
Information Processing and Management 58 (2021) 102745

Available online 10 September 2021
0306-4573/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Privacy-enhancing distributed protocol for data aggregation based 
on blockchain and homomorphic encryption 
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A B S T R A C T   

The recent increase in reported incidents of security breaches compromising users’ privacy call 
into question the current centralized model in which third-parties collect and control massive 
amounts of personal data. Blockchain has demonstrated that trusted and auditable computing is 
possible using a decentralized network of peers accompanied by a public ledger. Furthermore, 
Homomorphic Encryption (HE) guarantees confidentiality not only on the computation but also 
on the transmission, and storage processes. The synergy between Blockchain and HE is rapidly 
increasing in the computing environment. 

This research proposes a privacy-enhancing distributed and secure protocol for data aggrega
tion backboned by Blockchain and HE technologies. Blockchain acts as a distributed ledger which 
facilitates efficient data aggregation through a Smart Contract. On the top, HE will be used for 
data encryption allowing private aggregation operations. The theoretical description, potential 
applications, a suggested implementation and a performance analysis are presented to validate 
the proposed solution.   

1. Introduction 

With the huge technological progress based on big data and information, concern about people’s privacy is increasing. Although 
there is no concrete definition of the concept of privacy, different points of view usually consider the respect, autonomy and self- 
determination of people, and how people should be protected from an unreasonable intrusion into his autonomy, even by govern
ments or private institutions. In the technological information context, privacy can be defined as the right of people to control the use 
of their personal information, including the collection, processing, storage and use of it (Allen, 2000). 

On 24 May 2018 the General Data Protection Regulation (GDPR) (Voigt and von dem Bussche, 2017) of the European Union started 
to regulate the personal data processing activities inside the European Union’s territory and market. Data protection in Europe is 
rigorous, since it imposes the data owner prior consent and allows the possibility of updating or even deleting the files with personal 
data, among other guarantees. The United Kingdom has also its own Data Protection Act (DPA) (Jay, 2000) based on the GDPR but 
with exceptions over criminals’ personal data as well as data used for scientific or statistical purposes. South Korea, meanwhile, 
defined the worldwide strictest law, named PIPA (Personal Information Protection Act) (Ko, Leitner, Kim and Jung, 2016) in 2011, 
covering any data that can be used to identify a person, including images or videos. It also makes a distinction for incomplete sensitive 
personal data, such as religion or sexual orientation which could be combined with other available data, infringing on personal rights. 
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Additionally, China defined the CSL (CyberSecurity Law) (Balke, 2018) in 2016, covering all forms of personal data belonging to 
Chinese citizens and avoiding the abroad storage of personal data. However, Chinese authorities should be informed by data holders if 
data means prohibited activities. In other words, personal data needs to be scrutinized by the processor, somewhat paradoxical in the 
context of data privacy. Finally, it should be mentioned that the USA is unique among major countries for not having a unified set of 
data privacy laws despite the huge quantity of global Internet companies (Google, Facebook etc.), giving them a lot of freedom to set 
their own privacy and data protection standards. However, the State of California approved the Consumer Privacy Act (CCPA), (Abbott 
and Coon, 2004) that will take effect in 2020, inspired by the GDPR and making all companies responsible for the safe handling of 
personal data and requiring users to be informed about how their personal data is used and if that data is compromised in any way. This 
decision in California will be shortly followed by the rest of the states as the public debate on privacy and security breaches is at its 
peak. According to the high number of international laws and regulations, data privacy and confidentiality can be nowadays 
considered essential and worldwide organizations must deal with customers personal information in a secure way, providing not only 
the high availability, data integrity or non-repudiation previously offered but also the new desired confidentiality and privacy. 

Without any doubt, Blockchain (Zheng et al., 2018) is a novel and innovative technology which organizations worldwide have 
started to use in order to increase information security in today’s processes. It enables integrity, availability, non-repudiation, and 
traceability. However, confidentiality is not included by default in Blockchain, so other techniques such as data encryption for data 
transmission or storage, are required to meet this requirement. In addition, secret computing has also started to gain relevance as it 
increases data confidentiality and privacy enabling data scientists to compliantly, securely, and privately compute on distributed data 
without ever exposing it. By this way, sensitive data is unlocked for machine learning, analytical models or simple computations while 
meeting privacy, security, and compliance requirements. One of the most useful computations over data is aggregation as it can be 
useful for several disciplines, from energy consumption to counting votes. In this context, advanced cryptographic principles, which 
keep data encrypted while it is being processed, are needed. Secure Multiparty Computation (SMPC) (Cramer, Bjerre and Buus, 2015), 
which distributes a computation across multiple parties where no individual party can see the other parties’ data, and Homomorphic 
Encryption (HE) (Acar, Aksu, Uluagac and Conti, 2018), which enables analytical functions to be run directly on encrypted data while 
yielding the same encrypted results as if the functions were run on plaintext. Each technology has its more suitable applications. In this 
research work, HE is considered suitable as it is easy to directly perform the aggregation operation and the aggregated result can 
remain private for all the participants if needed, increasing the variety of potential applications. In addition, HE provides confiden
tiality not only on data computation, but also on transmission and storage. 

The main contribution of this paper is to propose a privacy-enhancing distributed protocol for data aggregation, backboned by 
Blockchain and HE technologies, for guaranteeing confidentiality on data transmission, storage and computing. 

The paper is organized as follows: Section II starts with a description of the state of the art in Blockchain and HE, the two key 
technologies to be combined in the suggested solution. Section III theoretically describes the privacy-enhancing distributed protocol 
for data aggregation, which has been then implemented in Section IV. This section describes the implementation details, including the 
specific Blockchain technology and HE algorithm. In addition, performance measurements are also presented. Section V describes 
some use-cases which would highly profit from the aggregation protocol from this research. Finally, Section VI draws the key con
clusions and future work from the research. 

2. Technical background 

This section describes the state of the art on the two key technologies involved in the proposed protocol: Blockchain and HE. 

2.1. Blockchain 

Blockchain (Zheng et al., 2018) has emerged as a secure distributed ledger where participants collaborate for keeping a shared 
record of transactions without relying on any third party by means of sharing, validating, and storing all the data transactions. Bitcoin 
(Nakamoto, 2008), presented by Satoshi Nakamoto and used as a broadly available payment system using peer-to-peer technology, 
was the first public Blockchain network to appear. Later, Ethereum (Wood, 2014) emerged as a public Blockchain with a new 
ambitious goal based on enabling distributed computation through Smart Contracts. It shortly became the second most famous 
Blockchain network in the world. However, although Ethereum goes a step further, it still has the same limitations as Bitcoin in terms 
of scalability, performance and latency. That is why a storm of different Blockchain technologies, such as Ripple (Schwartz, Youngs and 
Britto, 2018), has come up for the last years. 

In addition to public Blockchain networks where there are no restrictions in the participation, private Blockchains have also started 
to appear to be used with permissioned participants. In this context, Hyperledger Fabric (Androulaki et al., 2018) is the most famous 
private Blockchain network, allowing access control policies as well as the creation of private channels which guarantee confidentially 
among them. Ethereum has also its own private Blockchain version, known as Quorum (Consensys, 2018), which also allows the 
tokenization of assets natively due to maintaining the essence of Ethereum technology and sharing the same virtual machine, the 
Ethereum Virtual Machine (EVM), for the execution of the Smart Contracts. 

