiBB reaction, the membrane was modified with FOMA again through the ATRP reaction. It was 

found that the C=O peak shifted to 1750 cm-1, confirming successful synthesis with FOMA (Figure 4.5 

(c)). However, unlike PVDF-CTFE-PFOMA, PVDF-CTFE-PHEMA-Br-PFOMA had a broad peak 

from 1720 cm-1 to 1750 cm-1 (Figure 4.5 (c)). This is because PVDF-CTFE-PHEMA-Br-PFOMA has 

various C=O bonds resulting from HEMA, BiBB, and FOMA. 
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Figure 4. 6 XPS high resolution of C1s and O1s peaks of PVDF-CTFE, after synthesis with FOMA, 

and after synthesis with HEMA, Br, and FOMA. 

 

 To further investigate surface element composition, XPS analysis was performed. (Figure 4.6) 

In the case of PVDF-CTFE, only CF2, CH2, and C-Cl bonds can be identified, and the C-O bond cannot 

be confirmed [150]. In the subsequent analysis, to compare with PVDF-CTFE, PVDF-CTFE-PFOMA, 

and PVDF-CTFE-PHEMA-Br-PFOMA membranes were analyzed to confirm the chemical changes 

[151]. First, after synthesizing only FOMA with PVDF-CTFE, a new peak, C=O bond, is appeared at 

288 and 532 eV. This is due to the O functional group present in FOMA, which is the result of 
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confirming that it is properly synthesized with PVDF-CTFE. In addition, when PHEMA, Br, and FOMA 

were sequentially reacted with PVDF-CTFE, it was confirmed that the C=O peak and the CF3 peak 

increased [152]. This result shows that FOMA has successfully synthesized with Br presented at the 

end of PHEMA. In addition, the O functional group peak shifted from 532 eV to 533 eV when 

comparing PVDF-CTFE-PFOMA and PVDF-CTFE-PHEMA-Br-PFOMA. This is because the C=O 

bond of PVDF-CTFE-PHEMA-Br-PFOMA contains a C=O bond from HEMA, Br, and FOMA [153]. 

Through this chemical analysis, XPS and FTIR, it was confirmed that PVDF-CTFE was successfully 

synthesized with HEMA or BiBB or FOMA. 

 

4.2.3 Surface hydrophobicity measurement through CA measurement 

 

 

 

Figure 4. 7 CA value after exposing to DI for 30 min. 
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 In CA measurement, the hydrophobicity was compared after exposure to water droplet for a 

duration of 30 min (Figure 4.7). In the case of F-CTFE, the CA was found to be 120°. It decreased 

rapidly after 20 min of exposure. It dropped to 60° at 30 min, indicating a loss of hydrophobicity. This 

rapid decrease in CA value is a phenomenon that occurs as water droplets become smaller due to 

evaporation [154]. In general, even on the same surface, the CA value changes depending on the size 

of the droplet. In this CA measurement, water droplets on the surface of the membrane evaporate and 

the size decreases rapidly decrease which leads to a decrease of CA value. In addition, due to the high 

surface tension of water, the surface got wet when droplet evaporates, and the CA value decreased 

dramatically.  

In contrast, P-CTFE initially showed a higher contact angle (130°). The CA value decreased 

to 90° after 30 min of exposure to water droplet, exhibiting a higher stability than F-CTFE. This is due 

to an increase in surface roughness of the patterned structure, which increased the hydrophobicity by 

formation of hierarchical microstructures onto membrane surface (Figure 4.3 (a)) [155].  

 P-CTFE-PFOMA was found to be more stable in terms of hydrophobicity. P-CTFE-PFOMA 

showed a higher CA value of 140°. It only decreased about 20° after 30 min of exposure. It was more 

stable due to the hydrophobicity of FOMA.  

In the case of PHEMA modification, hydrophilicity increased due to the formation of OH 

group, which reduced the CA to 0° within 5 min. After modification with BiBB, it had a similar tendency 

of decreasing CA to that of the P-CTFE. This confirmed the successful modification of OH group with 

BiBB. The hydrophilicity was again due to exchanges OH to Br. However, this CA value was slightly 

lower than that of P-CTFE due to the C=O functional groups of PHEMA and BiBB.  

