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Featured Application: The design and implementation of an intelligent and adaptive co-pilot
for driver–automation cooperation in automated vehicles. The implementation consists of a lat-
eral vehicle controller based on shared control, with the novelty of having an adaptive level of
authority, with stability considerations. The benefits of the implementation are shown with an
objective and subjective comparison between the adaptive co-pilot and commercially available
solutions, in a use case where a distracted driver requires support from automation.

Abstract: The “classical” SAE LoA for automated driving can present several drawbacks, and
the SAE-L2 and SAE-L3, in particular, can lead to the so-called “irony of automation”, where the
driver is substituted by the artificial system, but is still regarded as a “supervisor” or as a “fallback
mechanism”. To overcome this problem, while taking advantage of the latest technology, we regard
both human and machine as members of a unique team that share the driving task. Depending on
the available resources (in terms of driver’s status, system state, and environment conditions) and
considering that they are very dynamic, an adaptive assignment of authority for each member of the
team is needed. This is achieved by designing a technology enabler, constituted by the intelligent
and adaptive co-pilot. It comprises (1) a lateral shared controller based on NMPC, which applies
the authority, (2) an arbitration module based on FIS, which calculates the authority, and (3) a visual
HMI, as an enabler of trust in automation decisions and actions. The benefits of such a system are
shown in this paper through a comparison of the shared control driving mode, with manual driving
(as a baseline) and lane-keeping and lane-centering (as two commercial ADAS). Tests are performed
in a use case where support for a distracted driver is given. Quantitative and qualitative results
confirm the hypothesis that shared control offers the best balance between performance, safety, and
comfort during the driving task.

Keywords: human–computer interaction; automated driving; shared control; arbitration; model
predictive control; advance driver assistance systems; human-centered vehicle; driver–automation
cooperation

1. Introduction

In recent years, intelligent agents have been entering our lives and supporting us in a
wider variety of tasks; in particular, AVs (refer to Table 1 for all manuscript abbreviations)
are becoming an integral part of everyday traffic (and will do so even more in the future),
along with the improvement of sensor accuracy, calculation processing speed, and recogni-
tion performance through using AI technologies. The main motivations for AVs and ITSs
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are: (1) safety, under the assumptions that it is possible to “automatize” driving, and that
humans can often make errors, (2) providing new mobility services for reducing traffic
congestion, energy consumption, and pollution, as well as for people that can no longer
drive, and (3) maintaining technological and market leadership.

Table 1. List of abbreviations.

Abbreviation Meaning Abbreviation Meaning

ADAS Advanced Driver Assistance System LoA Level of Automation

ADS Automated Driving System MF Membership Function

AI Artificial Intelligence MPC Model Predictive Control

AV Automated Vehicle NMPC Non-linear MPC

FIS Fuzzy Inference System ODD Operational Design Domain

HMI Human–Machine Interface RMS Root Mean Square

ITS Intelligent Transportation Systems SAE Society of Automotive Engineers

KPI Key Performance Indicator SC Shared Control

LC Lane-Centering TLC Time to Lane Crossing

LK Lane-Keeping TOR Take-Over Request

1.1. The Context and the Problem

Specifically, for the first aforementioned point, human errors account for an estimated
92–96% of traffic accidents [1]. Indeed, human drivers are limited in recognizing, inter-
preting, understanding, and operating in critical situations; moreover, they are prone
to misbehavior, drowsiness, and distraction [2]. In this perspective, vehicle automation
promises to improve safety by removing human drivers from the control loop, especially
the SAE-L3 [3]. Undeniably, automation systems are capable of faster response times, and
can handle greater amounts of information and process it more quickly than human drivers.
However, AVs are also subject to faults and misses since there are situations where such
systems reach their limits and will not be able to work reliably (automation cannot cope
with highly complex traffic situations, e.g., dense urban traffic. Also, the situational under-
standing and prediction capabilities of vehicles are at the moment far less sophisticated
than the capabilities of human drivers). In these cases, the driver must intervene and take
over control of the vehicle as quickly as possible and with high take-over quality [4,5].
This can lead to the so-called “irony/paradox of automation” [6,7], in which the designer
who tries to eliminate the operator still leaves the operator to perform the tasks which
the designer cannot think how to automate, and where the driver is substituted by the
artificial system, but is still regarded as a “fallback mechanism” when automation fails or
it is outside its ODD (we mean here the usage conditions and the functional boundaries
of the AV) [3]. This human–automation interaction represents the concept of being “the
Boss” (known as the traded control scheme [8]), where either automation or the human
have total control of the vehicle, but in different periods.

In this sense, human drivers are still considered to be in a supervisory role or are asked
to remain available for immediate control take-over, often without pre-warning or correct
situational awareness [9]. This solution (human drivers are requested to monitor/supervise
the artificial system and to take vehicle control back when it fails) will cause out-of-the-loop
problems [10], mode confusion [11], and behavioral adaptation [12] issues that need urgent
reconsideration to maintain safe driving with AVs [13]. In fact, when vehicles are moving
autonomously, human minds begin to wander, starting to mentally switch off from the
supervision task (and thus from the driving job). In addition, it is also likely that society
will not tolerate automation faults at the same rate it currently tolerates human faults.
Indeed, accidents are rare events: one accident per 1.46 billion km [14]. This means that—
overall—humans are reliable, with the capacity to handle complex and new situations, with
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great capability for adaptation as well as for situational comprehension and anticipation.
However, we may also consider that if AVs become reliable in all foreseeable and even
unforeseeable situations on the road, the driver may easily over-trust the AV, especially
when the driver does not clearly understand the ODD [9].

1.2. Our Answer: The Concept of the Adaptive Co-Pilot

Given this picture, together with the fact that people like driving, humans will remain
part of the system for a long time, with capabilities for driving a vehicle that are in large
part complementary to the capabilities of automation systems. The human driver offers
superior perception and judgment, is capable of making high-level decisions, and brings
rich prior experience and the ability to generalize from one type of experience to another [9].
Thus, humans still need to recognize performance shortcomings in automated systems,
decide whether to adopt or reject decisions recommended by automation, and react to
cases not included in the ODD of the automated functions [15].

In this perspective, how to combine the capabilities of human and automatic drivers
should be investigated carefully, as the transfer of control from the human driver to the
automated driving system and vice versa needs to follow a safe and meaningful process
that circumvents or even solves this difficulty. Since a clear division of transitioning control
authority is difficult to find, a “simple” trading scheme where the control authority is given
to whichever agent outperforms the other (in specific traffic situations or time intervals)
cannot be enough. Eriksson and Stanton [16] state that in the aforementioned situations,
when the operational limits are reached, the driver must receive support and guidance,
necessary to reenter the control loop [17]. However, smooth transfer of control authority
between an automation system and a human is notoriously difficult (from the aviation
domain, in human–automation teams, there can be errors during transfers of control
authority, misinterpretation or misappropriation of responsibility, and loss of situational
awareness [9,18,19]). Therefore, various schemes where vehicle control is shared (instead
of traded) between the human and the automated system have been proposed [8,20], but
it is fundamental to understand how the automated system and the human driver can
interact with each other, simply and naturally, requiring that agents can learn when to
support and how to mediate joint actions in collaboration, with the long-term vision that
automated cooperation among traffic participants can improve traffic efficiency and safety
beyond the level attainable by only human drivers or only machine-agents [21].

Rather than complete transfers of control authority at discrete instants of time, the idea
of the adaptive co-pilot attempts to form a cooperative “team” that involves the human
and automation system working together simultaneously in the same task (known as the
shared control scheme [8,22]) with a variable intensity of intervention (i.e., authority) that
depends on the driving context (e.g., in a low-complexity maneuver with a driver in proper
conditions, the intervention of automation is low in torque amplitude, while in a scenario
with a high risk of accident with a distracted driver, the automation intervention is higher).
The expectation is that team performance would exceed the performance of either agent
acting alone and cognitive workload would be reduced for the human [23].