Since Blockchain technology appeared, it has evolved from just cryptocurrency systems to decentralized applications (DApps) 
based on Smart Contracts providing business logic abstraction and execution on a trusted platform. Smart contracts (Cong and He, 
2019) are self-executing and self-enforcing computer contracts governed by the explicit terms and conditions established between two 
or more parties laid out within them. However, although technically possible, it is not possible for the Smart Contracts to properly deal 
with massive volumes of data due to performance and costs limitations of the Blockchain. 
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Although Blockchain is a relatively secure technology which provides interoperability, availability, integrity-preservation, trace
ability and even secure computation, it cannot guarantee data confidentiality by default, making sensitive data transactions almost 
impossible and, consequently, reducing the number of potential applications for Blockchain. Nowadays, the use of Blockchain tech
nology is spreading across a wave of industries. It is mainly used for interoperable information sharing without compromising data 
integrity, for automatic actions execution or for providing trusted historical records in sectors such as, for example, healthcare (Gaynor 
et al., 2020; Khatri et al., 2021), energy (Mashhour and Moghaddas-Tafreshi, 2009; Wang, Li and Zhan, 2021) or supply chains 
(Blossey, Eisenhardt and Hahn, 2019). However, Blockchain current applications cannot deal with sensitive information with strict 
privacy rules and, consequently, an additional security layer would be needed. 

Different approaches have already been suggested in the literature for privacy preserving data sharing using Blockchain, such as the 
use of Off-Chain Blockchain Systems (Miyachi and Mackey, 2021), proxy re-encryption techniques (Zou, Lv and Zhao, 2021) or 
Attribute Based Encryption (ABE) (Bader et al., 2021). In addition, some Blockchain technologies have also tried to improve its privacy 
level: CryptoNote (Noether, 2014), which provides a high degree of anonymity through ring signatures to obfuscate messages among a 
group of nodes; Zk-Snarks (Reitwießner, 2016), a novel form of zero-knowledge cryptography and the improved Zk-Starks (Albrecht 
et al., 2019), which uses collision resistant hash functions instead of asymmetric encryption to get faster operation. Blockchain with 
HE, allowing private distributed computation, such as in BeeKeeper (Zhou, Wang, Sun and Lv, 2018). HE is, by far, the technology 
which provides the highest level of privacy in combination to Blockchain. 

2.2. Homomorphic encryption 

Encryption is the process of converting the original representation of some information (plaintext) into an alternative form 
(ciphertext) in order to prevent potential interceptors from understanding the content. Encryption assures confidentiality in data 
transmission and storage. However, most of current encryption schemes require of trusting on a third party to compute data since it is 
necessary to decrypt the received information before analysing or operating over it. By this way, data becomes visible to that third 
party and confidentiality is partially lost. 

HE (Acar, Aksu, Uluagac and Conti, 2018) is a promising form of encryption in which the encrypted result of certain computations 
on plaintext can be equally obtained by direct calculation on the ciphertext, preventing from undesired information interception and 
avoiding confidentiality loss and enabling a third party to apply operations on the ciphertext as there is no need to reveal the original 
data values. Equally to other encryption schemes, HE also uses an encryption key Ke to encrypt plaintext and allows only the one with 
the matching decryption key Kd to access its data (both with symmetric and asymmetric keys). However, the main difference is that it 
adds evaluation capabilities for computing over ciphertext without access to the decryption key and remaining the result encrypted. 
HE allows the performing of a specific algebraic operation fplain(), on the plaintext, equivalent to another (not necessarily the same) 
algebraic operation on the ciphertext fcipher(). Considering a ciphertext c0 = Enc (Ke, m0) where m0 is the plaintext, HE allows 
obtaining the same result, for any computational function f(), operating directly on the ciphertext than operating on the plaintext and 
then encrypting the result, fcipher(c0) = Enc(Ke, fplain(m0)). 

In order to create an encryption scheme allowing the homomorphic evaluation of arbitrary functions, it is enough to allow only 
addition or multiplication operations as they are functionally complete sets (Enderton, 2001). The homomorphism always meets 
Enc(Ke, fplain(m0,m1)) = fcipher(c0,c1); when fplain() = + , the homomorphism property is in the addition while when if fplain() = ∗, the 
homomorphism property is in the multiplication. 

Homomorphic property was firstly used in the rot-13 (or Caesar) (Sanchez et al., 2016) encryption scheme in 1980, considering the 
concatenation as the computable function. It was not a secure algorithm, but it introduced the homomorphic property concept in the 
encryption process. Since then, several new HE algorithms have been developed (Parmar et al., 2014). They can be organized in three 
main types depending on the types and frequency of mathematical operations that can be performed on the ciphertext:  

• Partially Homomorphic Encryption (PHE). It allows only one computational function (mostly addition or multiplication) to be 
performed an unlimited number of times on the ciphertext. Some examples of PHE are RSA (Rivest, Shamir and Adleman, 1978), 
El-Gamal (ElGamal, 1985) and Paillier (Paillier, 1999).  

• Somewhat Homomorphic Encryption (SHE). It allows several types of operations (either addition or multiplication) that can only be 
performed a certain number of times until a certain complexity is reached since encryption noise increases with each addition or 
multiplication of the encrypted data resulting in a unencryptable text. This is the precursor to Fully Homomorphic Encryption. The 
most famous SHE scheme is Boneh-Goh-Nissim (BGN) (Boneh, Goh and Nissim, 2005).  

• Fully Homomorphic Encryption (FHE). It can use any efficiently computable function (such as addition and multiplication, not just 
one or the other) any number of times. Unlike other forms of HE, it can handle arbitrary computations on the ciphertexts. However, 
nowadays FHE schemes are not possible to be implemented in practice due to the high computational requirements. Some of the 
most well-known FHE schemes are: Brakerski-Gentry-Vainkuntanahan (BV) (Brakerski and Vaikuntanathan, 2014), 
Brakerski-Gentry-Vainkuntanahan (BGV) (Brakerski, Craig and Vaikuntanathan, 2014) and Gentry-Sahai-crypto Waterssystem 
(GSW) (Gentry, Sahai and Waters, 2013). 

Table 1 compares the main features of the most well-known HE algorithms. As it can be seen, FHE algorithms’ speed is low, making 
their implementation inapplicable, while PHE algorithms’ versatility is also low, reducing their applicability. SHE algorithms are 
presented as an intermediate option in terms of speed and versatility. 
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2.3. Previous blockchain-HE privacy enhancing works 

There have been some previous studies focusing on combining Blockchain and HE technologies for guaranteeing high security 
levels in aggregation processes. 

