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h i g h l i g h t s
� Several boehmite-phenolic resin composite carbon molecular sieve membranes were developed.

� The hydrophilic boehmite nanosheets were used to increase the adsorption of water.

� Water permeability shows an optimum with the initial boehmite content around 0.8 wt. %.

� CMSM are promising material for the water separation from gaseous mixtures at relatively high temperatures.
a r t i c l e i n f o

Article history:

Received 29 June 2021

Received in revised form

15 October 2021

Accepted 21 October 2021

Available online xxx

Keywords:

Carbon membranes

Water separation

Hydrophilicity

Capillary condensation

CO2 hydrogenation

Alumina-CMSM
* Corresponding author. Sustainable Process
Rondom 70, 5612, Eindhoven, the Netherlan
** Corresponding author.

E-mail addresses: F.Gallucci@tue.nl (F. Ga
https://doi.org/10.1016/j.ijhydene.2021.10.155

0360-3199/© 2021 The Author(s). Published by Else

license (http://creativecommons.org/licenses/by/4.0

Please cite this article as: Poto S et al., Vapor
investigation, International Journal of Hydr
a b s t r a c t

The separation of H2O vapor from (hydrogen-rich) gaseous streams is a topic of increasing

interest in the context of CO2 valorisation, where the in situ water removal increases

product yield and catalyst stability. In this work, composite alumina carbon molecular

sieve membranes (Al-CMSM) were prepared from phenolic resin solutions loaded with

hydrophilic boehmite (g-AlO(OH)) nanosheets (0.4e1.4 wt. % in solution) which partially

transform to g-Al2O3 nanosheets upon thermal decomposition of the resin, improving the

hydrophilicity and thus the adsorption-diffusion contribution of the H2O permeation. The

g-Al2O3 nanosheets showed no influence on the pore size distribution of the membranes in

the range of micropores, but they increased the membrane hydrophilicity. In addition, the

use of boehmite in the resin solution causes an increase in the viscosity and thus an in-

crease in the carbon layers thickness deposited on the porous a-Al2O3 support (from 1 to

3.3 mm). Furthermore, the alumina sheets introduce defects in the carbon matrix,

increasing the tortuosity of the active layer, as concluded via phenomenological modelling

and parametric fitting of the experimental results. As a consequence, the water perme-

ability exhibits a maximum (1.3$10�6 mol$s�1 Pa�1 m�1 at 150 �C) with boehmite/alumina

content of ca. 0.8 wt. %, as the combined effects of increasing hydrophilicity (which favour
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Nomenclature

Symbol, Definition, Units

ki Permeability of component i, m

§i Permeance of component i, m

SH2O=i Ideal perm-selectivity of H2O t

i

SFH2O=i Separation factor of water tow

WH2O; perm: Weight of water collected fr

Mw;i Molecular weight of compone

Dt Time span of the permeation

DPi Gradient of partial pressure of

Pa, the membrane

Am Membrane area, m2

l Thickness of the carbon layer,

yi Molar fraction of component i

Pi Partial pressure of component

Fi Volumetric flow of componen

Vm Standard molar volume of a g

DP Gradient of total pressure acro

Pa

y Molar volume of water, mL=mo

s Water surface tension, N=m2

q Contact angle, deg

rp Pore radius, m

P0 or Pt Capillary condensation pressu

Ps Water saturation pressure on

Ap Cross sectional area of the por

Please cite this article as: Poto S et al., Vapor
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H2O permeability) and increasing thickness and tortuosity (which hamper permeability)

upon increasing boehmite loading. Similarly, the H2O/gas perm-selectivity is optimum at

1.2 wt. % boehmite loading. We further investigated the H2O permeation mechanism by

modelling the mono- and multi-layer adsorption and capillary condensation of water in

microporous media, which result as the main transport mechanisms in the explored

conditions.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
ol m�1s�1Pa�1

ol m�2s�1Pa�1

owards component

ards component i

om the permeate, g

nt i, g=mol

experiment, s

component i across,

m

i, Pa

t i, mL=min

as, mL=mol

ss the membrane,

l

re of water, Pa

planar surface, Pa

ous material, m2

CR Coefficient of resistance,

Fc;eff Effective capillary condensate flow,

Fg Flow rate due to Knudsen flow, mol=s

Fs Flow rate due to surface flow, mol=s

Ft Total flow through the membrane, mol=s

G1 Geometric constant of the membrane,

Kd Pore structure constant

Pc;eff Effective capillary pressure, Pa

Pc Capillary suction pressure, Pa

Pm Averaged gas pressure, Pa

PSD Pore size distribution

Fj¼1:6 Flow rate of flow type 1, 2, 3, 4, 5 and 6, mol=s

Qc Capillary condensate permeance, mol m�2s�1Pa�1

Qg Knudsen flow gas permeance, mol m�2s�1Pa�1

Q 0
g Knudsen flow gas permeance including pore

blockage, mol m�2s�1Pa�1

R Ideal gas constant, J mol�1K�1

re Effective pore radius, m

St Specific surface areas of porous material, m2=kg

h Viscosity of water, Pa,s

T Temperature, K

t Thickness of water adsorbed layer, m

x Amount of adsorbed material, mol=kg

Subscripts

perm or 2 Permeate

ret or 1 Retentate
Introduction

In strive for sustainability, the use of membrane (reactor)

technologies have proofed very attractive to increase resource

and energy efficiency of various chemical processes [1e7]. In

particular, they have gained increasing attention in recent

years for the much-needed valorisation of CO2, a greenhouse

gaswhich is often considered as an expensivewaste streamas

well as themain responsible of global warming [8e11]. Most of

the CO2 valorisation routes proceed via hydrogenation re-

actions (e.g., CO2 hydrogenation to methanol, ethanol, DME,

CO, CH4 etc.), where the large amount of water produced leads

to thermodynamic limitations and, sometimes, to catalyst

deactivation [12e14].
/gas separation through c
ogen Energy, https://doi.o
Several studies have already demonstrated, mainly from a

theoretical perspective, that the use of hydrophilic mem-

branes to promote the selective removal of H2O has remark-

able effects on the CO2 conversion [15e24]. The selection of

the membrane material is crucial, especially in terms of sta-

bility in hot humid environment [17]. For this reason, poly-

meric membranes are not suitable, since they cannot work at

very high temperatures, and undergo plasticization and

swelling phenomena. Porous inorganic membranes, on the

other hand, have been extensively studied for pervaporation

[25e30]. Ceramicmembranes, in particular zeolites, have been

mostly proposed for the in-situ removal of H2O in different

reactive systems [15e21,31,32]. Despites their excellent prop-

erties in terms of vapor permeability, mainly deriving from

their strong hydrophilicity, zeolite membranes suffer from: 1)
arbonmolecular sieve membranes: Experimental and theoretical
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poor reproducibility, due to the complexity of the synthesis