In other words, the idea hereby developed is that driver and automation are regarded
as members of a unique “team” that understand and support each other in cooperatively
pursuing the goal of driving safely, efficiently, and comfortably.

In this sense, to counteract the drawbacks present in vehicles SAE-L2 (over-trust,
misuse of the system, and expecting something for which the system is not designed)
and SAE-L3 (with the out-of-the-loop problems that produce poor drivers’ take-over
performance), this paper proposes the intelligent adaptive co-pilot as the enabler for a new
cooperative framework between the machine-agent (automation) and the human-agent
(driver). Depending on the available resources (in terms of driver’s status, system state,
and environmental conditions) and considering that these resources are very dynamic
(because they can change over time, they can appear or disappear, etc.), different levels of
control authority are defined in the “team” in order to accomplish the given driving task.
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1.3. Contributions of the Work

This work is focused on the development, testing, and evaluation of the adaptive
co-pilot as the enabler of a new driving cooperative framework, pursuing the idea of being
a “Team”. The specific contributions are detailed below:

• Development (Section 2): Three components of the adaptive co-pilot are presented in
this work: (1) a novel lateral shared controller, able to assist the driver with different
levels of haptic authority, (2) an arbitration module that calculates the authority to
be assigned to the controller, designed under two principles (minimal intervention
and safety-over-comfort), and (3) an innovative visual HMI for shared control, as the
enabler of trust in decisions and actions performed by the co-pilot.

• Testing (Section 3.1): The implementation of the adaptive co-pilot is then tested in
a scenario where the driver is asked to repeatedly perform a secondary task, which
results in two general driver states (attentive or distracted). Under this scenario, four
driving modes are compared (manual as a baseline, and LK and LC as two available
commercial ADAS, and the proposed adaptive co-pilot). The last three offer steering
support to the driver to keep within the lane in both attentive and distracted states.
Tests were carried out in a driver-in-the-loop simulator with five drivers.

• Evaluation (Sections 3.2 and 3.3): A quantitative analysis of the tests was performed,
considering KPIs related to tracking performance, safety indicators, and driving efforts.
To complement the study, a subjective evaluation was also performed through ques-
tionnaires applied to the participants, with KPIs related to safety, comfort, and overall
perception of the system. Results show that when the driver is continuously kept in
the loop under the support of the adaptive co-pilot, it provides benefits in regards to
the driving task that would help to avoid “automation irony” (as the driver has a sense
of being responsible for driving even under automation support). At the same time,
drivers benefit from the automation capabilities for intervening during the distraction
events and improving driving safety, while reducing driver-required efforts.

2. Materials and Methods

This section presents the design and implementation of the adaptive co-pilot frame-
work (shown in Figure 1). Standard frameworks where automation is the boss are com-
monly composed of six components (acquisition, perception, communication, decision,
control, and actuation) [24]. However, when the human is considered a co-driver, new
components are needed. First, the acquisition and perception modules are extended with
the information provided by driver monitoring systems. Additionally, three relevant com-
plements need to be defined when the driver is involved in the control loop: (1) a new
control modality (shared controller), which is a lane-centering controller, with the ability to
assist the driver with an adaptive level of authority (instead of fixed as in common AVs
frameworks), either with lower or higher intensity; (2) a new decision-making component
(arbitration), to find out how much authority should be given to both the driver and the
automated system, based on the driver–vehicle–environment context (particularly, the
design for a use case of a distracted driver will be explained in this paper); and (3) a new
interaction interface (visual HMI) that complements the system, aiding the driver through
visual feedback, increasing situational awareness and giving an indication of the current
level of authority. The novelty of this framework also relies on the design considerations of
each of these three components as explained in Sections 2.1–2.3, respectively.
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Figure 1. Adaptive co-pilot framework.

2.1. Adaptive Co-Pilot—Shared Controller

This section describes the design of the shared controller of the adaptive co-pilot,
which is in essence a trajectory tracking controller. Nonetheless, on the basis that the driver
will interact with the controller through the steering wheel, it needs to meet a series of
requirements that are not considered in conventional autopilots (designed to perform the
lateral driving task, but without considering humans as a collaborative agent). In this sense,
the controller needs to cover the following design aspects.

• The control signal (controller output) is the steering wheel torque, whereas conven-
tional autopilots use the steering wheel angle [25] or even the angular velocity [26].
However, drivers control the steering wheel by applying torque with the arms-hands
mechanism, and it has been shown that steering angle control decreases the ease
of driver intervention (as it has to deal with the low lever position controller) [27].
Therefore, to couple the control signals of both agents, a torque-based lateral controller
is designed, similar to previous works in lateral shared control that have followed the
same approach [28].

• The authority of the controller is adaptative to the ever-changing environment and con-
text, whereas conventional autopilots assign a single authority value to the controller,
being either activated (authority = 1, or maximum torque applied) or deactivated
(authority = 0). In autopilots, the context may change the behavioral planner, but the
core controller remains with the same authority, whereas for the driver–automation
“team”, the automation support can adapt its intensity according to the conditions of
each scenario (changes in driver fit-to-drive conditions, unsafe driver actions, automa-
tion failures, and others). This means automation can assist the driver with different
levels of intensity (authority), covering the continuous spectrum from “no assistance”
to “maximum allowed assistance”. In the literature, this intensity is known as the
level of haptic authority [22,29].

• The control method is able to perform optimization of multiple objectives, as the
complex interaction between driver and automation creates a series of goals such
as tracking performance, driver comfort, driving efforts, and safety, which cannot
always be achieved at the same time. Therefore, a controller capable of balancing those
objectives efficiently is ideal for the adaptive co-pilot. Whereas classical controllers
such as PIDs have been widely used for autopilots, shared control applications are
more benefited by optimal control algorithms that allow minimizing functions with
multiple objectives, with the additional benefit of managing constraints of vehicle
dynamic states and control signals [8].
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Based on these design aspects, and within different methods of optimal control,
recent works in shared control have promoted the use of nonlinear model predictive
control (NMPC), demonstrating positive results in their implementations [30–33]. These
works motivated the use of this control strategy for the adaptive co-pilot, also due to the
following benefits offered by this technique: (1) it is a powerful approach for the optimal
control of multivariable systems with constraints on the inputs and states, (2) it allows easy
integration of predicted information, as well as constraints resulting from traffic predictions
or road geometry, (3) it works both as controller and as a trajectory planner because of the
ability to predict its states over a future horizon, (4) it is feasible for non-linear systems and
can manage complex constraints, and (5) there are microsecond solvers available, making
this technique suitable for having a control loop of 1 to 10 ms, as is usual in automated
driving controllers. For deep technical background on MPC, the authors refer readers
to [34].

Concerning the design of an NMPC controller, it requires two fundamental steps:
(1) the definition of the model, and (2) the design of the optimization problem (multi-
objective function and constraints). Taking into account the considerations for the adaptive
co-pilot, this work presents three additional design steps, (3) the adaptive authority factor
will be added to allow the controller to have different levels of haptic authority, (4) the
stability criteria will be considered when including the authority in the controller, in order
to avoid oscillations and instability while keeping the configuration of the NMPC weight
matrices, and (5) the assignment of unit dimensions to the authority will be presented,
to deal with the fact that the level of authority is dimensionless, and therefore it is not
intuitive to select the appropriate value. The last three represent the novelty added to
conventional NMPC controllers found in the literature for shared control in automated
driving. The block diagram of the controller is detailed in Figure 2, and the five design
steps are detailed below.

Figure 2. Shared controller block diagram based on NMPC.

