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Abstract: Background: Alzheimer’s is a degenerative dementing disorder that starts with a mild
memory impairment and progresses to a total loss of mental and physical faculties. The sooner the
diagnosis is made, the better for the patient, as preventive actions and treatment can be started. Al-
though tests such as the Mini-Mental State Tests Examination are usually used for early identification,
diagnosis relies on magnetic resonance imaging (MRI) brain analysis. Methods: Public initiatives
such as the OASIS (Open Access Series of Imaging Studies) collection provide neuroimaging datasets
openly available for research purposes. In this work, a new method based on deep learning and
image processing techniques for MRI-based Alzheimer’s diagnosis is proposed and compared with
previous literature works. Results: Our method achieves a balance accuracy (BAC) up to 0.93 for
image-based automated diagnosis of the disease, and a BAC of 0.88 for the establishment of the
disease stage (healthy tissue, very mild and severe stage). Conclusions: Results obtained surpassed
the state-of-the-art proposals using the OASIS collection. This demonstrates that deep learning-based
strategies are an effective tool for building a robust solution for Alzheimer’s-assisted diagnosis based
on MRI data.

Keywords: deep learning; classification; Alzheimer’s; MRI; OASIS

1. Introduction

Back in 1907, Alois Alzheimer described how a 51-year-old woman died with severe
dementia after four years of rapid memory degeneration. Alzheimer’s disease, named
after him, is a dementia degenerative disease starting with mild memory impairment in
the early stages and progressing to a complete loss of the mental and physical faculties [1].

The initial clinical manifestations of Alzheimer’s disease (AD) are difficult to define as
there is a large variation between cognitive abnormalities, but they can be correlated to
degeneration in some specific regions of the brain. At first, AD typically presents memory
loss and poor judgement. Then, the disease makes the patient more and more dependent,
and in its later stages, he/she requires constant supervision. Although there is currently
no cure for AD, there is medication available that can temporarily reduce the symptoms,
slowing down the progression of the disease and therefore, delaying the phase of complete
dependence of the patient.

Over the years, different assessment tests have been proposed with the aim of diag-
nosing and monitoring the progress of AD.

The Mini-Mental State Examination (MMSE) exam [2], introduced in 1975, is the most
extensively used questionnaire that examines six different modalities of patient cognitive
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ability. It is extensively used as it does not require special training or equipment and can be
trustworthily used for the longitudinal monitoring of the AD progression. Unfortunately,
its disadvantage is that it is affected by demographic, age and education factors and lacks
sensitivity to measure progress in case of severe AD. With a maximum of 30 points, results
can be evaluated as normal cognition, mild, moderate and severe stages of the disease.
Different score ranges for each category have been defined and discussed in the literature
throughout the years, and it has been expanded accordingly in its current form [3].

The Clinical Dementia Rating (CDR) [4], introduced in 1982, is an alternative struc-
tured interview for measuring dementia based on the scoring obtained in six different
cognitive and behavioral areas that are combined to obtain a value between 0 and 3. The
score values’ meanings are as follows: 0—cognitive normal, 0.5—very mild or questionable
dementia, 1—mild dementia, 2—moderate dementia and 3—severe dementia. An initial
limitation was the difficulty to distinguish mild and very mild cases from normal cognition,
so the test was updated later on to introduce new aspects that reliably distinguish those
cases [5].

Other tests are the Clock Drawing test (CDT), which is the second most used test,
although it lacks sensitivity for identifying early or moderate AD, the Alzheimer’s Disease
Assessment Scale (ADAS), the Global Dementia Scale (GDS) and the Neuropsychological
Test Battery (NTB) [6].

However, definitive AD diagnosis relies on a magnetic resonance image (MRI) study [7].
MRI is a standard diagnosis technique free of radiation that is commonly used by health-
care providers for diagnosis, staging and follow-up of diseases. MRI scans are detailed
three-dimensional anatomical images that can be used to examine almost any part of the
body. In this case, the MRI technology makes it possible to recreate a 3D volume of the
subject’s head in detail [8]. The role of MRI in AD diagnosis is that it allows studying
brain structures and how they change over the time. In this sense, changes in hippocam-
pus, frontal and parietal regions are evidential markers in the progress of the disease to
dementia [9]. Other imaging modalities such as PET (positron emission tomography)
are also complementarily used to study changes in brain functioning and activity of key
proteins. In recent years, the diagnosis process of the disease is evolving and initiatives
based on various identified biomarkers have been proposed, with recommendations of the
International Working Group on how they should be used in the clinical practice [10].

In this work, we propose a new approach for the automatic diagnosis of Alzheimer’s
disease by means of image processing and deep learning-based techniques using MRI data
and CDR clinical annotation. Section 2 shows a review of available datasets and related
work for comparison baseline definitions. Section 3 details the materials and methods
used in this work and the proposed solution. Results are presented in Section 4 and
discussion, conclusions and future research lines are presented in Section 5. Additionally,
complementary information of materials and methods is included in Appendices A and B.

2. Related Work
2.1. Data Collections

ADNI (Alzheimer’s Disease Neuroimaging Initiative) [11] is the most important and
extensive collection of Alzheimer’s-related information, containing different types of im-
ages, such as MRI, PET, DTI (diffusion tensor imaging), genetic information, demographic
information, cognitive tests and cerebrospinal fluid (CSF) biomarkers from over 1800 sub-
jects. The collection has been gathered based on different studies: ADNI1, ADNI-GO,
ADNI2 and ADNI3, starting in 2010 and ongoing up to date. Imaging information has
been acquired over different follow-ups with the aim of developing biomarkers to track the
progression and underlying changes happening in the presence of AD. MRI images from
different sequences (structural, diffusion-weighted, perfusion and resting state) and PET
can be found in raw format or post-processed. Data science challenges, such as TADPOLE
(The Alzheimer’s Disease Prediction of Longitudinal Evolution) [12] in 2018, have made
use of the ADNI collection, organizing the data in different standard sets containing longi-
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tudinal data (no longer available). Navigation in such a huge collection to obtain image
data is a demanding task, and with the exception of the challenges, there are no standards
sets that can be extensively used. For this reason, there are many research papers that use
their own sets extracted from the original ADNI, making fair comparison of methodologies
a very complex task, as reproductivity details to obtain a similar subset are not usually
provided.

OASIS (Open Access Series of Imaging Studies) [13] is another well-known initiative
that has provided neuroimaging datasets openly available for research purposes. Three non-
complementary, different datasets have been released over the years. These datasets are
easily accessible, facilitating their usage and the validation of new proposed methodologies.
OASIS-1 [14] (presented in 2007) is a cross-sectional collection of 416 subjects, where
100 are over 60 years of age and diagnosed with very mild or moderate Alzheimer’s
(using CDR). The dataset includes a T1-weighted MRI scan for each subject, with the
exception of 20 subjects without dementia, scanned twice on a subsequent visit for baseline
comparison, and a list of annotations. The MRI data is offered processed, with skull removal
operation and segmentation masks separating grey-matter (GM), white-matter (WM) and
CSF performed, and whole-brain volume and estimated total intracranial volume (eTIV)
calculated. OASIS-2 [15] (presented in 2010) is a longitudinal collection of 150 subjects
scanned on different visits, including a total of 373 imaging sessions. T1-weighted MRI
scans and annotations are provided for each subject, plus calculations of the whole-brain
volume presented, however, data processed with the skull removal and segmentation
operation are not available. Interestingly, 14 of the subjects were initially identified as
non-demented and converted to demented in a later visit (CDR reference). Additionally,
OASIS-3 [16] (presented in 2019) is a longitudinal collection of 1090 subjects, 650 non-
demented and 493 at various stages of AD. The dataset includes both MRI (structural
and functional sequences) and PET (metabolic and amyloid) images, with over 2000
and 1500 sessions respectively, including some post-processing as segmentation and PET
analyses, and annotations.