Ghadamyari and Samet (2019) present a privacy-preserving method for statistical analysis of health data leveraging the Blockchain 
technology and Paillier encryption algorithm to increase the accuracy of data analysis while preserving the privacy of patients. It was a 
high step compared to previous works as it enjoys the benefits of a distributed solution in terms of higher availability while enhancing 
data security. The proposed scheme guarantees privacy between the different participants (patients) as they only share encrypted data. 
However, it does not provide patients privacy with the statistics recipient (for example, a researcher), as patients’ data is always 
encrypted with the recipient public key, limiting the statistics to him. Although this study really increases privacy, it still shows some 
privacy holes that can be improved with algorithms like the one presented in this work. Similar approaches have been presented in Yu 
et al. (2018) and Park, Chao, Jeong & Park (2017) for voting purposes. 

Wang et al. (2019) present a framework combining HE and a hierarchical Blockchain network for data aggregation in smart grids. 
Although it increases the data aggregation decentralization, the proposal highly depends on special nodes called “gateways” which 
centralize the link between the different Blockchain levels. If those nodes were attacked, the complete system would go down. On the 
contrary, the protocol proposed in this research, which also combines HE with Blockchain, solves this limitation presenting a totally 
decentralized solution while maintaining the required privacy. 

3. Data aggregation protocol 

This section theoretically describes the proposed aggregation protocol and introduces some potential applications in which it could 
be useful. 

3.1. High-level overview 

This research work aims at defining a protocol based on Blockchain and HE technologies, in order to increase the security level of 
data aggregation processes. In the suggested solution, Blockchain acts as a distributed ledger which facilitates efficient data aggre
gation through a Smart Contract, guaranteeing secure computation (the aggregation process implemented in Blockchain cannot be 
altered) as well as availability, traceability, and integrity-preservation. As it has been mentioned before, Blockchain does not properly 
deal with massive data; so, the protocol neither does due to performance limitations. On the top, each user will locally use HE for data 
encryption, ensuring confidentiality on the transmission, storage, and computation processes. 

Fig. 1 shows a high-level overview of the required architecture for the proposed protocol. As it has been explained, it is based on a 
distributed Blockchain network over which the aggregation process is deployed by means of Smart Contracts written in Solidity 
language executed over the EVM. 

Each user taking part in the aggregation process requires a python version 3 client with their specific use-case logic as well as the 
encryption and decryption functionalities with and without homomorphism features (paillierlib.py and RSAcryptography.py in Fig. 1) 
and the Blockchain needed operations, including wallet functionality as well as Blockchain transactions generation and sending (web3. 
py). All the communications among participants will be encrypted to increase the overall security of the solution. 

3.2. Theoretical description 

There are three different users who participate in the protocol described in Fig. 2.  

• Asker. He is the user who starts the process asking for an aggregated result (Fig. 2a). He is the only one who gets the aggregated 
result (Fig. 2f), but with no capacity to determine the individual contributions. He is “A” in Fig. 2. 

• Participants. They are the users who contribute with their own information to the aggregation process (Fig. 2c). Each one is rep
resented as “Pi” in Fig. 2, with a total number of “N” participants.  

• Operator. He is the participant directly contacted by the Asker (Fig. 2a). The operator role is not fixed as any participant can be 
contacted by the Asker, thus becoming an operator. He is responsible for starting the aggregation process with his own data 

Table 1 
Comparison of main HE algorithms characteristics.  

Scheme Hom. Prop. Type Security assumption Speed Versatility 

RSA * PHE Integer factorization High Low 
Paillier ⊕ PHE Decisional composite residuosity High Low 
ElGamal * PHE Decisional Diffie-Hellman High Low 
BGN *, ⊕ SHE Subgroup decision High Medium 
BV *, ⊕ FHE Learning with error Low Medium 
BGV *, ⊕ FHE Ring-learning with error Low High 
GSW *, ⊕ FHE Learning with error Low High  
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(Fig. 2b), which will be later enriched with the remaining participants’ data (Fig. 2c). When all the required participants have 
aggregated their own data (Fig. 2d), the operator will send the aggregated result back to the Asker (Fig. 2e). He is “O” in Fig. 2. 

The protocol described in Fig. 2 carries out two simultaneous operations. The first one is the private aggregation procedure started 

Fig. 1. High-level overview.  

Fig. 2. Protocol diagram.  
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by “O” (in blue in Fig. 2b), enriched by “Pi”s (in blue in Fig. 2c) and finally received by “O” (in blue in Fig. 2e). For this purpose, HE 
encryption (paillierlib.py module from Fig. 1) will be considered using the “O” HE public key K0, so that he is the only one who can 
obtain the aggregated result R. However, during the aggregation process, “Pi”s obfuscate their own values with a random nonce so that 
no one, neither the operator, can really know the real aggregation result nor the individual values. The obfuscated aggregated result 
will be then shared with “A” using his public key KA as he is the final recipient (in green in Fig. 2e). This process requires of a second 
simultaneous operation based on the sharing of each “Pi” nonce with “A” (in red in Fig. 2b, c and f). For this purpose, “A” public key KA 
is used (RSA encryption.py module from Fig. 1, as homomorphism is not required in this case, as only transmission and storage must be 
private) so that he is the only one who will finally know every “Pi” nonce (in red in Fig. 2f) and eliminate the nonces from the 
obfuscated aggregated result received from “O” obtaining the real aggregated value (in purple in Fig. 2f). Encryption processes are 
represented as super-indexes while sub-indexes refer to the specific user participation. 

Fig. 3. Process flow diagram.  
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The protocol detailed operation, described in Fig. 3, follows the next steps:  

1 “A” requires a specific aggregated result and contacts at least one “O” using a query q with the particular use case information, 
such as, required data, asker public key, finishing condition (timeout for the aggregation, maximum number of participants, 
participant lists…) etc. The contact between “A” and “O” will be carried out by different means depending on the specific use 
case: peer-to-peer, broadcasting, transaction on Blockchain etc.  

2 Once “O” has received the query, a new aggregation process starts. If several “O”s are contacted, parallel aggregation processes 
will start.  
2.1 “O” takes his own value vp0 and obfuscate it with a random nonce np0 to obtain the data to be aggregated. d0 = vp0 + np0 .  
2.2 “O” encrypts d0 with his own HE public key K0, to obtain the encrypted data (d0)

K0 . He assigns the HE encrypted data to the 
HE obfuscated aggregated result (R)K0 , registered in the Smart Contract (R)K0 = (d0)

K0 .  
2.3 In parallel, “O” encrypts the nonce n0with the public key of “A”, KA (HE is not needed in this case, as only transmission and 

storage must be private), to obtain the encrypted nonce (np0 )
KA . The nonce can only be accessed by “A”.  

3 Once “O” starts the aggregation process, every “Pi” can contribute with his own value following a process like the one from “O”. 
This process is repeated for each participant.  

3.4 “Pi” takes his own value vpi and obfuscate it with a random nonce npi to obtain the data to be aggregated. di = vpi + npi , where 
i ≥ 1 refers to the specific participant (i = 0 is for the operator).  

3.5 “Pi” encrypts di with the “O” HE public key K0, to obtain the encrypted data (di)
K0 to be aggregated to the HE obfuscated 

aggregated result (R)K0 , registered in the Smart Contract (R)K0 + = (di)
K0 .  