2.1.1. The Vehicle Model

The prediction model is generally represented as a first-order differential equation.
This work uses the representation for the lateral dynamics of a full-size passenger vehicle,
which encompasses three sub-models (vehicle dynamics model, tracking-error model, and
steering system model). First, the vehicle dynamics model is represented by the non-linear
dynamics bicycle model equations for a front steered vehicle as shown in Equations (1)–(6)
of Table 2. This model is suitable for maneuvers at high speeds which will allow increasing
the testing speed as compared with previous work where a kinematic model was used [35].
The lateral forces in the front and rear tires (Fy f , Fyr) are defined in Equations (7) and (8),
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where (Cα f , Cαr) are the front and rear cornering stiffness constants, which are calculated
according to the estimation method presented in [36]. Second, the tracking-error model
includes two differential Equations (9) and (10), related to the lateral and angular error.
This model eases the integration of the lane borders constraints, allowing emulation of the
behavior of a lane-keeping system. Lastly, the steering system model relates the steering
wheel angle with the applied torque. The inertia (J) and damping (b) second-order model
is used (Equations (11) and (12), where the steering wheel angle is proportional to the
steering angle (θ = krδ). It also uses an approximation of the self-aligning Tsat = kFy f . The
control torque,

(
Tmpc

)
, and its rate change, (dTmpc), are defined in Equations (13) and (14)

of Table 3. Additionally, the values of the NMPC parameters are given in Table 4.

Table 2. NMPC formulation for adaptive co-pilot (system states).

State Vector
x

Prediction Model Function
(x(k+1)=f(x(k),u(k),l(k)))

Optimization Function

Jx=
N−1
∑

k=0
‖x(k)−xr(k)‖2

Wx

Constraints
xmin ≤ x ≤ xmax

Equation
N◦

Vehicle Model

X-coordinate
.

X = vxcos(Ψ)− vysin(Ψ) WX = 50 (Tracking) ±∞ (1)
Y-coordinate

.
Y = vxsin(Ψ) + vycos(Ψ) WY = 50 (Tracking) ±∞ (2)

Yaw angle
.

Ψ = ψ WΨ = 50 (Tracking) ±∞ (3)
Long. speed .

vx =
(

max − Fy f sin(δ) + mvyψ
)

/m Wvx = 0 ±∞ (4)

Lateral speed .
vy =

(
Fyr + Fy f cos(δ)−mvxψ

)
/m Wvy = 0 ±∞ (5)

Yaw rate
.
ψ =

(
l f Fy f cos(δ)− lrFyr

)
/Iz Wψ = 100 (Comfort) ± 0.4 rad/s (6)

Algebraic Expressions for Tire Model

Lat. Force front Fy f = 2Cα f

(
δ−

(
vy + l f ψ

)
/vx

)
) (7)

Lat. Force rear Fyr = 2Cαr
(
vy − lrψ

)
/vx) (8)

Tracking-errors Model

Lateral error
.

ey = vxsin(eΨ) + vycos(eΨ) Wey = 0 ± 1.5 m (9)
Angular error .

eΨ =
.

Ψ− ρvx WeΨ = 0 ±∞ (10)

Steering Wheel Model

Sw. angle
.
θ = w; (θ = δ/kr ) Weθ = 0 ± π rad (11)

Angular speed
.

w = (−1/J)
(
bλw + Tsat − Tmpc

)
Ww = 0.1 (Comfort) ± 4 rad/s (12)

f : non-linear function representing the road-vehicle model; x: states vector; u: input vector; l: external inputs vector Jx : states optimization
function; Wx : states weights matrix; xmin/max : min/max states constraints vector.

Table 3. NMPC formulation adaptive co-pilot (system control inputs).

Control Input
[u,∆u]

Input Model
Function

Optimization Function

Ju=
N−1
∑

k=0
‖u‖2

Wu
+‖∆u‖2

W∆u

Constraint
umin≤u≤umax

∆umin≤∆u≤∆umax

Equation
N◦

Control torque (u)
.
Tmpc = λdTmpc WTmpc = 0.01 (Effort) ± λdim Nm (13)

Control torque rate of
change (∆u) dTmpc WdTmpc = 0.1 (Effort) ± 0.2 Nm/s (14)

∆u: input rate of change vector; Ju: inputs optimization function; Wu: input weights matrix; W∆u: input rate of change weights matrix;
umin/max: min/max input constraints vector; ∆umin/max: min/max input rate of change constraints vector.
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Table 4. NMPC formulation adaptive co-pilot (system parameters).

Parameter Value Parameter Value Parameter Value

Vehicle mass (m) 1650 kg Motor inertia (J) 0.1 kg·m2 Cornering stiffness
front-rear (C f , Cr)

940 × 102 N
118 × 103 N

Vehicle inertia (Iz) 3234 kg·m2 Motor damping (b) 0.65 N·s/rad MPC horizon (N) 30

Distance to axis
front-rear

(
l f , lr

) 1.40 m
1.65 m Steering ratio (kr) 8.77 MPC sample-time (Ts) 0.05 s

2.1.2. The Optimization Problem

The optimization function encompasses multiple minimization objectives (Jx + Ju)
and system constraints (xmin/max, umin/max, ∆umin/max) which are separated into three
categories: (1) the tracking performance, to minimize the deviation from the reference
trajectory (minimize (X, Y, Ψ)), (2) the driving comfort, looking for low drifting and smooth
steering wheel corrections (minimize (ψ, w)), (3) the reduction of driver effort, which
minimizes the control command and its rate of change (Tmpc, ∆Tmpc). Moreover, safety
considerations are added by applying a constraint on the yaw rate (ψ) to avoid unsafe
drifting of vehicle (tested experimentally and congruent with a related work [37]), and also
limiting the maximum allowed lateral deviation (defined approximately as half of the lane
width, to avoid vehicle departing from the lane). Additional constraints are added to limit
the steering wheel behavior (θ, w, Tmpc, ∆Tmpc) based on subjective feeling of drivers in
the simulator.

2.1.3. The Adaptive Authority

Having a variable level of authority (λ) is one of the requirements for the shared
controller, as it needs to have the ability to vary its stiffness around the desired steering
wheel angle, which affects the strength with which the driver has to perform to override
it. Therefore, the controller may have the same tracking performance, but with a different
level of authority. In a preceding work [35], this authority was integrated into the controller
as an additional term (Tmpc + λ

(
θ − θopt

)
). However, it presented different limitations; for

example, (1) the control torque came from two sources, (2) the need for calculating the value
of θopt, (3) the possible effect of non-continuity in the term

(
θ − θopt

)
which can affect the

driver’s feeling at the steering wheel, and also (4) as the authority component was included
outside of the NMPC formulation, the constraints could not be guaranteed. This paper
improves the design with the inclusion of the authority level as a factor within the torque
derivative equation (

.
Tmpc = λdTmpc), such that all the torque contribution (including the

effect of the authority) is included in the control signal Tmpc. In this sense, when λ = 1, it
represents the nominal controller. Under this configuration, λ > 1 increases the authority
of the nominal controller. However, this inclusion makes the system prone to oscillations
and instabilities.

2.1.4. The Stability Criteria

Stability for NMPC has been discussed in the literature [38]; however, in practice, the
controllers are generally adjusted via manual tuning, until finding the desired behavior.
For the nominal controller (λ = 1) of Section 2.1.2, those weights are the ones defined
in Tables 2 and 3. Nevertheless, when increasing λ the stability is affected (as shown in
Figure 3), which would require a new adjustment of the weight matrices, making this
methodology tedious by the constant tuning, not to mention the difficulty of finding the
proper weights for each value of λ. In this sense, the novelty of our approach consists of
a methodology to assign a level of authority to the controller without losing the stability
achieved with the nominal controller. The following analysis was followed.
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Figure 3. Stability test with constant damping (b).

