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Abstract

Deep neural networks have achieved state-of-the-art performance across a wide range of
tasks. Convolutional neural networks, with their ability to learn complex spatial features,
have surpassed human-level accuracy on many image classification problems. However, these
architectures are still often unable to make accurate predictions when the test data distri-
bution differs from that of the training data. In contrast, humans naturally excel at such
out-of-distribution generalizations. Novel solutions have been developed to improve a deep
neural net’s ability to handle out-of-distribution data. The advent of methods such as Push-
Pull and AugMix have improved model robustness and generalization. We are interested in
assessing whether or not such models achieve the most human-like generalization across a
wide variety of image classification tasks. We identify AugMix as the most human-like deep
neural network under our set of benchmarks. Identifying such models sheds light on human
cognition and the analogy between neural nets and the human brain. We also show that,
contrary to our intuition, transfer learning worsens the performance of Push-Pull.

Keywords: Out-of-distribution, deep learning, convolutional neural networks, cognitive
science
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Chapter 1

Introduction

Advances in deep learning have created a notable impact on several areas of applications
such as self-driving cars [11], object recognition [21], speech recognition [10], and complex
strategy games like Go [30]. The advent of deep neural networks (DNNs) has ushered in
a new era of state-of-the-art computer vision algorithms that can tackle image recognition
challenges with machine observers (i.e. systems that automatically solve vision tasks [21]).
These classes of algorithms are particularly adept at these tasks because they leverage
concepts of hierarchical feature extraction and translational invariance to improve efficiency
[9]. These networks have even surpassed human performance on multiple tasks [12, 30].

However, when we go beyond the usual assumption of independent and identically dis-
tributed (i.i.d.) test set samples, these models do not generalize well [35]. This paradigm
beyond i.i.d. data involves training data that are not representative of the test data distri-
bution. Such test sets are referred to as out-of-distribution data (OOD). Good performance
on OOD data (generalization behaviour) is desirable because evaluation datasets in the
real world rarely resemble the training universe [15]. One would therefore like to achieve
state-of-the-art DNN performance in these realistic settings as well. For example, imagine
a DNN that detects brain tumours based on patients’ magnetic resonance imaging (MRI)
scans. Once this model is deployed, suppose one of the scans it encounters is blurry (or has
scanner-specific artifacts in the hospital where it is deployed). Even if the network was not
exposed to blurred MRI scans during training, we would still like to have a model that can
achieve benchmark performance.

Early works have attempted to improve OOD performance using data augmentation and
processing techniques like rotations, scaling, cropping, etc. [21]. These approaches enable the
network to learn deviations and scenarios during the training phase that may be expected
to appear in the test set. A glaring drawback of conventional data augmentation, however, is
that the model becomes robust exclusively to the distortions it was trained on [8]. A growing
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number of studies are now looking into alternative ways of improving generalization while
maintaining state-of-the-art accuracy. One such technique was proposed by Hendrycks et
al. called AugMix [17] that uses a random mixture of different augmentation techniques to
expose the model to diverse images during training. It does so while maintaining the core
visual content of the images.

On the other end of the spectrum, apart from data augmentation techniques, one may look
at more intrinsic ways to improve generalization, that is, by designing network architectures
that are more robust to OOD. A novel field of research has emerged, employing more brain-
like DNNs to bridge this performance gap and inherit robust human visual features. The
human brain can recognize objects rapidly and with precision [1]. Furthermore, human
observers are unaffected by irregularities in images (such as distortions) and can identify
objects presented from unusual angles or orientations [1]. As humans, we experience a variety
of different visual scenarios like lighting settings (e.g., day, night), weather types (e.g., snow,
rain), and environments (e.g., beach, hills). This prepares us to recognize objects across a
wide range of conditions and can be equivalent to the training process for a DNN. This is of
particular interest to us because of how humans perceive their surroundings. Our ability to
accurately recognize objects is not hindered when these objects are placed in new, unfamiliar
environments [1, 8]. For example, even if someone has never seen snow before, they are still
able to identify objects in a snowy area. This property forms the crux of biologically-inspired
DNNs, yielding a paradigm for better-equipped networks to handle OOD data.

