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NiFeO, decorated Ge-hematite/perovskite for an
efficient water splitting system

Ki-Yong Yoon!, Juhyung Park!, Minsu Jung® 2, Sang-Geun Ji', Hosik Lee', Ji Hui Seo!, Myung-Jun Kwak',
Sang Il Seok® ', Jun Hee Lee® ' & Ji-Hyun Jang'™

To boost the photoelectrochemical water oxidation performance of hematite photoanodes,
high temperature annealing has been widely applied to enhance crystallinity, to improve the
interface between the hematite-substrate interface, and to introduce tin-dopants from the
substrate. However, when using additional dopants, the interaction between the unintentional
tin and intentional dopant is poorly understood. Here, using germanium, we investigate how
tin diffusion affects overall photoelectrochemical performance in germanium:tin co-doped
systems. After revealing that germanium is a better dopant than tin, we develop a facile
germanium-doping method which suppresses tin diffusion from the fluorine doped tin oxide
substrate, significantly improving hematite performance. The NiFeO,@Ge-PH photoanode
shows a photocurrent density of 4.6 mA cm~2 at 1.23 Vgye with a low turn-on voltage. After
combining with a perovskite solar cell, our tandem system achieves 4.8% solar-to-hydrogen
conversion efficiency (3.9 mA cm—2 in NiFeO,@Ge-PH/perovskite solar water splitting sys-
tem). Our work provides important insights on a promising diagnostic tool for future co-
doping system design.
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ematite (a-Fe,O;) is considered a promising material for

photoelectrochemical water splitting because of its sui-

table band gap (2.0-2.2 eV), low cost, natural abundance,
and good stability in alkaline environments!~¢. However, hema-
tite features a short hole-diffusion-length (>5nm)7-%, low elec-
trical conductivity!%-12, and low absorption coefficient
issues!>1314, For these reasons, hematite has shown poor oxygen
evolution activity as a photoanode, which is strongly related to a
high recombination-rate!>~17. It thus has a substantially lower
solar-to-hydrogen (STH) conversion efficiency than the theore-
tical value (~15%). Doping to improve the poor charge transfer
behavior is one of the most powerful strategies that has been
suggested to address these notable drawbacks!®18-25 But even
when S§i2223.2627  gpl819.28-30 and Ti2021.31-36 atoms were
broadly utilized as representative dopants, the hematite photo-
anode doped with these heteroatoms still exhibited low conver-
sion efficiency.

Therefore, seeking alternative dopants may provide a more
straightforward way of overcoming hematite’s low conversion
efficiency. Among various dopant candidates®’~3%, germanium
(Ge) may be the most promising alternative as an n-type
dopant’”. Ge can dramatically enhance donor density while
maintaining the crystallinity of hematite, leading to an out-
standing solubility in hematite37-40, Prezhdo et al. reported den-
sity functional theory (DFT) calculation results showing that Ge
was more soluble in hematite than Si and Sn due to the balance
between atomic radius and formation enthalpy®’. Further, Ge
has a guiding effect on the preferential growth of the (110) plane
of the hematite crystal, which promotes high electrical
conductivity4041,

Despite theoretical results that Ge could provide the superior
photoelectrochemical properties compared with the current
representative dopants in various respects, the highest water
splitting performance for Ge-doped hematite reported so far is
still far lower than those for representative dopants-doped
hematite!®23:31:40, The strong discrepancy between calculated
results and experimental data for doped hematite may be
attributed to some variables that were neglected in the calculation.
We hypothesized that unintentional Sn-doping from the fluorine-
doped tin oxide (FTO) substrate, which inevitably occurs during
the high-temperature annealing process (above 700 °C) is one of
such variables. It has been proved that thermal diffusion of Sn
from the FTO substrate indeed occurs and it is one of key factors
which boosts PEC performance!®42-44, Like this, Sn doping from
the FTO substrate is known to improve the crystallinity of
hematite or the presence of diffused Sn was often ignored in
heteroatom-doped systems. Therefore, for a more realistic
experimental approach, the presence of the Sn dopant and its
specific impact need to be carefully considered in relation with
the desired dopant.

Here we report that the water splitting performance of Ge-
doped porous hematite (Ge-PH) can bring the experimental data
more closely in line with the superior theoretical results of Ge-
doped hematite by preventing the unintentional Sn-doping. The
approach produces a remarkable performance improvement
compared to previous Ge-doped hematite (Ge-H), as well as
hematite prepared with the commonly used representative
dopants (Ti, Sn, and Si).

We confirmed by both experiment and DFT calculation that
when the Ge and Sn dopants were co-present, the crystallinity of
the hematite significantly deteriorated due to structural distor-
tion. We also proved that Ge-doping by the thermal diffusion of
Ge in the GeO, overlayer, reported in this study, mitigated the Sn
diffusion into the hematite lattice and created numerous OER
active sites, while maintaining the crystallinity of the hematite
surface. More importantly, we report that Ge-PH can lower the

overpotential of OER than pure hematite, using both theoretical
simulations and experimental data.

