

© 2021 IEEE

J. Martinez, A. Ruiz, A. Garzo, T. Keller, A. Radermacher and S. Tonetta, "Modelling the

Component-based Architecture and Safety Contracts of ArmAssist in Papyrus for

Robotics," 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering

(RoSE), 2021, pp. 13-18, doi: 10.1109/RoSE52553.2021.00009.

https://doi.org/10.1109/rose52553.2021.00009

Modelling the Component-based Architecture and
Safety Contracts of ArmAssist in Papyrus for

Robotics
Jabier Martinez, Alejandra Ruiz

Software Lifecycle Innovation group
ICT Division

Tecnalia, Basque Research and
Technology Alliance (BRTA)

Derio, Spain
name.surname@tecnalia.com

Ainara Garzo, Thierry Keller
Neuroengineering area,

Health Division
Tecnalia, Basque Research and

Technology Alliance (BRTA)
San Sebastian, Spain

name.surname@tecnalia.com

Ansgar Radermacher
CEA-List

Massy, France
ansgar.radermacher@cea.fr

Stefano Tonetta
Fondazione Bruno Kessler

Trento, Italy
tonettas@fbk.eu

Abstract—Healthcare robots are increasingly being used and
the way they are engineered they still have several challenges
regarding reference models and validation. In this experience
report we focus on the ArmAssist robotic system and how it
can be modelled including safety considerations for validation in
early design phases. ArmAssist is an upper-limb robotic system
for stroke rehabilitation based on serious games. The open-
source tool Papyrus for Robotics was used for modelling the
robotic system in close collaboration with neurorehabilitation
domain experts. Papyrus for Robotics includes new functionalities
that we contributed for contract-based design at component and
system level, allowing to make explicit and validate the safety
considerations using formal languages. In our case, the assertions
are expressed in OCL and Othello. We present the resulting
model and a discussion from domain experts.

I. INTRODUCTION

Service robotics [1], those which are not part of indus-
trial automation processes, are increasingly present in our
society. A recent industrial survey on the state of the art
and practice in service robotics engineering [2] indicates that
several challenges regarding reference models and validation
remain in this domain. Aligned with this challenge, in this
experience report we focus on ArmAssist [3], [4], a robotic
system for neurorehabilitation, and how the system can be
modelled including safety considerations.

ArmAssist1 is a robotic system based on serious games for
upper-limb rehabilitation of stroke survivors. It is a portable
device that can be used in clinical rehabilitation, but also at
home with remote supervision. It allows prolonging, comple-
menting, or continuing the regular therapies even in restricted
times, e.g., due to COVID-19 pandemic [5]. The ArmAssist
is an affordable, mobile and sensorized robot integrated in an
assessment platform for automated quantitative evaluation of
the patient’s movements and interaction forces. The TeleReha
software platform based on serious games includes a calibra-
tion process to identify the patient’s range of motion [4]. The

1Video of ArmAssist: https://www.youtube.com/watch?v=0L7QSPU6QBk

system set-up is shown in Figure 1 and the main system com-
ponents are represented in Figure 2. The ArmAssist system
has been improved thanks to the work and trials carried out
with therapists and patients [6][7][8].

The robot includes a motorized base, which can be activated
to help the patients to perform the movements. Thus, safety
requirements are of paramount relevance, especially since the
patients’ arm movement and range limitations due to their
impairments can cause considerable physical damage. We
modeled and added safety assertions to the latest ArmAssist
version in its most common variant thanks to several itera-
tions and the collaboration with ArmAssist’s domain experts,
and thanks to functionalities contributed to the open-source
tool Papyrus for Robotics [9], [10] regarding adding formal
assertions and contract-based design to the models as in [11].

This paper is structured as follows: Section II presents the
methodology and the resulting system model. Then, Section III
introduces the concept of safety contracts, the addressed safety
considerations for ArmAssist and how they were formalized
and integrated. Section IV presents the discussion from domain
experts and Section V concludes and outlines future work.