procedure [33,34] and 2) poor long-term stability when in

contact with large volume of hot water due to dealumination

[34,35]. Alternatively, carbon molecular sieve membranes

(CMSM) offer superior thermo-chemical stability in humid

and corrosive environments, as well as an excellent balance

between gas permeance and perm-selectivity, especially with

respect to polymeric membranes [36e38]. Thus, CMSM are a

potentially attractive candidate to selectively separate H2O

from other gases in the temperature conditions of the CO2

hydrogenation processes (i.e., 200e400 �C) [39,40].
Carbon-based membranes have emerged as promising

material for gas separation processes, with a wide application

spectrum, owing to the possibility to tailor the properties of

the carbon active layer and thus the governing permeation

mechanism to the desired separation. Most of these applica-

tions include the separation of mixtures of (dry) gases such as

CO2, N2, CH4, H2 or mixtures of alkane/alkene at relatively low

temperature (i.e., 20e80 �C) [38,41e51]. Only very recently they

have been demonstrated for water vapor permeation, at

temperatures above 150 �C [52]. Carbon membranes derive

from the pyrolysis of a thermoset polymeric precursor in inert

conditions or vacuum, typically deposited on the surface of a

porous ceramic support (e.g., a-Al2O3). Depending on the

conditions of the carbonization step (e.g., inert atmosphere,

temperature, time and heating rate) and on the physico-

chemical properties of the precursor, their porous structure

and degree of hydrophilicity/hydrophobicity can be tuned

according to the desired application and its perm-selectivity

requirements. Forster et al. [52] have recently reported that

an increase in the carbonization temperature causes, on

average, a shrinkage of the pore size and, at the same time, a

decrease in the affinity to water. Indeed, when the tempera-

ture of carbonization is increased above 550e650 �C, most of

the oxygen-based groups are removed. Upon decomposition

of the polymeric precursor, the imperfections in the micro-

crystalline regions give rise to a porous structure which typi-

cally includes ultra-micropores (i.e., dp � 0:6) and micropores

(i.e., 0:6 � dp � 2) [53,54]. These are the main responsible for

the separation mechanism via molecular sieving (i.e., based

on size exclusion) and adsorption diffusion (i.e., based on

physicochemical differential interactions between diffusing

species and the membrane surface), respectively. Besides the

pore structure and surface properties of the membrane, the

operating temperature is a well-known parameter that de-

termines the governing permeation mechanism. At higher

temperatures, corresponding to higher molecular energy

level, the collisions of the molecules with the pore walls are

more frequent, slowing down the permeation process. This

phenomenon is known as Knudsen diffusion [55]. Therefore,

higher temperatures hinder the adsorption phenomena, and

the transport mechanism inevitably turns into the molecular

sieving or Knudsen diffusion [54,56]. For each diffusing gas, a

specific temperature exists at which the adsorption-diffusion

is not relevant anymore. Llosa et al. [44] reported that for

temperatures above 180 �C and 80 �C, the adsorption-diffusion

mechanism for CO2 and CH4, respectively, is negligible. At

lower temperatures, on the other hand, when the adsorption-

diffusion mechanism is dominant, the diffusing species could

reduce the effective pore size of the membranes, hindering
Please cite this article as: Poto S et al., Vapor/gas separation through c
investigation, International Journal of Hydrogen Energy, https://doi.o
the permeation of the non-diffusing species. Therefore, at low

temperatures, higher perm-selectivity values can be achieved.

While most of the literature on CMSM deals with (low

temperature) gas separation processes, which are usually

described as a combination of molecular sieving and/or

adsorption-diffusion, very limited attention has been paid to

the separation of mixtures containing condensable species

like H2O. In these cases, an additional transport mechanism

via viscous flow of capillary condensate [57e59] should be

contemplated. Indeed, for wetting systems (e.g., H2O on a

hydrophilic solid surface) the vapor pressure in a capillary is

lower than that on a planar surface, as described by the Kel-

vin's equation [60]. Thus, water can condense in the micro-

pores of the carbonmembranes with sufficient hydrophilicity.

The viscous flow of capillary condensate is usually slower

than the multi- and mono-layer adsorption-diffusion [57],

explaining the observed maxima in permeability vs. surface

hydrophilicity reported by Forster et al. [52]. In other words,

strengthening surface interactions (e.g. by decreasing tem-

perature or tunning surface hydrophilicity/hydrophobicity)

does not always render an increase in permeance. Whereas

the existence of capillary condensation may be considered as

a nuisance (i.e. lower permeability), or even complexing factor

that obscures the interpretation of experimental data, it can

surely be used for the rational design of a selective membrane

if properly understood. When looking at the case of water

separation, a hydrophilic carbon membrane is an obvious

choice given their well-established affinity to H2O [42,50].

Water is known to adsorb on the pores already at ambient

conditions, reducing the active pore size of the membranes

[62] and thereby increasing the separation factors between

water and other gases. Even more, when capillary condensa-

tion occurs, water could partially or totally block the pores of

the membranes, further supressing the permeation of the

other gases. In processes involving CO2 hydrogenation, where

the focus is the selective separation of H2O from reactants and

products such as H2, CO2 and CO, this is for sure an enormous

advantage.

In practical terms, the hydrophilicity of the carbon mem-

brane can be tuned not only by selecting the proper polymer

precursor and/or the conditions of the carbonization step [52].

Besides, the incorporation of additives like silica [63] or

boehmite [64] in the carbon matrix have also proved to affect

the gas permeability, due to an alteration of the pore distri-

bution. However, the effect of those fillers on the membrane

hydrophilicity has not been investigated yet. In this work, we

study the effect of the concentration of boehmite nanosheets

into the CMSM on the hydrophilicity of the membrane and its

effect on water vapor permeation. For that purpose, we

incorporate low-cost boehmite nanosheets in phenolic resin-

based carbon membranes [64e66] for the separation of H2O

vapor from H2, CO2 CO, N2 and CH4 at 150e250 �C and 2e5 bar.

The effect of boehmite loading is studied by correlating the

membrane properties (assessed by gravimetric studies,

morphological analysis such as XRD and XPS, pore size mea-

surement, and cross section analysis via scanning electron

microscopy) to performance data (i.e., permeabilities and

separation factors). To gain a deeper understanding of the

properties-performance correlations, the performance of

these membranes is modelled using a phenomenological
arbon molecular sieve membranes: Experimental and theoretical
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model describing the mono- and multi-layer adsorption and

capillary condensation of water in microporous media (i.e.,

transport mechanisms involved in the permeation of pure

H2O-vapor in microporous media). Thus, the insights of this

work are key for the rational design of selective CMSM

membranes for water vapor separation.
Experimental

Synthesis of Al-CMSMs

The tubular Al-CMSMs were prepared by the one-dip dry

carbonization step method, [64e66]. The supports are tubular

asymmetrica-Al2O3 tubes (ID: 7mm,OD: 10mm),with a 100nm

average pore size, provided by Inopor®. The porous a-Al2O3was

attached to the dense Al2O3 by using a glass sealant at 1150 �C,
leaving an effective length for the deposition of the carbon layer