Recent literature has looked at the similarities between human and DNN performance to
come up with better models for object recognition [4, 8, 26, 29, 27]. For example, Strisciuglio
et al. [32] propose a new type of neural network layer called the Push-Pull layer in their
DNN architecture. This layer mimics the functions of the V1 (the primary visual) area [19]
of the human brain [33]. Neurons in this Push-Pull inhibition layer are more sensitive to
visual cues even when they are contaminated with noise [5]. Networks employing Push-Pull
layers for vision tasks replace the first layer of their DNN with the Push-Pull layer and
improve their robustness in the presence of OOD data [32].

Following the discussion above, the main goal in this work is to compare the robustness
of deep neural networks with humans for image classification on data that these networks
have not been trained on (OOD). We aim to explore how deep networks behave on OOD
data and to determine if their performance is similar or different to that of humans. We
thus ask which DNN architecture or framework most closely resembles human performance.
With this project, we hope to shed light on notable behavioral comparisons between human
performance and deep learning models and the overall generalization capabilities of deep
learning models in computer vision tasks.
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The main contributions of this work are summarized as follows:

1. We follow the paradigm for comparison of humans and DNNs by Geirhos et al. [8],
making use of the data on human performance that they have publicly released. In
that work, the authors examine a standard deep neural network (the ResNet architec-
ture). We apply their paradigm to networks that are specifically built to handle OOD:
AugMix and Push-Pull. A novel aspect of our work lies in designing a new custom
network: a combination of AugMix and Push-Pull (AugMix+Push-Pull).

2. We seek to answer questions about which architecture or framework closely resembles
human performance. We identify AugMix as the most human-like deep neural network
under our current set of benchmarks.

3. With this work, we aim to advance our understanding of the analogy between deep
learning systems and the human brain. We find that AugMix comes closest and that
combining it with Push-Pull layers (AugMix+Push-Pull) pulls the network away from
human-like performance. We also show that transfer learning worsens the performance
of Push-Pull. Identifying these nuances in DNN performance could lead to better
models of human object recognition.

This thesis is organized as follows. In Chapter 2, we review prior work on deep neural nets
and performance on OOD data. We briefly explore the literature on human cognitive systems
and fundamental insights from them that have ushered in a series of brain-inspired DNNs.
Following this, in Chapter 3, we introduce the different methods used in this work: baseline
ResNet, Push-Pull, AugMix, and AugMix+Push-Pull. We provide a detailed description of
the implementation of each of these frameworks. Thereafter, we present our findings and
results based on experiments carried out in Chapter 4. Finally, we conclude in Chapter 5
with a discussion of our results and outline exciting areas of future work.

3



Chapter 2

Related Work

This chapter will briefly explore the history of deep convolutional neural networks and look
at different approaches that make them more robust to OOD data. Furthermore, we review
the literature on human cognitive systems and how we derive inspiration from them to build
state-of-the-art DNN architectures.

2.1 Deep convolutional neural networks

A “deep” neural network has a wide architecture corresponding to multiple hidden layers
between the input and output. Convolutional Neural Networks (CNNs) are a class of deep
neural networks that are popularly used for visual recognition tasks [9]. The convolution
and pooling operations within these networks make them robust to translations and less
prone to overfitting. The activation layer introduces non-linearities, making them capable
of learning and performing more complex tasks. Originally formulated in 1998 by LeCun
et al. [24], they were later popularized in 2012 by the SuperVision group who introduced a
very similar but deeper architecture with more stacked layers called AlexNet [21].

In its inception, AlexNet won the ILSVRC 2010 challenge (top-1 error rate of 37.5%) and
became a popular benchmark model in computer vision. Since then, several variants of
convolutional neural networks have surfaced with deeper architectures and modifications to
the learning process, achieving even higher accuracy. Four years later, the Visual Geometry
Group (VGG) at the University of Oxford introduced VGG [31] which won second place
in ILSVRC 2014 (top-1 error rate of 24.8%). This network aimed to increase its depth by
using smaller-sized filters in the convolution layers. However, after VGG, many attempts
to create deeper neural networks were met with a loss in accuracy and vanishing gradients.
Around that time, He et al. [13] won the ILSVRC 2015 (top-1 error rate of 19.38%) with
their revolutionary Residual Networks (ResNet). The ResNet model overcame the limita-
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tions of regular DNNs by skipping learning in some of the layers, allowing us to make deeper
networks. Another notable class of neural network architectures is Densely Connected Con-
volutional Networks (DenseNet) [18]. These are a type of convolutional neural network with
dense connections so that each layer can utilize information from previous layers. Due to
this influx of additional information, CNNs can be compact and have fewer parameters.