With these synergies, our Ge-PH with NiFeO, co-
catalyst (NiFeO,@Ge-PH) exhibited a photocurrent den-
sity of 4.6 mA cm~2 at 1.23 Vyyg, achieving around a 460%
enhancement in PEC performance compared with undoped
hematite (~1.0 mA cm—2 at 1.23 Vgyg)-

By coupling a perovskite solar cell (PSC) to the back of our
photoanode, we achieved ca. 4.8% SHT efficiency for a tandem
PEC water splitting system. Our Ge-PH effectively maximized the
efficiency of a solar water splitting, supported by a low turn-on
voltage system with high performance.

To the best of our knowledge, this work demonstrates the
highest STH efficiency for a single hematite photoanode-based
tandem device, which may be a stepping-stone for a breakthrough
in stagnant hematite-based PEC performance.

Results and discussion

Fabrication process and morphology effect

Fabrication process of Fe;Os, Ge-H, and Ge-PH. Pristine a-Fe,05
(Fe;03) and Ge-doped Fe,O3 (Ge-H) photoanodes were fabri-
cated using conventional methods as reported (Fig. 1a)40:41:45,
Briefly, p-FeOOH nanorods were grown on an FTO substrate
using the common hydrothermal method and then rapidly
annealed at 800 °C for 20 min to form Fe,Oj; (top in Fig. 1a). Ge-
H (bottom in Fig. 1a) refers to bulk Ge-doped Fe,O; hydro-
thermally grown in a mixture solution of FeCl; and GeO, fol-
lowed by a rapid annealing step at 800 °C for 20 min as reported
previously>3!. To fabricate the Ge-PH (middle in Fig. 1a), as-
fabricated B-FeOOH nanorods were immersed in a Ge solution
for 30 min and rapidly annealed. The Ge solution for doping was
made by dissolving GeO, powers in deionized water. Since all of
the samples were subjected to the high-temperature annealing
step (800°C for 20 min), which creates Sn-doped Fe,Os;, we
deliberately omit mentioning the Sn for simplicity in this study.

Morphology of Fe;O3, Ge-H, and Ge-PH. Figure 1b-d is SEM and
TEM images of the as-prepared hematite photoanodes, verifying
morphology can be controlled simply by the surface treatment of the
B-FeOOH nanorods. Fe,O; and Ge-H showed a conventional
worm-like morphology with ~70 nm diameter and ~300 nm length.
The Fe,O3 nanorods in the Fe,O3 and Ge-H had a thicker diameter
and lower length than B-FeOOH nanorods, since the Fe,Os
nanorods were collapsed and coarsened during the high-temperature
annealing process, as shown in Fig. 1b, c. However, in Ge-PH, the
nanorods had a diameter and length (diameter: ~50 nm and length:
~350 nm) similar to p-FeOOH nanorods, but with a nanoporous
structure, as shown in Fig. 1d and Supplementary Fig. 1. By applying
a GeO, overlayer on B-FeOOH before the annealing process, nano-
porous hematite was created. In brief, the pore generation
mechanism in Ge-PH is as follows. (i) The immersion of -FeOOH
into the Ge solution creates a thin GeO, layer on the surface of the
FeOOH. The thin GeO, layer serves as a hard template to prevent
the melting of the hematite during the annealing process (Supple-
mentary Figs. 2 and 3)#2. (i) The GeO,/p-FeOOH undergoes in situ
conversion into Ge-PH by subsequent high-temperature annealing.
In this process, the mass evaporation of water in the hard template
generated vacancies in the GeO,/B-FeOOH. This high-temperature
dehydration creates Ge-PH with mesopores inside, via the previously
reported gas entrapping mechanism®. In addition, the Kirkendall
effect, the motion of the interface between two materials due to
different diffusion rates of each atom, was partly involved in the
creation of pores, as reported by Gong’s group?®. Due to the low
density of the active material, Ge-PH is more transparent than Fe,O;
and Ge-H (Supplementary Fig. 4).
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Fig. 1 Fabrication process and morphology of Ge-PH. a Scheme for fabrication of the Fe,O53, Ge-H, Ge-PH. b Scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) images (top-view (b-1, c-1 and d-1), cross-section (b-2, c-2 and d-2) and TEM image (b-3, c-3 and d-3)) of
b Fe,03, € Ge-H and d Ge-PH. e Scanning transmission electron microscopy (STEM) image of Ge-PH and the corresponding elemental mapping of f Fe,

g O, h Ge and i Sn.

As shown in Fig. le-i, the energy dispersive X-ray (EDX)
mapping of Fe, O, Ge and Sn elements by STEM analysis shows
spatially uniform distribution and the porous morphology of the
Ge-PH.