The ADCP (Alzheimer’s Disease Connectome Project) [17] has gathered data from
300 subjects, cognitively healthy and with dementia, over a timespan of 4 years. Collected
data includes standardized demographics, MRI (structural, function, diffusion-weighted)
and PET (only for some participants) imaging, behavioral information and clinical informa-
tion (blood tests including genetics and CSF proteins’ analysis for 70% of the participants).
The data follow standards and protocols defined in the Connectome Project [18]. The
collection has not been published yet, although it is planned to be released in two steps,
first the baseline collection and later the longitudinal collection.

CADDementia (Computer-Aided Diagnosis of Dementia based on structural MRI
data) [19] was an image processing challenge launched in 2014 containing 384 multi-center
T1-weighted MRI images with AD, mild cognitive impairment (MCI) and healthy controls.
A small training set (30 scans) with diagnosis labels was provided, although participants
were encouraged to train on any suitable data (i.e., ADNI). The project provided a frame-
work for the comparison of submitted computer-aided diagnosis methods.

The MIRIAD (Minimal Interval Resonance Imaging in Alzheimer’s Disease) [20]
dataset presented in 2013 included longitudinal volumetric T1 MRI scans of 46 subjects
with mild–moderate AD and 23 controls, with a total of 798 scans acquired with the same
equipment at established time intervals (0, 2, 6, 14, 26, 38 and 52 weeks, and 18 and
24 months). Additional information is available, such as gender, age and MMSE scores.

The NACC (National Alzheimer’s Coordinating Center) database [21] was released in
2007, presenting uniform data collected from 29 centers over 30 years. It contains more than
900 data elements grouped in different datasets and metadata with 68 data elements (such
as race, education, gender, diagnosis, stroke, depression, availability of DNA, availability
of tissue, availability of MRI, etc.). As suggested by the metadata, imaging information is
not available for all users. Besides, access to the database is controlled via four users’ types,
from public to personnel restricted.
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2.2. Automatic Analysis

A systematic review of machine learning classification methods for assisted diagnosis
is provided in [22], including literature works (conference and ArXiv are excluded) pub-
lished during the years 2006–2016. Most works use traditional image processing methods
for image pre-processing and feature extraction and traditional machine learning clas-
sification methods. Only 2 out of the 111 relevant studies considered were making use
of a deep learning-based approach. Since 2016, as mentioned in [22], there has been a
significant increase on the number of publications (with a big presence in conferences)
using deep learning-based methods for the automatic classification of Alzheimer’s disease
on MRI images. In this sense, [23] provides the first review focused on deep learning (DL)
methods, however, not only for AD classification but also for other brain-based disorders.
The changes in the methodologies can also be clearly observed in the most recent review
study [24], that includes works in the 2005–2019 period. The analysis is mainly organized
in three categories, including support vector machines (SVM), artificial neural networks
(ANN) and DL, although others are discussed. The problem of the clinical interpretability
of DL models, usually seen as black boxes, in comparison with the other strategies, is
addressed in the conclusions section.

Other works, such as [25], provide an alternative extensive review of methods and
strategies up to 2016, where different image modalities are included, not only MRI. They
include an interesting critical review of different aspects in the discussion section. First, they
present aspects affecting works’ comparison, such as the length of the follow-up period of
patients in the datasets, characteristics of the population included, possible impairment in
the data, evaluation metrics used and of other factors that can affect the performance of
classification algorithms. Then, challenges still present on the AD classification works that
are also common problems in the machine learning world, such as the ability to generalize,
the size of datasets and samples, the reproductivity of the results and the heterogeneity of
the AD disease, are presented.

In the current work, the authors have decided to use the OASIS collection datasets
as baseline validation of the proposed methodology. The OASIS datasets’ images and
annotations are well-structured and organized, facilitating the reproductivity of the pro-
posal and fair comparison of methods using exactly the same data. Other datasets provide
more extensive data, but to the authors’ knowledge, there are no standard subsets that
can be used for fair comparison, hence works tent to create their own subset and details
to facilitate reproductivity are usually missing. For this reason, from now on, analysis
of the state-of-the-art has been focused only on those works making use of OASIS for
comparison purposes, although there are additional methods developed over the ADNI
or other databases with an extensive related literature. Besides, to be more precise and
facilitate reading, only the most relevant and reproducible methods are mentioned or
described in detail.

In general, there are two types of DL approaches: to combine Convolutional Neural
Network (CNN) with traditional image processing and machine learning methods (for
feature selection and/or classification) or to develop full end-to-end CNN DL solutions.
With respect to combined approaches, the most interesting approximations are found
in [26–28]. References [26,27] report accuracies close to 99%, whereas [28] reaches an
86.81% average accuracy for all classes. The reported accuracies with combined methods
are impressive, however, in [26,27], few details are provided about the selection of cases in
the dataset, meaning that the reported results can be biased and unrealistic. The proposal
in [28] is interesting and reproducible, although no balanced accuracy (BAC) metric is
provided, which is a more realistic metric to evaluate the accuracy of the approach in the
presence of the high data imbalance of this dataset. Other metrics provided are accuracy,
precision, recall and specificity, reporting 0% precision and recall for mild dementia and
moderate AD classes due to the small number of cases in the dataset.

On the other side, with respect to full DL solutions, Reference [29], after testing dif-
ferent alternatives, proposed a 2D architecture which consists of an ensemble of three
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homogeneous and slightly different models containing convolutional, batch normalization,
Rectified Linear Unit (ReLU) and pooling operations. For data augmentation, they pro-
posed a cropping strategy, where three crops of size 112 × 112 pixels are extracted from
each database sample, one from each image plane. They made use of the full OASIS-1
dataset, dedicating 70% for training, 10% for validation and 20% for testing. The model
was trained independently and the ‘softmax’ classification layer with cross entropy was
added to solve a four-class classification problem considering the CDR information on
the dataset. A cost-sensitive training strategy is used for dealing with data imbalance,
using a cost matrix to modify the output of the last layer of the networks for giving more
importance to the underrepresented classes, assigning weights dependable to the number
of samples of each class. Besides, models were optimized with the Stochastic Gradient
Descent (SGD) [30] algorithm and early stopping regularization. Then, individual models’
answers are ensembled using a majority voting strategy, where the class with the majority
of the votes is assigned as the output answer. The mean accuracy of the proposed architec-
ture is 93.18%, with 94% precision (67% for mild dementia and 50% for moderate dementia)
and 93% mean recall (33% for very-mild dementia and 50% for moderate dementia).

More recently, Reference [31] provided a comprehensive review and comparison
of methods proposed in the latest years. The authors mention the difficulties for fair
comparison due to differences on participant selection, image pre-processing, model
selection, validation procedure or the lack of implementation details (in more than half of
the papers analyzed), which makes it difficult to reproduce the methods and could indicate
biased performance of the reported metrics. They classified the identified approaches in
four different groups considering the type of processing of the images: 2D slice-level, 3D
patch-level, ROI-based and 3D subject level. Then, they have extended their open-source
framework for the comparison of the selected CNN architectures, where they have detected
that in general, neither of the proposals outperform an SVM with voxel-based features. As
a result of their analysis, they provided different tables with the summaries of the studies
analyzed and reported performances metrics (with data leakage identified) and the results
of experiments implemented in their framework. In their experiments, they report the
BAC metric and values obtained in five different executions (folds), comparing different
classification architectures, training data configurations, image pre-processing strategies,
intensity rescaling, training approaches, transfer learning approaches and classification
tasks. For the OASIS collection (only patients over 62 years), they report average BAC
within the range [0.61, 0.73] for the different experiments’ configurations (details in Table 6
in [31]). The best performance reported in their experiments uses the ADNI dataset and
reaches 0.89 BAC. This reference offers a valuable and fair framework for the comparison
of the results of new proposals.