3.6 In parallel, “Pi” encrypts the nonce npi with the public key of “A” KA, to obtain the encrypted nonce (npi )
KA . The nonce can only 

be accessed by “A”.  
7 Contributions from “Pi” will end when the finishing condition defined in the query is reached.  
8 Once the required “Pi”s have participated, “O” takes (R)K0 and decrypts it, obtaining the obfuscated aggregated result, including 

both values and nonces, which is meaningless for “O”. He will then share the obfuscated aggregated result with “A” by 
encrypting it with his public key KA, obtaining (R)KA .  

9 Finally, “A” will get and decrypt the obfuscated aggregated result (R)KA and every participant nonces (npi )
KA (including the one 

from the operator (np0 )
KA ), registered in Blockchain. With both information, “A” can obtain the real aggregated data by means of 

subtracting nonce values to the obfuscated aggregated result, obtaining the real aggregated result R −
∑N

i=0npi where N is the 
total number of participants in the aggregations process. 

3.3. Privacy and security considerations 

The suggested privacy-enhancement protocol from this study guarantees the user privacy within the aggregation process thanks to 
the use of HE, which provides confidentiality to the data transmission, storage, and computation. In addition, anonymity in the 
participation is, by default, guaranteed as it is not necessary to provide any personal information for using the protocol; an ephemeral 
(one time-use) Blockchain address is enough (the use of Hierarchical Deterministic wallets (Di Luzio, Francati and Ateniese, 2020) is 
highly recommended). 

Although Blockchain and HE are widely considered secure technologies, there are several studies which point out their main se
curity gaps (Li et al., 2020; Halpin and Piekarska, 2017; Martins, Sousa and Mariano, 2017). This distributed protocol, backboned on 
these two technologies, will consequently suffer from the same security limitations. Furthermore, there are also some security threats 
due to the protocol specific operation that could affect the accuracy and truthfulness of the aggregation process. Some of these threats 
are:  

• False “Pi” Injections Attack. Only authorized “Pi”s should take part in the protocol for data aggregation since a non-authorized “Pi” 
participating in the protocol could corrupt the entire system. A countermeasure to tackle this problem could be to make use of 
whitelists of authorized addresses. The authorized participants will be defined according to the specific use case requirements.  

• “Pi” re-participation. As in the previous case, a multiple participation from the same “Pi” could corrupt the entire system. For this 
reason, it is necessary to limit the number of participations from each “Pi” in a single aggregation process. In this case, the addresses 
which have participated could be registered to be able to verify if some of them has already taken part in the system and avoid its re- 
participation.  

• False “Pi” Contribution. The aggregation process could be manipulated with false source values from each “Pi”. It is not possible to 
avoid false values to be issued but it is possible to achieve non-repudiation by signing each data and nonce provision, making it 
possible to identify the false data generator. This signing operation could be made in a Trusted Execution Environment (TEE) (Sabt, 
Achemlal and Bouabdallah, 2015) storing the signing keys in a secure element in the device, to prevent them from being stolen.  

• “A” and “O” possible collusion. A severe security failure would happen in case “A” and “O” know or share their private keys, since 
they could decrypt the specific information from all the participants in the aggregation process. It is not possible to avoid “A” and 
“O” conspiring together to obtain the information from each participant. However, the probability of suffering from this attack 
highly depends on the specific use-case as, for example, “O” is sometimes predefined in advanced while in other cases, “O” is 
directly selected by “A” among the available participants. 
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• False Obfuscated Aggregated Result. If “O” were compromised, the obfuscated aggregated result provided in Step 5 could not be 
reliable. Consequently, it is recommended to use more than one “O” for each aggregation process to prevent this situation, so that 
“A” would finally obtain an obfuscated aggregated result from each contacted “O”, which should be consistent with the result from 
other “O”s. In case of different results, a byzantine fault would have happened since at least one of the “O”s could have been 
compromised. In this context, Byzantine fault-tolerant algorithms (Castro and Liskov, 1999) could protect from “O”s suffering 
malicious attacks based on exhibiting arbitrary behavior. 

In this case, “A” will contact several “O”s for the same query q (Step 1 and 1bis). The proposed protocol from Step 2 to Step 6 will be 
then repeated in parallel as many times as “O”s have been contacted. Each protocol repetition j will be associated to a specific “Oj” 
using his respective HE public key K0 j. It is important to highlight that each “Oj” will also participate as “Px” for the other repetitions. 
Finally, a Step 7 is needed for “A” to compare the real aggregated data from the different contacted “Oj”s in order to increase the result 
trustworthiness checking if they are equal (as expected under normal operation) or not (byzantine fault could have happened). The 
proposed protocol for multiple operators in shown in Fig. 4, considering in the example two operators, “O1” and the new “O2”, showing 
the new transactions in color. This solution would highly increase the number of transmissions in a number of “O”s (j) factor, since each 
“Pi” should provide his obfuscated data and related nonce for each aggregation process started by each “Oj”. In this context, different 
solutions based on sharing the same nonce for different aggregation processes (as shown in Fig. 4) or making several transmissions at 
once could be useful, reducing the number of transmissions. 

3.4. Potential applications 

The protocol has been described in a generic way to cover a wide range of applications which require of private data aggregation. 
However, it must be particularized for each application, specifying the participants, limits and other features needed. Some of the most 
useful applications are described in this section. 

3.4.1. Pandemic control 
With the recent emergence of rapidly spreading infectious diseases, such as the newly emergent human virus SARS-CoV-2 (COVID- 

19), it is essential to develop preventing tools in order to reduce the transmission extension and, consequently, the sanitary, social and 
economic impact on our societies. The only available tools to stop the epidemic are those of classical epidemic control: such as case 
isolation, contact tracing and quarantine, physical distancing and hygiene measures (Ferretti et al., 2020), but they require of knowing 
if any contact with an infected person has happened. That is why worldwide scientists are studying different technological solutions in 
the form of anonymized phone location tracking and contact-tracing applications 

Therefore, scientists point out that although manual methods help with the spread reduction of a virus, they are not effective. For 
this reason, systems that allow agile and automatic notifications of all those who have been in contact with an infected person, 
regardless of whether they know each other or have simply met in a queue at the supermarket, in the gym, playground, school or public 
transport, can help to rapidly stop the spread of the virus. In this context, technological solutions in the form of anonymized phone 
location tracking and contact-tracing applications have become essential (Klonowska and Bindt, 2020). Nowadays, many countries 
have developed their own initiatives, such as China, South Korea, Israel. However, due to the need for quick tools, privacy has not been 
considered as priority, infringing privacy rights. There are other types of initiatives that have been conceived with privacy and security 

Fig. 4. Protocol with multiple operators diagram.  

C. Regueiro et al.                                                                                                                                                                                                       



Information Processing and Management 58 (2021) 102745

9

from design (privacy by design). However, most of them require a centralized server to gather different data sources (location, health 
etc.), showing several limitations in terms of privacy and security, as it would not be difficult to control users’ movements or even 
re-identify them combining the whole information about a user. In addition, centralized solutions can easily suffer from DoS attacks or 
false events inclusion. For this reason, decentralized solutions seem to be a suitable solution for maintaining people’s privacy and 
avoiding the violation of citizens’ rights. In fact, the DP-3T (“Decentralized Privacy-Preserving Proximity Tracing (DP-3T), GitHub 
repository 2020) has proposed a couple of designs that aim to provide a decentralized solution that protects users’ privacy from design 
and do not depend on the goodwill and security of centralized services whose information could fall into the wrong hands. 