Ge-PH with a nanoporous structure has two main advantages
over Fe,O; or Ge-H. First, the path distance for the generated
holes to travel from inside to the surface of the hematite, where
oxygen generation occurs, is shortened (10-15 nm), which helps
address the critical issues of the short hole-diffusion length of
hematite, as shown in Fig. 1d. We compared the PEC
performance of the samples with front and back illumination,
which confirmed that Ge-PH had the shorter diffusion length for

holes to reach the surface as shown in Supplementary Fig. 5.
Second, the occurrence of pores in the Ge-PH increases the
number of reaction sites for oxygen evolution, simply by
increasing the surface area. As shown in the BET data for the
surface area and pore distributions (Supplementary Figs. 6 and 7),
Ge-PH exhibited five-fold (~10 m3/g) increased surface area
compared to Fe,O; or Ge-H (~2m3/g) with a mesopore
morphology. Besides the structural differences between Ge-H
and Ge-PH, the Ge in Ge-PH was doped in the final step by the
thermal diffusion of Ge from the surface, whereas the Ge was
uniformly doped in Ge-H at the beginning step, during the
process of forming the f-FeOOH state.
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Fig. 2 The performance and structure analysis of various photoanodes. a Comparison of the photoelectrochemical performance of Fe,0s, Ge-H, and
Ge-PH in a TM NaOH (pH =13.6) electrolyte under simulated sunlight illumination (1 SUN). b Comparison of b) XRD patterns and ¢ Raman spectra of
Fe,Os, Ge-H, and Ge-PH. XPS spectra of d Ge 3d, and e Sn 3d. f Fourier transform of the EXAFS data at the Fe k-edge of the hematite nanostructures in
Fe,Os, Ge-H, and Ge-PH. The XPS depth profiles of g Sn, h Ge, and i calculated Sn:Ge doping ratio.

PEC water oxidation activity and characterization. Figure 2a
compares the photocurrent density generated from samples
prepared with different doping methods during the photoelec-
trochemical water-splitting process. The Ge-PH photoanode
delivered around 3.5 times (~3.5mAcm 2 at 1.23Vgyg) and
1.8 times higher photocurrent density compared to the Fe,O;
(~1.0mAcm—2 at 123Vgys) and Ge-H (~1.9mAcm~2 at
1.23Vryg) photoanodes, respectively.

To determine whether this remarkable improvement was
simply due to the hematite porosity, we fabricated Fe,O; with a
similar porous morphology using other currently representative
dopants (Sn, Ti, or Si). The results clearly showed that Ge was
superior to Sn, Ti or Si dopants for hematite, as shown in
Supplementary Fig. 8.

The reason can be explained by the advantage of Ge as a
dopant in hematite, including the feasible atomic radius of Ge,
and the low formation enthalpy of the secondary phase of GeO,
as previously reported?’.

In particular, Ge-PH showed high performance at low voltage
without an anodic shift in the onset potential, despite the doping.
It has been reported that, in a typical doping system, the increase
in defect sites produced by doping can enhance carrier mobility,

and carrier density in the bulk, while simultaneously providing
recombination sites on the surface, resulting in an anodic shift of
the onset potential*’. Furthermore, the Fe2+ formed by n-doping
in hematite is also known to act as a recombination site on the
surface, which consequently retards the water oxidation reaction
in doped hematite*3. This is in accordance with the anodic shift of
the onset potential for all doped hematite photoanodes (Sn, Ti, Si-
doped hematite), including the Ge-H in this study, compared to
that for Fe,O;. Therefore, one of the critical issues has been to
optimize the two components (onset potential vs current density),
which operate in an opposite manner at 1.23Vyyg.

Thus, the result here that the Ge-doping in Ge-PH did show a
cathodic shift of the onset potential is certainly interesting
(Supplementary Fig. 9), and suggests that there could be an
important factor in our Ge-PH (Surface Ge-doped hematite).

To explore this phenomenon more systematically, we carried
out various scientific analyses of Ge-H and Ge-PH. First, the XRD
patterns showed similar hematite peaks to Fe,O; without the new
phase formation in Ge-H and Ge-PH, as shown in Fig. 2b. In the
Raman spectra, the appearance of the forbidden longitudinal
optical (LO) mode, corresponding to the peak at 660 cm~1, is
indicative of the symmetry breakdown induced by structural
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disorder, scattered LO phonons*. The LO peak was largely
increased and broadened in the Ge-H, compared to Fe,O;,
whereas the much reduced LO peak was observed in Ge-PH, as
shown in Fig. 2c. This implies the symmetry breaking by Ge-
doping in Ge-H is much larger than in Ge-PH.

A correlation between the Ge and Sn dopants was confirmed
by X-ray photoelectron spectroscopy (XPS) data. The observation
of a Ge 3d peak at ~31.6 eV from Ge-PH indicates that the Ge
atoms were successfully doped in Fe,O; with a higher content of
Ge compared to Ge-H by the high-temperature annealing
process, as shown in Fig. 2d and Supplementary Fig. 104142,

The Sn 3d peaks centered at 494.7 (Sn 3ds/,) and 486.2 eV (Sn
3ds),) of Fe,0;, Ge-H, and Ge-PH in Fig. 2e suggest that all of the
hematite samples were unintentionally doped by Sn** ions from
the FTO substrate during the high-temperature annealing
process'®42, Tt should be noted that the Ge-PH had much a
lower Sn dopant content than Fe,O; and Ge-H. This can be
attributed to the GeO, overlayer and the relatively long and thin
nanorod morphology of Ge-PH, as compared with the coarsened
short and bare nanorods of Fe,O; and Ge-H, as shown in
Supplementary Fig. 342. The thinner and longer nanorods of the
Ge-PH have lower chances of bulk Sn diffusion from the bottom
FTO substrate during the high-temperature annealing process. In
addition, the GeO, overlayer can suppress surface Sn diffusion
from the surrounding area of the nanorods on the FTO substrate.