of about 10cm.Oneendwasclosedwith theglass seal,while the

other endwas connected to a standard Swagelok component to

allow the flow of the permeate. The supports were dip-coated

using a vacuum pump in a solution containing: 13% of Novo-

lac resin, 0.6% of ethylenediamine, 2.4% of formaldehyde, a

variable amount of 10% aqueous dispersion of boehmite nano-

sheets with a particle size of 8e20 nm (Alumisol provided by

Kawaken fine Chemicals) [64], in order to obtain a boehmite

content from 0.4 to 1.4%, and N-methyl-2-pyrrolidone (NMP) as

solvent. Table 1 reports the boehmite content in the dipping

solutions used for the preparation of the Al-CMSMs. The

membranes were dried at 90 �C overnight under continuous

rotation to guarantee a uniform and defect-free layer of the

membrane precursor. Thereafter, the membranes were

carbonized at 500 �C in inert atmosphere (i.e., 200 mL$min�1 of

N2). The remaining precursor solutions containing 0.8, 1.0 and

1.4 wt. % of boehmite nanosheets were used to prepare unsup-

ported films for XRD and XPS analysis. The solution was placed

in a Teflon dish, dried at 90 �C and carbonized following the

same procedure described for the supported CMSM.

Permeation experiments

The permeation experiments were carried out in a dedicated

setup whose layout is sketched in Fig. 1. The setup is charac-

terized by three main modules: I) the feed module, II) the

permeation module and III) the retentate/permeate analysis

module. Mass flow controllers from Brook Instruments were

used to feed the desired flow rate of H2, CO2, CO, CH4 and N2

(mL$min�1). Demineralized water was fed with a Controlled

Evaporator Mixer (C.E.M.) from Bronkhorst, which requires a
Table 1 e Boehmite content in the dipping solutions used
to prepare the Al-CMSMs.

Membrane ID Boehmite (wt. %)

CM04 0.4

CM06 0.6

CM08 0.8

CM10 1.0

CM12 1.2

CM14 1.4

Please cite this article as: Poto S et al., Vapor/gas separation through c
investigation, International Journal of Hydrogen Energy, https://doi.o
minimum flow of N2 (�150 mL$min�1) to allow the water to

reach the reactor. To avoid steam condensation, tracing was

installed in all the lines and set at a temperature of 200 �C. The
permeation module consists of a stainless-steel vessel where

the membrane is connected from the top flange. The vessel is

placed in an electrical oven to keep isothermal conditions,

controlling the temperature on the outer surface of the mem-

brane. The pressure in the permeate side (i.e., inner tube of the

membrane) was kept at 1 bar, while the pressure in the reten-

tate side (i.e., outside of the membrane) is controlled with a

back-pressure regulator from Bronkhorst. The analysis module

consists of two condensers, a film flowmeter (Horiba Stec) and

a micro-GC (Agilent Technologies). The two condensers use a

synthetic coolant supplied by the Lauda electric unit, to

condense and collect liquid water from the retentate and the

permeate. Thereafter, the gas flow rate from the permeate line

wasmeasuredwith the filmflowmeter and then injected to the

micro-GC for the analysis of the composition.

Two types of permeation experiments were conducted for:

a) pure gas or vapor permeation and b) binary vapor/gas

mixture permeation tests. The pure gas/vapor permeation

tests were performed at a temperature of 150e240 �C, a pres-

sure gradient across the membrane of 3 bar and a total feed

flow of 1 L$min�1. The membrane was first exposed to a flux of

water e containing 7.5 vol% of N2 e for 40 min to ensure

steady state operation. The N2 permeated flow was measured

and the water was collected and weighted from both the

retentate and the permeate. The value of the N2 flow was used

to correct the partial pressures for a more accurate calculation

of the water permeance. Afterward, a pure gas flow (H2, CO2,

CO, CH4 or N2) was fed to the membrane section for the pure

gas permeation measurement. A vapor permeation test was

repeated prior to each gas permeation test, to ensure the same

humidity condition of the membrane, which is a parameter

that strongly affects the permeation of the gases [67]. These

experiments were performed to gain insight into the effect of

the alumina nanosheets on the permeation performance of

the membranes. Thereafter, the membrane which showed the

best performance (i.e., a trade-off of water permeance and

water/gas selectivity) was selected for a deeper investigation.

In particular, the binary vapor/gas mixture permeation tests

were carried out to investigate the effect of the interaction

between water and each gas on the water/gas selectivity.

These experiments were performed by feeding a mixture of

water vapor, N2 and another gas (H2, CO2 and CO) with a

concentration of 25e75 vol% of either H2, CO2 or CO, a total

feed flow of 1 L$min�1, a temperature of 150e240 �C and a

pressure gradient of 3 bar. Lastly, the effect of the pressure

gradient across the membrane was investigated at a temper-

ature of 150 �C, with pure gas/vapor permeation tests. The

water permeance (§H2O) and permeability (kH2O) were deter-

mined according to Eq. (1) and Eq. (2), respectively.

§H2O
¼WH2O;permeated,M�1

w;H2O

Dt ,DPH2O,Am
(1)

kH2O ¼§H2O
,l (2)

Where wH2O; permeated is the weight of the water collected from

the permeate, Mw;H2O is its molecular weight, Dt indicates the
arbonmolecular sieve membranes: Experimental and theoretical
rg/10.1016/j.ijhydene.2021.10.155
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Fig. 1 e Layout of the setup designed for the vapor-gas permeation experiments. The setup is made up of three modules: (I)

the feed module; (II) the permeation module and (III) the analysis module. TC, FC and PC represent the temperature, flow

and pressure controller. Similarly, TT, FT and PT represent the temperature, flow and pressure transmitters.
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time span of the permeation experiment, Am and l are the

membrane area and thickness, respectively. The §H2O
ac-

counts for the presence of N2 in the feed through the gradient

of H2O partial pressure across the membrane (DPH2O ), defined

according to Eq. (3).

DPH2O ¼ yH2O;ret:,Pret: � yH2O;perm:,Pperm: (3)

The gas permeance (§i) was determined according to Eq.

(4), with Fi;perm the volumetric flow rate of the permeated gas,

Vm the standard molar volume of a gas and DP the gradient of

total pressure across the membrane.

§i ¼
Fi;perm , V�1

m

DP,Am
(4)

The ideal H2O/gas perm-selectivity (SH2O=i) and the H2O/gas

separation factors (SFH2O=i) were determined according to Eqs.

(5) and (6), respectively.

SH2O=i ¼
§H2O

§i

(5)

SFH2O=i ¼
�
PH2O

�
Pi

�
permeate�

PH2O

�
Pi

�
retentate

(6)

Where the partial pressure of water (PH2O) and of the gas spe-

cies (Pi) in the retentate/permeate, define the degree of

separation.

Permporometry experiments

The pore size distribution of themembranes wasmeasured via

the permporometry technique, developed by Tsuru et al. [68].