The second-order system of the steering wheel column is represented by the following
differential Equation (15):

J
..
θ + b

.
θ = Ttotal = Tsat + λTmpc + Tdriver (15)

where the self-aligning torque (Tsat = −ksatθ) provides the system’s stiffness, Tmpc is the
automation steering torque, λ is the level of authority, and Tdriver is the torque exerted
by the driver’s hands on the steering wheel. For the analysis of the system stability, the
equation is solved in its homogeneous form (Tdriver = 0) and is linearized around the
equilibrium position, rendering:

J
..
θ + b

.
θ + (ksat + λkmpc)θ = 0 (16)

This approximate representation (with ksat and kmpc being the stiffness added by
the self-aligning torque and the NMPC control torque, respectively), makes evident the
destabilizing effect of the variable authority, as increasing the authority results in a stiffer
system, thus resulting in a smaller damping ratio:

ζ =
b

2
√

J(ksat + λkmpc)
(17)

The NMPC controller is tuned for the nominal authority (λ = 1), with the parameters
of Tables 2 and 3 providing the reference damping ratio considered optimum for a stable
system.

ζ1 =
b

2
√

J(ksat + λkmpc)
(18)

The proposed strategy to maintain this damping ratio as the authority is varied; it
relies on estimating the required damping (bλ) so that:

ζλ =
bλ

2
√

J(ksat + λkmpc)
= ζ1 (19)

Substituting Equation (18) into Equation (19) and considering the NMPC stiffness to
be of the same magnitude as the self-aligning stiffness—as can be expected by looking at
the equilibrium or quasistatic system behavior—a scaling factor for the system damping
can be obtained:

bλ = b

√
λ + 1

2
(20)
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This variable (scaled) damping can be easily introduced into the system through a
linear term in the steering actuator motor controller and has proven to maintain a nearly
constant damping ratio. This guarantees stable and comfortable system behavior through
the whole variable authority range without the need to retune the NMPC (see Figure 4).

Figure 4. Stability test with variable damping (bλ).

2.1.5. The Authority Dimension

As the authority is dimensionless, it makes it hard to identify the effect of λ within the
system in terms of torque intensity. For this purpose, after a series of tests with a driver
in the loop, a relation between the maximum torque (Tmax = λdim) and λ was observed
(under the conditions of being separated 1.5 m from the lane center, emulating a road
departure limit condition), such that λ = g(λdim) = 2.2×max(λdim, 3)− 5.5. With this
relation, λdim becomes the constraint of the control input of the NMPC, allowing the user to
indicate the level of desired authority in terms of a maximum reference torque given by the
controller. In practice, the shared controller can be configured to assist with low authority
(e.g., 2 Nm), or high authority (e.g., 10 Nm), which are dimensions that can intuitively be
considered in the controller design.

To test this design, various trials were performed with a driver departing the vehicle
from the lane center for about 2 m, with five different values of λdim. The driver was
then asked to release their hands from the steering wheel to observe the performance and
stability of the controller. Figure 3 shows that the driver effort is equivalent to λdim, but
also that increasing the authority adds oscillations to the system response. Figure 4, on the
contrary, shows the effect of the variable damping in keeping the stability and keeping the
control performance with low tracking errors.

With this in mind, one of the benefits of the proposed framework is that as the low-
level controller based on NMPC can keep the performance, robustness, and feasibility
independently of the authority level, then the high-level decision-making (the arbitration
system) is given more flexibility and can be adapted for different use cases without the risk
of modifying the fundamental controller behavior.

2.2. Adaptive Co-Pilot—Arbitration

Once the main controller has a configurable authority that assures performance and
stability, the next step is to design the decision logic that finds the appropriate value of λdim,
to distribute the control authority between driver and automation. For this purpose, an FIS
is designed to perform the arbitration process. FIS algorithms have offered a solution for
including human knowledge in the design of automated driving functions [26], including
applications for shared control [39]. This method uses a set of MFs and linguistic IF-THEN
rules that defines the output of the decision logic.
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The arbitration module proposed in this section is developed specifically for the use
case of assistance for a distracted driver (described in Section 3.1). Similar work on shared
control for inattentive drivers [22] proposed a strategy where the authority of the controller
increased proportionally to the distraction level. In addition to this consideration, our
decision logic also considers the deviation from the lane center as a second condition that
helps to calculate the appropriate authority (this will be important in design principle (1)).
To summarize, the fuzzy logic system is composed of two inputs (lateral error and level of
driver distraction) and one output (level of authority λdim), as described in Table 5. The
two inputs are chosen as variables that represent the driver and the automated system.

Table 5. Fuzzy inference system for the arbitration module.

Variable N◦ of MFs [Labels]→ [Values] MFs

Inputs

Lateral
error
ey>0

4

NONE = [−1.5 −0.57 −0.04 0.33]
LOW = [−3.5 −0.01 0.32 1.04]
MED = [0.34 1.15 1.52]
HIGH = [1.04 1.54 2.54 3.04]

Driver
distraction

0<Dd<1
3

LOW = [−0.53 −0.21 −0.01 0.87]
MED = [0.26 0.68 0.91]
HIGH = [0.63 0.94 1.29 1.54]

Outputs

Authority
0<λdim<15 4

MAN = [−1 0 0.5 2]
LOW = [0.5 2 6]
MED = [2.02 6.02 10]
HIGH = [14.3 14.8 24.3 24.8]

Concerning the design of the MFs, the values for each label are representative rather
than exact values (this is one of the advantages of FIS algorithms, as it resembles how
humans define variables). In terms of lateral error, 1.5 m (HIGH) is the distance when the
vehicle is at the lane border, while 0.3 m (NONE-LOW) was selected to give the driver
some freedom to deviate from the lane center without experiencing intervention by the
automated system. On the other hand, the MFs for driver distraction were selected by
observing the raw distraction signal of different drivers. With respect to the output (λdim),
15 Nm (HIGH) is the maximum steering motor torque, while the other values were selected
experimentally based on subjective driver feeling on the steering: (a) MED, strong but
possible to override (10 Nm), (b) MED-LOW, strong guidance with some driver freedom to
move (6 Nm), and c) LOW-MAN, soft guidance barely felt at the steering (2 Nm).

Additionally, the design of this arbitration module considers the following two princi-
ples: (1) minimal intervention and (2) safety over comfort.

1. The minimal intervention principle follows the idea that drivers only need assistance
under specific circumstances; on the contrary, automation could create unnecessary
conflicts that will produce a feeling for the driver of being controlled all the time,
and decrease the driver acceptance rate. Additionally, not intervening when drivers
are in suitable conditions to drive aims to increase the sense of responsibility for the
driving task, in order to avoid over-trust in automation. Moreover, the inclusion of
the lateral error in the logic is part of this principle, as assistance should not be given
to the driver only considering the distraction level (as the driver could maintain a
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safe performance even under some levels of distraction). Therefore, a combination of
performance (lateral error) and driver state (distraction level) is needed.

2. The safety over comfort principle is based on the fact that safety has a higher priority
over the parameters that add comfort to the driving task. In this sense, if the driver is
not in a condition to drive, and is also performing an unsafe action, then the system
has to intervene even if it overrides the driver or the maneuver creates discomfort
(e.g., high lateral acceleration or strong torque at the steering wheel).

Under these two considerations, the IF-THEN rules of Table 6 are added to the design
of the fuzzy logic system and produce a smooth surface of authority (λdim) as shown in
Figure 5.

Table 6. FIS for the arbitration module (IF-THEN rules).

IF-THEN Rules

Input (Dd) Input (ey) Output (λdim) Design Strategy

LOW
LOW MANUAL Min. Intervention

MEDIUM LOW Safety + Comfort
HIGH MEDIUM Safety + Comfort

MEDIUM
LOW LOW Min. Intervention

MEDIUM MEDIUM Safety + Comfort
HIGH HIGH Safety over Comfort

HIGH

NONE LOW Min. Intervention
LOW MEDIUM Safety + Comfort

MEDIUM HIGH Safety over Comfort
HIGH HIGH Safety over Comfort

Figure 5. Authority surface calculated by the arbitration module for the distracted driver use case.