DP-3T solutions are based on informing the user if he has been at risk based on his proximity to infected people. However, the real 
risk is not specified as the DP-3T solutions only provide Boolean results to the user about having been at risk or not. In this context, the 
anonymous information about the number of people at risk will also be useful for the sanitary administration in order to forecast 
potential infections and organize the most suitable response. In this context, the privacy-enhancing protocol for data aggregation 
presented in this research work seems to be useful, offering a tool that complements other existing pandemic control solutions while 
preserving citizens’ privacy. According to authors opinion, the protocol could be used to count the number of probably infected people 
in a determined area (area may refer to a country, province, city, town, neighborhood, or even a building) based on the risk status 
provided by the DP-3T solution. By this way, the real number people having been at risk of infection is undoubtedly known with no 
need to trust on a third party while patients’ privacy is assured. 

Let́s consider, for example, a counting application of people at risk of infection for a specific area, such as the Tecnalia building 
where the authors work in. The application for Tecnalia will have a list of all Tecnalia workers (Tecnalia list) to know when they have 
finished their participation. At any time, a visitor, such as a client who needs to visit someone in Tecnalia, may want to know how many 
people in the building are at risk of having been infected in order to determine the real risk of going there. That person (he acts as “A”) 
will ask someone at Tecnalia to provide the required information. The contacted person will automatically start the described protocol 
(he acts as “O”) for anonymously indicating if he has been at risk based on the DP-3T provided results. Besides, he will inform the 
following person in the list who is “A” and who is “O” in order to make their public keys available. The protocol will afterwards 
continue the same way following the whole Tecnalia list (they act as “Pi”). Once the list has been completed, the contacted person 
automatically gets the counting result and sends it to the visitor, who will obtain the number of people in the building at risk of having 
been infected, being able to determine if going to Tecnalia is secure enough. 

3.4.2. Voting system 
Blockchain advantages are highly desirable for voting applications, as it can be deduced from the huge amount of works 

researching in this direction, such as Ayed (2017) and Hjálmarsson and Hreiðarsson (2018). Traceability of the whole voting process, 
as a core requirement, is met by Blockchain as well as anti-tampering and non-repudiation. However, current voting systems based 
only on Blockchain are not private enough as they are mainly based on the Blockchain anonymization through public and private key 
pairs (Pawlak and Poniszewska-Marańda, 2021). In this sense, the approach of combining Blockchain with the novel HE technique 
could help to increase confidentiality. 

For this reason, another application for the proposed protocol is to be used as a voting system. In a voting system, it is crucial to 
guarantee the anonymity of the voter, as well as the secrecy of the vote at the same time as the system can privately count the votes. The 
voting system could be suitable for several-options surveys as well as true-false voting systems, by coding 0 as false and 1 as true, the 
final count will give an accurate number of falses and trues. 

In this use case, the recipient (it will be “A”) will be known while the first voter to participate (it will be “O”) will start the vote 
aggregation process. In this use case, different voters (they will act as “Pi”) can issue their own ciphered votes before a specific timeout 
expires, and the recipient will obtain the total votes without knowing any individual vote. 

3.4.3. Statistics 
Statistics can be useful for a wide variety of disciplines, from physics to social sciences and from health sciences to quality control, 

as they provide data collection, organization, summary, analysis and interpretation in order to obtain conclusions and take consequent 
decisions based on such analysis. They try to explain regular conditions in random phenomena. 

It is well known that people or organizations are not likely to share sensitive or personal information for just obtaining statistics. 
Let́s consider, for example, people who suffer from a specific illness. Although statistics in medicine are useful, people may be worry 
about sharing their personal medical information and make their illnesses public. Something similar happens with working statistics. 
Let́s consider, for example, statistics about the time a company takes for making a specific product. Making this information public, 
although is often protected by a legal contract between recipient and the organization, can affect their business if a malicious recipient 
discloses specific details of their manufacturing processes to the competitors. The supply chain is another context which demands high 
privacy levels for generating statistics about different material, components, or products (Blossey, Eisenhardt and Hahn, 2019). For 
that reason, ensuring information anonymity, privacy and confidentiality is essential so that people or organizations are willing to 
share information to carry out statistics. 

Nowadays, statistics are usually done by means of providing individual information and combining it with other individual in
formation in order to anonymize it by just providing the joint result. However, the person/computer/application which receives the 
individual information is aware of your information (Matthews and Harel, 2011), eliminating confidentiality and making many people 
not want to participate. In this context, the protocol suggested in this research for data aggregation avoids this lack of confidentiality 
and could imply an increase in participation in statistics by ensuring the information privacy. 

Let́s consider, for example, voting intention statistics periodically carried out by the Centre for Sociological Research or CIS, a 
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Spanish public research institute. The CIS (he will always act as “A”) would start the survey by contacting to specific well-known 
trusted participants (they will always act as “O”), for example, one in each province in order to obtain anonymous and confidential 
information to carry out statistics. Anyone who wants to participate in the survey could provide his voting intention to the trusted 
participant in his province as well as the nonce to the CIS, as both participants will be always known (and their public keys as well). In 
this case, the survey will finish when the first 1000 people (for example) to participate provide their vote. The protocol will calculate 
the aggregated data of voting intention for each political party and will provide the result to the CIS. By this way, every participant has 
shared a confidential vote which has been considered in the joint information guaranteeing confidentiality and privacy during the 
whole process. 

3.4.4. Smart grids 
A significant progress in modern power grids is based on the novel capacity of smart meters to provide real-time energy con

sumption information, being able to aggregate power consumption data from many end-users in one geographical area for intelligent 
distribution. However, ensuring information security and privacy in the meter data aggregation process is a nontrivial task (Tan, 
Krishna, Yau and Kalbarczyk, 2013). 

Current meter data aggregation systems are mostly based on centralized solutions, in which data from different meters is collected 
by the energy management system (EMS) (Mashhour and Moghaddas-Tafreshi, 2009), increasing the risks of single point of failure and 
single point of trust, in other words, the failure and mistrust of the EMS would affect the reliability of data aggregated result. Another 
challenge of centralized structure is privacy protection as data is firstly decrypted and them summed up to obtain the aggregated value. 
There is, therefore, a risk that cyber-attackers may eavesdrop the real-time individual meter data by hacking into the receiving nodes. 

The smart meters data aggregation application can be useful for several purposes such as, determining the power consumption in, 
for example, a neighborhood helping the electric utility in various grid-level applications, such as demand-side management, intel
ligent distribution, load tracking, network expansion, etc (Mattila et al., 2016). A list of smart meters inside the neighborhood should 
be available to determine all participants. The utility (it will always act as “A”) will periodically require the aggregated data infor
mation (“A” public key will be always known by participants as it will be always the same). For the “O” role, there are two options:  

1 In the first one, a specific smart meter will always act as “O” and, consequently, its public key will be always known by “Pi”.  
2 In the second one, different smart meters take the role of “O” in each repetition. In this case, the security is increased but the “O” 

public key must be provided. 