The basic principle of this technique is the capillary conden-

sation of a vapor and the corresponding pore blocking effect on

the permeation of a non-condensable gas. Thismethod has the
Please cite this article as: Poto S et al., Vapor/gas separation through c
investigation, International Journal of Hydrogen Energy, https://doi.o
advantage of being able to measure only the pores which are

active for the permeation, discarding the dead-end pores.

Furthermore, this method does not require the preparation of

unsupported carbon films, the pore size distribution could be

measured directly on the tubular carbon membranes, leading

to amore realisticmeasurement. The experimentswere carried

out in a second permeation apparatus, where liquid water was

injected via a syringe pump and vaporized in a heating coil; N2

was used as a carrier gas. The vapor pressure of the streamwas

controlled by changing the N2 flow rate. The N2 permeated flow

was measured after removing the water with a cold trap. The

experiment was carried out at 70 �C and a DP across the

membrane of 1 bar. Prior to each experiment, the membrane

was dried at 150 �C under N2 flow, until the N2 permeance

reached a stable value (i.e., corresponding to themembrane dry

condition). The different values of water vapor pressure (P0=PsÞ
imposed are directly related to the pore radius (rp), through the

Kelvin's equation (Eq. (7)).

RTln

�
P0

Ps

�
¼ 2y

scosðqÞ
rp

(7)

Where y, s and q are the molar volume, surface tension and

contact angle, respectively. The contact angle was assumed to

be 0�, which is a typical assumption for the permporometry

experiments [68]. When the vapor pressure of water was

stepwise increased, a lower N2 permeance was measured and

the pore size distribution was derived.

Scanning electron microscopy (SEM)

A FEI Quanta scanning electron microscope was used to ac-

quire images of the cross section of the CMSMs, to derive the

thickness of the carbon layer. EDX was used to analyze the

surface composition of the membranes qualitatively and to

assess the uniform distribution of the Al2O3.
arbon molecular sieve membranes: Experimental and theoretical
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X-ray diffraction (XRD) and X-Ray photoelectron
spectroscopy (XPS) measurements

X-ray diffraction (XRD) analysis in the 2q range 10e120� was

performed on the carbon membrane films samples with a

MiniFlex 600 machine (Rigaku) operating with a Ni b-filtered

Cu-Ka radiant at 40 kV and 30mA and a scan step of 0.05�/min.

The diffraction peaks were identified according to the JCPDS

database of reference compounds. XPS measurements were

performed using a Kratos AXIS Ultra spectrometer, equipped

with amonochromatic X-ray source, and a delay-line detector

(DLD). Spectra were obtained using an aluminum anode (Al

Ka ¼ 1486.6eV) operating at 150 W. For both the XRD and XPS

analyses, the carbon membrane films corresponding to the c-

CMSM CM08, CM10 and CM14 were crushed to obtain a fine

powder.

Gravimetric analysis

Toassess theeffect of thealuminacontent on thehydrophilicity

of theCMSMs, theamountofwater adsorbedby themembranes

was measured via a gravimetric method. The carbon layer was

scratched out from the tubular supported membrane and

placed in a glass vial whichwas then kept in a climate chamber

ata relativehumidityof99%at roomtemperature.Theweightof

the sample was recorded until saturation.
Fig. 2 e Six different flow modes of water permeation with

their boundary conditions.
Theory of water transport through the CMSM

The transport of condensable vapors through porous media is

a complex phenomenon involving capillary condensate flow,

mono- and multi-layer adsorption, simultaneously. Many ef-

forts have been made in the past years to theoretically

describe the combination of these mechanisms [57,58,69,70].

In this work, the six flows model, developed by K. H. Lee and S.

T. Hwang [58] was implemented to describe the water vapor

permeation trough the carbonmembranes. The objective here

was to qualitatively understand which transport mechanism

is predominant within the process conditions of this study

and to find a correlation with the g-Al2O3 content.

Model description

The permeation through porous media can be categorized in

three different types: gas flow, surface flow and capillary

condensate flow. The detailed equations describing these

mechanisms are reported in the Supplementary Information

(SI). Understanding the relative contribution of these flow

types allows insight on the overall transport mechanisms of

water vapor trough the membrane. The combination of those

flows, together with the blocking effect exerted by the adsor-

bed layer, give rise to six types of flows (Fig. 2), which can be

determined according to: 1) the relative pressure of the

permeate (P2) and the retentate (P1), with respect to the

capillary condensation pressure (P0) (P2=P0 and P1= P0,

respectively), and 2) the relative thickness of the adsorbed

layer of water at the permeate (t2) and retentate (t1) with

respect to the pore radius (rpÞ (t2=rp and t1=rp, respectively). A

detailed description of the phenomena is given below:
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� F1: Combination of Knudsen molecular flow (gas flow) and

surface flow in the adsorbed phase.

� F2: Capillary condensation occurs at the upstream end of

the pore, but not at the downstream end. On the down-

stream side, gas and adsorbate flows take place.

� F3: The entire pore is filled with a capillary condensate.

� F4: The upstream end of the pore is filled with bulk

condensate. Somewhere in the capillary (z) themeniscus is

located. There is no curved interphase at the upstream

side, therefore no suction force.

� F5: The entire pore is filled with a capillary condensate.

Capillary condensation occurs at the downstream side. The

upstream end of the pore is filled with bulk condensate.

� F6: The entire pore is filled with a capillary condensate and

no meniscus is present in the pore.

The equations in Table 2 represent the mathematical ex-

pressions to compute the flow rate and the permeance ac-

cording to each flow type. The physical properties for water

vapor were obtained with empirical correlations as a function

of temperature and pressure, as reported in SI. The pore size

distribution of the carbon membrane was accounted for with

a fitted Gaussian function and used to determine the total flow

rate of the permeate trough the membrane as follows:

Ft ¼
Z ∞

0

fðrÞFrdr (8)

Model implementation

The six flows model was implemented in MATLAB R2019a.

The pore size distribution, the membrane characteristics and

the physical properties of water are given as input parame-

ters. The boundary conditions (i.e., temperature and pres-

sures) are defined as those of the permeation experiments.

The flow mode is defined for each pore size (r) and Eq. (8) is
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Table 2 e Equations describing the flow rate of water
through the pore according to each flow mode.

Flow mode Equation

F1 F1 ¼ ApðQ 0
g þQsÞDPl

F2 F2 ¼ ApðQ 0
g þQsÞ P0 � P2

l� z
F3

F3 ¼ ApKd

hz
rRT
M

"
ðr� t1Þ2

r2p
ln

�
P1
P0

�
�

ðr� t2Þ2
r2p

ln

�
P2
P0

�#

F4 F4 ¼ ApðQ 0
g þQsÞ P0 � P2

l� z
F5

F5 ¼ ApKd

hz
rRT
M

ðr� t2Þ2
r2p

ln

�
P2
P0

�
F6 F6 ¼ ApKd

h

P1 � P2
l
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used to calculate the total flow rate and water permeance.