Considering the full DL solutions, possibly the most remarkable results are provided
in [29], which makes use of 2D-based models (3 model resemble architecture), fair use of the
complete OASIS-1 dataset, data augmentation and imbalance strategies and good learning
practices, and they obtained 0.93 main accuracy in a four-class classification problem.
However, the need of such architecture could be questionable as perhaps the results could
be determined by the combination of ROIs from the 3 planes.

3. Materials and Methods
3.1. Dataset

This work makes use of the OASIS collection for the evaluation and comparison of the
proposed methodology with previous works, and of the OASIS-1 and OASIS-2 datasets.

OASIS-1 [14] is a cross-section open dataset containing information from 416 subjects
aged between 18 and 96 years, acquired with a 1.5 T scanner. Out of the 416 entries, 20
are from subjects without dementia, imaged in a subsequent additional visit later to their
initial visit, as a control group for ensuring reliability of the data and analysis provided.
All the subjects have right-hand dominance.
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The clinical status of the patient is established by the CDR scale, although the MMSE
scale and other clinically relevant information along with demographic information is
also provided for each entry. The annotation file contains the following information: ID,
M/F, Hand, Age, Education (Educ), Socioeconomic status (SES), MMSE, CDR, estimated
total intracranial volume (eTIV), normalized whole-brain volume (nWBV), atlas scaling
factor (ASF) and Delay. ‘Educ’ indicates the years of education, SES uses the Hollinshead
index of Social Position [32], MMSE score [2] and CDR scale [4] were established after
medical examination, eTIV [33] and nWBV [34] were calculated as standard methods to
analyze anatomical characteristics of the brain in the MRI images, ASF [33] was computed
to transform the brain and skull from native space to the selected target atlas and ‘Delay’
for the 20 cases subgroup indicates the days after the first visit (mean: 20.55 days). The
nWBV calculation requires a previous segmentation operation that separates WM, GM and
CSF that has been performed based on estimations by the Markov random field model and
further manual corrections.

Images of the OASIS-1 dataset are offered post-processed in 16-bit Analyze 7.5 for-
mat [35], with facial features out of the cranial values masked out, co-registered and
converted to the Talairach and Tournoux standard atlas space [36] and inhomogeneity
intensity due to the corrected magnetic field [37]. Additionally, different versions of the
images are available: in RAW, processed without skull and segmented. In this work, we use
processed images without skull, identified as “_t88_masked_gfc”. This makes the OASIS-1
dataset able to be widely used. Nevertheless, out of these ideal dataset conditions, it is
worth validating the methodology and performance of the models over other raw datasets.

OASIS-2 [15] is a longitudinal dataset of 150 subjects with ages between 60 and
96 years, scanned on various visits with a 1.5 T Vision scanner and at least one year
difference, and a T1-weighted sequence, collecting a total of 373 imaging sessions. All the
subjects have right-hand dominance. Interestingly, 14 of the subjects were characterized as
non-demented on the initial visit and as demented afterwards, which can lead to studying
the change on the whole-brain volume and structures to detect atrophy. Various subjects in
the dataset were also part of the cross-sectional OASIS-1 (with different random identifiers),
so the two datasets are not complementary.

The clinical status of the subjects is established by the CDR scale and contains the
following annotations: Subject ID, MRI ID, Group, Visit, MR Delay, M/F, Hand, Age,
EDUC, SES, MMSE, CDR, eTIV, nWBV and ASF. MRI ID identifies the number of the
scan performed on the subject. ‘Group’ is a new annotation that classifies the subjects as
‘Nondemented’, ‘Converted’ or ‘Demented’, considering their status at the end of the study
with respect to the beginning. Visit indicates the number of the visit of the entry and MR
Delay indicates the number of days since the previous visit.

Images of the OASIS-2 dataset are offered converted to 16-bit NiFTI1 format, corrected
for inter-scan head movement and converted to the Talairach and Tournoux standard
atlas space [36] with a rigid transform. Images are co-registered with a 12-parameter
affine transformation and intensity inhomogeneity, and variations among contiguous
regions are corrected. Unfortunately, only the raw images are provided, and skull removal
or segmentations are not available. This makes it difficult to directly use this dataset,
requiring some pre-processing, which is explained in Appendix B.

The number of samples included in each dataset detailed by CDR diagnosis is sum-
marized in Table 1.
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Table 1. Number of samples for the OASIS-1 and OASIS-2 datasets considering the CDR value as a
reference.

CDR OASIS-1 OASIS-2 OASIS-2 (Our Subset)

0 (cognitive normal) 336 206 177
0.5 (very-mild dementia) 70 123 98

1 (mild dementia) 28 41 27
2 (moderate dementia) 2 3 3

TOTAL 436 373 305

3.2. Data and MRI Volume Processing: Model Input

Images from both datasets have been labeled to face a classification problem. On the
one hand, in two different classes, with subjects with CDR = 0 being part of one class and
subjects with CDR = 0.5, CDR = 1 or CDR = 2 part of the other class. The reason for this
classification is that only 2 examples of CDR = 2 and 28 of CDR = 1 are part of the OASIS-1
dataset, being such an under-representation that it would lead to inaccurate multi-class
classification results. On the other hand, they were grouped in a three-class problem (as
explained above, there are not enough examples of CDR = 2 for a four-class problem),
where subjects with CDR = 0 are part of one class, subjects with CDR = 0.5 are part of
another class and subjects with CDR = 1 and CDR = 2 are part of the remaining class.

All the available entries of the OASIS-1 dataset are used in this work. From the OASIS-
2 dataset, some samples have been excluded due to skull removal problems, as explained
in Appendix B and listed in Supplementary Table S1. No filtering per age (e.g., older than
60 years [31,38]) or other criteria has been performed in either of the datasets.

Training, validation and test sets are automatically randomly generated for the OASIS-
1 and OASIS-2 datasets, separately. Each set contains a balanced number of samples per sex
(M/F) to eliminate possible bias. The reason is that previous studies state that incidence is
different in women and men [39,40], and that differences in the brain volume-associated
measures are observed for male subjects [41] with an impact on the prevalence of the
disease. Additionally, for the OASIS-2 (longitudinal) dataset, the different entries (MRI
scans in different visits) from the same subject are always included in the same set.

Only the horizontal (transverse) plane images have been used for training and testing
the models. Some preliminary experiments were also performed using the frontal (coronal)
plane images, but they were discarded as the results obtained were considered worse.

Datasets of MRI volumes have original dimensions of 176 × 208 × 176, meaning that
they contain 176 slices/images of 176 × 208 pixels size. Two different strategies have been
considered in the experiments to include the MRI information. One strategy has been to
use the whole 3D volume, which is especially interesting for models constructed with 3D
convolutional layers. The other strategy has been to only use a limited number of slices of
the volume, which has been demonstrated to be more interesting when experimenting with
models built with 2D convolutional layers. Considering the center slice to be 88 (half of
176), an N number of slices from each side is extracted. Various experiments were executed
with the same model with a different number of slices (10, 20, 30 and 50) to conclude that
the optimum value was 10 slices. Increasing the number of slices demonstrated that no
improvements of the results were obtained, and even that using ≥30 slices was unfavorable
for the results. This suggests that the 10 center slices contain the most relevant information
for diagnosis purposes. Then, original slices/images (176 × 208) have been resized to
two different sizes depending on the model used, and implicit size restrictions if previous
weights are used (e.g., ImageNet [42]). In this sense, two image sizes have been considered:
176 × 176 and 224 × 224 pixels.