2.2 Robustness to out-of-distribution data

Deep learning continues to be a growing field of research with applications ranging from
computer vision to time series analysis. DNNs trained on millions of images can now achieve
human-level performance when classifying images in their natural scenes, and when the
distribution of the training images matches the distribution of the testing images [21]. A
limitation of these networks is their ability to generalize well on out-of-distribution data.
This condition is quite restrictive and does not reflect how humans learn about the world
through their visual system. This limitation thus represents a barrier to artificial general
intelligence: As humans, we are still able to accurately identify objects even when we are
placed in new and unfamiliar environments.

Improving DNN generalization on out-of-distribution data is an extensive field of study.
Researchers today are experimenting with different approaches to tackle this area by pro-
viding more robust models. Transfer learning is a common practice wherein models that
have been already trained (i.e., pretrained) on massive amounts of data are reused for an-
other related task. Researchers have leveraged this information gain and fine-tuned it for
their purposes. For example, Hendrycks et. al [16] turn to pretraining and transfer learning
as a way to improve DNN robustness. Their experimental setup includes using ResNets
and testing it on the Canadian Institute For Advanced Research (CIFAR) dataset. Their
findings suggest that pretrained models outperform their non-pretrained counterparts when
faced with corrupted data and adversarial attacks. Following the authors’ recommendation,
we incorporate pretraining in our regular networks for enhanced model robustness.

Geirhos et al. [8] tested the generalization capabilities of DNNs by applying distortions to
their test sets. They studied the classification accuracy of ResNet-50 (a ResNet architecture
with 50 layers) under different training scenarios. They found that when ResNet was trained
on data similar to the data it would be tested on, its accuracy was on par or slightly
higher than human-level accuracy. This was also true when training was done on distorted
data sets. When tested on data that was noisy or dissimilar to the training datasets, their
performance dropped substantially in relation to humans (i.e. the extent to which human
performance dropped for out-of-distribution data was less than the extent to which the
DNN’s performance dropped). Training the network on a single distortion and using it
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to classify other distortion types did not boost performance by much. However, training
these networks longer (i.e., with more training iterations or epochs) generally improved
performance. They also observed that when this architecture was trained on all but one
of the distortions and tested on the remaining distortions, its testing performance on most
held-out distortion categories improved. However, their performance was still worse than
humans on the categories that were left out. They conclude by remarking that there are
significant discrepancies in the generalization capabilities of DNNs. They, therefore, showed
that the gap between a human and a DNN’s ability to identify images robustly could not
be closed by training on distorted datasets alone. We aim to explore alternative ways of
closing this performance gap through our work than training on corruptions alone.

Along the lines of data augmentation, AugMix is a technique proposed by Hendrycks et
al. [17] to improve the generalization of DNNs. This method uses a combination of simple
augmentation techniques chosen at random. In this way, the model is exposed to highly
diverse images during training. We discussed how DNNs tend to memorize specific distor-
tions used in training [8]. Through this procedure, the output image from the AugMix layer
now incorporates several layers of randomness. This feature sets it apart from fixed aug-
mentation techniques like CutMix [34]. Hendrycks et al. test their training framework on
CIFAR-10, CIFAR-100 and ImageNet data. Their results demonstrate that their training
scheme achieves a substantially lower loss on corrupted data sets than other frameworks
designed to improve classification robustness. This thesis leverages the AugMix framework
in DNNs as a means to improve generalization abilities.

Most neural network architectures used today can trace their history to cognitive studies
and neuroscience experiments. A natural strategy was adopted to emulate the human vi-
sual system in order to construct more robust DNNs. One of the first biologically motivated
neural networks is called Neocognitron [6]. This model was presented with visual patterns
repeatedly, and it learned to recognize them based on their geometric similarities. Inspired
by this, Strisciuglio et al. [32] made progress in this direction with the invention of the
Push-Pull layer. This novel layer is designed to mimic the human brain, making it robust to
visual patterns even when they are perturbed with noise [5]. The authors implemented this
paradigm using LeNet on Mixed National Institute of Standards and Technology (MNIST)
data and ResNet, DenseNet on CIFAR data. This included testing different image distor-
tions like Gaussian blur, impulse noise, frost, brightness, etc. In both cases, the Push-Pull
networks consistently outperformed the regular networks. They also note that the accuracy
on the clean (undistorted) testing set is unaffected by the Push-Pull layer. In our research,
the aim is to better utilize the full potential of this framework with large capacity models,
i.e., deeper networks with many parameters.
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2.3 Models of human object recognition