P-CTFE-PHEMA-Br-PFOMA exhibited a superhydrophobic feature, with an initial CA value 

of more than 150°, higher than that of P-CTFE-PFOMA due to branch-type growth of PFOMA on 

PHEMA (Figure 4.2 (b)). After 30 min of exposure, its CA value only decreased by about 15°. 

These CA results indicated that the P-CTFE membrane possessed higher and stable CA value 

than F-CTFE when it was exposed to water droplet because a uniform structure on the surface caused 

a high roughness. Furthermore, P-FOMA or P-PHEMA-Br-PFOMA showed a stable CA value due to 

improvement in hydrophobicity. These results revealed that P-PFOMA or P-CTFE-PHEMA-Br-

PFOMA showed anti-wetting characteristic when it was exposed to water droplet with wetting expected 

to occur later than F-CTFE when applied to a DCMD process. 
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Figure 4. 8 Contact angle images of P-CTFE-Br-PFOM (a) before and (b) after soaking in DI for 

7 days and contact angle images of F-CTFE (c) before and (d) after soaking in DI for 7 days. 

 

 In this chapter, a water droplet was placed on the membrane surface to measure CA, and the 

change in CA over time. It was confirmed that the CA value of the membrane surface could be changed 

because of the decrease in the size of the droplets due to the evaporation1. Also, evaporation cause the 

membrane wetting due to the high surface tension. In the case of the F-CTFE membrane, it was verified 

that CA value decreased rapidly after 30 min because of droplet size changes and wetting. In the case 

of the P-CTFE-PHEMA-Br-PFOMA membrane, the CA value decreases much less even when the water 

droplets evaporate, which shows advanced wetting resistance property. 

 The stability of the membrane hydrophobicity was confirmed by soaking in DI for 7 days. 

First, put F-CTFE and P-CTFE-PHEMA-Br-PFOMA membranes in DI and stirred vigorously for 7 

days. After that, the membranes were taken out and the CA was measured immediately to compare 

hydrophobicity. In the case of the P-CTFE-PHEMA-Br-PFOMA membrane, and it was found that the 

water droplets could not adhere on the surface easily and the CA value maintained over 150˚ even after 

7 days of soaking (Figure 4.8). However, in the case of F-CTFE, it had a CA value of more than 120°, 

but after soaking, it was confirmed that this value dropped to 75° and lost hydrophobicity. Through this 

soaking test, stability of the membrane can be verified. 

 

4.2.4 Long-term DCMD performance 
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Figure 4. 9 Long-term DCMD process using 3.5 wt% of NaCl solution as a feed solution with flux 

(□, △, ○, ▽) and SF (■, ▲, ●, ▼) for each membrane. 

 

 To evaluate the anti-wetting characteristic, DCMD was performed until the membrane got wet. 

As shown in Figure 4.9, F-CTFE had a rapid SF increase within a day. It could be explained by CA 

results (as seen in Figure 4.7) which showed that the F-CTFE membrane with an initial CA value of 

120° got wetted within 30 min of DI water exposure and ultimately CA value dropped below 60°, thus 

losing its hydrophobicity. In this study, it is worth to mention that membrane wetting was determined 

when the SF sharply increased. Although there was no flux change compared to the SF, an increase in 

SF indicated the passage of salts directly to the permeate stream due to pore wetting of the membrane.  

 On the other hand, P-CTFE had a patterned structure on its surface. It took more than two days 

to get wet. Such improved performance can be attributed to an enhancement of hydrophobicity due to 

presence of hierarchical microstructure on its surface. As shown in Figure 4.8, even after 30 minutes of 

DI exposure, the CA value only decreased slightly (from 130° to 90°), indicating a more stable 

performance than F-CTFE. In addition, P-CTFE showed slightly higher flux than F-CTFE due to its 



80 

higher surface area while forming a pattern on the membrane surface.  

In the case of P-CTFE-PFOMA, hydrophobicity was improved due to formation of a long 

chain of FOMA on the surface which enhanced it anti-wetting characteristic. P-CTFE-PFOMA showed 

a stable performance for about five days without any significant SF change due to hydrophobicity of 

the membrane. Based on results shown in Figure 4.8, the stable CA value was maintained with DI 

exposure. The CA value only decreased by about 20° after 30 min of exposure.  The membrane showed 

good stability. It can be explained by its surface roughness formed by patterned surface and a low 

surface energy by chemical modification with FOMA.   