Fig. 1: ArmAssist system set-up

1

https://www.youtube.com/watch?v=0L7QSPU6QBk

Fig. 2: ArmAssist parts

II. MODELING THE COMPONENT-BASED ARCHITECTURE

As a note on the methodological procedure for the mod-
elling of the component-based architecture, we performed
semi-structured interviews with an ArmAssist expert and we
analysed the Bill Of Materials (BOM) of the robotic systems
that was provided to us. Five iterations with the expert were
needed until the model reflected properly, in an abstract level,
the implemented system. The level of detail and the granularity
of the components were agreed so that the resulting model
should be seen as a real model but providing a high-level
specification. Thus, the model is certainly hiding complexities
from the implementation that could have been captured with
more detailed decomposition of the components.

ArmAssist model consists of the following components:

• PositioningSystem: The objective of the position-
ing system is to provide the MainControlUnit with
an accurate position and orientation of the robot with
respect to the table, which are represented on the screen
by the TeleReha software. The robot is used on top of a
mat which includes a grid of QR codes (Quick Response
codes) with the position coordinates, as it can be slightly
observed in Figure 2 (Encoded print zone). QR codes
information are continuously read by a camera installed
inside the robot. The information of the robot’s position
is then consolidated taking into account two sources:
(i) the information of the QR read by the Camera
and processed by the QRManager, and (2) the relative
position calculated by Motors using the number of spins
of the wheels. Details on the motors as part of the
positioning system can be found in [12]. The spin of the
wheels and the position and orientation calculated by the
QR recording helps also to estimate, confirm, or adjust
the consolidated position of the robot.

• Camera: The camera is inside the base module, perpen-
dicular to the QR mat in a way that the camera can read
the QR codes. Images are sent to the QRManager for

their processing.
• QRManager: This software component processes the

images received by the Camera and gets the information
from the QR codes where each one represents its position
in the table.

• Motor: The robot uses 3 motors, one for each wheel.
The system includes an algorithm for the motors and
thus the robot smooth movement and turn according to
the spin instructions of the MainControlUnit. We
decided to group in this component the functionalities
of the motor driver and encoder. A more detailed idea of
the motor architecture can be found in [12] corresponding
to a previous version of ArmAssist.

• MainControlUnit: The main control unit is agnostic
to the activity (i.e., game) that is currently happening.
It receives target positions and orientation angle of the
robot, target finger forces, wrist angle, and shoulder
force translated into arm weight, and according to the
position of the PositioningSystem will ask the
Motor actuators to move accordingly.

• ActivityManager: The activity manager takes the
defined training games for the user [4], handle the
screen visualisation of the game, and provide the target
positions, finger forces, wrist angle, and arm weight
to the MainControlUnit according to the sequence
planned in the game. Once the target is reached the same
game continues with next target until the planned time is
reached. A new game can be started if the previous one
has been finished, according to the therapy plan.

• CalibrationActivityManager: The calibration is
a special activity where the current position, angles and
forces are retrieved from the MainControlUnit to
establish the limits of the patient. It corresponds to the
special activities in the assessment games, where the
patient is asked to perform his/her maximum movement
in each case [4].

• UserManager: The user manager is responsible
of storing the latest calibration values of the pa-
tient and to provide the list of activities to the
ActivityManager as prescribed previously by the
TherapistConfigurationManager.

• TherapistConfigurationManager: It allows the
therapist to define the activities for each patient (therapy
plan and calibration games), as well as monitoring the
rehabilitation progress.

• ForceSensitivityResistor: 2 force sensing re-
sistors (FSR), one for the thumb and other for the rest of
the fingers, allow measuring the grasp movement. They
are included on the hand add-on (Figure 2). The sensors
translate the force the patient applies to the device and
this information is sent to the MainControlUnit.

• Potentiometer: This sensor provides to the
MainControlUnit information about the angle in
which the patient turns the wrist (prono-supination
exercise). It is also included in the hand add-on in the
arc covering the wrist (Figure 2).