Besides the total flow rate and permeance as a function of

temperature and pressure, the frequency of the flowmodes is

given as simulation output, to determine the predominant

transport mechanism at each condition. The pore structure

constant (Kd), the H2O film thickness at the retentate and

permeate side (i.e., t1 and t2, respectively) and the coefficient

of resistance (Cr) could not be measured, so they were fitted

comparing the model predictions against the permeability

data from the permeation experiments using a least-square

non-linear curve fitting algorithm (lsqcurvefit). Among these

parameters, Kd and Cr are of particular interest since they both

reflect the resistance to the flow exerted by the pore structure,

which is believed to be influenced by the boehmite content.
Results and discussion

Characterization of the alumina phase in the Al-CMSM

The XRD patterns of the carbon films prepared with 0.8, 1.0

and 1.4 wt. % of boehmite are reported in Fig. 3a. The first and

higher intensity peak appearing at 22� for the three samples is

related to carbon [71]. Besides that, two main broad peaks

appear for the 1.0 and 1.4 wt. % boehmite samples at 2q value

of 46� and 67�, which are related to the diffraction of the (440)

and (400) planes of g-Al2O3, respectively [72]. On the contrary,

boehmite (g-AlO(OH)) would have shown peaks centered at

48� and 65�, corresponding to the diffraction of the (200) and

(002) planes. However, well dispersed and nanometer size

boehmite sheets could not be detected. Indeed, at 0.8 wt% of

boehmite, no peaks are observed between 30� and 90�, sug-
gesting that the boehmite/g-Al2O3 sheets are well dispersed in

the carbon matrix, avoiding the crystallization. As the con-

centration of boehmite increases, clustering of the boehmite

nano-sheets takes place, leading to their dehydration: 2

AlOOH 4 g-Al2O3 þ H2O [73]. As a result, at higher concen-

tration of boehmite, the condensation of some of the nano-

sheets to the less hydrophilic g-Al2O3 takes place, with no

further phase-change towards the hydrophobic a-Al2O3.

Fig. 3b displays the Al-region of the XPS pattern measured on

the same carbon films. The deconvolution of the Al 2p peak
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shows the presence of both boehmite (AlO(OH)) and

aluminum oxide (Al2O3), which is more pronounced for the

0.8 wt. % sample than for the more concentrated samples.

Note that the exact amount of g-Al2O3 and/or boehmite in the

carbon layer after the carbonization is unknown, so these

concentrations refer to the initial boehmite content in the

dipping solution. Furthermore, analyzing the Al and C region,

we confirm that the pyrolysis process did not cause any

chemical interaction between them (see Fig. S3 in SI). The

elemental composition of the carbon films was determined

from the XPS spectra and the carbon to aluminum ratio is

reported in Table 3.

Effect of alumina content on the Al-CMSMs hydrophilicity

Fig. 4 shows the effect of the initial boehmite content on the

hydrophilicity of the carbon membranes studied by water

adsorption experiments. The amount of water adsorbed in-

creases with the boehmite content up to a maximum around

1 wt. %, showing then a decrease for the membranes with 1.2

and 1.4 wt. %. The membranes without any g-Al2O3 already

show a degree of hydrophilicity, as reported elsewhere [52,61]

and confirmed by the water adsorbed by the 0 wt. % mem-

brane (Fig. 4). When g-Al2O3/g- AlO(OH) nanosheets are inte-

grated in the carbon matrix, it is clear that an optimum in

concentration exists that maximizes the properties of the

membrane (i.e., hydrophilicity). Moreover, at higher boehmite

contents, the nanosheets of boehmite start to condensate (2

AlO(OH) 4 g-Al2O3 þ H2O) rendering a less hydrophilic clus-

ter. The probability of condensation increases with the

boehmite content. The presence of g-Al2O3 is confirmed by the

XRD (Fig. 3a).

Effect of the alumina content on the Al-CMSMs pore size
distribution

The pore size distributions of the Al-CMSMs are reported in

Fig. 5, covering the region of the micropores (i.e., 0:6 � dp � 2),

which are more important for transport via adsorption-

diffusion [53]. All the membranes show a very similar pore

size distribution, with the most frequent size being around

1 nm. Therefore, we conclude that the alumina nanosheets do

not affect the pore size distribution of the membranes in the

pore size region covered by the N2-permporometry technique

(i.e. region of the micropores). However, we do not have in-

formation on the region of ultra-micropores (i.e., dp � 0:6),

which are responsible of the molecular sieving transport

mechanism.

Effect of the alumina content on the thickness of the carbon
layer

Fig. 6a and b shows a representative cross section of the Al-

CMSMs prepared with 0.4 wt. % and 1.4 wt. % of boehmite,

respectively, measured by SEM (see the other samples in SI).

All the membranes were cut in different positions to confirm

the uniformity of the layer thickness along the membrane.

The average value of at least 3 measurements of the thickness

of the composite layer is reported as a function of the initial

boehmite content in Fig. 7. The Al-CMSMs show a clear
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Fig. 3 e XRD pattern (a) and Al-region of the XPS pattern (b) of the carbon films prepared from the dipping solution

containing 0.8, 1.0 and 1.4 wt. % boehmite.

Table 3 e Carbon to aluminum ratio of the carbon films
determined via the XPS analysis.

Init. Boehmite (wt.%) C:Al (wt. based)

0.8 27.6

1.0 21.5

1.4 17.6

Fig. 4 e Amount of water adsorbed from the Al-CMSMs as a

function of their boehmite content.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x8
increase in the composite carbon-alumina layer thickness for

larger alumina content, although the difference between

CM12 and CM14 appear negligible. This is attributed to an

increase of the viscosity of the dipping solution, which is a

well-known parameter affecting the CMSM layer thickness

[74]. Indeed, with higher boehmite concentration, the colloidal

mixture becomes more viscous [75]. Note that other parame-

ters that could affect the layer thickens (i.e., the dipping time,

the porosity of the support) were kept constant.

Moreover, we believe that the sharper increase in the layer

thickness at c.a. 1.2 wt. % of initial boehmite concentration is

attributed to the rheological percolation of the dipping solu-

tion containing the boehmite nanosheets (i.e., concentration
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beyondwhich the bulkmaterial shows a transition in physical

properties, such as viscosity, in this case) [76].

Permeation results

The following section focuses on the results of the permeation

experiments, first with pure vapor/gas to analyze the effect of

the alumina content on the performance of all membranes,

and later with binary mixtures, to understand the transport

phenomena across a selected membrane.

All the membranes we tested in this study did not show

any stability issue (i.e., permeance did not change signifi-

cantly over time). Therefore, we conclude that no delamina-

tion phenomena occur and that the boehmite nanosheets did

not affect the adherence of the carbon layer to the alumina

support.