P-CTFE-PHEMA-Br-PFOMA membrane exhibited slightly lower flux than P-CTFE (14 LMH 

and 16 LMH, respectively) due to a reduction of porosity from 72.3% to 67.9% after chemical 

modification. It was observed that high temperature made membrane pores become slightly smaller, 

leading to a flux decline. However, P-CTFE-PHEMA-Br-PFOMA showed stable flux and SF for more 

than 7 days because of its superhydrophobic surface with an initial CA value of over 150°. It only 

showed a slight reduction of about 15º even after 30 minutes of DI water exposure.   

Although the SF was found to be stable, the flux slightly decreased for all membranes during 

the DCMD process. This is because of partial pore wetting during DCMD [156]. The degree of flux 

reduction due to wetting was also less for P-CTFE compared to that for F-CTFE. It seems to be 

insignificant in case of P-CTFE-FOMA or P-CTFE-PHEMA-Br-PFOMA. It can also be explained by 

the surface roughness and low surface energy which could prevent wetting during a long-term operation 

of DCMD. 

 

4.2.5 Fouling test using several types of foulants 

 

 

 

Figure 4. 10 Fouling test using 100 ppm of foulant solution as a feed solution. 



81 

 

 It is well known that larger roughness of a membrane will make it more susceptible to 

membrane fouling [157]. In this experiment, a pattern structure was formed on the PVDF-CTFE 

membrane surface to increase its hydrophobicity. Furthermore, a superhydrophobic surface was 

achieved by modifying the surface with FOMA. To analyze the anti-fouling characteristic of the 

prepared membrane, DCMD was performed using 100 ppm of foulant solution as the feed solution 

(Figure 4.10). A decrease in flux was observed until 500 ml of permeate was collected. To compare the 

amount of flux reduction, normalized flux was calculated. Results of flux were compared. As shown in 

Figure 4.10, the flux of F-CTFE dropped to 80% with HA, 85% with BSA, and 91% with AA from the 

initial flux. On the other hand, the flux of P-CTFE dropped to 73% with HA, 63% with BSA, and 83% 

with AA. This difference was due to the formation of external fouling layer onto the rough surface [158]. 

However, the P-CTFE-PHEMA-Br-PFOMA membrane showed a constant flux (18, 15, and 17 LMH) 

during the collection of 500 ml of permeate. This could be attributed to the hydrophobic nature of 

FOMA coated on the membrane surface which provided a lower surface energy for foulant to adhere 

on the surface. Although the patterned membrane had a high roughness, flux data showed insignificant 

decreases during the DCMD process with a foulant. 

 

 

Figure 4. 11 FTIR spectra of F-CTFE, P-CTFE, and P-CTFE-PHEMA-Br-PFOMA after fouling 

test with foulants (HA, BSA, and AA). 
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In the fouling test with HA, BSA, and AA in Figure 4.11, DCMD was performed until 500 ml 

of permeate was collected. During fouling test, membranes showed flux decline and this flux decline 

could be caused by several factors. However, with the long-term DCMD test in Figure 4.10, there were 

no flux decline before membrane wetting. Besides, the fouling test was conducted until 500 ml of 

permeate was collected, which is not enough time for membrane wetting. 

 To confirm the flux decline caused by foulant on the surface, the change of the membrane 

surface after the fouling test was verified through FTIR. Fouling test was conducted with 100 ppm of 

HA or BSA or AA and membrane was dried after finishing the test. As can be seen in Figure 4.10, after 

the fouling test, all F-CTFE membranes showed peaks along with the foulant peaks. However, in the 

case of P-CTFE, surface was covered by foulant seriously compare with F-CTFE. Because of severe 

fouling layer on the surface, original peak was hard to find. Although, P-CTFE-PHEMA-Br-PFOMA 

showed that even after fouling test, peak showed almost same as before test which can explain no flux 

decline during fouling test in Figure 4.10. 
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4.3 Conclusions 

 

 In this chapter, hydrophobicity of the PVDF-CTFE membrane was improved by patterning the 

membrane surface using a templet. As far as hydrophobicity was concerned, P-CTFE possessed higher 

CA value (130°) than F-CTFE because of its hierarchical microstructures. In the DCMD process, F-

CTFE membrane was wet within a day during the DCMD operation, while P-CTFE showed a stable 

performance over two days. However, due to the hierarchical microstructure, the rough surface of P-