In both cases, the smart meters participate following the smart meters chain order. Once the chain end has been reached, “O” sends 
the aggregated data to the utility (“A”), who will know the total power consumption but without knowing any individual information. 

4. Suggested implementation 

This section describes a suggested implementation of the proposed protocol. The most suitable components in authors’ opinion as 
well as a performance analysis are presented. 

4.1. Components 

The proposed protocol requires of a HE scheme and a Blockchain network, as they are the two novel technologies combined in the 
solution. In addition, a Smart Contract and a user application are needed for the protocol operation. 

4.1.1. HE Scheme 
On the one hand, although FHE schemes seem to be the most suitable encryption models for providing different kind of appli

cations, they have been directly rejected as their high computing power requirements are nowadays clearly excessive turning them into 
not usable. On the other hand, SHE-based models have been considered unsuitable since although different operations are allowed, the 
number of repetitions for each one is highly limited depending on their complexity. Data aggregation-based applications considered in 
this study only require addition operations but allowing unlimited repetitions for providing suitable aggregation services for high 
volumes of data sources. For this reason, PHE is considered the most suitable homomorphic encryption scheme for data aggregation- 
based services. 

Some of the PHE schemes, such as RSA and El Gamal, have a multiplicative homomorphic property while others, such as Paillier, 
have additive homomorphic property, which is the interesting one for data aggregation-based applications. Besides, although mul
tiplicative homomorphic property can also be transformed into an additive homomorphic property through the Cramer transformation 
in encryption and a recovery algorithm after decryption, these additional computations require considerable additional computing 
power as well as time (Cramer, Gennaro and Schoenmakers, 1997). Although Cramer transformation required time is almost negligible 
in comparison with encryption time, recovery algorithms incur in additional time spending, which is high in comparison to decryption 
time (Knirsch, Unterweger, Unterrainer and Engel, 2020). Consequently, although it is possible to consider schemes with a multi
plicative homomorphic property, which mostly shows better encryption and decryption times (Farah, Javed, Shamim and Nawaz, 
2012), algorithms with direct additive homomorphic property are better in terms of total time consumption, especially in the 
decryption process (decryption time plus recovery algorithm). Within schemes with additive homomorphic property, Paillier is the 
most well-known for its efficiency as well as its high level of security. Paillier improves other less-known additive schemes, such as 
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Goldwasser-Micali (GM) and Benaloh (Acar, Aksu, Uluagac and Conti, 2018), in the sense that it can decrease the value of expansion, in 
other words, a single bit of plain text is encrypted in a lower number of bits, reducing the cyphertext size and, consequently, limiting 
the required resources and making the scheme really attractive (Sen, 2013). 

Any HE scheme is primarily characterized by four operations, which will be specified for the Paillier HE protocol:  

• Key Generation. It is the operation which generates the required keys (secret/public key pair). 

In Paillier, for large primes p and q such that gcd(p ∗q,(p − 1) ∗ (q − 1)) = 1, compute n = p ∗ q and λ = lcm(p − 1, q −

1). Then, select a random integer g by checking whether gcd(n, L(gλ mod n2
)) = 1, where the function L(u) = (u − 1)/n for every u 

from the subgroup Z ∗
n2 , which is a multiplicative subgroup of integers module n2. 

Finally, the public key is the pair (n, g) while the private key is the pair (p, q).  

• Encryption. It is the classical task of encryption in a conventional scheme. 

In Paillier, for each plaintext m, a random number r is chosen for the following encryption operation: 

c = Enc(m) = gm ∗ rn (
mod n2 )

.

• Decryption. It is the classical task of decryption in a conventional scheme. 

In Paillier, for a ciphertext < n2, the decryption is done by: 

m = Dec(c) =
(
L
(
cλ mod

(
n2))/L

(
gλ mod

(
n2)))mod n.

• Evaluation. It is an HE-specific operation, which takes ciphertexts as inputs and outputs a ciphertext corresponding to an evaluated 
plaintext. 

In Paillier, the homomorphic property is the addition: 

Enc(m1) ∗ Enc(m2) =
(
gm1 r1

n( mod n2 ))
∗
(
gm2 r2

n( mod n2 ))
=

(
gm1+m2 (r1 ∗ r2)

n( mod n2 ))
= Enc(m1 +m2).

Besides, Paillier has some additional homomorphic properties which describe different cross-relationships between various op
erations on the ciphertext and the plaintext. However, they are not relevant for this research work. 

The Key Generation, Encryption and Decryption operations will be locally carried out by each participant, by means of a web or 
mobile application, or even a dedicated program. However, Evaluation operation will take place over Blockchain through a Smart 
Contract. 

4.1.2. Blockchain network 
Although the proposed protocol can be applied to a wide range of applications, most of them could be clearly oriented to com

munity participation (voting systems, statistics etc.). In this context, public Blockchain networks are more suitable as they enhance 
transparency and accountability. Other use cases cover the situation in which the access must be controlled, limiting the participants. 
However, this access control can be implemented within the Smart Contract, maintaining the deployment in a public network. 

Despite the huge amount of public Blockchain networks which support Smart Contracts (they are an essential component), 
Ethereum is the most extended one, guaranteeing decentralization, immutability, non-repudiation and traceability while providing 
decentralization to the apps built on it (Gencer et al., 2018). It allows running a program in a trusted environment through the 
Ethereum Virtual Machine (EVM) (Hirai, 2017), guaranteeing it will be equally executed in every peer of the network. Furthermore, 
Ethereum provides, by default, security in the communication as it is a TCP-based peer-to-peer network, except for the UDP-based 

Table 2 
Implemented smart contract functions.  

Function Type Description Exec Relevant Param Step 

initAgg write Init a new aggregation process and register its aggregation operation “O” (di)
K0 for i = 0  2.2 

participate write Register a new aggregation operation “Pi” (di)
K0 for i ≥ 1  3.2 

setNonce write Register a new nonce. “O” 
“Pi” 

(npi )
KA for i ≥ 0  2.3 

3.3 
stop write Disable participation function. “O” - 4 
getObfRes view Once participation is stopped, take (R)K0 .  “O” - 5 

setObfRes write Register the aggregated result for “A” “O” (R)KA  5 

getAggRes view Take (R)KA  “A” - 6 

getNonce view Take nonce from each participant “A” - 6  

C. Regueiro et al.                                                                                                                                                                                                       



Information Processing and Management 58 (2021) 102745

12

Kademlia node discovery system (Maymounkov and Mazieres, 2002), as well as high availability and ease of use as users can interact 
with the network by only owning the Smart Contract specifications and their identification in Ethereum (public/private key pair). 

4.1.3. Smart contract 
Following the protocol description from Section 3.1, the Smart Contract implementation requires the functionalities described in 

Table 2, where the description, executor, required relevant parameters for the protocol and associated protocol step are included. 
The integration of HE and Blockchain technologies happens on the Smart Contract deployed in Ethereum, specifically in the 

participate function where, according to Paillier homomorphic property, a multiplication of two ciphertexts must be implemented to 
provide the additive property. 