2

ArmAssist

 : QRManager

 in_image

 out_x

 out_y

 out_angle
 : PositioningSystem

 in_qr_x

 in_qr_y

 in_qr_angle

 in_spin_motor1

 in_spin_motor2

 in_spin_motor3

 out_x out_y out_angle

 : UserManager

 out_user

 out_therapist_user in_activity_set

 out_activity_set

 out_standby

 in_calibration_x

 in_calibration_y

 in_calibration_angle

 in_calibration_fingers_force

 in_calibration_thumb_force

 in_calibration_wrist_angle

 in_calibration_shoulder_weight

 out_calibration_x

 out_calibration_y

 out_calibration_angle

 out_calibration_fingers_force

 out_calibration_thumb_force

 out_calibration_wrist_angle

 out_calibration_shoulder_weight

 out_finish_calibration

 : MainControlUnit

 in_target_x

 in_target_y

 in_target_angle

 in_thumb_force

 in_fingers_force

 in_wrist_angle

 out_spin_motor1

 out_spin_motor2

 out_spin_motor3

 in_shoulder_weight

 in_consolidated_x in_consolidated_y in_consolidated_angle

 in_standby

 out_current_x

 out_current_y

 out_current_angle

 out_current_fingers_force

 out_current_thumb_force

 out_current_wrist_angle

 out_shoulder_weight

 thumb_fsr: ForceSensitiveResistor

 out_force

 fingers_fsr: ForceSensitiveResistor

 out_force

 : Potentiometer

 out_angle

 : LoadCells

 out_weight

 : Camera

 out_image

 motor3: Motor

 in_spin

 out_spin_number

 motor2: Motor

 in_spin

 out_spin_number

 motor1: Motor

 in_spin

 out_spin_number

 : ActivityManager

 out_target_x

 out_target_y

 out_target_angle

 in_activity_set

 in_calibration_x

 in_calibration_y

 in_calibration_angle

 in_calibration_fingers_force

 in_calibration_thumb_force

 in_calibration_shoulder_weight

 in_calibration_wrist_angle

 in_standby

 out_standby

 in_current_x

 in_current_y

 in_current_angle

 in_current_fingers_force

 in_current_thumb_force

 in_current_shoulder_weight

 in_current_wrist_angle

 : CalibrationActivityManager
 in_current_fingers_force

 in_current_x

 in_current_y

 in_current_angle

 in_current_thumb_force

 in_current_shoulder_weight

 in_current_wrist_angle

 in_finish_calibration

 out_calibration_x

 out_calibration_y

 out_calibration_angle

 out_calibration_fingers_force

 out_calibration_thumb_force

 out_calibration_wrist_angle

 out_calibration_shoulder_weight

 : TherapistConfigurationManager

 in_therapist_user in_user out_activity_set

SystemContract

Image

Int64

Int64

Int64

Int64

Int64

Int64

Int64 Int64 Int64

Int64
Int64

Int64MultiArray

Int64MultiArray

Bool

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Bool

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Bool

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Int64

Fig. 3: ArmAssist system model

• LoadCells: The load cell is a sensor to measure
the weight that the patient applies on the bar where
the hand add-on and forearm orthosis are attached on
the robot. This sensor allows shoulder elevation force
measurements. In Figure 2 it is positioned in the forearm.
This information is sent to the MainControlUnit.

Figure 3 presents the whole system model in Papyrus for
Robotics with the component instances and their connections2.

III. SAFETY CONSIDERATIONS AND CONTRACTS

Most of the ArmAssist components are commercially avail-
able. Component providers could define their own contracts
that, depending on the context of operation where the com-
ponent is instantiated, might have safety consequences or
not. Papyrus for Robotics is extensible in the use of formal
languages for defining assertions [10]. It supports OCL [13]
as well as OCRA contracts [14] with Othello assertions [15]
(Othello language is mapped to temporal formulas in linear
temporal logic).

If we take as example the Camera, the frames per second
(fps) can have a safety implications if using low values for
a robot that needs image processing while moving at high
speeds. This is not the case of ArmAssist but we added an
illustrative contract that a Camera component provider can
include. Cameras usually include fps as a parameter with

2The ArmAssist system model and component definitions including the
safety properties and contracts are publicly available.
https://github.com/TecnaliaResearchAndInnovation/papyrus4robotics-models

a trade-off between speed and image resolution. We added
an Integer parameter fps in the Camera component and an
assertion regarding the predefined values which are accepted
for this specific camera. In this case we can use OCL [13].
The assertion, using the P4R OCL language (P4R OCL is an
extension of OCL to use directly P4R component’s parameter
names, port names, properties names, etc.), is defined as
follows:
Set {15, 30, 45, 60, 90, 120} → includes (fps)

This assertion can be statically evaluated from the default
value of the parameter (i.e., 15) or with the value in Camera
component instances if this was modified.