CTFE showed a rapid flux decline (73%, 63%, and 83% for HA, BSA, and AA, respectively) compared 

to that of F-CTFE (80%, 85%, and 91% for HA, BSA, and AA, respectively) due to deposition of 

foulants on the membrane surface. To prevent membrane fouling and wetting during the DCMD process, 

FOMA was polymerized on the membrane surface using an ATRP process with HEMA and BiBB. The 

ATRP process with HEMA was used to make -OH functional group on the surface. Simultaneously, 

BiBB was reacted with HEMA so that more reaction cites could be generated. Later, FOMA was utilized 

to form a network with P-CTFE-PHEMA-Br. P-CTFE-PHEMA-Br-PFOMA was found to be 

superhydrophobic (150°). It maintained stable flux and salt flux over 7 days in DCMD operation. 

Although P-CTFE-PHEMA-Br-PFOMA membrane had rough microstructures, it showed no significant 

flux decline during DCMD while using various foulants because of its superhydrophobic behavior. 

Therefore, it can be concluded that a combination of surface patterning and polymerization with FOMA 

on PVDF-CTFE membrane has potential to improve wetting and fouling resistance in DCMD for long 

term performance.
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Chapter. 5 

Wetting resistance: 

Heating 
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Abstract 

 

 In this chapter, a technique to increase the temperature of the membrane itself was used to 

prevent wetting of the membrane. Until now, research has been conducted focusing on increasing the 

hydrophobicity of the membrane to prevent wetting in the MD process. This is because the vapor 

generated by the temperature difference between the feed and the permeate solution, which is the main 

reason for membrane wetting, coagulated as it passes through the membrane. However, in this chapter, 

to prevent this coagulation, the temperature of the membrane itself, not the hydrophobicity of the 

membrane, is kept higher than the feed solution. The higher temperature of the membrane could prevent 

condensation of the vapor, thereby preventing wetting and increasing the speed of vapor movement to 

improve performance. To increase the temperature of the membrane, in this study, a membrane can be 

manufactured using a copper mesh with high thermal conductivity, and to prevent MD performance and 

wetting, heat is applied to the membrane during MD operation to keep the temperature of the membrane 

higher than the feed solution.  
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5.1 Materials and Methods 

 

5.1.1 Materials 

 

 PVDF polymer (Solef 1015/1001) was purchased from Solvay. Triethyl phosphate (TEP) used 

as a solvent was purchased from Sigma. Methanol, ethanol, and n-hexane were purchased from 

Daejeong. Carbon nanofibers (CNF) with 100 nm of diameter and 20 – 200 µm of length was purchased 

from Sigma. As a substrate for membrane, copper mesh was purchased from APEC (Korea) which has 

pore size of 200 mesh. 

 

5.1.2 Preparing PVDF membrane on copper mesh 

  

 A dope solution was prepared by dissolving PVDF polymer (15, 17, and 19 wt%) in a TEP 

solvent. The dope solution was purged with nitrogen gas for 30 min to remove air bubbles trapped in 

the solution. Subsequently, the solution was mechanically stirred at 80ºC for 24 h to obtain a 

homogeneous solution. After the solution was prepared homogeneously, the polymer solution was 

cooled down at room temperature. The polymer dope solution was cast on a copper mesh (100 or 200 

mesh) wrapped on a glass plate with a casting knife with a certain thickness, and then the solution cast 

on the PET was immediately put in an ethanol bath. The copper mesh was chosen because of its high 

thermal conductivity (Table 5.1). After the immersion for 12 h, the membrane was taken out and 

immediately soaked in methanol for 1 h, in 1-hexane for 1 h, and then taken out. The membrane was 

dried in an oven at a temperature of 60ºC. 

 

Table 5. 1 Thermal conductivity of different type of metals. 