2.3. Visual HMI

As part of the shared control framework presented in this work, a visual HMI is
designed to enhance the interaction and mutual understanding between the driver and
the automated system. The previous section described how the human and the machine
interact through haptic feedback, and this subsection gives the design of the interface for
visual interaction.

The topic of designing interaction strategies for partial and highly automated vehicles
is strongly debated. Research has often focused on the issues related to the design of TOR, in
order to allow easy and smooth transitions of control from the vehicle to the human driver.
This approach depicts the human–vehicle system as a “finite state machine”, neglecting
the fact that real driving situations require conditions in which the optimal interaction
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strategy lies in sharing, at a certain level, the dynamic driving task [40]. However, the
concept of task sharing implies several ergonomic considerations, e.g., regarding the
adaptation capabilities of human drivers and their willingness to trust a system that
somehow introduces a limitation in driving, at least at the control level.The efforts made
in the research focusing on “relevant driving situations” (e.g., disengagements, requests
of take-over, intersections, etc.) have implied limited knowledge of normal scenarios, i.e.,
when the driving task cannot be completely handled in automated mode (please note that,
in every case where LoA is not equal to 5, the driver can never be “a passenger”, so s/he
must be in any case involved in the driving task, at least to monitor the situation). In this
sense, the overall interaction strategy must be redesigned to make the driver feel, in every
moment, part of the team. Even more importantly, the visual HMI (the one more dedicated
to direct communication with the driver) should be harmonic with the overall driving
system, as a building block of a more articulated interaction system.

The visual HMI proposed as part of this cooperative framework has the scope of
complementing the adaptive co-pilot, acting on a distinctive perception level. In this sense,
whereas the co-pilot is the actual enabler of the cooperation, the HMI is the enabler of trust
in decisions and actions performed by the co-pilot. Without clear, effective, and transparent
communication, the human agent may also be misled or, even worse, overwhelmed by
complex and blurry information; for this reason, the visual HMI design is focused on
increasing the awareness of the driver of the system state and informing him/her about
the expected action.

The main concept exploited by the HMI is the level of control authority, intentionally
placed in the foreground and depicted as a dynamic progress bar (as shown in Figure 6),
to highlight that (1) control of the vehicle is a negotiated asset between the driver and the
automated system and (2) cooperation is a dynamic feature. Moreover, the HMI has also
been designed to be used as an additional source of information inside the cockpit, provid-
ing explanations regarding the actions required of the driver and accurate reconstructions
of the surrounding environment.

Figure 6. Example of the visual HMI, showing the level of authority and the reconstruction of the
surrounding environment.

The HMI design, instead of focusing on critical situations only, also concentrates on
more common circumstances of cooperation, to evaluate the ease of understanding and the
level of trust in the system. More detailed descriptions and results are reported in [41,42].

3. Results

This section presents the description of the driving performance tests, together with
the analysis of the quantitative and qualitative results. First, the testing procedure is
explained through the presentation of a user story, followed by the details of the experi-
mental conditions, and closing with the definition of the KPIs. Concerning the results, the
quantitative analysis is presented in terms of tracking performance, safety, and driving
effort, whereas the qualitative evaluation of the system is obtained via the application
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of questionnaires, with emphasis on driving comfort, safety, and overall perception of
the system.

3.1. Driving Performance Test

To evaluate the benefits of the adaptive co-pilot, various tests were performed with
five drivers in a hardware and driver-in-the-loop simulator. The description of the test
follows this order: (1) the user story is presented with the description of the use case (UC),
(2) the experimental conditions are explained, and (3) the KPIs to compare the different
driving modes are described for both quantitative and qualitative analysis.

3.1.1. User Story

To settle the driving conditions in the scope of the test, the following UC has been
defined, highlighting a scenario where the driver–automation system would be benefited
from their cooperation as a “team”.

UC (Supporting a distracted driver): A mother is driving in a highway/extra-urban
road with her baby sitting at the back, in the right passenger seat. From time to time, the
baby starts crying and catching her attention. The position of the baby is completely out of
her scope, so she has to turn in order to take care of the child. She is driving an automated
vehicle with the adaptive cruise control function activated. This implies that she is only
taking care of the lateral control of the vehicle (however, she is not allowed to release both
hands from the steering wheel).

This driving scenario presents several safety issues regarding vehicle control loss. Nev-
ertheless, automated driving features such as LK, LC, and SC can prevent potential dangers,
in cooperation with driver interventions. For this reason, they have been experimentally
compared and evaluated.

3.1.2. Experimental Conditions

First, the previous scenario conditions were replicated in the testing platform. Second,
the NMPC controller of Section 2.1 was used to reproduce the driving modes. Finally, the
experimental procedure consisted of five drivers running the tests, using four different
driving modes, under two cognitive conditions (concentrated and distracted).

The driving simulator shown in Figure 7 held the driving tests. The key component is
the steering wheel interface, composed of a motor model 130ST with a maximum nominal
torque of 15 Nm, with configurable damping and inertia via software (this allows a practical
integration of the stability criterion bλ). It is also equipped with an incremental encoder
and a current sensor that is used to calculate the applied torque. Behind the steering wheel,
there is a Basler ACE acA1920—40uc camera with a Sony IMX249 CMOS sensor, which
performs the driver monitoring task. A Linux PC is used to perform the image processing
through a convolutional neural network model to detect the driver’s head position [43]. The
automated driving software is an in-house vehicle dynamic simulation tool c (Dynacar [44])
which considers a vehicle’s physical model based on multibody formulation. The control
and decision algorithms are developed in MATLAB/Simulink, while the NMPC solver is
the ACADO Toolkit [45], capable of obtaining optimal solutions in microseconds. The front
screens allow the driver to see the driving environment, while the second task is held in a
touch monitor using the right hand.
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Figure 7. Distraction event sequence that represents the secondary task of the driving experiment.

The driving modes are used to compare different types of assistance when the driver
is performing a secondary task. MANUAL mode is used as a baseline, and it represents “no
assistance”. Moreover, two commercial ADAS are included: lane keeping assist (LKA, used
within this paper as LK) and automated lane centering (ALC, referred to in this work as
LC). As the use of these terms by OEMs tends to be misleading, we are using the definition
of the National Highway Traffic Safety Administration (NHTSA) [46]. LK actively keeps
the vehicle within the lane by intervening as the vehicle approaches the lane boundaries.
However, there is a dead band near the center of the lane where the LK system does not
provide control. LC, instead, provides continuous lateral control (with a fixed authority)
to keep the vehicle on a reference trajectory within the travel lane. Besides these systems,
shared control (representing the adaptive co-pilot) is considered an adaptive authority that
depends on the driver’s state and the tracking performance, aiding the driver according to
his/her needs of support. These modes are summarized in Table 7.

Table 7. The four driving modes for the experimental tests.

Manual Driving
(MANUAL)

Lane Keeping
(LK)

Lane Centering
(LC)

Shared Control
(SC)

No torque is applied by
the automation. The
driver only feels the
self-aligning torque.

When the vehicle
approaches the border

line, the vehicle
intervenes, applying a

momentary torque.

A continuous torque is
applied to keep the vehicle

on a reference trajectory
within the lane.

If the driver is attentive, they receive minimal
correction torque, which only increases when

getting close to the borders. If the driver is
distracted, the authority increases and the free

moving range is reduced.