Then, we added another assertion regarding the output port
of the camera that transmits the Image type. We want to
express that a new image is transmitted every x milliseconds,
where x is derived from the fps parameter. Using the P4R
Othello language, the assertion is as follows using milliseconds
as time unit:
always(out_image implies then

time_until(out_image)=1000/fps)
The out_image is the port and always, implies, then
and time_until are reserved words of the Othello lan-
guage. The assertion says that an out_image is always fol-
lowed by another out_image after 1000/fps milliseconds.
This assertion, as the previous one, helps making this fact
explicit, and it can be potentially used for consistency checks
with the assertions of other components, e.g., a real time image
processing component that requires a minimum frequency of
images to work properly. In our case study, the fps are not

3

https://github.com/TecnaliaResearchAndInnovation/papyrus4robotics-models

very relevant for the safety so first we needed to identify the
ArmAssist-specific safety considerations.

A. Safety considerations

The main set of safety considerations were discussed with
the domain expert during the interviews which are summarized
in the following points.

S1 Respect the calibration values: During the calibration
activity the patient is asked to perform the movements
until her/his range of motion (RoM) limits to identify
the thresholds in every exercise. It is already known
that patients usually push themselves too much during
calibration, so the threshold values are reduced by 10%
during the activities to provide a enough challenging, but
safe and not frustrating margin. Calibration exercises can
be repeated at any moment, with the aim of updating the
threshold due to the patient’s improvement.

S2 Move only when new target values are available: The
MainControlUnit should not send control instruc-
tions to the Motors until values for a new game are
ready. The standby mode is used to refresh the wireless
connections with the robot, and motors will not start
working until new targets are calculated according to the
calibration threshold (e.g., when there is a change from
one patient to another).

S3 Avoid lifting up the robot: The arm is fastened to
the robot and it is desired that the patient cannot lift
up the robot from the table for his or her own safety.
The wheels must be in contact with the mat to provide
accurate movements to the patient. This also provides
proper information about the robot position in every
movement to the PositioningSystem. To achieve
this, extra weights have been added inside the robot to
keep balance between maintaining the portable condition
of the system and preventing that the patient could lift it
from the table during the therapy. Additionally, physical
barriers have been added to the mat in order to avoid that
the robot could fall down from the table.

S4 Maximum speed of the motors: The maximum speed
of the motor is hard-coded into the system to not exceed
movements above 3 centimetres per second which could
result in harm of the patient by eliciting reflexes or
spasticity. It always moves at the same speed, except
from the accelerating and decelerating movement until
reaching the defined maximum speed or zero respectively.
This important safety property is handled through both
the MainControlUnit and the Motors. Notably, the
commercial motors used in ArmAssist have also a way
to establish a maximum speed.

Another safety consideration is the option of forcing a stop
of the system in case of unexpected behavior of the robot. Two
big safety buttons have been mounted on the robot. However,
we do not add them to our design as it is HW power-off of
the system that works completely mechanically.

B. Safety contracts

The model presented in Figure 3 is the structural view of
the robot’s design and the safety considerations are modeled
as component contracts. Contracts provide an abstraction of
the behavior at the level of component interfaces. They allow
to reason about the architectural decomposition without the
need to specify the detailed behavior of components [11].
We present, for each of the safety considerations, how the
contracts were modeled.

S1: Respect the calibration values: It is important not to
send instructions to the Motors through the out_target_
ports if they are not respecting the calibration values after
applying the corrective margin. The corrective margin is
hardcoded in a property of the component.

In the ActivityManager, we have these asser-
tions which are guarantees of the component where
calibration_safety_margin is a component Property
with value 0.9. The used language is P4R Othello where
always is a keyword to define that the expression needs to
be always satisfied.
always (in_calibration_x *

calibration_safety_margin <= out_target_x)

always (in_calibration_y *
calibration_safety_margin <= out_target_y)

always (in_calibration_angle *
calibration_safety_margin <= out_target_angle)

These assertions cannot be statically evaluated. This will
require a runtime validation.