Metals 

Mass density, ρ 

(lb/ft3) 

Heat capacity, c 

(Btu/lb·F) 

Thermal conductivity, k 

(Btu/hr·ft·F) 

Aluminum 169 0.208 117.0 

Antinomy 415 0.049 10.6 
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Bismuth 612 0.029 4.9 

Cadmium 540 0.055 54.0 

Copper 558 0.091 224.0 

Gold 1203 0.030 169.0 

Iron 491 0.104 35.8 

Inconel 534 0.109 8.7 

Lead 705 0.030 20.1 

Magnesium 109 0.232 91.0 

Mercury 849 0.033 4.8 

Molybdenum 638 0.060 72.0 

Nickel 556 0.106 52.0 

Palladium 743 0.054 40.6 

Platinum 1340 0.032 40.2 

Silver 655 0.056 241.0 

Tin 456 0.054 38.0 

Tungsten 1208 0.032 94.0 

Zinc 446 0.091 65.1 

 

5.1.3 Characterization  

  

 Scanning electron microscopy (SEM) (S-4800, Hitach High-Technology) was used to 

investigate surface morphologies and structures. The membrane was immersed in ethanol for 2 h. It was 

then immersed in n-hexane for another 2 h. After that, the membrane was dried at room temperature for 

24 h. The membrane surface was analyzed under various magnification.  

 Regarding chemical analysis, an attenuated total reflectance Fourier-transform infrared (ATR-

FTIR) (Nicolet 6700, Thermo Fisher, UK) was used to confirm chemical changes after modification of 
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membrane surface. The prepared membrane was analyzed using a diamond ATR crystal. Spectra were 

measured in the range of 1000 to 1800 cm-1 at a resolution of 4 cm-1.  

 To evaluate hydrophobicity of the surface, a comparative study was performed using a contact 

angle (CA) measuring device. First, 5 µl of water droplet was placed on the membrane surface using a 

sessile-drop method. The contact angle of the water droplet was then recorded with a Phoenix 300Plus 

instrument (Surface & Electro Optics Co. Ltd., Korea). After the water droplet was kept on the 

membrane surface for 30 minutes, change in CA value was then measured. This experiment was 

performed 10 times for each sample to obtain an average value. 

 

5.1.4 Performance test using SGMD 

 

 An operation in the SGMD mode was carried out to evaluate the performance of the heating 

membranes (Figure 5.1). Membrane samples were mounted in a cell with an effective area of 4 × 6 cm2; 

the feed and permeate flowed counter-currently along the membrane. The feed solution of 1 M NaCl 

was circulated along the membrane surface using a gear pump at 1 Lmin-1 at 60˚C. As a permeate side, 

N2 gas was flowing by contacting the other membrane surface at 1 Lmin-1. To maintain the feed 

concentration after the start of the operation, DI water was added to the feed solution with an amount 

equal to that of the produced permeate. To compare the effect of heating, the membrane was performed 

with or without heating during SGMD. For increasing the temperature of the membrane, the heating 

tape was used to cover the part of the membrane revealed from the cell and maintained at 100˚C (Figure 

5.1). The temperature of the membrane was monitored by a temperature meter which was mounted in 

a cell with the membrane in real time during the SGMD process. The flux was calculated using the 

change in weight of the permeate over the operating time, as shown in Eq. 5. In addition, the SF, which 

is the amount of salt passing from the feed to the permeate per unit area and time, was calculated using 

Eq. 6. 

 

𝐹𝑙𝑢𝑥 =  
∆ weight

∆ time ×effective membrane area
 (𝐿

𝑚2ℎ ⁄ (LMH))    Eq. (5) 

 

𝑆𝐹 = (
∆ 𝐶𝑝 ∆𝑉𝑝

∆ time×effective membrane area
 ) (

𝑔
𝑚2ℎ⁄  (GMH))       Eq. (6) 
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Figure 5. 1 Schematic diagram of lab scale SGMD system. 
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5.2 Results and Discussion 

 

5.2.1 Morphologies of the membrane with copper mesh 

 

 

Figure 5. 2 SEM images of (a) copper mesh 200, (b) 19 wt% of PVDF on copper mesh, and (c) 18 

wt% of PVDF with 1 wt% of CNF on copper mesh. 

 

 In Figure 5.2, the surface of the copper mesh, the membrane with 19 wt% of PVDF and 18 

wt% of PVDF with 1 wt% of CNF was observed by SEM. As can be seen in Figure 5.2 (a), the copper 

mesh 200 has 75 µm of pore size. Using this copper mesh as a substrate, it was possible to fabricate a 

membrane with a certain thickness. Since casting was performed using a copper mesh, the PVDF 

solution penetrated the mesh to form a membrane. In addition, since the membrane was made using 

ethanol as a coagulation solution, the pores on the surface are large due to delay de-mixing (Figure 5.2 

(b)). The membrane fabricated in this study, the copper mesh was in the center of the polymer layer, it 

would work effectively to prevent condensation when transferring heat during the MD process. 