Regardless of whether the model uses 2D or 3D convolutional layers, it can be trained
with 3D data. In this sense, this work makes a comparison of 2D- and 3D-based archi-
tectures for the classification of Alzheimer’s CDR and provides a comparison of results,
including additional improvement strategies. Additionally, an approach that converts the
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3D data to 2D prior to training has also been implemented and included in the comparison.
When data is converted to 2D, image slices are extracted from the 3D volume and treated
independently during training, validation and testing. It is ensured that all image slices
from the same sample are kept in the same data subset. Then, during the testing process,
all images are evaluated independently, and a mean prediction is obtained (all images have
the same weight), which determines the final prediction class.

Considering the data imbalance of the entries of the OASIS-1 and OASIS-2 datasets
(especially in the first case), the network generator is configured to always include the same
number of samples of each class in the current batch, independently if targeting a two-class
problem or a three-class problem. To increase variability and avoid overfitting, the data
imbalance strategy is complemented with a data augmentation strategy, where images are
randomly vertically or horizontally flipped or rotated. When the data are treated as 3D
volume, the same operations are randomly applied to all the slices in the volume. On the
contrary, when the data are treated as 2D, different operations can be applied in the data
augmentation process to each of the individual images of the volume.

3.2.1. Data Normalization

Additionally, image values are normalized, and two strategies have been explored
for image quality enhancement. In the basic form, 3D volume images are normalized to
the [0–1] range. In an alternative configuration, and inspired by [43], a contrast stretching
operation is performed. The 2nd and 98th percentile values of the volume are calculated
and assigned as min and max values, and then the whole volume is normalized to the [0–1]
range.

3.2.2. Metadata

Following a similar approach to what is proposed in [28], it has been explored whether
sex and age metadata can benefit model performance. As analyzed in Appendix A, from
all the metadata available in the OASIS-1 collection, sex and age information seem to have
a relevant role in the diagnosis of Alzheimer’s disease. Considering this, this information
has been added to the MRI volume used as input (in the data generator) when training the
models in some experiments for comparison purposes.

3.3. Proposed Solution

The aim of this work is to propose and develop a method to estimate the presence of
Alzheimer’s disease by means of the analysis of brain MRI sequence. As it was explained
previously in the Introduction Section, the severity of Alzheimer’s disease can be catego-
rized through the CDR indicator used as a reference in the OASIS collection, whose value
can be 0 (healthy), 0.5 (very mild), 1 (mild) or 2 (severe). Depending on the accuracy level,
a two-, three- or four-class classification model can be developed. In this work, we have
compared results of a two-class model and a three-class model, due to the CRD 1 and
2 categories containing fewer samples, so they have been combined.

The input of the model depends on the chosen architecture for the different tests. 2D
(slice-level) and 3D (subject-level) approaches have been tackled. The 2D solution is usually
used. The strongest point is that it allows to have a wider set of examples since there are
176 slices per MRI volume. This might allow a better training convergence and reduce
overfitting. However, 2D approaches lack information in the third axis. This information
when dealing with 3D objects, as it is the case with human tissues and organs, may provide
details that will lead to a more precise solution [44].

For both 2D and 3D approaches, known architectures and custom architectures are
considered. Among the known architectures, the ResNet [45] family has been evaluated,
together with Inception [46], Xception [47], etc., with ResNet18 providing better results.
Custom networks have been designed both in 2D convolution (Conv) and 3D convolution
approaches. The implemented and compared network architectures are described next.
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BrainNet2D (2D Conv): A small custom network is proposed. The input data is
considered as a 3D subject-level with single output for the whole volume. Input data are M,
N and K, with M and N being the size of every slice, and K the number of slices. However,
the information is treated slice-by-slice through the 2D convolutional layers and max
pooling layers in order to reduce spatial resolution and extract a representative number of
high-level descriptors. Four convolutional blocks are included, each of them containing the
2D convolutional layer (filter size is 3) and the 2D max pooling layer. No additional fully
connected layers are added. The activation function is ‘softmax’ for exclusive classes. The
loss function is initially ‘categorical_crossentropy’. The architecture of BrainNet2D can be
seen in Figure 1. Two variations of the same architecture are compared. First, the baseline
BrainNet2D architecture (Figure 1A), and second, including Batch Normalization layers
(Figure 1B) as an improvement technique, explained below.
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Figure 1. BrainNet2D network (A), and BrainNet2D network with Batch Normalization (B).

• BrainNet3D: A custom 3D network is proposed similar to the previous one but with a
real 3D approach. Input data are M, N, K and 1, with M and N being the size of every
slice, and K the number of slices. Five convolutional blocks are proposed, each of
them containing the 3D convolutional layer and 3D max pooling layers. This approach
fits better with biology and human understanding and might provide more useful
patterns of structures in the brain. Filters for each convolutional layer represent the
number of filters ∗filter size, with the number of filters being 8, 16, 32, 64 and 128 in
each of the five convolutional blocks, and the filter size is 3 in all of them. At the end
of the embedding part, a Global Average Pooling 3D layer is added. No additional
fully connected layers are added. The activation function is ‘softmax’ for exclusive
classes. The loss function is initially ‘categorical_crossentropy’. The architecture of
BrainNet3D can be seen in Figure 1. Again, two variations of the same architecture
are compared. First, the baseline BrainNet3D architecture (Figure 2A), and second,
including the Batch Normalization layers as an improvement technique (Figure 2B).
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• 2D slice-level network: This network architecture performs at the 2D slice-level. This
means that the network has as input a single slice of M, N and 3 size, and every
image has an associated classification output. The unique channel per slice has been
replicated to provide the three-channel input expected by ResNet family networks
and to make it possible to fine-tune operations with ImageNet weights. ResNet18, a
small model from the ResNet family [45] pretrained on ImageNet, has been used as
a reference model. After the embedding part, and as in the previous networks, the
activation function is ‘softmax’ and the loss function is ‘categorical_crossentropy’. In
the testing phase, it must be pointed out that the final output for a complete study is
provided in terms of ‘majority vote’ over all the slices of the sequence.

It is widely known by the people used to DL-based developments that there are some
considerations in relation to the dataset and the specific details of the problem. If best
practices are considered, the results may be improved [48]. The more remarkable strategies
applied have been:

Cyclical Learning Rate: Cyclical Learning Rate (CLR) [49] is a strategy that allows oscillating
between two learning rate values, iteratively. Previous traditional well-known learning
strategies usually consider gradually decreasing the learning rate over the epoch using
different functions (linear, polynomial, step, etc.). However, this strategy can lead the model
to descend to areas of low loss values. With CLR, the optimal learning rate parameter
can be easily found, and the model can consequently be better (and sooner) tuned. A
minimum and a maximum learning rate value must be defined, and then the rate will
cyclically oscillate between the two bounds. To do so, the different working policies can
be defined: “triangular”, which is a simple triangular cycle, “triangular2”, also triangular
but additionally cutting the maximum learning rate in half every cycle, and “exp_range”,
which is similar to the previous but with an exponential decay. Our experiments with CLR
revealed that the triangular policy reported the best results with our datasets.

Batch Normalization: Batch Normalization [50] is a technique for training deep neural
networks that standardizes the inputs to a layer for each mini-batch entering the network.
This has the effect of stabilizing the learning process and often contributes to a better
training process and thus better performance of the obtained model. Batch Normalization
can also help to reduce overfitting, which is one of the main issues whenever a dataset
is not large enough, as is the case with OASIS-1 and OASIS-2. This overfitting problem
is mainly remarkable in the 3D-subject level approach. For the application of this Batch
Normalization, the keras BatchNormalization() function, together with a ‘relu’ activation,
is applied after the convolutional layer and before the max pooling layer. Figures 1 and 2
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illustrate how these layers have been integrated in the proposed BrainNet2D and Brain-
Net3D architectures, respectively.