Enc (m1 +m2) = Enc(m1) ∗ Enc(m2) = c1 ∗ c2 

The multiplication operation is optimized in terms of performance by means of the quarter squares (Holmes, 2003): 

c1 ∗ c2 =
(c1 + c2)

2

4
−
(c1 − c2)

2

4 

Although the participate function could be used also for “O” in step 2.2, a particular initAgg function has been designed in order to 
improve the performance as the first participation (which is always the one from “O”) does not need to be aggregated but only assigned 
and, consequently, the processing requirements are reduced and the performance improved. In addition, this function also resets all the 
Smart Contract variables in order to allow its reuse. 

Although there are various programming languages for the Smart Contracts development, Solidity is the foremost one since it was 
contract-oriented developed by Gavin Wood (Antonopoulos and Wood, 2018). It supports inheritance and libraries which, in com
bination to Web3 collection (Ethereum, 2016), enable an easy way to interact with the applications. In addition, it is a Turing-complete 
programming language, such as C++ or JavaScript, which can theoretically solve any computational problem provided that there are 
no other limitations such as memory or gas consumption (maximum amount of work to be done; depending on the difficulty or the 
speed of a task execution, the computational cost of that operation will be higher or lower and the required gas will increase or 
decrease in proportion). However, as it is very common to define a gas consumption limit to avoid computational loops or buggy codes 
in the EVM, the language possibilities are limited in practice. 

One of the main drawbacks found in the process of integrating HE with Blockchain is the maximum value to be stored in Solidity, 
which cannot exceed 256 bits (32 bytes) (Solidity in Depth 2018). Although this size is ideal in Ethereum because it is just the required 
length for storing hash implementations and addresses, it is not enough when operating with encryption algorithms, such as Paillier. 
For example, even a simple sum of two 256 bits number may be as wide as 257 bits while the multiplication may be up to 512 bits. 

By definition, ciphertext typical bitsize in Paillier encryption is twice as large as bitsize of the encryption key. This size is con
figurable but a trade-off between performance and security should be reached: the longer the key, the higher the computational cost 
(higher gas consumption in the Blockchain network) and the higher security level. For security reasons, it is common to consider at 
least a 2048 bits long key pair, obtaining ciphertexts with a length of 4096 bits regardless of the corresponding plaintext bitsize, 
expanding the plaintext range to a fixed ciphertext range (Chakraborty, Mathew and Vasilakos, 2018). As it can be easily deduced, 
ciphertexts required as Smart Contract inputs for the HE have a too long size to be computed in Solidity. For that reason, the 
BigNumber library (Zcoin, 2019) has been used in this research work to operate with numbers longer than 256 bits. BigNumbers in this 
library are consecutive 256 bits (32 bytes) words in big-endian order, with the required number of leading zeros such that the value 
aligns at exactly the size of 256 bits words. As a result, Paillier ciphertexts will be 4096 bits long, in other words, 16 words of 256 bits 
will be concatenated. 

4.1.4. User application 
Every user will need an application to carry out encryption and decryption local operations as well as to interact with the 

Blockchain network. It will also include the specific intelligence logic for the specific role and use case. On the one hand, for example, 
“O” application will provide the intelligence to determine when the possibility to participate must be stopped based on the finishing 
condition received from “A” on the query, while “Pi” application must look for the “O” and “A” public keys for the aggregation process. 
For this reason, the user application will be different for each user role. On the other hand, the user application will also differ 
depending on the use case. For example, in the suggested pandemic control use case, “Pi” application will receive the information about 
“A” directly from “O” but in the voting system use case, “Pi” application will already know the needed information about “A” since it is 
fixed. 

Due to this high variability on the intelligence logic, a simple user application has been developed in Phyton, importing Web3 for 
Ethereum Smart Contract interaction and Paillier for HE encryption and decryption processes, but without adding any specific in
telligence logic. Additionally, the nonce values encryption and decryption processes, which do not require of homomorphic property, 
has been carried out with RSA with padding (Rivest, Shamir and Adleman, 1978) due to its wide use. 

4.2. Performance 

Once the protocol has been implemented, some performance tests have been conducted to confirm its applicability in practice. 
These tests include measuring time consumption, as it factors in how long each operation execution takes, and gas consumption, as it 
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refers to the computational cost necessary to perform a transaction on the Blockchain network. For each test, 10 different iterations 
have been carried out, taking the average value as representative. 

Fig. 5 shows the scheme of the experimental setup following the high-level architecture from Fig. 1. 
On the one hand, different platforms with different computing capabilities and memory resources have been considered for the 

python client in order to measure the influence of these features over the protocol performance and identify if some minimum re
quirements are needed. The considered platforms are:  

• Lat.: Dell Latitude 5590: (1.9 GHz, i7-8650U, 16GB RAM).  
• Rpi4-4: Raspberry Pi 4 Model B (Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 4GB RAM).  
• Rpi4-128: Raspberry Pi 4 Model B (Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 128MB RAM)  
• Rpi3: Raspberry Pi 3 Model B (Quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB RAM) 

On the other hand, three different Blockchain environments have been considered for the Blockchain network. First, Truffle Suite 
(Hartel and Staalduinen, 2019), a development environment, testing framework and asset pipeline for Ethereum, which makes 
possible to locally compile, link and deploy Smart Contracts. It is useful at developing phases to validate the Smart Contract func
tionality although it does not show a realistic behavior. That is why, to better simulate the real world situation, experiments have been 
also performed on the two most popular Ethereum testnets, Ropsten (the most Ethereum mainnet similar testnet) (Etherscan, 2021) 
and Rinkeby (Rinkeby: Network Dashboard, 2021), through INFURA (Consensys, 2021), a gateway which provides Ethereum nodes on 
the aforementioned testnets. 

4.2.1. Encryption and decryption time 
The required encryption and decryption time for the homomorphic Paillier and non-homomorphic RSA operations have been 

measured and gathered in Table 3 as they are the two cipher algorithms considered in the proposed protocol. 
As it can be seen in Table 3, the required encryption and decryption times for Paillier is at least about 58 times longer for encryption 

and 7 times longer for decryption than for RSA. This is because Paillier encryption/decryption is a more expensive computing process, 
especially in the encryption process, in order to provide its homomorphic property and guarantee privacy not only in transmission and 
storage, as in RSA, but also in the computing process. Therefore, RSA has been considered for encryption and decryption processes not 
requiring private computing (nonce registering). 

These results also show that although Pailler encryption and decryption times are longer than other simpler encryption schemes, 
they are still suitable for most of the potential applications proposed in this work as it takes no more than 421.86 ms with the lower 
processing capabilities. 

Analyzing the different platforms performance, Lat. is the platform with the best performance, especially for Paillier encryption and 
decryption processes (around 40 times better performance than Rpi3, the platform with lower processing features); the performance 

Fig. 5. Experimental setup.  
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improvement of Lat. is lower considering Rpi4 platform (around 10-12 times better performance). In RSA, the encryption and 
decryption time improvement with Lat. is lower, around 3-5 times in comparison to Rpi4 and around 8-13 times in comparison to Rpi3. 
From these results, it can be concluded that the influence of processing capabilities is much higher for Paillier than for RSA, although 
platforms with lower processing capabilities are also suitable for Paillier encryption and decryption operations. 