Subsequently, in the case of the membrane which was fabricated by adding CNF to increase the thermal 

conductivity, it can be seen from Figure 5.2 (c) that CNF did not significantly affect the pore structure 

because it is buried in the polymer solution. Using the membrane prepared on copper mesh, it was 

possible to verify anti wetting performance in the SGMD process.  

 

5.2.2 Contact angle measurement 
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Figure 5. 3 Measurement of CA of different concentration of PVDF membranes and PVDF 18 wt% 

+ CNF 1 wt% of membrane. 

 

 Since the hydrophobicity of the surface could influence preventing wetting during MD, the 

hydrophobicity of the surface was confirmed by measuring the CA. The CA according to the 

concentration of PVDF was verified, and the effect of CNF which was added to increase thermal 

conductivity was also confirmed. As can be seen in Figure 5.3, it was confirmed that there was no 

significant change in the CA value of the surface depending on the PVDF concentration, and it was 

confirmed that it had a value of about 110°. This can be considered because the hydrophobicity formed 

on the surface is determined by the properties of PVDF even when the PVDF concentration is increased. 

In addition, the surface hydrophobicity according to the addition of 1 wt% of CNF was also confirmed 

by CA measurement. Although a slight decrease was observed, it was confirmed that there was no 

significant difference in the surface hydrophobicity compare with 19 wt% of PVDF membrane. 

Through this, only the effect of the heating of the membrane could be confirmed without the effect of 

the hydrophobicity of the surface. 
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5.2.3 FTIR measurement of the pure and modified membranes 

 

 

Figure 5. 4 FTIR spectra of CNF, copper mesh, PVDF 19 wt%, and PVDF 18 wt% + CNF 1 wt% 

for 1500-600 cm-1 region. 

 

 FTIR was used to analyze the chemical bonds of the previously prepared membrane surface. 

As shown in Figure 5.4, since PVDF completely covered the copper mesh, the peak of the copper mesh 

could not be found in the PVDF peak. After that, when CNF is added to increase the thermal 

conductivity of the membrane, the specific peak of CNF does not appear. This can be explained that 

CNF was well dispersed in PVDF dope solution, and the amount of CNF was too small. 

 

5.2.4 Long-term SGMD performance with heating the membrane 
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Figure 5. 5 Long-term SGMD process using 3.5 wt% of NaCl solution as a feed solution with (a) 

15 wt% of PVDF, (b) 17 wt% of PVDF, and (c) 19 wt% of PVDF membranes. 

 

 

Figure 5. 6 Temperature differences between 19 wt% of PVDF membrane and feed solution (a) 

before heating and (b) after heating the membrane. 

 

 In previous CA measurements, it was confirmed that the concentration of PVDF and the 

addition of CNF into PVDF dope solution did not significantly affect the hydrophobicity of the 

membrane and chemical structure of the surface (Figures 5.5 and 5.6). To check the effect of high 

temperature on the wetting was confirmed by using the membrane prepared for each concentration of 

PVDF. As can be seen in Figure 5.5 (a), in the case of the 15 wt% of PVDF membrane, when the 

membrane was not heated, it was confirmed that the feed solution passed directly to the permeate side. 

However, if heated, it was possible to perform, but it was confirmed that the membrane did not perform 

properly because of the rapid increase of SF after getting wet in less than 30 min. In the case of the 17 

wt% of PVDF membrane, the heating effect was confirmed. It can be seen from Figure 5.5 (b) that 

when the SGMD is operated with heating, the membrane was wetted after about 1000 min, compared 
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to the rapid increase of SF due to wet within about 60 min without heating. Furthermore, in the case of 

the 19 wt% of PVDF membrane, it was confirmed that heating was very effective in preventing wetting. 

Without heating, the membrane got wetted within 700 min but with heating, the membrane withstands 

almost 2500 min. To confirm this effect of heating, the temperature of the membrane and feed solution 

was compared while performing the SGMD (Figure 5.6). When the SGMD was operated without 

heating the membrane, the temperature of the feed solution was maintained at 60°, while the membrane 

temperature was about 55° (Figure 5.6 (a)). However, when the SGMD is operated with heating, there 

is only a difference of 2 to 3° between the feed solution and the membrane (Figure 5.6 (b)). In addition, 

the performance is higher when the membrane was heated because the generated vapor was transferred 

faster due to the high temperature when passing through the pores. Through this, it was confirmed that 

heating of the membrane affects not only preventing wetting but also improving performance. 