S2: Do not move if not ready: We wanted to prevent that
the MainControlUnit receives instructions to move the
motors until calibration values are received. For this, we added
the following assertions in the ActivityManager using the
P4R Othello language:
always (in_standby implies (in_calibration_x

releases not out_target_x))

always (in_standby implies (in_calibration_y

releases not out_target_y))

always (in_standby implies

(in_calibration_angle releases not

out_target_angle))

The Othello keywords implies, releases and not are
used to express that, after a standby start, out_target_
ports are available only if the corresponding calibration value
is received.

S3: Avoid lifting up the robot: According to experiments if
the robot is less than 7 Kilograms it is much more probable
that the wheels lift up from the table. The weight of the
structure is already around 3700 grams and each motor is
around 100 grams. To reach the desired weight, extra weights
are used, and there is a compartment in the structure of the
robot for that.

The assertion at System level using the P4R OCL language
is defined as:
structureWeight + GlobalSum(weight) +

extraWeight >= minRecommendedWeight

4

The values of structureWeight, extraWeight, and minRec-
ommendedWeight are added as system properties. The Global-
Sum operator from P4R extended languages takes the property
weight from all the component instances. In this case, the
Motors provide weight while in the other sensors the weight
is not significant. To reach the recommended weight, the
compartment for the extra weights is used. In this version
around 6000 grams are used to reach a total robot weight
of around 10 Kilograms. This assertion can be evaluated
statically.

S4: Maximum speed of the motors: The default parameter
regarding the current max speed of the Motors is high as the
component do not have information about its future context
of operation. This value is too high for ArmAssist context
so these values are updated with the specific speed in the 3
Motor component instances. As this maximum speed value
is also controlled by the MainControlUnit, a property
motors_speed was added in this component.

Then, the assertions at System level using the P4R OCL
language are:
mcu.motors_speed = motor1.max_speed

mcu.motors_speed = motor2.max_speed

mcu.motors_speed = motor3.max_speed

These assertions check the consistency of the
MainControlUnit property with respect to the Motors
parameters. It can be evaluated statically.

IV. DISCUSSION AND LESSONS LEARNED

In this section we report the results of this experience
from the perspective of the ArmAssist’s domain expert that
was directly involved during the modelling both for the
presented component-based architecture and for the assertions.
This domain expert is the main developer of the ArmAssist
asset who has been working and researching on this system
since 2016. Feedback was also provided by the head of the
neurorehabilitation area of Tecnalia with extensive experience
in healthcare robotics and ArmAssist, both at functional and
technical level, since its initial development in 2008 and
first version in 2009. We are aware of the inherent bias of
using experts for evaluation so we only claim here to report
qualitative feedback.

Component-based architecture modelling was not new as
a concept for the ArmAssist team, however, they did not
rely on this formalism for its design. ArmAssist design doc-
uments are based on different documentation including rich
spreadsheet files containing very detailed information about
the Bill Of Materials (BOM). As the ArmAssist is a medical
device, most documentations of this system has been produced
in a similar way as a technical file for medical devices.
The BOM contains descriptions, manufacturer information,
quantity, relevant quality attributes, etc. ranging from low-
level elements such as capacitors, resistors, cables to more
high-level components. Those high-level components include
main control unit, camera, user interface, light, motor drivers,
motor, emergency button, load cells, potentiometer, battery,

charger, external connectors etc. where several of them we
later interpreted and modelled in this work.

Most of the components are commercial off-the-shelf
(COTS) components but the ArmAssist team developed
firmware and software for their integration as well as the
main control unit to satisfy the ArmAssist’s purpose. Several
patents are associated to ArmAssist and it has been licensed
to companies in Europe and China. The BOM for building
and replicating the system, and obviously, all the tests and test
documentation needed for validation and verification purposes,
are sufficient assets for its validation and commercializa-
tion. Thus, a more high-level viewpoint from the system as
proposed in this work can have its benefits, but it is not
mandatory for a successful delivery. More challenging are all
the certification requirements for medical products to which
this approach can contribute, or whether the approach can
help to discover safety violations that would be very difficult
to detect using the current testing techniques. In this context,
we discussed with them the potential benefits and drawbacks
they see in integrating these modelling practices in their future
developments and for ArmAssist evolution in particular.