In order to check the effect of Sn content on the crystallinity of
the doped sample, we carried out extended X-ray absorption fine
structure (EXAFS) measurements, which also included informa-
tion about the inter-atomic distance and the local dynamics of the
system. X-ray absorption near edge structure (XANES) results
which show the oxidation state change of the host atom can
be found in Supplementary Fig. 11. The Fourier transform of the
EXAFS results in the R space in Fig. 2f shows a clear difference
among the three samples with different doping conditions. The
peak around 1.5 A and 3 A can be attributed to Fe-O bonds and
Fe-Fe bonds, respectively. The decreased intensity of the Fe-O
and Fe-Fe bonding lengths for Ge-H compared to Fe,O; was
confirmed, revealing there was a prominent distortion of the
crystal structure after Ge doping. Also, an increased R space was
observed for the Fe-O bonding length in Fe,O; and Ge-H,
in(zlicating the formation of a lower oxidation state of Fe, such as
Fe?t.

We hypothesized that these probably suggest that Sn has a
greater influence on structural distortion, due to the larger atomic
size than Fe and the excess charge coming from the n-type
dopants??,

To clearly pinpoint these assumptions, the chemical composi-
tions of Fe,O3, Ge-H, and Ge-PH were examined by XPS depth
profile. The results showed that the Sn-doping ratio of Fe,O; and
Ge-H were 4.5-9.5% in the whole region. However, the doping
ratio of Sn in Ge-PH was much reduced, with a maximum
0.7-0.8% in the whole region as shown in Fig. 2g. This suggests
that unintentional Sn-doping by thermal diffusion from the FTO
substrate was suppressed by the GeO, overlayer in the long and
thin nanorods compared to the short and thick nanorods without
the overlayer. Since Ge-PH has an unfavorable and long Sn
diffusion path from the bottom FTO substrate, it has less Sn
content on the surface of the hematite where the OER reaction
occurs, resulting in fewer chances for Ge:Sn combination, as
described in Fig. 3e.

The Ge-doping ratios of Ge-H and Ge-PH were measured to be
3.4-5.5% and 7.7-13.8% in the whole structure region, as shown
in Fig. 2h. Although the total doping content (Sn + Ge) of Ge-H
and Ge-PH was similar (around 8-14%, Supplementary Figs. 12
and 13), the doping ratio (Sn/Ge) of Ge-H was 14-19 times
higher than in Ge-PH. Therefore, we can conclude that when the

content of Sn increases significantly, it will have a negative effect
that causes structural distortion (as proven in Fig. 2c, f). The
lower content of Sn:Ge in the surface region of Ge-PH, which was
clearly observed in the XPS depth profile, well explains the
cathodic shift of the onset potential, indicating reduced
recombination in the OER reaction. We checked the content of
the oxygen vacancy in each sample because it can promote the
reaction kinetic and increase the carrier density to enhance
the charge transfer and suppress recombination. Ge-PH showed
the highest oxygen vacancy content as shown in Supplementary
Fig. 14. Since the oxygen vacancy content increases with an
increasing doping concentration and Ge is easily diffused from
the surface GeO, layer, the oxygen vacancy of Ge-PH was high
but still within the oxygen vacancy level of typical Fe,03°0. As can
be seen in Supplementary Fig. 14b, all samples showed similar
OER curves in dark conditions which indicate that the level of the
oxygen vacancy contained in our samples did not cause a change
in the OER mechanism.

Theoretical and experimental investigation on the effect of Ge:
Sn co-doping

Solubility of Sn and Ge in hematite. To understand the solubility
of Sn and Ge in hematite, we calculated the formation energy for
Sn-doped Fe,03, Ge-doped Fe,05 and Ge:Sn co-doped Fe, O3, as
shown in Fig. 3a. The formation energy for Ge:Sn co-doping
(blue) and Sn-doping (pink) was higher than that for Ge-doping
(red). The high formation energy of Ge:Sn co-doping in Fe,O;
specifically indicates the low dopant solubility and low ionization
of the Ge dopant in hematite3’. We explored the structure dis-
tortion caused by the presence of Ge and Sn by comparing the
atomic structures of Ge-doped hematite and Ge:Sn co-doped
hematite using DFT calculations. As can be seen in Fig. 3b, the
Ge:Sn co-doped hematite experiences greater symmetry breaking
after the re-positioning of the Fe atoms, while the substitutional
single Ge-doping did not produce any noticeable distortion in the
atomic arrangement.