Effect of the alumina nanosheets on the Al-CMSMs permeation
properties
In the field of inorganic membranes, the permeation is

frequently reported as permeance (i.e., §i in mol m�2s�1Pa,

defined as the permeated flux normalized by the driving

force). However, in this study the water permeation is

expressed in permeability (i.e., kH2O ¼§H2O·l, inmolm�1s�1Pa),

to standardize the permeation properties with the membrane

thickness, which increases with the boehmite content as

discussed earlier (Fig. 7). Fig. 8 shows the water permeability

(kH2O ) as a function of temperature and alumina content for

the Al-CMSMs. Fig. 8a reveals that kH2O monotonically de-

creases with temperature for all membranes, suggesting a

strong contribution of capillary condensation and multi- and

mono-layer adsorption diffusion as the main transport

mechanisms [57]. Although the alumina content does not

seem to influence the type of mechanism governing the water

transport, it does show a clear effect on the permeability, as

stressed in Fig. 8b. Regardless the operating temperature, we

observe a volcano plot for kH2O vs. initial boehmite loading,

with a maximum in the kH2O at 0.8 wt. % of initial boehmite

content. This trend is, to some extent, consistent with the

hydrophilicity trends reported in Fig. 4, except that they are

peaked at slightly different with boehmite contents (i.e.,

0.8 wt. % and 1 wt. %, respectively). This suggests a strong
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Fig. 5 e Pore size distribution of the c-CMSMs with a boehmite content of 0.4 wt. %, 0.6 wt. % and 0.8 wt. % (a), and of 1.0 wt.

%, 1.2 wt. % and 1.4 wt. % (b) derived with the permporometry technique.

Fig. 6 e Thickness of the carbon layer of the CM04 (a) and CM14 (b) measured on the images of the cross section of the

membranes acquired with a FEI Quanta SEM.

Fig. 7 e Average thickness of the composite carbon layer of

the c-CMSM as a function of their initial boehmite content.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g en en e r g y x x x ( x x x x ) x x x 9
hydrophilicity-performance correlation, in line with the ex-

pectations for the transport via adsorption-diffusion. Never-

theless, the buildup in boehmite content from membrane

CM08 to CM10, however, leads to a lower kH2O despite the in-

crease in the affinity to water. The higher hydrophilicity of
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these membranes increases the possibility of condensation of

water, which render the transport in the pores slower. Note

that the effects of layer thickness are normalized in the

permeability data, and no major changes were found in the

pore size distribution of these membranes, at least in the

micropores region. Thus, we hypothesize that the introduc-

tion of alumina into the carbon structure induces certain

changes into the porous structure of the selective layers (i.e.,

tortuosity and/or porosity), which may affect the transport of

water, particularly at higher boehmite loadings. These effects

will be further addressed in Section Effect of the alumina

content on the thickness of the carbon layer.

Next, we extend our study to the permeation of other

gases. Fig. 9a shows the permeability (logarithmic scale) as a

function of the kinetic diameter of various gases at different

temperatures of permeation. The permeability is the highest

for the smallest gas (i.e., H2O) and then it decreases when the

kinetic diameter of the gas increases, which is clear indication

of molecular sieving. However, N2 shows the lowest perme-

ability, being N2 a molecule with very low polarizability and,

as a consequence, not able to interact electrostatically with

the hydrophilic pores. On the contrary, CO, despite being

bigger that N2, shows a higher permeability than N2, due to its
arbon molecular sieve membranes: Experimental and theoretical
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Fig. 8 e Water permeability as a function of the temperature of permeation for the Al-CMSMs prepared with different

amount of boehmite (a) and as a function of the boehmite content at 150 �C, 200 �C, 225 �C and 240 �C (b). Other experimental

conditions: DP ¼ 3 bar, 1 L·min¡1 feed flow containing 7.5 vol% N2.

Fig. 9 e Permeability of each component (ki) as a function of their kinetic diameter, at various permeation temperatures for

the membrane CM08 (a) and at 200 �C for the Al-CMSM containing different amount of boehmite (b).
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polarity. For gases other than water, the permeability in-

creases with the temperature. Similar results were obtained

with the othermembranes containing 0.4, 0.6, 1.0, 1.2 and 1.4%

of boehmite in the dipping solution. Fig. 9b illustrates the

permeability as a function of the kinetic diameter at 200 �C of

the Al-CMSM with various content of boehmite. It can be

observed that for most of the gases the permeability follows

the order CM08> CM06> CM04> CM10 >CM14> CM12.

Fig. 10a, b, c, d and e report the ideal perm-selectivity as a

function of temperature and of the boehmite content of the

pairs H2O/H2, H2O/CO2, H2O/N2, H2O/CO and H2O/CH4,

respectively. The ideal perm-selectivity (H2O/i) were deter-

mined by computing the ratio of the§H2O and§i measured at

the same temperature and pressure gradient, within the sin-

gle gas/vapor permeation experiments. In line with the ex-

pectations, SH2O=i generally increases for larger gas molecules,

which is a clear indication of molecular sieving. However, the

interactions between the permeating gases with the water

adsorbed in the pores explain deviations with respect to the

simple size-exclusion rationale. For example, the pair H2O/N2

shows the highest perm-selectivity (even higher than H2O/CO

and H2O/CO2) despite the fact that N2 is not the largest
Please cite this article as: Poto S et al., Vapor/gas separation through c
investigation, International Journal of Hydrogen Energy, https://doi.o
molecule in this set, due to the lack of polarity. Yet, its rela-

tively large size and low water solubility explain the high

SH2O=N2
. On the other hand, the adsorption diffusion mecha-

nism (i.e., direct gas adsorption on the pore walls) in the

temperature range is not likely to occur for each of these gas,

as reported in literature [44].

Fig. 10 also shows that allmembranes exhibits a decreasing

perm-selectivity with increasing temperature for each H2O/i

pair. As it is typical molecular sieving [77], the permeance of

all the gases (reported in SI) shows a slight increase with

temperature. Furthermore, when increasing the temperature,

the water adsorbed in the pores will gradually desorb, driving

to an increase in the active pore size [61,62,67]. However, even

if §H2O decreases with temperature, all the perm-selectivity

assume values are > 1 at each experimental condition, being

water the most permeating species at all times.