λdim = 0 Nm∣∣ey
∣∣ ≤ ∞∣∣Tmpc
∣∣ ≤ λdim

λdim = 0 Nm∣∣ey
∣∣ ≤ 1.5 m∣∣Tmpc
∣∣ ≤ 3 Nm

λdim = 3 Nm∣∣ey
∣∣ ≤ ∞∣∣Tmpc
∣∣ ≤ λdim

λdim = FISa∣∣ey
∣∣ ≤ ∞∣∣Tmpc
∣∣ ≤ λdim

λdim = FISd∣∣ey
∣∣ ≤ ∞∣∣Tmpc
∣∣ ≤ λdim

FISa : is the authority calculated by the FIS (arbitration module) when the driver is attentive, FISd : is the authority calculated by the FIS
(arbitration module) when the driver is distracted. λdim: is the control authority given to the automated system (steering wheel stiffness),
and is also defined as the maximum torque applied by the automated system (reached when the vehicle is at the lane border) thanks to the
following link with the control torque constraint

∣∣Tmpc
∣∣ ≤ λdim (refer to Section 2.1.5 and Equation (13)).
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In the experimental procedures, the tests are performed by the driver interacting with
the vehicle only through the motorized steering wheel, while the longitudinal control is
resolved by the adaptive cruise control. They consist of a 6 min highway driving situation
(with minimum curvature radio of 420 m), at 85 km/h, with periodic distraction events
(each 20 s). During each distraction, the driver removes their gaze from the road and
performs a secondary task, turning the head to the right, and interacts with a touch monitor
with the right hand, always keeping the other hand on the steering wheel. This task is
notified with an auditory alert and takes between 2 to 3 s. The distraction consists of the
driver pressing a button on the touchscreen and keeping their attention towards it until
the 2 s indication is activated. Then, the driver gets back to the normal driving task. These
steps are visualized in Figure 7.

The complete test is repeated four times (one for each of the driving modes in Table 7).
The driving scenario remains fixed. To avoid boredom and drowsiness due to the recursive
situations, other vehicles and sporadic buildings have been added to the environment.
Before the experiments, each participant was allowed to drive freely for 10 min to get used
to the simulator environment and the different driving modes. The terms denominating
each of the modes were succinctly explained to them during the adaptation session. At the
same time, the DMS was calibrated to work properly with each individual.

3.1.3. Key Performance Indicators

KPIs have been selected in the context of the PRYSTINE project [47], by conducting
specific project workshops with experts in the field. Previous works in shared control
studies [8] were also used as a reference to select the representative measurements of the
main fields of evaluation.)

Three types of indicators are used to quantitatively evaluate the performance of the
tested driving modes:

• Tracking errors: the ability to follow the expected trajectory is evaluated by the RMS
and maximum (MAX) lateral and angular tracking errors.

• Safety indicators: the RMS and minimum (MIN) TLC indicate how close (in time) the
vehicle is from departing the lane limits. It is estimated at any given time assuming
the steering angular speed would remain unchanged. Additionally, the percentage
of the time driven with the TLC below a threshold of 3.8 s (the minimum TLC when
the automated system drives alone by the testing route, with the configuration of the
nominal controller) provides a measure of the risk exposure.

• Driving efforts: the RMS and maximum torque exerted by the driver provide a
measure of the effort applied, which relates to conflict and comfort. The RMS and
maximum automation torque provide a measure of the work performed by the system
and are related to its efficiency.

Moreover, three types of indicators are used to evaluate the subjective perception of
the different driving modes, in the particular test-driving conditions, by the participants:

• Safety-related indicators: evaluate the driver’s sense of being protected, being al-
lowed to perform the secondary task, or being required to continuously monitor the
environment.

• Comfort-related indicators: evaluate the driver’s feeling of the system being harmo-
nious or too intrusive in its interaction.

• Overall driver perception: evaluates the driver’s assessment of the system, using its
own criteria to ponder safety and comfort behavior.

3.2. Quantitative Evaluation (Experimental Results)

Exploratory studies were performed with five drivers (one woman and four men),
aged 21 to 49 years (mean = 30.2, SD = 10.8), with at least 3 years of driving experience
(mean = 11.8, SD = 10.9), including occasional (1), frequent (1), and regular (3) drivers. All
have some degree of relation with automated driving R&D activities.
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Figure 8 shows typical driver behavior using the four driving modes. The lateral
error graphic (Figure 8a) shows that in MANUAL and LK modes, the driver repeatedly
departs from the lane center during the distraction events, though the LK effect of avoiding
the lane departure is efficiently achieved. Results also indicate that the distraction events
during higher road curvature sections (Figure 8d) produced larger deviations. On the
contrary, LC and SC do not show a significant difference between straight and curved
segments, and overall, both seem to behave similarly, achieving the goal of keeping the
vehicle close to the lane center. In terms of effort, the driver applied the highest torques
when driving in MANUAL and LK modes (Figure 8c). While in MANUAL, most of the
torque is applied to return the vehicle to the lane center when large deviations occur; in LK,
the driver torque increases by the “bump” effect produced when the vehicle reaches the
lane limits (Figure 8f). On the other hand, at first sight, SC seems to produce lower efforts
compared to LC (Figure 8c,e), but due to the lack of visible significant difference in terms
of effort, the analysis will be performed quantitatively. Figure 8b,e show the signal of the
DMS during one distraction event (DE), and the authority calculated by the FIS system.

Figure 8. Typical driver behavior under the four tested driving modes (data from one driver).

Figures 9–14 show the performance of each driving mode, separating the time spent
within the distraction event window (of 10 s as shown in Figure 7) and out of it (normal
driving). Figures 9, 10, 13 and 14 compile the tracking (lateral and angular) errors and
(driver and automation) driving efforts, respectively. The overall (combining all drivers)
RMS values are shown in color, while the respective maximum values are depicted by the
white bars. The individual RMS and MAX values for each driver are shown by color and
black crosses (+) to evaluate the data dispersion. Note that RMS values are considered
deviations from the road center (i.e., they are not standard deviations around the mean),
thus, they also reflect the effects of the bias tracking errors. Figures 11 and 12 show safety
indicators: Figure 11 shows RMS and MIN TLC; Figure 12 shows the percentage of time
spent with a TLC below a 3.8 s (safety) threshold.
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Figure 9. Tracking error statistics (RMS and MAX of lateral error).

Figure 10. Tracking error statistics (RMS and MAX of lateral error).

Figure 11. Safety indicators statistics (RMS and MIN of TLC).
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Figure 12. Safety indicators statistics (% of time under TLC-threshold).

Figure 13. Driving efforts statistics (RMS and MAX of driver’s torque).

Figure 14. Driving efforts statistics (RMS and MAX of automation’s torque).

Additionally, performance indicators of the LC controller, when allowed to control
the vehicle without driver intervention (referred to in graphics as Automation-only), are
provided to validate the controller and for comparison purposes. The controller shows
efficient lateral and angular tracking performance, with an RMS on the lateral error of 6 cm
and MAX value of 11 cm, and an angular deviation below 1.5 deg., which are positive
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results for a reference tracking controller. In terms of safety, the TLC is always over 3.8 s (this
value is used as the safety threshold for the comparison of the TLC under the four driving
modes). Concerning the controller efficiency, automation torque RMS is close to 0.5 Nm,
and the MAX value is around 1.5 Nm (applied during the highest curvature section).

The lateral and angular errors (Figures 9 and 10) show that all three tested driving
aids significantly improve the ability to track the road center trajectory with respect to the
MANUAL driving mode. In normal driving, all are acceptable (as the vehicle remains
within the lane at all times). Yet, the improvement obtained by both LC and SC is very
similar and much better than for the LK. Note that the LK only acts when the vehicle
approaches the lane limits, while the LC acts all the time, providing feedback about
any deviation from the lane center. The SC, on the other hand, provides some freedom
around the centerline, but gives feedback as the deviation increases, before approaching
the lane limits. A lower authority in SC (λdim ≈ 1 Nm) compared to LC (λdim = 3 Nm,
see Figure 8e) in normal driving, seems to produce a similar tracking performance. This
should be further studied, as having the same performance but with less intervention is an
important characteristic that could result in positive acceptance of the SC mode.

During the distraction event, the differences are amplified. In general, all driving
modes are able to keep within lane boundaries. As shown by the RMS values, even in
MANUAL mode all drivers are able to stay within the lane most of the time, which might
lead to a false sense of security while performing the secondary task. However, it is also
noted that within the 20 events tested in MANUAL mode, all drivers had at least one
out-of-boundaries excursion, which is enough to produce an accident. The feedback given
by the LK does help to completely avoid these out-of-boundaries excursions during the
distraction event and reduces degradation of the ability to stay closer to the center when
compared to the MANUAL mode.