The first positive aspect that they mention is the diagram
visualisation which offers a global overview of the system
(e.g., components, ports, connections) much faster than the
one you can obtain inspecting the BOM spreadsheets. They
also mentioned that they considered the tool relatively easy to
use so the learning curve is small compared to the benefit of
obtaining the diagrams. The elements to create the diagrams,
i.e., the concrete syntax of the Papyrus for Robotics meta-
model, was expressive enough to capture the system overview.
Other information which is not directly represented in the
diagram, but that can be added in the tool such as the quality
attributes of the components, descriptions etc. could have been
used to include almost all the data currently represented in the
spreadsheets.

The new functionality of Papyrus for Robotics to include
contracts was found interesting by the ArmAssist expert. It can
help to make explicit safety considerations which are currently
implicit knowledge, or explicit but at very low-level (e.g.,
source code). Those considerations descriptions are based on
formal language, not on natural language which was also posi-
tively considered. The currently supported languages OCL and
Othello are correctly documented. The continuous evolution
of ArmAssist in different versions and variants, could end
up identifying inconsistencies during design-time although the
assertions and contracts are all currently satisfied. The early
detection of mechanical issues would avoid expending time
and money in the implementation phase if those problems
are later identified during the source code development, on
configuration or on testing phases. So the proposed approach
is considered sound and promising for the ArmAssist team.

It has been also considered that the modelling of the
component-based architecture and the safety considerations
could help in the communication among different stakeholders
including software and hardware architects and developers,
quality managers and experts in safety. The global experience

5

and the model built in this work also opens the door to new
research directions for the the neuroengineering team involved
in ArmAssist, notably to leverage model-driven techniques for
healthcare robotics.

V. CONCLUSION

This experience report presented the modelling of the
ArmAssist robotic system for hand and arm rehabilitation
including its safety considerations. This was possible with
the new functionalities of Papyrus for Robotics which is an
open-source tool available for the robotics community. The
discussion and lessons learned from this process aims to
encourage robotic practitioners to adopt these modelling prac-
tices that can help to make more explicit their designs, support
in the communication among stakeholders, and support the
validation in early phases thanks to formal assertions and
contracts at component and system levels.

As further work, research on how to integrate runtime
verification and validation of the assertions, using data flow
simulation, or hardware- or software-in-the-loop runtime mon-
itoring, possibly automatically deriving the monitors from the
assertions. Also, design space exploration evaluating design
alternatives is a possible research direction. This will require
to try to optimize quality attributes while satisfying the asser-
tions. Other practical directions include an assessment of the
scalability, investigating how the approach can help to avoid
unpredictable situations, or trying to assess the development
cost and difficulties of maintaining the contracts in hardware
and software evolution.

ACKNOWLEDGMENT

This work has been funded by the SafeCC4Robot Integrated
Technical Project which received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 732410, in the form of financial
support to third parties of the RobMoSys Project. We would
like to thank Angel López, Elixabete Ostolaza, Matteo Morelli,
and Huascar Espinoza for their help during the tool design
and development. The authors also would like to thank to
Iñigo Dorronsoro, Javier Arcas Ruiz-Ruano, Gabriel Gaminde,
Beñat Garcia-Mendizabal, Je Hyung Jung, Cristina Rodriguez-
de-Pablo, Joel Perry, Aitor Belloso, David Valencia and Haritz
Zabaleta for their contributions to the ArmAssist system
development.

REFERENCES

[1] ISO, “ISO - Robotics,” 2012. [Online]. Available: https://www.iso.org/
obp/ui/#iso:std:iso:8373:ed-2:v1:en

[2] S. Garcı́a, D. Strüber, D. Brugali, T. Berger, and P. Pelliccione, “Robotics
software engineering: A perspective from the service robotics domain,”
ESEC/FSE, pp. 593–604, 2020.