Based on DFT calculations, we drew the atomic arrangement of
hematite with the substitution of heteroatoms to clearly under-
stand this phenomenon, as shown in Fig. 3c. Single-Ge-doped
hematite did not show much distortion since the Ge dopant has a
radius similar to Fe in hematite, and Ge becomes more soluble
than other representative metal dopants. In the case of Sn-doped
hematite, relatively high structural distortion occurs since the Sn
dopant has a larger radius than Fe. When Ge and Sn are co-
present, additional strong electron repulsion between Fe atoms
neighboring the Ge and Sn dopants is produced by the excess
electron charges from the n-type metal dopants in Fe,Os. FTO is
preferentially used as a substrate of hematite-based photoelec-
trodes, since it withstands the high temperatures for hematite
activation (>700 °C) relatively well compared to other transparent
substrates, including AZO or ITO*3>152,

Observation of the structural disorder. Figure 3d is the XPS spectra
of Fe 2, which shows that Ge-H has more Fe?* than Ge-PH. A
structural strain can occur due to a mismatch in the atomic radius
upon doping. Sn has a very large radius compared to Fe, whereas
the Ge atom has a similar radius to the Fe atom. Since Fe,O3 and
Ge-H have more Sn content compared to Ge-PH, a higher con-
tent of Fe(II) was observed as shown in Fig. 2g. Ge-H has a large
amount of diffused Sn, where Ge is present throughout the
hematite nanorod. In Ge-PH, however, the majority of the Ge and
Sn dopants are positioned in different regions, and the amount of
diffused Sn is relatively small in the surface region where the OER
reaction occurs specifically, thus minimizing the adverse effect
caused by the co-existence of the two n-dopants, as shown in
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distribution of Sn and Ge according to co-doping methods.

Fig. 3e. Therefore, due to the lower content of Sn, Ge-PH was
expected to experience a lesser distortion than Ge-PH.

These results well explain the XRD, Raman, EXAFS, XPS
spectra, onset potential, and the PEC activity observed in Fig. 2
and Supplementary Fig. 9, which show that the structural
distortion observed in Ge-H caused by co-doping of Sn and Ge
in hematite was almost recovered in Ge-PH, which had a status
similar to the original undoped hematite.

Recombination rate and surface activity. Between the two n-
type elements investigated in this study, Ge is superior to Sn,

which was confirmed by electrochemical analysis (Supplementary
Fig. 15). The highest charge carrier density of Ge-PH, which is
inversely proportional to the lowest slope of the curve in the
Mott-Schottky plot (Fig. 4a), was in a good agreement with the
simulation and experimental results. These results are consistent
with the impedance data in Fig. 4b and electrical conductivity
data in Supplementary Fig. 16. Therefore, enhanced carrier
density and electrical conductivity of Ge-PH can maximize the
PEC performance. From the Mott-Schottky plot, we also inves-
tigated the flat band potential as shown in Table 1. Basically,
hematite with a low flat band potential delivers a low onset
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Fig. 4 Electrochemical analysis and simulated OER activity. a Mott-Schottky plots and b EIS measurements (with the circuit model). ¢ Free energy
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Table 1 Representative results for the flat band potential
(EFB), charge carrier concentration (ND), and space charge
width (Wsc) from Mott-Schottky measurements.

Ers (V) Np (1020 cm—3) W (nm)
Fe,O3 0.39 0.22 124
Ge-H 0.53 0.70 6.26
Ge-PH 0.43 3.10 2.97

potential as in the previously reported work®3. In our photo-
anodes, Fe,0; showed the lowest flat band potential (0.39Vgyg)
compared to Ge-H (0.53Vryg) and Ge-PH (0.43Vgyg). However,
the similar onset potential of Fe,O3 and Ge-PH was observed due
to the make-up in the flat band potential by the favorable acti-
vation energy in Ge-PH.

Figure 4b shows the Nyquist plots used to investigate the
influence on the electrolyte/Fe,O; interface. The R, value (charge
transfer resistance between the electrolyte/material, second
semicircle) of Ge-PH was much smaller than that of Fe,O; or
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Ge-H. And Ry, a resistance related to the rate of trapping holes
in the surface states (first semicircle), was also smaller than that of
the other photoanodes.

To support the reduced overpotential and excellent perfor-
mance in Ge-PH observed in our experimental result, DFT
calculations were performed to determine the theoretical over-
potential. Figure 4c shows the calculated free energy for each
elementary step. In our limited study, an ideal hematite structure
(without unintentional Sn diffusion) was analyzed to confirm the
Ge dopant effect on the theoretical OER values (undoped vs. Ge-
doped). It is known that the rate-determining step for hematite is
the reaction B (*OH — *O) where the deprotonation from *OH
can make the charge state (*O) very unstable®*->. In undoped
hematite, therefore, the reaction B corresponding to deprotona-
tion from *OH has the highest free energy in the reaction
pathway and the reaction potential was determined to be 2.2372
eV. The calculated overpotential for undoped hematite is 1.007
eV, which is in reasonable agreement with previous theoretical
studies for (0001) hematite>4°5.