Finally, the H2O/i perm-selectivity generally increases with

the initial boehmite content, which is largely explained by the

decrease in permeance for all gases but water as the thickness

(and likely the tortuosity/porosity, as previously hypothesized)

of the composite carbon layer increases. With regards to water

permeance, on the other hand, the boehmite content has a
arbonmolecular sieve membranes: Experimental and theoretical
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Fig. 10 e Ideal H2O/H2 (a) H2O/CO2 (b), H2O/N2 (c), H2O/CO (d) and H2O/CH4 (e) perm-selectivity as a function of temperature for

the Al-CMSMs prepared with different amount of boehmite. Other experimental conditions: DP ¼ 3 bar, 1 L·min¡1 feed flow

of gas. Ideal perm-selectivity were calculated as the ratio of §H2O and §i measured at the same temperature and pressure

gradient, within the single gas/vapor permeation experiments.
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beneficial effect up to 0.8 wt. % due to the strengthening of the

water-surface interactions derived from the higher number of

hydrophilic sites, as previously established. Greater increase in

boehmite loading also leads to lower water permeance, similar

to all the other gases, but being water the smallest molecule as

well as themost affine to the hydrophilic carbon surface, water

permeation is less affected by any obstruction imposed by the

structure of the carbon layer. It is also evident that the CM14

(i.e., the membrane with largest boehmite content) does not
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follow the above trend. It appears that the (limited) hydrophi-

licity of that sample (Fig. 4) does not provide sufficient water-

surface interaction as compared to membranes with the

slightly less boehmite, due to the condensation reaction of the

molecules of AlO(OH). Thus, we conclude that the effect of the

boehmite content on the hydrophilicity and on the membrane

structure counterbalance each other, resulting again in a

maximum in the perm-selectivity for the CM12 (i.e., 1.2 wt. % of

boehmite).
arbon molecular sieve membranes: Experimental and theoretical
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Investigation on the permeation properties of the CM08
membrane
The selection of a membrane material for a specific process

always rises from a trade-off between permeability and perm-

selectivity [28]. From our previous work on CO2 hydrogenation

[22], given the membrane reactor configuration we propose

(i.e., circulation of CO2-H2 sweep-gas), it was established that

themost important parameter for this application is the§H2O,

so the membrane we selected for a deeper investigation is the

CM08.

First, we investigated the effect of the gradient in total

pressure (DP) on the H2O permeation and perm-selectivity

toward H2, CO2 and CO (Fig. 11) at constant temperature (i.e.,

150 �C). The §H2O increases for larger DP, which confirms that

the viscous flow of capillary condensate is indeed a main

contributor to the transport mechanism. At the same time,

§H2
, §CO2

and §CO slightly decrease with DP (i.e., perm-

selectivity increase with DP), leading again to the conclusion

that the contribution of the adsorption diffusion is negligible

in these conditions [78].

Secondly, we looked into the separation factors derived

from the binary vapor/gas mixture tests (i.e., H2O/H2, H2O/CO2

and H2O/CO real perm-selectivity), which are of interests for

the reactions involving CO2 and H2 with the production of

water. Fig. 12a, b, c show the effect of both temperature and

gas/vapor composition in the feed on the separation factors of

the pair H2O/H2 (SFH2O=H2
), H2O/CO2 (SFH2O=CO2

) and H2O/CO

(SFH2O=CO), respectively. The ideal perm-selectivity values are

also reported as dashed line, for comparison. Generally, an

increase in the gas composition (i.e., H2, CO2 or CO) causes a

drop in the SFH2O=i due to a lower driving force for the

permeation of water (i.e., lower H2O partial pressure gradient

across themembrane). Furthermore, a lower separation factor

can be interpreted as a result of the “competition” of H2O and

the second species for the hydrophilic sites in the pores.

Among all, the SFH2O=H2
is the lowest, as expected considering

the kinetic diameter of H2O and H2 (i.e., 0.26 and 0.29 nm,

respectively). The interaction of a gas with water could be

related with its solubility. However, given the constrictions of

the pores, water behaves like a molecule rather than bulk

water. As a result, it is even more correct to discuss about

electrostatic interactions, which, anyway, follow the same
Fig. 11 e Water permeance (a) and ideal H2O/i perm-selectivity (b

150 �C for the CM08 membrane.
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trend as the solubility. Since H2 shows a low solubility in

water, especially at these conditions (i.e., lower than

0:001 gH2=kgH2O), and water has more affinity with the hydro-

philic pores, water either blocks the pores completely where

capillary condensation occurs (i.e., in the smallest pores) or it

reduces the active pore size, where adsorption diffusion is

predominant (i.e., in the slightly larger pores). Therefore, the

real SFH2O=H2
is in general higher than the ideal H2O/H2 perm-

selectivity, while it also decreases with temperature. On the

contrary, the SFH2O=CO2
increases with temperature and is

lower than the ideal perm-selectivity, particularly at low

temperature. This clearly suggests that the high CO2 solubility

inwater (ca. 0:5 gCO2=kgH2O) facilitates the permeation of CO2 in

the presence of water. As the CO2 solubility in water (and thus

the CO2 permeation) decreases with temperature the SFH2O=CO2

increases. Lastly, the SFH2O=CO is again lower than the ideal

H2O/CO perm-selectivity, especially at higher temperature.

We ascribed this behaviour to the competitive adsorption

between CO and water. Indeed, CO, due to its polarity, in-

teractsmore strongly with the pores of themembrane than all

the other gases considered. In addition, the relatively large

size of CO (i.e., 0.376 nm, similar to the size of ultra-

micropores) can also cause pore clogging, hindering per-

meance of water.

Modelling results

In this section, we discuss the results obtainedwith the 6 flows

model. The routine we implemented in MATLAB allowed us to

identify the flow mode at each pore size, by imposing the

boundary conditions at the upstream and downstream side of

the membrane pores (i.e., retentate and permeate) according

to the experimental conditions. Therefore, we believe that the

transport mechanisms of pure water through the pores and

their relative occurrence are fully representative of the phe-

nomena occurring at the pore scale. However, parameter

fitting on the permeability data was required to derive prop-

erties of the complex porous structure of the carbon layer that

could not be determined experimentally. First, we focus on

the water transport phenomena by fitting the experimental

data from the best performing membrane CM08. Fig. 13a

shows the result of the curve fitting of the §H2O as a function
) as a function of the gradient in total pressure measured at
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Fig. 12 e Separation factors of: a) the pair H2O/H2 (SFH2O=H2
), b) H2O/CO2 (SFH2O=CO2

) and c) H2O/CO (SFH2O=CO) as a function of

temperature and feed composition. The gradient in total pressure was set at 3 bar and the total flow through the membrane

was 1 L·min¡1. A 10% of N2 was always included in the feed, to ensure the correct functioning of the C.E.M. Dashed lines

indicate the ideal perm-selectivity of each H2O/gas pair, measured at the same temperature.

Fig. 13 e Comparison of the modelling and experimental results of the §H2O as a function of temperature of the CM08

membrane (a). The experimental results reported in Fig. 8 (red circles) were fitted with the 6 flows model (continuous black

line). The frequency of occurrence of each flow mode as a function of temperature is also reported (b). (For interpretation of

the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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of temperature (i.e., data reported in Fig. 8). At 225 �C the curve

shows a discontinuity which is ascribed to the evaporation of

part of the capillary condensate at the downstream side (i.e.,

F2 contribution starts to be relevant). The picture is even

clearer when looking at the frequency of each type of flow as a
Please cite this article as: Poto S et al., Vapor/gas separation through c
investigation, International Journal of Hydrogen Energy, https://doi.o
function of temperature (Fig. 13b). In the lowest temperature

range considered (i.e., 120 �C), the entire pore is filled with a

capillary condensate and the upstream end of the pore is filled

with bulk condensate. (i.e., F5). As temperature increases from

120 �C to 180 �C, both pore ends are in contact with the bulk
arbon molecular sieve membranes: Experimental and theoretical
rg/10.1016/j.ijhydene.2021.10.155
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Fig. 15 e Pore structure constant (KdÞ derived from the

parameter fitting as a function of the boehmite content.