Metadata: Sex and age have been revealed as relevant variables for the diagnosis, as
concluded in Appendix A. Therefore, these two variables could facilitate the establishment
of the classification output and have been incorporated in the network [48]. The inclusion
in the network has been carried out after the embeddings and before the final activation
layer. The metadata has been considered as follows: two classes for sex (male, female), and
two classes for age (<60 and >60).

ImageNet: Some experiments, particularly the ones adopting the ResNet18 architecture,
have used pre-trained ImageNet weights. This practice often improves the results and
accelerates the training process.

4. Results

The results obtained for the proposed methodology are shown in this section. First,
results for classification models over the OASIS-1 dataset and the results obtained for
the classification models over the OASIS-2 dataset are shown for the two-class problem
(cognitive normal vs. AD). Then, results for the three-class problem (cognitive normal
vs. very-mild dementia vs. mild and moderate dementia) using the OASIS-2 dataset are
presented. Metrics used for the evaluation of classification models are accuracy (ACC) and
balanced accuracy (BAC).

Different trainings were carried out over the OASIS-1 dataset. Obtained results are
shown in Table 2. All the experiments had common features that have not been included
in the table. These common characteristics are the use of the horizontal planes of the 3D
volume (coronal view), all the available MRI volumes have been used and the balanced
inclusion of data according to sex has been also considered. These results correspond
to the categorization of the input volume into healthy and with disease, i.e., a two-class
classification problem. The table also shows the different parameters and operations that
were used in the trainings, such as the normalization pre-processing action, experiment
strategies (transfer learning, CLR triangular learning rate, Batch Normalization or the
inclusion of metadata), the number of slices used in the process and the network image
size.

Results obtained for the classification models over the OASIS-2 dataset (obtained
as explained in Appendix B) for the two-class problem are shown in Table 3. The same
common characteristics as for classification models in OASIS-1 are applied here in all the
trainings, however, experiments achieving worse results have been excluded from the
comparison.

Table 2. Results for two-class classification, CDR = 0 (healthy) and CDR = 0.5, 1, 2 (disease), over the OASIS-1 dataset.

Network Norm. Strategies Input Data Slices Used Image Size Test ACC Test BAC

BrainNet2D

[0, 1] CLR triangular 3D 10 (centered
in slice #88) 224

0.81 [0.80,
0.80, 0.80,
0.85, 0.82]

0.82 [0.81,
0.77, 0.78,
0.86, 0.86]

min–max
scaling CLR triangular 3D 10 (centered

in slice #88) 224
0.81 [0.83,
0.80, 0.80,
0.82, 0.80]

0.81 [0.80,
0.77, 0.77,
0.88, 0.82]

[0, 1] CLR triangular
Batch Normalization 3D 10 (centered

in slice #88) 224
0.79 [0.77,
0.78, 0.86,
0.80, 0.72]

0.79 [0.77,
0.78, 0.86,
0.80, 0.72]

[0, 1] CLR triangular
Sex/Age metadata 3D 10 (centered

in slice #88) 224
0.79 [0.80,
0.77, 0.77,
0.88, 0.82]

0.84 [0.83,
0.85, 0.85,
0.81, 0.85]
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Table 2. Cont.

Network Norm. Strategies Input Data Slices Used Image Size Test ACC Test BAC

BrainNet3D min–max
scaling None 3D 176 (all) 176

0.78 [0.77,
0.78, 0.80,
0.78, 0.77]

0.81 [0.83,
0.77, 0.77,
0.82, 0.85]

min–max
scaling Batch Normalization 3D 176 (all) 176

0.79 [0.82,
0.80, 0.78,
0.80, 0.77]

0.83 [0.85,
0.79, 0.82,
0.86, 0.83]

min–max
scaling

Batch Normalization
Sex/Age metadata 3D 176 (all) 176

0.79 [0.78,
0.78, 0.83,
0.80, 0.78]

0.82 [0.84,
0.77, 0.82,
0.86, 0.81]

min–max
scaling

Batch Normalization
Sex/Age metadata

CLR triangular
3D 176 (all) 176

0.80 [0.80,
0.82, 0.85,
0.82, 0.74]

0.84 [0.88,
0.80, 0.88,
0.88, 0.76]

ResNet18

[0, 1] ImageNet weights 2D 10 (centered
in slice #88) 224

0.78 [0.80,
0.82, 0.77,
0.75, 0.75]

0.79 [0.85,
0.79, 0.67,
0.80, 0.84]

min–max
scaling ImageNet weights 2D 10 (centered

in slice #88) 224
0.81 [0.80,
0.80, 0.83,
0.80, 0.82]

0.82 [0.80,
0.80, 0.83,
0.80, 0.82]

min–max
scaling

ImageNet weights
CLR triangular 2D 10 (centered

in slice #88) 224
0.81 [0.82,
0.83, 0.86,
0.75, 0.77]

0.83 [0.82,
0.81, 0.86,
0.80, 0.85]

Table 3. Results for two classes classification, CDR = 0 (healthy), CDR = 0.5, 1, 2 (disease) over OASIS-2 dataset.

Network Norm. Strategies Input Data Slices Used Image Size Test ACC Test BAC

BrainNet2D [0, 1] CLR triangular 3D 10 (centered
in slice #88) 224

0.92 [0.94,
1.00, 0.92,
0.92, 0.83]

0.92 [0.93,
1.00, 0.92,
0.92, 0.92]

[0, 1] CLR triangular
Sex/Age metadata 3D 10 (centered

in slice #88) 224
0.82 [0.96,
0.93, 0.92,
0.46, 0.81]

0.83 [0.96,
0.95, 0.92,
0.50, 0.80]

BrainNet3D

min–max
scaling None 3D 176 (all) 176

0.67 [0.68,
0.80, 0.73,
0.51, 0.63]

0.67 [0.68,
0.81, 0.73,
0.52, 0.64]

min–max
scaling Batch Normalization 3D 176 (all) 176

0.84 [0.81,
1.00, 0.78,
0.82, 0.79]

0.84 [0.81,
1.00, 0.78,
0.83, 0.77]

min–max
scaling

Sex/Age metadata
Batch Normalization 3D 176 (all) 176

0.77 [0.70,
0.80, 0.82,
0.77, 0.77]

0.78 [0.70,
0.81, 0.82,
0.79, 0.77]

min–max
scaling

Batch Normalization
CLR triangular 3D 176 (all) 176

0.79 [0.70,
1.00, 0.69,
0.87, 0.69]

0.79 [0.70,
1.00, 0.68,
0.88, 0.70]

ResNet18 [0, 1] ImageNet weights 2D 10 (centered
in slice #88) 224

0.92 [0.94,
1.00, 0.94,
0.92, 0.79]

0.91 [0.94,
1.00, 0.94,
0.92, 0.77]

[0, 1] ImageNet weights
CLR triangular 2D 10 (centered

in slice #88) 224
0.91 [0.94,
0.91, 0.94,
0.95, 0.83]

0.92 [0.94,
0.94, 0.94,
0.94, 0.84]

min–max
scaling

ImageNet weights
CLR triangular 2D 10 (centered

in slice #88) 224
0.93 [0.94,
1.00, 0.96,
0.92, 0.83]

0.93 [0.94,
1.00, 0.96,
0.92, 0.81]

The BAC metric is the one that reflects the real accuracy weighted by class, so it is
the metric value that, in the opinion of the authors, better reflects the performance of the
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model. BrainNet3D with min–max scaling normalization and Batch Normalization, or
BrainNet2D with [0, 1] normalization, CLR triangular learning rate and the inclusion of the
sex and age as metadata, seem to show slightly better results.