To lower the free energy for the reaction B, it is necessary to
reduce the instability of *O. When Ge is doped in hematite, the
charge state of *O can be more stable since an n-type dopant Ge
provides the electron to oxygen37-3%>4, Therefore, the free energy
of the reaction B is significantly reduced by Ge doping. On the
other hand, due to a trade-off relationship of the free energy
between the reaction B (*OH — *O) and the reaction C (*O —
*OOH)4, the rate-determining step of Ge-doped hematite is the
reaction C, which has a 0.119 eV lower overpotential (0.888 eV)
than undoped hematite, which is in consistent with our
experimental J-V curve.

Charge separation efficiency was calculated based on the LSV
curves under illumination in 1M NaOH and 1M NaOH
containing 0.5M hole scavenger, Na,SO;, as shown in Fig. 4d.
Notably, Ge-PH showed a substantially higher charge transfer
efficiency than Fe,O; and Ge-H over the entire tested potential
range, and approached 80% at potentials beyond 1.3Vypygp as
shown in Fig. 4e. The results of the electrochemical analysis and
DFT calculations clearly support the reason for the low onset
potential of Ge-PH.

NiFeO,@Ge-PH/PSC solar water splitting performance. In
order to confirm the feasibility of our photoanode for solar water
splitting, we evaluated the performance of Ge-PH in a tandem
configuration®’-%1. We prepared a tandem device containing a
single PSC and a hematite photoanode similar to the Z-scheme in
natural photosynthesis, in which two semiconductors with dif-
ferent absorption spectra are efficient over a broad part of the
solar spectrum, and deliver a high STH efficiency for water
splitting.

For this setup, we employed a PSC fabricated using a recently
developed procedure (short-circuit current (Ji) =21.60 mA
cm~2, open-circuit voltage (V) = 1.16 V, and fill factor (FF) =
75.07%; power conversion efficiency (PCE)=18.85%, Supple-
mentary Fig. 17)%2. The PSC is unable to drive the reaction on its
own (or with an efficient electrocatalyst) because its photovoltage
is less than what is thermodynamically required to split
water89,

A schematic of the tandem configuration, with the PSC
connected electrically and optically in series with the hematite is
shown in Fig. 5a. To boost PEC performance, NiFeO,, one of the
representative OER catalysts used in hematite-based PEC
systems, was deposited on the surface of the Ge-PH photoanode.
NiFeOy can greatly reduce the recombination via a facile charge
separation process by enhancing the transfer kinetics for OER.
Therefore, NiFeO,/Ge-PH (in water) achieved almost the same

performance as Ge-PH with a sacrificial agent (in sulfite). When
NiFeO, was applied to Ge-PH, the photocurrent density of the
NiFeO,@Ge-PH reached 4.6 mA cm—2 at 1.23 Vg as shown in
Fig. 5b. In addition, the NiFeOy catalyst helped shift the onset
potential with enhanced performance (Supplementary Fig. 18).
When NiFeOy was applied to Ge-PH, the photocurrent density of
the NiFeO,@Ge-PH reached 4.6 mA cm~2 at 1.23 Vyyg as shown
in Fig. 5b.

To estimate the operating current density, J-V curves of the
PSC were measured by placing the hematite photoanode before
the solar cell to account for optical absorption by the hematite
photoanode as shown in Fig. 5c. The operating current density in
the tandem configuration was thus estimated to be around 3.9
mA cm 2. The assembled tandem device was subsequently tested
in 1M NaOH electrolyte without additional external bias in a
two-electrode configuration, using the current density versus time
(J-t) curve under 1 SUN (AM 1.5 G, 100 mW cm—2). The current
density closely matched the operating current extracted from
Fig. 5c, with good stability, as shown in Fig. 5d and
Supplementary Fig. 19. The STH conversion efficiency was
calculated to be 4.8% for the Ge-PH and PSC tandem systems. To
the best of our knowledge, this is the highest STH efficiency
obtained for a single hematite-based photoanode with a tandem
device, as shown in Supplementary Tables 1-3.

Finally, we calculated the faradaic efficiency of the tandem
device by measuring the H, and O, evolution under AM 1.5
illumination in 1 M NaOH electrolyte. As shown in Fig. 5e, the
hydrogen gases produced on the Pt mesh and the oxygen gases on
NiFeO,@Ge-PH were around 68.5 and 34.0 pmol after 120 min,
respectively, indicating a 2:1 ratio of the water splitting
mechanism. The ratio between the measured and predicted gas
evolution rates gives a faradaic efficiency of 87-95% throughout
the measurements. Therefore, most of the photo-generated
charges were consumed by water splitting (hydrogen/oxygen
gas generation) in our tandem system.

In summary, we present an approach to achieve the
theoretically potential results in a water-splitting system of
co-doped hematite. We demonstrated that the morphology-
controlled Ge-doped hematite with the reduced content of
unintentionally doped Sn can be a stepping-stone to approach
hematite’s theoretical efficiency, including the high photocur-
rent density and the low turn-on voltage. Employing our
findings and enhanced performance, the NiFeO,@Ge-PH/PSC
tandem system delivered the photocurrent density of ~3.9 mA
cm~2 in 1 M NaOH electrolyte. Therefore, our insight and co-
doping strategy, which reduces the Sn content in hematite for
water splitting, potentially provides a paradigm for electrode
design and could be further extended to other heteroatom-
dopant systems (Ti, Sn, Si, Zr, and Ga) utilized in numerous
applications, including solar conversion, sensing, and opto-
ferroelectric devices which require doping for enhanced
electrical conductivity.