Discrete values (red circles) were fitted with a linear

regression (black line). (For interpretation of the references

to colour in this figure legend, the reader is referred to the

Web version of this article.)
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vapor phase (i.e., there is no bulk phase condensation of water

at these conditions), while the entire pore remains filled with

capillary condensate (i.e., F3). In this case, the viscous flow of

the capillary condensate is the dominant transport mecha-

nism. Further increase in temperature above 180 �C shows a

gradual transition to F2, where capillary condensation only

occurs at the upstream end of the pore, while the downstream

end contains gas and water adsorbate. Further, we predict

that for temperature higher than 260 �C, the multi-layer

adsorption diffusion (F1) starts to contribute more signifi-

cantly, although experimental validation beyond 240 �C is still

required. The flow modes F4 and F6 do not show any contri-

bution in the conditions explored experimentally (i.e., the

conditions defining F4 and F6 reported in Fig. 2 do not occur).

However, predictions beyond the range of the experimental

conditions should be validated experimentally. In particular,

the model becomes less accurate in predicting the transition

to a different type of flow.

Next, we assess the effect of pressure gradient across the

membrane (DP) with the same model. To that end, the §H2O

data derived at different DP at 150 �C were simulated (Fig. 14).

According to our experiments, no significant changes in the

transport mechanism of water is observed in the range of

pressure gradients explored in this study (i.e., F5 is the domi-

nant flowmode). Nevertheless, themodel predicts a change in

the flow mode when increasing the DP beyond 3.8 bar, which

is very close to our last experimental point. According to this

prediction, the§H2O is expected to reach an asymptotic value,

which unfortunately could not be validated experimentally

due to the limitations of the experimental setup.

Finally, the §H2O data as a function of temperature of all

the membranes were fitted in the range 150e220 �C, where a

semi-linear behaviour of§H2O was identified (details in SI). An

interesting outcome of this curve fitting is the value of Kd,
Fig. 14 e Comparison of the modelling and experimental

results of the §H2O as a function of pressure of the CM08

membrane. The experimental results reported in Fig. 10

(red circles) were fitted with the 6 flows model (continuous

black line). The dominant flow mode is reported in the

same figure: flow mode F5 converge into flow mode F6 at

3.8 bar (dashed line). (For interpretation of the references to

colour in this figure legend, the reader is referred to the

Web version of this article.)
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which is a geometrical factor that describes the structure of

the porous system (i.e., larger Kd values represent a lower

resistance to the transport). In particular, Kdplays a role in the

flowmode F3 (see Table 2), which is the dominant mechanism

in wide range of experimental conditions studied in this work.

Fig. 15 shows the Kd values of all membranes tested, showing a

linear inverse correlation with the boehmite content of the

carbonmembranes. This result support our earlier hypothesis

that the boehmite/alumina sheets alter the structure of the

porous system, generally hindering the permeation of most of

the species as the alumina content increases. Oftentimes this

is explained by the formation of defects, which are zones

where the permeation decreases because the species are

forced to increase the path length (i.e., increase in tortuosity).

This finding supports both the decrease in the permeability of

the membranes prepared with higher boehmite content and

the optimum found in the water permeability and perm-

selectivity.
Conclusions

In this work, several boehmite-phenolic resin composite

carbon molecular sieve membranes were prepared by the

one dip-dry-carbonization step method, using different

boehmite content in the dipping solution (ranging from 0.4 to

1.4 wt. %). The membranes were tested in view of their

application for the water-vapor separation in membrane

reactors. The hydrophilic boehmite nanosheets were used as

precursor of g-Al2O3 to increase the adsorption of water and

increase its transport mechanism by diffusion. We observed

that the alumina content increases the hydrophilicity of the

Al-CMSM up to an optimum at c.a. 1.0 wt. %. At larger

boehmite content the affinity to water decreases because: 1)

the probability of boehmite condensation to the less hydro-

philic g-Al2O3 is higher and 2) the C:Al ratio corresponding to

c.a. 1.0 wt% of boehmite content maximizes the membrane
arbonmolecular sieve membranes: Experimental and theoretical
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properties. The alumina content does not significantly affect

the pore size distribution of the membranes, at least in the

region of micropores. On the other hand, the cross section of

the Al-CMSMs show an increase in the thickness of the

composite carbon layer for larger alumina content. We

noticed that the water permeability shows an optimum with

the initial boehmite content around 0.8 wt%, which is in line

with the increase in hydrophilicity of the membranes. For

higher alumina content, the kH2OðTÞ decreases. This decrease

is induced both by a lower hydrophilicity and by a difference

in the structure of the porous system (i.e., tortuosity and/or

porosity), introduced by the boehmite/alumina sheets.

Similarly, the ideal perm-selectivity of H2O towards H2, CO2,

CO, N2 and CH4 increases with the alumina content, showing

an optimum with the C:Al ratio (i.e., initial boehmite content

of 1.2 wt %). Among all the membranes tested in this study,

the CM08 (i.e., membrane prepared with initial boehmite

content of 0.8 wt%), show the best combination of H2O

permeability and perm-selectivity. A further investigation on

the permeation properties of this membranes revealed that

the H2O/gas interaction plays an important role in the vapor/

gas separation. In particular, the CO2 electrostatic interac-

tion with water causes lower separation factors when

measured from feed containing both H2O and CO2 (i.e., real

separation factor). On the contrary, the SFH2O=H2
shows higher

values with respect to the corresponding ideal perm-

selectivity, due to the pore-blocking effect derived from the

water capillary condensation in the pores. Lastly, the SFH2O=CO

displays values lower than the ideal H2O/CO perm-

selectivity, especially at higher temperature. This behav-

iour was ascribed to the possibility of CO to clog some of the

pores where water has not yet adsorbed or condensed. In

general, we found that the §H2O and H2O/i selectivity

decrease with temperature and increase with DP. The 6 flows

model indicates that the water vapor flow through the carbon

pores transforms from capillary condensation to multi- and

monolayer surface flow combined with molecular Knudsen

gas flow, as temperature increases. When increasing the

applied pressure difference at 150 �C, the water vapor per-

meance becomes higher, indicating the role of capillary

condensation. However, the model predicts an asymptotic

behaviour for DP of approximately 3.8 bar.

In conclusion, this work shows that the composite alumina

supported CMSM are promising material for the water sepa-

ration from gaseous mixtures at relatively high temperatures

(i.e., 150e250 �C), conditions which are compatible with the

CO2 conversion to methanol and/or DME reactions. Their

separation performance, combined with the high stability of

these materials, make these membrane very good candidates

for their use in membrane reactors where the in in-situ

removal of water is required.
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