The experiments with the OASIS-2 dataset reveal improvements of the results for 2D
network models. BrainNet2D- and ResNet18-based experiments provide BAC above 0.90,
which is clearly above the state-of-the-art for these datasets. The BrainNet2D approach)
achieves a BAC up to 0.92 as the average BAC of a 5-fold experiment, and the RestNet18
approach () a BAC up to 0.93.

BrainNet3D with Batch Normalization also increases its performance without the
help of the metadata. However, the improvement rate is not as high as for 2D approaches.
The possible reason for the poorer improvement may be that for the subject-level input
approach, that is, the 3D approach, the good skull removal and pre-processing applied to
all the slices in the sequences is required in the input. Minor movements in the registration
and inaccurate pre-processing operation over the OASIS-2 dataset performed by us, such
as not perfect skull removal, may have led to incoherent and confusing input volumes for
the 3D network. On the contrary, the 2D information of the slices is independent of the 3D
volume—it does not matter whether there is good continuity on the z-axis. Every slice is
dealt with separately, and the number of images is remarkably higher.

These additional experiments with the OASIS-2 dataset seem to reveal that the sex/age
metadata are not a stable source of information to enrich the model during the classification
task. The two experiments that included the metadata () achieved BAC values significantly
inferior to the other experiments with the same model. This can be due to the fact that the
metadata are highly biased by the characteristics of the population included in the datasets,
but are not representative of the real clinical incidence of AD.

So far, a two-class problem has been addressed. Nevertheless, it is often useful to
know the stage of the disease in case it is present. On that basis and relying on the best-
performing models obtained from the experiments over the OASIS-2 dataset, a three-class
problem has been tested. The experiments have been launched only over the OASIS-2
dataset due to the under-represented mild and severe stages of the disease in the OASIS-1
dataset. The results obtained are gathered in Table 4.

Table 4. Results for three-class classification, CDR = 0 (healthy), CDR = 0.5 (very mild stage) and CDR = 1, 2 (severe stage),
over the OASIS-2 dataset.

Network Norm. Strategies Input Data Slices Used Image Size Test ACC Test BAC

BrainNet2D [0, 1] CLR triangular 3D 10 (centered
in slice #88) 224

0.88 [0.94,
1.00, 0.78,
0.90, 0.77]

0.85 [0.94,
1.00, 0.62,
0.92, 0.76]

BrainNet3D min–max
scaling Batch Normalization 3D 176 (all) 176

0.77 [0.87,
0.84, 0.80,
0.74, 0.58]

0.76 [0.87,
0.85, 0.63,
0.82, 0.63]

ResNet18 [0, 1] ImageNet weights
CLR triangular 2D 10 (centered

in slice #88) 224
0.89 [0.94,
0.98, 0.84,
0.92, 0.79]

0.88 [0.94,
0.99, 0.67,
0.94, 0.85]

These results again reveal that the 2D approach is more efficient than the 3D approach
with subject-level input. BrainNet2D and ResNet18 solutions provide similar results, with
the ones provided by ResNet18 being slightly better. These results point out that the
methodology used is good to distinguish between mild Alzheimer’s and severe stages of
the disease. This is really valuable, since the sooner the disease is detected the better, in
order to start more adequate treatment.
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5. Discussion and Conclusions

The present work provided main contributions as described below. First, we per-
formed a systematic literature review on the topic, where limitations of the different works
also using the OASIS collection were addressed. The main drawback is always data scarcity
to facilitate comparisons. In general, DL-based techniques and Convolutional Neural
Networks usually require a big dataset to be properly trained, and especially for the com-
plex problems, as this is. OASIS-1 is a commonly used dataset in works dealing with
Alzheimer’s disease prediction. This dataset has strong points since it has well-registered
and pre-processed sequences. Moreover, the skull is removed from the images and that
ensures that the starting conditions for whatever study are the best. Masking for grey and
white matters and cerebrospinal fluid is available, which makes it also useful to address
segmentation problems. This is the reason why many works use this dataset in detriment
of others that can provide a higher number of cases but that offer a poorly processed input,
usually raw sequence data. Besides, the organization of the OASIS collection in different
datasets, where images and annotations are easily accessible, facilitates the fair comparison
of methods.

OASIS-2 has been used for validation purposes of the proposed approach in a wider
set of studies than the perfectly registered and pre-processed OASIS-1. However, the
sequences in this dataset are provided in raw format. This includes artefacts, noise and
other elements in the head, such as the skull, that require processing before using. It is
advisable to make the input data of OASIS-2 as similar as possible to the OASIS-1 dataset.
The main issue to be tackled is skull removal. In our work, a pre-processing pipeline has
been proposed in Appendix B that aims at applying a similar pre-processing to the one semi-
automatically performed in OASIS-1. In this way, additional OASIS-2 studies are available
in the same conditions as OASIS-1 to be used in the same experiments. Unfortunately, both
datasets could not be combined to improve model training since some of the subjects are
repeated in both datasets and cannot be identified.

In this work, we proposed different approaches to tackle the problem: 2D and 3D
networks in a slice-level approach or a subject-level approach. Custom networks (Brain-
Net2D, BrainNet3D) were proposed together with well-known architectures with transfer
learning approaches such as fine-tuning with ImageNet weights. Modifications to the
pre-processing have been applied to enhance the contrast of the grey-level structures in
the brain. Different numbers of slices have been considered under the premise that it is
not always the case that the higher the number of the images is, the better the results are.
It might be true that it is worth providing a reduced number of valuable and meaningful
slices instead of hundreds of slices that do not contain useful information.

Tables 2 and 3 showed results obtained for classification models over OASIS-1 and
OASIS-2 datasets for a two-class classification problem (cognitive normal or with Alzheimer’s
disease). Table 4 showed the results of a three-class (cognitive normal, very mild dementia,
mild and moderate dementia) classification model that aims at obtaining higher precision in
the detection of the stage of the disease. It can be shown that the presence of the disease can
be established with a BAC of up to 0.93 with the OASIS-2 testing subset. In the three-class
problem, additional stages in the disease can be predicted with a BAC of 0.88.

A comparison of these results with state-of-the-art-methods considered reproducible
and comparable is shown in Table 5. Reference [28] proposed a ResNet model-based ap-
proach for feature extraction, where age and sex metadata are added as additional features
and a support vector machine classifier is used for a three-class classification, achieving a
BAC of 0.86. Reference [29] proposed a three-model ensemble using 112 × 112 crops input
data from each anatomical plane and achieving an ACC of 0.93 for a three-class problem.
Additionally, the authors of [31] performed a fair review of methods and strategies and
their own implementation of them, reporting a BAC of 0.68 for a two-class problem using
the OASIS dataset.
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Table 5. Comparison of the obtained results with the state-of-the-art methods that use the OASIS dataset for a two-
class classification problem: Cognitive normal and Alzheimer’s disease. Comparison of results for a multiclass problem:
Cognitive normal, Alzheimer’s disease in very mild state and Alzheimer’s disease in severe stage.