Methods

Preparation of the Fe,03 and Ge-doped Fe,03 (Ge-H) photoanode. Bare Fe,0;
as a reference photoanode was grown on FTO glass utilizing aqueous chemical
growth methods. The synthesis of f-FeOOH rods was performed in an aqueous
solution containing 100 mL of 150 mM ferric chloride hexahydrate (FeCl; - 6H,0),
and Ge-doped B-FeOOH rods was mixed with 500 pl Ge precursor. Ge precursor is
completely dissolved in DI water when sonicated with 40 mM GeO, for 6 h to
make clean solution. The solution was placed in a cap-sealed glass vial containing
two back-to-back slips of FTO glass leaning against the inner wall. The glass vial
was placed in a forced convection oven with a programmable temperature con-
troller. After heating to 100 °C from 30 °C for 2 h, the temperature was maintained
for 3 h, during which B-FeOOH or Ge-doped B-FeOOH rods were synthesized on
the FTO substrate. The sample was thoroughly washed by water and dried by N,
gas. The p-FeOOH rods on the FTO substrates were rapidly inserted into a furnace
tube at 800 °C for 20 min and taken out to ambient conditions.
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d Stability of the NiFeO,@Ge-PH at 1.23Vrye and NiFeO,@Ge-PH/PSC solar water splitting. e Faradaic efficiency of the NiFeO,@Ge-PH.

Preparation of the Ge-doped porous Fe,03; (Ge-PH) photoanode. p-FeOOH Decoration of NiFeO, oxygen evolution catalysts on Ge-PH. For depositing the
grown on the FTO substrate was immersed in Ge precursor for 30 min. After NiFeOx OER catalyst on Ge-PH, the Ge-PH photoanode was immersed in a
washing the sample with DI water and drying by N, gas, the GeO,/B-FeOOH was  NiFeOy precursor solution. Precursor solutions were prepared from iron(III) 2-
annealed using the same method (rapid insertion into a furnace tube at 800 °C for  ethylhexanoate (50% w/w in mineral spirits) and nickel(II) 2 ethylhexanoate (78%
20 min and removal to ambient conditions) as was used in the preparation of w/w in 2-ethylhexanoic acid) by dissolving the appropriate amount of the metal
Fe,0; or Ge-H to create hematite with Ge-PH. precursor in hexanes to give a total concentration of a 15% w/w metal complex.
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These solutions were further diluted with hexane to prepare a solution with a total
metal concentration of 50 mM. The photoanode was irradiated with UV light
(254 nm) for 1h and was then annealed in a preheated furnace at 100 °C for 1 h.

Characterizations. The structures of the samples were characterized by SEM
(Nano-SEM 230, 15kV), TEM (JEM-2100, 200 kV), and Raman spectroscopy
(WTItec, alpha300R, excited by a 532 nm laser). X-ray diffraction measurements
were carried out with a Rigaku Co. High power X-ray Diffractometer D/MAZX
2500 V/PC from 10° to 80°).

PEC measurements. A three-electrode configuration in a homemade photoelec-
trochemical kit with an exposure area of 0.09 cm? and front-side simulated AM 1.5
illumination (Sol2A class ABA 94062 A, 1000 W Xenon lamp, Newport), composed
of an Ag/AgCl (KCI sat.) electrode and a Pt mesh as the reference and counter
electrodes, respectively, were used for PEC measurements. The intensity of light was
adjusted to 100 mW cm 2. A 1.0 M NaOH solution was used as a pH 13.6 electrolyte.
Potentials versus RHE were calculated using the Nernst equation Egpig = Eag/agci +
0.0591(pH) + 0.1976 V. The scan rate for J-V curves was 20 mV s~ 1. EIS was carried
out at a frequency range from 100 kHz to 0.1 Hz using a potentiostat (VersaSTAT 3).
EIS experimental data were analyzed and fitted using the Z-view software.

Methylammonium iodide (MAI) synthesis. Methylammonium iodide was syn-
thesized by adding dropwise 57% aqueous hydriodic acid (HI, 30.0 mL) into 40%
aqueous methylamine (19.6 mL) solution with vigorous stirring under an ice bath.
After the addition of HI, the solution was stirred for another 2 h. The solvent was
then removed under vacuum using a rotary evaporator and the precipitate was
dissolved in ethanol and recrystallized in diethyl ether. The precipitates were
collected by suction filtration and the resulting MAI was then dried at 60 °C under
vacuum overnight. Formamidinium iodide (FAI) was also synthesized under
identical conditions as described above.

Synthesis of FAPbl; and MAPbBr; powders. Stoichiometric amounts of FAI and
Pbl, for FAPbI;, MAIL and PbBr, for MAPbBr; were dissolved in 2-
methoxyethanol under stirring at 120 °C for 30 min and 100 °C for 30 min,
respectively. The precipitates were collected by suction filtration and dried under
vacuum overnight.