 

5.2.5 Long-term SGMD performance with heating the CNF membrane 

 

 

Figure 5. 7 Water fluxes and SF of the pure and modified PVDF membranes in the DCMD mode 

with addition of SDS solution. 

 

 In the case of the previous experiment, it was possible to prevent the wetting that occurs during 

MD by transferring heat to the copper mesh inside the PVDF membrane. To further improve the 

prevention of wetting through heating, a membrane was prepared by adding CNF. It can be seen from 

Figure 5.7 (b) that the heat transferred to the membrane is more effectively transferred through the 

PVDF membrane because of CNF dispersed inside of the membrane. In the previously conducted 
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SGMD, it was confirmed that the temperature of the membrane was lower than the temperature of the 

feed solution. However, it was confirmed that the membrane prepared by adding CNF maintained a 

higher temperature than the feed solution even during the operation of SGMD. In addition, it was 

confirmed that the SGMD showed stable performance for a longer period than when heating the general 

19 wt% of PVDF during long-term operation and did not get wet after 3600 min (Figure 5.7 (a)). 

Through this, the effect of preventing wetting through heating could be confirmed, and the effect of 

heating could be further increased through an additive such as CNF.  
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5.3 Conclusions 

 

 In this study, as a next-generation technique to prevent wetting in MD, a membrane was 

prepared using copper mesh, a substrate with high thermal conductivity, and applied to SGMD to 

increase the temperature of the membrane. When the membrane was cast on the copper mesh using 15, 

17, and 19 wt% of PVDF and applied to SGMD, the performance difference according to the 

concentration and the temperature of the membrane through heating were confirmed. In the case of 15 

and 17 wt% of PVDF membranes, it was confirmed that the membrane did not perform properly, and 

in the case of 19 wt% PVDF membranes, the membrane performed for 1000 min without wetting. As a 

result of operating SGMD by directly applying heat to the copper mesh to keep the temperature of the 

membrane high, it was confirmed that even the case of 17 wt% of PVDF membrane performed for 900 

min without wetting. Furthermore, when heating the 19 wt% of PVDF membrane, the membrane 

showed good performance for 2400 min without wetting. When the copper mesh is not heated, the 

temperature difference is about 5°, while the difference of 2.5° after heating can prevent the wetting 

effectively. To increase the heat transfer efficiency, when the membrane was prepared by adding CNF 

to the dope solution of PVDF, it was confirmed that the temperature of the membrane was higher than 

the temperature of the feed solution due to the high heat transfer efficiency. In addition, even when 

applied to SGMD, it was confirmed that it was more effective in preventing wetting by not getting wet 

for more than 3600 min. 
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Chapter. 6 

Conclusions 
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6. Conclusions 

 

 As a new water treatment process using a membrane, many studies have been conducted on 

MD. MD is a process that does not require high pressure or high thermal energy and is a technology 

that utilizes the vapor generated by the temperature difference between two solutions. However, because 

of condensation of this vapor inside of the membrane pores, wetting occurs which should be prevented. 

So many studies have been conducted to solve this wetting using the various methods. In this study, the 

problems of the former methods that were conducted to prevent wetting in many studies could be 

improved and applied to MD, and the performance was verified through long-time operation on the lab 

scale. 

 

6.1 Enlargement of pore and growing of NPs to prevent performance decline and to 

enhance the stability 

 

 In this chapter, serious issues of coating method such as performance decline and week 

interaction were improved by pore enlargement and NPs growing. For this, the PVDF membrane was 

modified in 4 steps: pore expansion by plasma treatment, hydroxylation through Fenton-reaction, and 

the growth of NPs, and hydrophobic modification using FAS. The performances of the membranes were 

evaluated under the accelerated condition in DCMD using SDS solution. Totally 3 types of the 

membrane were compared: dip-coated, NPs growth, plasma, and NPs growth membranes. First, the 

surface of the PVDF membrane was modified by dip-coating to simply place the hydrophobic NPs on 

the membrane surface. Second, NPs were grown at the –OH functional groups of the PVDF membrane 

which was pre-treated by the Fenton-reaction, to increase the stability of the NPs. Finally, NPs were 

grown in the PVDF membrane after plasma treatment to enhance the performance of the membrane and 

stability of the NPs. 