CN vs. AD Multiclass:
CN vs. Mild vs. Severe

Method Approach Dataset ACC BAC ACC BAC

(PuenteCastro,
2020) [28] 2D slice level OASIS-1 – – – 0.86

(Islam and Zhang,
2018) [29]

2D slice level
(112 × 112

crops)
OASIS-1 – 0.93 –

(Wen, 2020) [31]
2D slice level OASIS-1 (over

62 years) – 0.68 [0.68, 0.67,
0.69, 0.70, 0.66] – –

3D subject level – 0.68 [0.65, 0.70,
0.70, 0.71, 0.65] – –

Our BrainNet2D 2D slice level OASIS-1 0.79 [0.80, 0.77,
0.77, 0.88, 0.82]

0.84 [0.83, 0.85,
0.85, 0.81, 0.85]

Out BrainNet3D 3D subject level OASIS-1 0.80 [0.80, 0.82,
0.85, 0.82, 0.74]

0.84 [0.88, 0.80,
0.88, 0.88, 0.76]

Our BrainNet2D 2D slice level OASIS-2 0.82 [0.96, 0.93,
0.92, 0.46, 0.81]

0.83 [0.96, 0.95
0.92, 0.50, 0.80]

0.88 [0.94, 1.00,
0.78, 0.90, 0.77]

0.85 [0.94, 1.00,
0.62, 0.92, 0.76]

Out BrainNet3D 3D subject level OASIS-2 0.84 [0.81, 1.00,
0.78, 0.82, 0.79]

0.84 [0.81, 1.00,
0.78, 0.83, 0.77]

0.77 [0.87, 0.84,
0.80, 0.74, 0.58]

0.76 [0.87, 0.85,
0.63, 0.82, 0.63]

ResNet18 2D slice level OASIS-2 0.93 [0.94, 1.00,
0.96, 0.92, 0.83]

0.93 [0.94, 1.00,
0.96, 0.92, 0.81]

0.89 [0.94, 0.98,
0.84, 0.92, 0.79]

0.88 [0.94, 0.99,
0.67, 0.94, 0.85]

From the observation of the table, we can conclude that the results obtained with the
proposed solution are equal to the state-of-the-art or beyond in the case of two-class classi-
fication. To the best of our knowledge, the good results not only derive from the network
architectures, but they also depend on the adequate strategies that have been implemented.
The inclusion of the OASIS-2 dataset for validation of the proposed methodology has
forced us to work in the MRI raw volume processing. This processing methodology can be
validated as good since it has managed to generate good enough MRI volumes to provide
good performance of the models. There are few works addressing the multiclass problem,
with [28,29] being the most relevant ones. The results obtained by our method are very
similar to the ones other authors have presented recently. We would like to point out that
the metrics derived from our experiments are average metrics from 5-fold experiments, and
not all the works used these metrics, but they present the best results obtained here. There
are some experiments in this 5-fold approach that outperformed the state-of-the-art results,
but we prefer to show the results as they are with average metrics of different experiments
with randomly chosen training, validation and testing sets. This provides an idea about
the stability and repeatability of the proposed solution.

Future work clearly implies the use of additional datasets, such as ADNI, for com-
parative validation analysis and testing the generalization of the proposed approach. It is
also desired to create a bigger combined dataset (from different sources) to increase the
variability of the input samples of the different target classes, aiming to allow a better model
generalization and reliable application to new unseen data. In this sense, a higher number
of studies with high CDR will be useful, since they are currently under-represented. It
would also be nice to dive deeper into three- and four-class problems to have the capability
of predicting the different stages of the disease with high accuracy. This would lead to
highlighting reliable diagnosis support tools that can aid in the definition of more accurate
treatments and a hence impact the life expectancy of the patients. Other additional future
research lines considered include studying the limits and weaknesses of the models in
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terms of accuracy and robustness [51], and adapting strategies such as multi-targeted
backdoor [52], where models are led to misclassification using triggers on the data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11090902/s1, Table S1: Summary of cases excluded from the OASIS-2 dataset.
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Appendix A. Statistical Analysis of Demographics and Clinical Information

The OASIS dataset provides some additional information together with the MRI
volumes. It is worth conducting statistical analysis of this data associated to each patient to
find out whether there is some correlation among the variables. In case some conclusions
are extracted from this analysis, the implied variables are to be considered in further
experiments as metadata, that might contribute to a more accurate prediction of the model.

Statistical analysis is based on population segmentation. The objective is to subgroup
the subjects considering the demographic and clinical information from OASIS-1, which
has been already mentioned in Section 3.1.

Processing huge amounts of data to support decision processes is gaining increasing
attention in corporate IT strategies [53]. Data science is the discipline used to gain valuable
insights from data by mathematical and analytical models and applications. Data science
projects can profit from project management and process methodologies that work as
success factors [54]. However, strictly following a project methodology could be a challenge
for data science teams. In this project, the CRISP-DM (CRoss Industry Standard Process for
Data Mining) [55] methodology was used. In CRISP-DM, the data description forms the
basis for the data quality verification. Then, a statistical analysis and exploration of the data
is performed to gain insight about the underlying data generation process. The data should
be described on a meta-level and by their statistical properties [56]. The requirements
defined regarding the data quality are verifying the completeness (the expected feature
values), outliers (the maximum number over “five sigma” gaussian distribution), extremes
(the maximum number over “seven sigma” gaussian distribution) and consistency (the
format of the data, calculated with the kurtosis and Skewness methods) of the data. Data
that do not satisfy the expected conditions could be treated as anomalies and need to be
evaluated manually or excluded automatically. To mitigate the risk of anchoring bias in
the definition phase, discussing the requirements with a domain expert is advised [57].
After the data quality analysis in the CRISP-DM method, we must check the statistical
power. The gathered data often includes, besides the predictive target, noise and unwanted
features from other sources. To get a “gold standard” dataset, optimizing the statistical
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power and the predictive power, missing values, not consistent fields and special values
could be imputed with a model readable value. Here, the wrong values are imputed by
substituted model predictions [58].

The data-intensive approaches of machine learning and artificial intelligence bring
together extensive datasets to feed into a utilitarian evaluation. The extensive data also
shed light on the biases that exist in the current data and larger environment. In this
work, the not supervised clustering method used in order to build a data hierarchy to
generate a graph representation of the initial information solves the bias problem in the
target field [59].

After performing the data quality and verifying phases, the completeness, outliers,
extremes and consistency of the data, a data quality value of 0.89 has been obtained in
the “gold standard dataset”. Then, using the K-means algorithm with cosine distance,
the population is segmented into the optimal number of clusters: five. Studying the
distribution, it can be observed that the algorithm chooses gender (M/F), age, education
(Educ), eTIV, SES and MMSE score as determining factors. As illustrated in Figure A1, this
leaves a first cluster where subjects with a high SES and a low Educ predominate (cluster
0), a second where there are mostly women with low SES and high Educ (cluster 1) and a
third (cluster 2) that is practically complementary to the second with women but with high
SES and low Educ. In the fourth cluster (cluster 3), there are mostly male subjects with
high eTIV, and the youngest female subjects are found in the last cluster (cluster 4).

Apparently, the most relevant information that can be inferred from this segmentation
by joining it to the CDR of the individuals is the following: In cluster 4, the mean value
of CDR is 0. In addition, in clusters 1 and 2, we found that for women, the mean value
of CDR does not reach 0.5. This information seems to show that women are less likely to
suffer from severe dementia, however previously documented clinical studies suggest that
women are much more likely to suffer from AD than men [39,40].

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 

likely to suffer from severe dementia, however previously documented clinical studies 
suggest that women are much more likely to suffer from AD than men [39,40]. 

 
Figure A1. Distribution of the dataset into its two principal components separated in color by clus-
ters. 

Appendix B. Pre-Processing of Raw MRI Volumes 
The pre-processing stage is a mandatory step in case the OASIS-2 dataset is aimed to 

be used to deal with the scarcity of data of OASIS-1 and its class imbalance according to 
the CDR label. The aim is to replicate the pre-processing performed in OASIS-1 with the 
OASIS-2 dataset, where only raw data is included. This pre-processing can be separated 
into two main steps: data preparation and skull removal. 