Photovoltaic device fabrication. FTO-coated glass (Pilkington, TEC8) as a sub-
strate was cleaned in an ultrasonic bath using detergents, acetone, and ethanol for
30 min, respectively. Titanium diisopropoxide bis(acetylacetonate) precursor
solution diluted in ethanol with a ratio of 1:10 by volume was sprayed on the FTO
substrate at 450 °C for coating of TiO, hole blocking layer (bl-TiO,). Mesoporous
TiO, layer (mp-TiO,) was then deposited onto the bl-TiO,/FTO substrate by spin-
coating TiO, paste with an average particle size of 50 nm at 1500 rpm for 50 s.
Afterwards, the substrate was annealed at 500 °C in air for 1 h. The synthesized
FAPbI; and MAPbBr; powders with 8:2 mole ratio were dissolved in N-N-dime-
thylformamide (DMF) and dimethylsulfoxide (DMSO) with the DMF to DMSO
volume ratio of 4:1 under stirring at 60 °C for 1 h. The perovskite solution filtered
by PTEE syringe filter (0.2 um) was deposited on the mp-TiO,/bl-TiO,/FTO
substrate by two consecutive spin-coating steps at 1000 rpm for 15 s followed by
5000 rpm for 20 s with a ramping rate of 300 and 1300 rpm s~!, respectively. One
milliliter of ether was dropped onto the spinning substrate 10s after starting the
second spin-coating stage. The perovskite-deposited substrate was then heat-
treated on a hot plate at 150 °C for 10 min. For deposition of the organic hole
transporting material, 2,2/,7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-
spirobifluorene (spiro-OMeTAD) (88 mg in 1 mL of chlorobenzene) was mixed
with 7.5 uL of lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) solution in
acetonitrile (170 mg mL1) and 7.5 uL of 4-tert-butylpyridine (tBP). The hole-
conducting material was spin-coated at 3000 rpm for 30 s on the perovskite/mp-
TiO,/bl-TiO,/FTO. Finally, a gold layer was deposited on the hole conducting layer
using a thermal evaporator.

DFT calculation details. All calculations were performed in the framework of the
spin-polarized density functional theory with the projector augmented wave
(PAW) method®® using the Vienna ab-initio simulation package (VASP) code®*.
The exchange-correlation was considered using the generalized gradient approx-
imation of Perdew, Burke, and Ernzerhof (PBE)®5. The cut-off energy for the plane-
wave basis set was 500 eV, and Monkhorst-Pack k-point mesh of 4 x 4 x 1 was used
for all the slab structure of a-Fe,O; (hematite). The ionic positions were relaxed
until a force convergence of 0.01 eV A~! was reached. Because of the strongly
correlated 3d states in transition metal oxide systems, we used the GGA + U
framework to modify the self-interaction®. The values of U-J of all the 3d metals
were set to 4.2 eV for good agreement with the experimental band-gap of a-Fe,03
(2.2 eV). The hexagonal unit cell of a-Fe,05; was optimized with a layered anti-
ferromagnetic (AFM) ordering. For pure a-Fe,O; unit cell, the lattice parameters
calculated within PBE + U were a=b=5.07 A and ¢ =13.88 A, and they were
consistent with the experimental values of @ = 5.04 A and ¢ = 13.75 A7, Each fully
relaxed bulk structure of pristine and Ge-doped a-Fe,O; was used to determine the

lattice parameters of each (1 x 1) slab structure. A vacuum layer at least 12A was
used to minimize the interaction between the periodic surface along z axis. We
focused on the surface reaction on (0001) a-Fe,O5 surface because it is one of the
natural growth faces of hematite®. Dopant substitutions were made at both out-
ermost Fe layers to consider the maximum doping effect on surface reactions and
to remove the polarization from broken symmetry>*. Hydrogen passivation was
used to prevent the transfer of hydrogen atoms from the active site to the other
surface oxygen. We passivated only one of the three surface oxygen atoms to
minimize the hydrogen bonding that affects the reaction.

We considered the following OER mechanism with four elementary steps®®.

H,0+* — *OH+H" + e~ (1)
*OH — *O+ Ht+e” )
H,0 + *O — *OOH + H' + e~ (3)
*OOH — *+ 0, + H +e” (4)

The * represents chemisorption with the reactive sites on the surface. According
to Rossemiesl et al.%%, at standard conditions (pH =0, p = 1 bar, T =298 K), the
reaction free energy(AG) of each step is calculated as follows:

AG, = AE.y + (AZPE — TAS), —e - ® (5)

AGy = AB«g — AEwoy + (AZPE — TAS), —e- @ ()
AGg = AE+gy — AEs + (AZPE — TAS); —e - @ @)
AGp = 4.92eV — AE.oy + (AZPE — TAS), —e - ® ®)

AEs«op» AE« and AE« ey are the binding energies for the adsorption of OH, O,
and OOH, respectively. ZPE is the zero-point energy and TAS is entropic
contributions. @ is the external potential. At the standard condition with ® = 0,
the highest free energy (AG,,,,) is equal to reaction potential for electrochemical
reaction potential and (AG,,,, — 1.23) is equal to overpotential ().
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