 The dip-coating using the hydrophobic NPs provided a contact angle of 162º, i.e., a 

superhydrophobic surface. However, the DCMD results showed that the coatings with the hydrophobic 

NPs physically placed on the surface did not have a significant effect to prevent the wetting, owing to 

the loss of hydrophobic NPs with no surface adhesion during the operation. In the membranes with NPs 

grown on their surfaces where functional groups of OH were generated by the Fenton-reaction, the NPs 

were not detached during the operation and the hydrophobicity was maintained. This ensured the flux 

remained stable in the three cycles of the addition of SDS. Consequently, the wetting phenomenon was 
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prevented. However, the flux was reduced as the particles covered the pores and increased the total 

membrane thickness. When the plasma pretreatment was applied in addition to the modification method, 

the flux decrease was reduced by the reduction in the total thickness and the NPs grown inside the pores 

had excellent stability during the operation and even under the sonication condition. This suggested that 

the hydrophobicity increased not only on the surface but also inside the membrane. 

 

6.2 Patterning and polymerization to simplify the preparation of membrane and to 

prevent fouling 

 

 In many studies, membrane wetting was prevented by increasing hydrophobicity. As a new 

concept of the hydrophobic membrane, a patterned membrane has been utilized in MD. Because of the 

rough surface of the patterned membrane, the surface showed a hydrophobic property. Regarding 

hydrophobic patterned membrane, serious issues such as complex membrane preparation and fouling 

are the key point to apply in MD. To address these issues, in this chapter, a patterned membrane was 

prepared by using the template to simplify the fabrication process and by polymerization of hydrophobic 

materials to achieve low surface energy for preventing fouling on the surface. 

            For comparing the effect of patterning and polymerization of a hydrophobic material, a 

control membrane was prepared with a flat surface without polymerization. Compared to the F-CTFE 

(120°), P-CTFE-PHEMA-Br-PFOMA has a higher CA value (150°) caused by a combination of 

patterned surface and FOMA synthesis. Various characterization and measurements were conducted to 

prove successful reaction which was observed new C=O functional groups on the membrane. The effect 

on performance and anti-wetting was confirmed through long-term DCMD. In the case of the F-CTFE, 

it was wet within a day, but P-CTFE-PHEMA-Br-PFOMA shows stable flux and SF for more than 7 

days. Due to the structure on the P-CTFE surface, it was confirmed that fouling easily occurred during 

the fouling test which reduces the flux to 70% (F-CTFE showed 80%). However, after hydrophobic 

modification with HEMA, BiBB, and FOMA, because of the many long FOMA chains on the 

membrane, the membrane maintains flux. Through this, it was confirmed that the uniform structure on 

the surface and chemical reaction with FOMA increase the hydrophobicity, and this improvement has 

the potential to prevent wetting and fouling during MD. 

 

6.3 Heating the membrane for wetting prevention as a next generation concept 
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 For the last concept for wetting prevention in MD, it was possible to control the thermal state 

of the membrane using copper mesh as a substrate. The basic reason for wetting in MD is the 

coagulation of vapor generated by the temperature difference between feed and permeate solution. If 

the membrane itself has a higher temperature than the feed solution, vapor coagulation cannot happen. 

To achieve the high temperature membrane, the copper mesh was chosen as the substrate for the 

membrane because of its high thermal conductivity. Through this, heat can be applied to the substrate, 

and condensation is expected to be prevented by maintaining the temperature inside the membrane 

higher than the temperature of the feed solution while the MD process.  

            PVDF was used to fabricate the membrane on copper mesh in this study. With a thermal 

conductive membrane, it was found that the membrane showed good performance without wetting over 

2500 min when the heat was transferred by copper mesh (19 wt% of PVDF) meanwhile only withstand 

700 min without heating. To enhance the efficiency of the heat transfer, CNF was chosen as an additive 

in the PVDF polymer solution. After adding the CNF, the membrane showed very stable performance 

over 3600 min without wetting even though there are no changes in hydrophobicity or chemical bonding. 
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