Since its inception, machine learning models have been competing to outperform humans on
virtually every task. However, we have also seen that humans possess excellent generalization
abilities and (at least in the field of object recognition) are more robust [8]. Several lines of
research have been developed to compare machine learning models with humans in order to
gain insights to close the performance gap [4, 29, 26, 27, 22]. Deep neural networks are often
criticized as being black box models that are difficult to interpret. Thus, efforts to investigate
the similarities and differences between DNNs and humans can get us a step closer to better
models of human recognition. However, the realization of brain-inspired DNNs does not
necessarily mean that we exactly reproduce the complex architecture of the human brain.
Instead, in our work, we try to capture important details that make humans more robust
at visual recognition tasks and incorporate those details in our network architectures.

For example, Rosenfeld et al. [27] investigate how deep neural networks learn to represent
images. They sought to determine if these representations are similar to those used by
humans when classifying images. To do so, they carried out a series of experiments that
compared humans against machines. These experiments aimed to identify the most similar
image (one amongst them was indeed the ‘most’ identical) from a list of five candidate
images. The diverse nature of this data set enabled the authors to measure if the features
learned by a neural network’s penultimate layers were sufficient to help it identify similar
images in non-trivial settings. To do so, they extracted a series of features from an image.
Different neural networks used these features to then pick an image from amongst the
five candidate images. On average, they found that humans were far better at choosing
the correct “similar” image than their deep neural counterparts. The authors contended
that pretraining these networks on a subset of the data could reduce the performance gap.
However, they concluded that the feature set learned by these networks was not generic
enough to enable the kinds of learning humans do readily across domains.

Pramod et al. [26] conducted a similar experiment. In their paradigm, humans identify an
image most dissimilar from a collection of pictures from the same image class in their setup.
The dissimilarity measure is the time taken for humans to find this odd-one-out image. They
use principal components analysis (PCA) to identify the most critical features required to
determine how different one image is from another. They then use a simple linear regression
model to predict the observed human dissimilarity measure through a linear combination of
the top 100 PCA features. They found that CNNs outperformed all other machine learning
models when accurately identifying the odd image in the lot. However, they also observed
systemic differences in the representation of these images between neural networks and hu-
mans. In particular, they found that humans identify symmetric images as more distinctive
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in perception while those that share features to be more similar. Network models capture
neither of these intricacies. The authors thus recommend that building networks that embed
some of these features could result in networks with image representations that are much
closer to those formed by humans.

In a survey paper, Lake et al. [22] review the fields of deep learning and cognitive science to
find links between human understanding and their biologically inspired counterparts. They
identify critical concepts like intuitive physics and intuitive psychology as crucial building
blocks that enable children to transfer knowledge across a wide range of domains. Fur-
thermore, they argue that a paradigm shift needs to occur within the realm of machine
learning for these algorithms to become more human-like. Building causal models of the
world to understand, query and make decisions about interacting with their environment
is paramount. The authors make an interesting observation: While most deep learning net-
works can supersede human performance on many tasks, they take substantially longer to
learn these patterns. Furthermore, these networks are often limited in utilizing knowledge
learned in one domain to speed up learning in another. However, recent developments pro-
vide promising approaches to enable faster learning in unfamiliar terrain. Attention is one
such development. Drawing inspiration from the human perceptual system, deep networks
embedded with attention has shown substantial improvements within fields like machine
translation. This has also allowed researchers to cut down training times significantly, as
not all network parameters need to be updated (matching our intuition about attention).

Several approaches have been developed to measure the extent to which an artificial neural
network is similar in behaviour to the human brain. In [29], the authors develop a scoring
mechanism called ‘Brain Score.’ This measure determines resemblance using two criteria:
neural metrics and behavioral metrics. The neural benchmarks compare intrinsic similarities
between the activations in DNNs and the activations in the brain. Behavioral metrics ex-
amine the similarity in the responses of ANNs with humans. They find that DenseNet-169
and ResNet-101 are the most brain-like ANNs. They show a correlation between high-
performing DNNs on ImageNet classification tasks and a higher Brain Score. However, this
correlation exists only up to a certain threshold. Beyond this threshold, networks tend to
vary considerably in brain score.