The aim of data preparation is to register and modify the display aspects of the vol-
umes, such as voxel size or slice order. On the other hand, the skull removal process’ pur-
pose is to remove all those parts of the volume that are not strictly brain. The aim is to 
obtain the results illustrated in Figure A2., where the upper row shows the input raw data, 
and the bottom row shows the brain after the skull removal operation. 

For data in the preparation step, a combination of AFNI (Analysis of Functional 
Neuro Images) [60] and FSL (the FMRIB Software Library) libraries is used [61]. 

AFNI is a leading software package for the analysis and visualization of multiple 
MRI modalities: anatomical data, functional MRI (fMRI) and diffusion-weighted data 
(DW). Although the software makes many functionalities available for the user, in the 
data preparation process, only 3 are used: flirt, to register the images, 3dRESAMPLE, to 
sample volumes with voxels of 1 x 1 x 1 mm, and 3dAFNItoNIFTI, to convert the AFNI 
file type to ANALYZE (NIFTI).  

FSL is a comprehensive library of structural and functional brain image analysis tools 
[61], that also includes innumerable functionalities, but only 3 are used in the process: 
fslmaths, which allows operations between images, such as media, etc. In the case of the 
pre-processing process, it is used to obtain the average of all the registered images. Fsls-
wapdim, which is used to change the order of the displayed dimensions of the volumes, 
and fslchfiletype, to change the file type, so that we can obtain ANALYZE images from 
NIFTI images.  

The overall pre-processing process implemented can be described by the following 
steps: 

Figure A1. Distribution of the dataset into its two principal components separated in color by
clusters.

Appendix B. Pre-Processing of Raw MRI Volumes

The pre-processing stage is a mandatory step in case the OASIS-2 dataset is aimed to
be used to deal with the scarcity of data of OASIS-1 and its class imbalance according to
the CDR label. The aim is to replicate the pre-processing performed in OASIS-1 with the
OASIS-2 dataset, where only raw data is included. This pre-processing can be separated
into two main steps: data preparation and skull removal.
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The aim of data preparation is to register and modify the display aspects of the
volumes, such as voxel size or slice order. On the other hand, the skull removal process’
purpose is to remove all those parts of the volume that are not strictly brain. The aim is to
obtain the results illustrated in Figure A2, where the upper row shows the input raw data,
and the bottom row shows the brain after the skull removal operation.

For data in the preparation step, a combination of AFNI (Analysis of Functional Neuro
Images) [60] and FSL (the FMRIB Software Library) libraries is used [61].

AFNI is a leading software package for the analysis and visualization of multiple
MRI modalities: anatomical data, functional MRI (fMRI) and diffusion-weighted data
(DW). Although the software makes many functionalities available for the user, in the data
preparation process, only 3 are used: flirt, to register the images, 3dRESAMPLE, to sample
volumes with voxels of 1 × 1 × 1 mm, and 3dAFNItoNIFTI, to convert the AFNI file type
to ANALYZE (NIFTI).

FSL is a comprehensive library of structural and functional brain image analysis
tools [61], that also includes innumerable functionalities, but only 3 are used in the process:
fslmaths, which allows operations between images, such as media, etc. In the case of
the pre-processing process, it is used to obtain the average of all the registered images.
Fslswapdim, which is used to change the order of the displayed dimensions of the volumes,
and fslchfiletype, to change the file type, so that we can obtain ANALYZE images from
NIFTI images.

The overall pre-processing process implemented can be described by the following
steps:

1. Image registration, using the Flirt tool from the AFNI library: all images included in
the RAW folder of the OASIS-2 database are registered in pairs.

2. Averaging registered images, using the fslmaths tool from the FSL library: all resultant
images from the registration process are averaged to obtain one unique image.

3. Image resampling, using the 3dRESAMPLE tool from the AFNI library: the resultant
averaged image is resampled to obtain 1 × 1 × 1 mm voxels.

4. Change volume slice order, using the fslswapdim tool from the FSL library: As
original images do not have the same slice anatomical plane view as the pre-processed
volumes in OASIS-1 and the aim of the pre-processing part is to replicate as well
as possible the pre-processing performed in OASIS-1, the dimension slices of the
resampled image are swapped.

Next, the skull removal process is carried out using the BET2 (Brain Extraction Tool
v2.0) [62] tool within the FLS library. BET2 is a fast and fully automated tool for extracting
brain, inner and outer skull and scalp surfaces from MRI. It uses high-resolution T1 and
T2 images, but it can be run only with T1 images, obtaining less accurate results. BET2 is
based on the assumption that, generally, in MRI images, the skull appears darker than the
rest of the tissues. In T1 images, CSF tissue is also dark, so it can be confused with the skull.
In T2 images, on the other hand, CSF is bright, but muscles are often dark. These intensities
can vary between different scans, but in T1 images, CSF will always be darker than the
rest of the tissues, and in T2 images, muscles will always be darker, so by combining both
images, brain tissue can be distinguished from the skull and the void (or air) more easily.

The process to achieve this is as follows. First, the outer scalp point is found, by
combining the outermost non-dark T1 point and the outermost non-dark T2 point (thresh-
olds are determined from robust histograms). Next, the inner skull point is found as a
combination of searches (outwards from the brain) for the “first dark” T1 and T2 points. As
due to topological complications in certain regions the outer skull point is harder to find
robustly, a more complex combination of the T2 and T1 profiles is used to identify the most
likely point. This approach correctly detects the outer skull points in much of the head, but
fails in the lower areas, where tissues and skull topology are too complex, so an alternative
algorithm that takes into account some prior spatial knowledge is used in this part. The
determination of the area where the alternative algorithm is needed is performed manually.
Then, Flirt is used so that a standard space transform matrix is obtained, and this mask
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is transformed into the space of the data. Then, the outer skin and inner skull points are
obtained. If the outer skull point is too far from the inner skull point (about 7 mm), the
assumption is simplified to the fact that the outer skull point is 0.5 mm outside the inner
skull point. Then, an image is created using the points obtained.

As said before, although using only T1 images is possible in BET2, the accuracy of
the results is lower than using both T1 and T2 images. Nevertheless, the OASIS database
only includes T1 images, so a various step process is needed to obtain good results in
skull stripping. For the OASIS-2 non-processes dataset, first, BET2 is executed with a low
fractional intensity threshold and eye and optic nerve clean-up option. Then, the results are
visualized (using the fsleyes tool from FSL) and another BET2 execution is performed. This
second time, the fractional intensity threshold varies in each volume (depending on the
previous results) and, in some volumes, the bias field and neck clean-up option is activated
in order to obtain better results. This visualization part is necessary as the second execution
is a manual process. As the results of the output of the first execution depend on each
volume, it is not possible to generalize the second execution for all the cases, and a manual
evaluation of required parameters in the second execution is necessary. With this operation
combination, it is possible to extract not only the skull but also all those tissues that are
not brain, such as the optic nerve or the neck. However, in some volumes included in the
OASIS-2 original database, the skull stripping process was not successful because of the
quality of the T1 image or the low-intensity difference between CSF and the skull. For
this reason, these volumes were excluded from OASIS-2 datasets for the experiments. The
identifiers of the volumes excluded are described in Supplementary Table S1 to facilitate
the reproductivity of the results presented in this work.

Following the previously described process, the pre-processing performed in OASIS-1
has been replicated, and pre-processed volumes for OASIS-2 have been created in order to
augment the amount of data for training and testing the proposed approach. The results of
this process are illustrated in the sample included in Figure A2.
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