[3] J. C. Perry, H. Zabaleta, A. Belloso, and T. Keller, “Armassist: A low-
cost device for telerehabiltation of post-stroke arm deficits,” in World
Congress on Medical Physics and Biomedical Engineering, September
7 - 12, 2009, Munich, Germany, O. Dössel and W. C. Schlegel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 64–67.

[4] C. Rodriguez-de-Pablo, J. C. Perry, S. Balasubramanian, A. Belloso,
A. Savic, T. D. Tomic, and T. Keller, “Serious games for assessment and
training in post-stroke robotic upper-limb telerehabilitation,” in Proceed-
ings of the 2nd International Congress on Neurotechnology, Electronics
and Informatics, NEUROTECHNIX 2014, Rome, Italy, October 25-26,
2014. SciTePress, 2014, pp. 126–134.

[5] A. Garzo, J. A. Ruiz-Ruano, I. Dorronsoro, G. Gaminde, J. H. Jung,
J. Téllez, and T. Keller, “Merlin: upper-limb rehabilitation robot sys-
tem for home environment,” in Converging Clinical and Engineering
Research on Neurorehabilitation IV. ICNR 2020, 2020.

[6] J. C. Perry, C. Rodriguez-de Pablo, F. I. Cavallaro, A. Belloso, and
T. Keller, “Assessment and training in home-based telerehabilitation
of arm mobility impairment,” vol. 3, pp. 44–75, Nov. 2013. [Online].
Available: http://www.jacces.org/index.php/jacces/article/view/12

[7] C. Rodriguez-de Pablo, A. Savić, and T. Keller, “Game-based assessment
in upper-limb post-stroke telerehabilitation,” in Converging Clinical and
Engineering Research on Neurorehabilitation II, J. Ibáñez, J. González-
Vargas, J. M. Azorı́n, M. Akay, and J. L. Pons, Eds. Cham: Springer
International Publishing, 2017, pp. 413–417.

[8] T. J. D. Tomić, A. M. Savić, A. S. Vidaković, S. Z. Rodić, M. S. Isaković,
C. Rodrı́guez-de Pablo, T. Keller, and L. M. Konstantinovic, “Armassist
robotic system versus matched conventional therapy for poststroke upper
limb rehabilitation: A randomized clinical trial,” pp. 1–6, 2017.

[9] Eclipse, “Papyrus for Robotics, v0.8,” https://www.eclipse.org/papyrus/
components/robotics/, 2020.

[10] J. Martinez, A. Ruiz, A. Radermacher, and S. Tonetta, “Assumptions
and guarantees for composable models in papyrus for robotics,” in
ICSE workshops, 3rd International Workshop on Robotics Software
Engineering (RoSE), 2021.

[11] A. Cimatti and S. Tonetta, “Contracts-refinement proof system for
component-based embedded systems,” Sci. Comput. Program., vol. 97,
pp. 333–348, 2015.

[12] J. H. Jung, D. B. Valencia, C. Rodriguez-de-Pablo, T. Keller, and J. C.
Perry, “Development of a powered mobile module for the armassist
home-based telerehabilitation platform,” in IEEE 13th International
Conference on Rehabilitation Robotics, ICORR 2013, Seattle, WA, USA,
June 24-26, 2013. IEEE, 2013, pp. 1–6.

[13] OMG, “Object Constraint Language,” http://www.omg.org/spec/OCL/,
2014.

[14] A. Cimatti, M. Dorigatti, and S. Tonetta, “OCRA: A tool for checking
the refinement of temporal contracts,” in ASE. IEEE, 2013, pp. 702–
705.

[15] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta, “Validation of require-
ments for hybrid systems: A formal approach,” ACM Trans. Softw. Eng.
Methodol., vol. 21, no. 4, Feb. 2013.

6

https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
http://www.jacces.org/index.php/jacces/article/view/12
https://www.eclipse.org/papyrus/components/robotics/
https://www.eclipse.org/papyrus/components/robotics/
http://www.omg.org/spec/OCL/

	Introduction
	Modeling the component-based architecture
	Safety considerations and contracts
	Safety considerations
	Safety contracts

	Discussion and lessons learned
	Conclusion
	References