Moreover, the influence of the different memory sizes has also been evaluated with Rpi4 (128 MB and 4GB) concluding that it does 
not really affect the encryption and decryption times. 

4.2.2. Blockchain transactions execution time 
Table 4 shows the average time needed to perform the functionalities of the protocol which require Blockchain interaction over the 

three considered Blockchain environments considering an equal gas price of 1 gwei (higher gas price is used for executions getting 
prioritized). Although the obtained required times on Ropsten and Rinkeby are probabilistic since they highly depend on the current 
network stability, they are useful to conceive an idea of the expected execution time on public networks. 

As it can be seen in Table 4, the Truffle environment shows very low required times as it is a test environment where the block 
generation is immediate, and no consensus is carried out. Furthermore, Ropsten and Rinkeby show different time results as the 
Blockchain consensus algorithm they use for the mining process is also different, Ropsten uses Proof of Work (PoW) while Rinkeby uses 
Proof of Authority (PoA). PoW has a more complex but more secure mining process than PoA. That is why Ropsten requires a longer 
time for every transaction (almost the double). Although these times could be considered too long for many applications, they are still 
suitable for the potential applications suggested in this research, which do not have real-time requirements. 

Moreover, the average time required for the different protocol steps is also shown in Table 4 for the Lat. platform (the platform with 
higher processing features). As expected, writing operations consume a longer time as, unlike reading operations, they require a 
mining process for registering the new transaction. Results in other platforms show higher average necessary times but maintain the 
same tendency; the required average time increases in about 3 times with Rpi3 (the platform with lower processing features). 

Comparing results from Tables 3 and 4, encryption and decryption required average time is almost negligible in comparison with 
the Blockchain transactions execution, whose time performance mainly depends on the specific Blockchain network as well as the 
network stability. 

4.2.3. Blockchain transactions gas consumption 
The average gas consumption needed for the functionalities of the protocol, which require Blockchain interaction over the three 

considered Blockchain environments, is gathered in Table 5. 
As it can be extracted from Table 5, although steps 2 and 3 have almost the same functionality, step 3 is more expensive in terms of 

gas consumption (almost 5 fives) because it computes a high-consuming aggregation operation while step 2 only computes a lower 
consuming assignation operation. 

In addition, step 2 (and step 3) execution is also more expensive than step 5 because of two reasons: on the one hand, step 2 registers 
two values (data and nonce) while step 5 only registers one (obfuscated aggregated result). On the other hand, step 2 operates with HE 
while step 5 uses lighter RSA. Moreover, reading operations, as expected, do not consume any gas. 

Finally, it can be seen that the gas consumption for every function execution is almost the same regardless the Blockchain 

Table 3 
Encryption and decryption required average time (ms).  

Scheme Key size Op Exec Data Step Time (ms) 
Lat. Rpi4-4 Rpi4-128 Rpi3 

Paillier 2048 Encr. “O” 
“Pi” 

di for i ≥ 0  2.2 
3.2 

10.59 133.13 133.61 421.86 

Decr. “O” (R)K0  5 13.17 134.04 133.68 498.28 

RSA 2048 Encr. “O” 
“Pi” 

npi for i ≥ 0 or (R)KA  2.3 
3.3 
5 

0.18 0.52 0.51 1.53 

Decr. “A” (npi )
KA for i ≥ 0  6 1.77 7.64 7.46 24.12  

Table 4 
Average time for main transactions (s).  

Step Exec Smart Contract Functions Type Time (s) 
Ropsten Rinkeby Truffle 

2 “O” initAgg + setNonce write 20.63 14.40 0.52 
3 “Pi” participate + setNonce write 26.69 14.69 1.13 
4 “O” stop write 23.26 15.00 0.08 
5 “O” getObjRes read 0.14 0.14 0.07 
5 “O” setObfRes write 27.31 14.72 0.18 
6 “A” getAggRes read 0.16 0.15 0.04 
6 “A” getNonce read 0.17 0.14 0.04  
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environment. The reason lies in the gas calculation method in Ethereum, which depends on Smart Contract compiled code, which is the 
same in the three cases. However, these gas consumption values will grow with the number of participants (the more participants, the 
higher computational cost and, therefore, the higher gas consumption) until reaching the situation where the required gas con
sumption exceeds the gas limit defined in the Blockchain and the transaction cannot be properly executed. 

4.2.4. Performance considerations 
The performance results described in previous subsections show that the proposed privacy-enhancing distributed protocol for data 

aggregation has certain limitations. On the one hand, there is a limit on the number of participants which depends on:  

• The specific computational cost required for the private aggregation process which highly depends on the homomorphic encryption 
key size; the lower it is, the lower computational cost (lower gas) and the higher the number of participants until reaching the gas 
limit. However, decreasing the homomorphic encryption key size also means a lower security level, so a trade-off between 
computation cost and security would be needed.  

• The specific gas limit supported by the Blockchain network; the higher the gas limit, the higher the supported computational cost 
and the higher the number of participants. However, it should not be increased too much to avoid buggy codes or computational 
loops. 

On the other hand, there is a high dependency of the required average time for the protocol execution with the Blockchain network, 
mainly influenced by:  

• The specific computational cost required for the private aggregation process which, as for the gas consumption, highly depends on 
the homomorphic encryption key size. Higher key sizes mean higher computational cost and, consequently, higher average 
execution time.  

• The Blockchain network stability; with higher network load (higher pending transactions), not every new transaction can be 
immediately executed and, consequently, higher priced transactions get prioritized. 

The described performance results from previous subsections are related to the single operator protocol, which can be considered as 
reference performance. For multiple operators, the gas consumption can be extrapolated by a number of operators factor while the 
required average time is not highly modified as although the number of encryption/decryption operations and Blockchain transactions 
increases in a number of operators factor, these processes are parallel and no much more extra time is needed. 

5. Conclusions and open research 

This paper designs a privacy-enhancing distributed protocol for data aggregation based on Blockchain and HE technologies which 
is useful for increasing the security level of a wide range of applications, from statistics to pandemic-control tools. Blockchain offers a 
distributed ledger to provide integrity, traceability, availability and non-repudiation while HE provides privacy and confidentiality in 
the data transmission, storage and computation. 

The proposed protocol, which has been firstly theoretically described, has then been implemented and evaluated on two testing 
Ethereum Blockchain networks using Paillier HE scheme and showing promising performance results. More future research can be 
conducted on applying the proposed protocol to different Blockchain networks and HE schemes as well as implementing and testing 
the detected security limitations and the suggested countermeasures. 
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Table 5 
Average gas consumption of main transactions.  

Step Exec Smart Contract Functions Type Gas 
Ropsten Rinkeby Truffle 

2 “O” initAgg + setNonce write 130 182 130 179 130 181 
3 “Pi” participate + setNonce write 593 386 593 319 593 117 
4 “O” stop write 13 538 13 538 13 538 
5 “O” getObjRes read 0 0 0 
5 “O” setObfRes write 68 584 68 595 68 590 
6 “A” getAggRes read 0 0 0 
6 “A” getNonce read 0 0 0  
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