On the other hand, the LC and SC driving modes are able to maintain tracking
performance during the distraction event. In fact, RMS values for angular and lateral
errors are almost identical during the distraction event to those during normal driving,
except for the lateral error in SC mode, which shows a reduction consistent with the higher
automation authority assigned when the driver is not looking at the road. Note that the
RMS lateral error follows the behavior of the automation authority, i.e., as the LC RMS
lateral error remains the same, during normal driving, when the SC authority is lower than
that of the LC, the SC RMS lateral error is higher, while it is lower during the distraction
when the authority is larger. This relationship between the authority and the lateral error
found in this exploratory study should be further studied with a larger, more representative
driver sample. It is also worth noting that the maximum angular errors for both LC and SC
increase similarly during the distraction, while the MAX lateral errors decrease. This might
be associated with faster corrections by the automated system, which should be further
studied. Overall, when driver and automation are collaborating as a “team”, the tracking
performance is improved in comparison with MANUAL, getting closer to the benefits of
Automation-only.

The safety indicators of Figures 11 and 12 provide a clearer picture of the system
behavior under the different driving modes. As expected, the MANUAL mode had the
lowest TLC of all modes both for normal driving and during distraction events, closely
followed by the LK mode. The main difference is that during distraction all drivers got to
cross the lane (TLC MIN ≈ 0) at least once for MANUAL driving, while the LK mode was
able to prevent any lane crossing with a minimum TLC of 0.76 s. The benefits of the LK
mode are further evidenced by the fact that the time spent in a riskier condition (i.e., with a
TLC below a 3.8 s threshold) is noticeably reduced with respect to the MANUAL mode.
This effect seems to be enhanced because, when entering a curve (or, more properly, when
approaching a curvature change), the NMPC controller predicts the vehicle will approach
the lane borders at a future time, providing the driver with an anticipating haptic torque.

Moreover, as expected, all driving modes show a lower TLC during the distraction
event than when driving normally. Yet, that difference is much smaller for the LC and SC
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modes. It is also evident that the portion of time driving with a low TLC increases abruptly
during the distraction event for MANUAL and LK modes, but does not increase much for
LC and SC modes. Furthermore, for both conditions, the SC mode leads to the highest RMS
TLC, with similar MIN TLC excursions to those of the LC mode. A further suggestion of
the effect of the curvature anticipating feedback from the LK is depicted by the time spent
below the TLC threshold in normal driving. Overall, concerning the safety indicators, SC is
the one that moves further away from the drawbacks of MANUAL, and gets closer to the
lower TLC of Automation-only, under both normal driving and distraction events. Thus,
this highlights the benefits of the “team” approach.

The driving efforts (Figures 13 and 14) provide insight into the driver/automation
interaction or conflict. The driver torque is, of course, zero for Automation-only, whereas
automation torque is zero for MANUAL driving mode. Then, for both conditions (normal
driving and during distraction), the RMS torque of the automated modes is smallest for
LK and largest for LC. When the automation is present, the driver torque shows a similar
trend to that of the automation, but it must be noted that this similarity is not direct. At
points, the automation torque “helps” the driver, pushing in the same direction, while at
other times the automation “corrects” the driver with an opposing torque.

Taking the driver torque on manual mode as the reference, the driver effort is reduced
by the LK, particularly during the distraction event, notoriously because the major cor-
rections required by the largest excursions when approaching lane borders are supported
by the LK strategy. The LC mode, on the other hand, increases driver effort in normal
driving, since the conflict when wandering around the centerline produces an automation
correction torque. During the distraction event, the LC shows an RMS driver torque sim-
ilar to that of the MANUAL mode, in this case, to resist the automation guiding torque,
which reduces the MAX efforts by bounding the off-center excursions (see Figure 9). The
SC mode reduces both the RMS torque and the occasional large excursion corrections in
normal driving by reducing the guiding conflict (with a lower authority) and bounding
the off-center excursions before approaching the lane limits. Finally, during the distraction
event, the SC mode reduces the tracking errors by applying a larger authority as discussed
above. These smaller tracking errors also translate into reduced driver efforts compared to
LC and MANUAL modes.

To summarize, when attentive, the driver can keep a very small tracking deviation in
all modes (see Figure 9). In those cases, the SC mode provides very little support, and the
driver feels very close to manually driving, being free to wander within a narrow band
around the center. Only when the occasional larger deviation occurs, the SC provides
centering feedback. On the other hand, even when the tracking errors are small, the LK
will provide feedback indications when the steering is heading towards a possible lane
crossing (i.e., when the TLC is small). The LC will always provide feedback even with
small tracking errors. Thus, considering tracking performance, LC and SC modes seem
to provide the best results. When looking at the safety indicators, SC shows the highest
performance, closely followed by the LC mode. Yet, in terms of effort, the lowest driver
effort is required by the LK mode, followed by the SC, while the LC presents the highest
driver torque conflict. Overall, considering tracking, safety, and effort parameters, SC
mode seems to give the best compromise amongst the tested modes, being the farthest
of all from MANUAL, and the closest to Automation-only, thus, encouraging the idea of
being a “team”. Moreover, it seems worth evaluating a mode combining the benefits of SC
with the curve-anticipating torque of the LK mode.

3.3. Qualitative Evaluation (Questionnaires)

After running all tests, the participants were asked to grade every driving mode, in
this particular scenario, on the following questions, from 1 (no/bad) to 10 (yes/good):

1. Did you have the feeling that you were free to perform the secondary task?
2. Did you feel the system required your continuous monitoring of the situation?
3. Did you have the feeling that the system was too intrusive?
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4. Did you feel that your security was ensured by the system?
5. Did you feel that your interaction with the system was harmonious?
6. Provide an overall evaluation of the system.

Figure 15 compiles participant’s scores for each question and their respective aver-
ages. Questions 1, 2, and 4 relate to the perception of the system´s ability to improve
safety. Questions 3 and 5 address the issue of comfortable interaction through haptic feed-
back. Question 6 asks for an overall assessment of the different driving modes, requiring
participants to express a balancing criterion.

Figure 15. System performance perception from questionnaires applied to the test drivers.

Questions 1, 2, and 4, correlate very well. The MANUAL mode is absolutely perceived
as not providing any safety in the simulated scenario with repeated distraction events. The
LK mode is perceived to provide some safety and the LC and SC are almost identically
perceived to provide a high level of safety. Curiously, only one driver felt that the SC
required less continuous monitoring of the situation than LC, while all others felt as
compelled or more compelled to keep monitoring by the SC.

Questions 3 and 5 also correlate well, showing that MANUAL and SC provided highly
harmonious interactions and that the SC is not felt to be an intrusive system. On the other
hand, the LC is perceived as the most intrusive of all tested modes, in line with the highest
conflicting torque discussed above, while the LK is perceived as less intrusive, but also
less harmonious, which most likely reflects the freedom to wander within small trajectory
deviations that are characteristic of human drivers (low intrusiveness) combined with
momentary corrections or “notches” that perturb the harmony of the interaction.

Finally, after having pondered both safety and comfort parameters, the participants
were asked to provide an overall score for each mode, forcing them to ponder their system
evaluation under their particular criterion. A clear trend favoring SC appears in the
answers. Again, a noteworthy answer is attributed to a participant that gave a perfect score
to the MANUAL mode, apparently favoring driving independence in this mode, while
accepting its inherent inability to provide extra protection during a distraction event. Not
surprisingly, this answer came from the driver that never crossed the lane during the tests.

From the driver’s perception information, it also becomes apparent that a combination
of SC with LK is worth evaluating. Not only might the anticipating torque of the LK
help the already favored SC mode to improve dynamic parameters as discussed above, it
could also help it to feel more harmonious and, if needed (depending on the automation
capabilities), it could allow a reduction of the authority during normal driving (attentive
driver) and compel the driver to keep monitoring the environment and avoid performing
secondary tasks without compromising the added safety.
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4. Discussion

Research on the trade-off between humans and automation has been conducted
in [48], in which the authors claimed that only with a proper design of the cooperative
human–machine systems will technological advances make our lives easier, safer, and more
enjoyable rather than harder and more uncomfortable. In fact, combining the individual
strength of the different partners can create a fruitful symbiosis between humans and
technology, where the automated system can play an important role, but still has to
serve the human. In [49], Nishimura et al. selected haptic shared control to achieve a
smooth collaboration between humans and automated systems in a lane-keeping maneuver,
because this channel can facilitate mutual communication [50,51].

Keeping that in mind, we have been inspired by the work of A. Bhardwaj and col-
leagues [9], since their research also faced the challenge of determining a combination that
preserves the best performance features of human and automatic control in a cooperative
manner. In this work, the authors used a driving simulator to investigate the ability of
human–automation teams to cover for human and automation faults (the goal was to avoid
obstacles), developing an MPC and considering two baseline conditions.

In our work, we extended the automation support, considering distracted drivers and
also investigating the cooperation of human and automation (that is, of the team) when
one of the members has limited resources (e.g., the human driver is inattentive). We have
adopted an NMPC approach, considering experiments at a driving simulator with real
users. Additionally, the NMPC-based shared controller proposed in this work offers a
novel design in terms of stability criteria under different levels of authority (which is no
longer dimensionless, but with torque units, which allows a more intuitive selection of its
value). Furthermore, we have considered an appropriate methodology for sharing a given
task, which is important to achieve effective vehicle control, presenting two design consid-
erations in the arbitration module (i.e., minimal intervention and safety-over-comfort).

Moreover, in comparison with a similar work that also studied shared control for the
scenario of a distracted driver [22], the quantitative results show consistency overall. In
terms of controller performance without driver intervention, both lateral error RMSs are
under 10 cm. In the tests with real drivers, both works show an improvement on lateral
error RMS during the distraction event when using SC (adaptive authority). However, our
work showed improved performance during normal driving in comparison with MAN-
UAL, while the cited work showed similar performance, which is expected to be caused
by a difference in how SC behaves when the driver is concentrating (their work recreates
manual driving, while ours gives a low assistance torque up to 1 Nm (see Figure 8e). In
terms of driver efforts, the cited work shows the highest effort in SC while performing the
secondary task, while our findings indicate lower efforts using SC compared with LC and
MANUAL. In addition, we have also drafted a qualitative analysis regarding how drivers
perceive this cooperative system, and SC had the higher scores in terms of safety and
comfort, which is similar to the subjective results obtained in the aforementioned work.

As an additional point in this discussion, it is important to underline here that—as
stated in [52]— humans are constantly assessing trustworthiness, and therefore an effective
human–machine system must be trustworthy, because “no trust, no use” [53]. In this
paper, trustworthiness is defined as a dispositional and relational property of agents
relative to other agents within spatiotemporal bounds. In other words, humans tend to
trust (artificial) agents that operate within the bounds of human cognition and are less
trusting of systems that operate at superhuman levels. Under this perspective, being a
member of the team can help to build trustworthiness towards automated vehicles: this
means that the members have to obey the norms of logic, rationality, and ethics under
pragmatic constraints, and, in case of disagreement in the team, automation may need
sophisticated social identities, including empathy and reputational concerns (in order to
facilitate dialogue and argumentation). From a technical point of view, artificial agents
must be reliable, incorporating adaptability and redundancy, to assure trustworthiness.

Concerning the future steps, this research goes in three directions:
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• Extend the experiments presented in this work, with a larger number of participants, a
more realistic scenario with higher curvature sections, other secondary tasks, and addi-
tional metrics (e.g., secondary task fulfillment evaluation and take-over performance
when automation support is unexpectedly deactivated). In particular, the take-over
behavior will be a key aspect in the acceptance of the SC mode in the future, as it is
expected to result in better performance in comparison to when the driver is kept out
of the loop.

• Extend the scenarios beyond the distracted driver, using the driving simulator again.
With reference to the work of Okada and colleagues [54], we will include curves
and other road layouts. Moreover, two additional use-cases will be evaluated: (1)
support in collision avoidance of sudden obstacles when driving in automated mode,
and (2) support in an overtaking maneuver, evaluating transitions from automated
to manual, initiated by the driver when the AD cannot perform this maneuver due
to—for example—limitations in perception. In such a situation, the system informs
the driver and asks for support. Two possibilities can be investigated: cooperation
in perception (where the influence of visual HMI presented in this work will be
evaluated) and real-time cooperation in action.

• Integration of the HMI: while presented in this work as an initial prototype, the next
step is to integrate the visual HMI with real data coming from the simulator, to be
used in the experimental test to evaluate its effectiveness as an enabler of trust in
decisions and actions performed by the co-pilot.

• Implementation of the co-pilot enabler in a real demonstrator vehicle, using an auto-
mated Renault Twizy.

5. Conclusions

This paper deals with the human–computer interaction topic, applied to the ADS in
its interaction with a human driver. It is commonly accepted that ADS can bring benefits,
mainly in terms of improved safety and enhanced mobility (i.e., for elderly people and
persons with impairment). When the ADS approaches the limits of its own ODD, the
system issues a TOR, and then the driver is asked to get back into the control loop in the
“appropriated” time. This paradigm is unrealistic and difficult to understand because it
implicitly depicts the human–vehicle system as a kind of “finite state machine”, but there
are some driving situations in which the optimal interaction strategy lies in sharing, at
a certain level, the dynamic driving task. Therefore, we claim that a new approach is
possible, where human and artificial system together form a team, with the goal to reach
the destination in a safe way. In order to achieve that, we designed and implemented an
intelligent and adaptive co-pilot, here represented by the arbitration and shared control
algorithms, which is the enabler of the cooperation between human-agent and machine-
agent: at each time step, it is able to decide the level of authority and thus how the driving
task can be shared, depending on the external conditions, the available resources of the
system, and the cognitive status of the driver.

Considering the selected KPIs, the results show better performance of the combined
team (human–automation), with respect to the baselines we considered (“normal” driving
with ADAS and automated system as it is currently): the critical situations are reduced
(“critical” means that an accident or near-accident event occurred) and there is also an
improvement in the tracking performance and in the driving efforts. The benefits shown
in the quantitative analysis have then been reflected in the qualitative analysis, as drivers
evaluated the SC modality as the best from the four tested, given statements that categorize
the system as safe, harmonious, less intrusive, and also with the sense that the driver had
to participate in the driving task to a greater extent than with the LC mode (even with the
support given by the SC mode). The last is relevant because one of the major drawbacks
of SAE-L2 and SAE-L3 is over-trust in automation and poor take-over performance, re-
spectively. In this sense, SC would improve the interaction by keeping the driver in the
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control loop, making clear the need for his/her participation in the vehicle control task,
while benefiting from improved safety, performance, and comfort.

To sum up, we propose a paradigm shift: from the “boss” (that commands) to the
“team” (that cooperates and mutually helps). The first implies a rigid hierarchical structure
(i.e., automation is supervised by the human), with separated responsibilities (either the
system is in charge, or the human driver) and fixed, precise roles; the second approach
instead implies the freedom to cooperate, with accountability towards other members (e.g.,
two-way communication) and the possibility to share extensive information, authority, and
control, so that the decisions are moved to the maximum level of awareness and resource
availability. Recalling the title of the paper, we can claim at the end that being a “valuable
member of the team” is better than being “the unique boss”: the adaptive co-pilot is the
technological enabler of it, providing more accurate results in terms of performance, safety,
trustworthiness, and comfort.
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