In conclusion, we have surveyed different DNN architectures, various methods that increase
model robustness and models of human object recognition. The upcoming chapters, there-
fore, aim to study neural networks derived from these different approaches. Then we compare
its performance on the distortions developed by Geirhos et al. to that of published publicly
available human performance datasets using statistical hypothesis testing.
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Chapter 3

Methods

This chapter describes the dataset, image distortions, the DNNs we employ, and human
experiments. In terms of DNNs, we employ three established DNNs: ResNet, AugMix and
Push-Pull [13, 17, 32]. We also develop a novel network: a combination of AugMix and
Push-Pull (AugMix+Push-Pull). This lays the groundwork for our experiments and results.

3.1 Study dataset

In order to assess and make robust comparisons of deep learning models, we need massive
high-quality and curated benchmark datasets. In the field of computer vision and object
recognition, ImageNet [28] is a notable benchmark dataset with over 14 million images
categorized into 22,000 categories. This database contains hand-annotated images arranged
according to the hierarchy of WordNet [25]. WordNet is a lexical database of English words
where each category represents synonym sets (often called ‘synsets’). Each synset is a single
concept characterized by these synonymous words, for example: ‘dogsled’, ‘dog sled’, ‘dog
sleigh.’ There are over 100,000 synsets in WordNet, and the ImageNet database contains
around 1,000 images for each such synset.

In its early stages around 2009, ImageNet was mainly populated based on captions or
tags using search engines. This resulted in a significant number of mislabelled images. To
overcome this, researchers used Amazon Mechanical Turk extensively to obtain more accu-
rate annotations of the images. Due to the volume and wide variety of images, this visual
database has been instrumental in advancing research in computer vision, and the devel-
opment of methods in big data [2]. It is popularly used in smaller sizes. Take, for instance,
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where a subset of 1,000
categories from this dataset is used. The ILSVRC consists of an annual competition and a
benchmark dataset in object detection and recognition. To provide contrast, this downsam-
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pled version has only three people categories: scuba diver, bridegroom, and baseball player,
compared to 2,832 people categories under the person subtree in the complete ImageNet
data. In 2012, ILSVRC made the ImageNet dataset publicly available for non-commercial
use.

For our research, we make use of the ILSVRC 2012 database [28] that has 1,000 categories,
with some being fine-grained like complex dog breeds such as Staffordshire bullterrier or
Yorkshire terrier. This could present difficulties in carrying out human experiments as they
tend to pick broader categories like cat or dog than name a specific breed. This was the
same paradigm followed by Geirhos et al. [8] where they created a dataset called ‘16-class-
ImageNet’ consisting of 16 categories. They mapped these entry-level categories to the
corresponding ImageNet categories using the WordNet hierarchy. The different categories
they used were airplane, bicycle, boat, car, chair, dog, keyboard, bear, bird, bottle, cat, clock,
elephant, knife, truck, oven. The main crux of this thesis is to compare the performance
of our deep neural networks to human experiments carried out by Geirhos et al. [8]. Thus,
to make fair comparisons, we create a new dataset called ‘15-class-ImageNet’ that groups
a subset of ImageNet classes into 15 entry-level categories. This dataset has all the same
categories as Geirhos et al. (airplane, bicycle, boat, car, chair, dog, keyboard, bear, bird,
bottle, cat, clock, elephant, knife, truck) except for oven. For a brief overview, Figure 3.1
displays one example image per category.
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Figure 3.1: Example stimulus image from each of the 15 classes. From left to right, the
classes are: airplane, bicycle, boat. Second row: car, chair, dog. Third row: keyboard, bear,
bird. Fourth row: bottle, cat, clock. Bottom row: elephant, knife, truck [28].
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3.2 Image pre-processing and distortions

The complete ImageNet data is 1.3 terabytes in size. To deal with a dataset of this volume,
we depend heavily on supercomputing, cloud services, and GPUs throughout this work.
Like some real-world data analysis tasks with big data, a portion of our time and efforts
were focused on extracting and preparing the data in the proper format. The first step in
the data collection involved acquiring this large dataset. We used Amazon Web Services
(AWS) to download the ImageNet data and transfer it onto our Compute Canada servers.
The entire dataset came in the form of one large tar file, and within that sizeable file, we
had multiple unlabelled tar files, each corresponding to a specific category. The next step
required launching a bash shell script on our compute servers to extract the desired images
and group them into different classes. This constitutes the clean (undistorted) dataset with
a total of 130,450 images. This is the only data filtering that we carry out, and we assume
that most of the images are correctly labelled with the dominant object in the image. Figure
3.2 is a visual representation of the distribution of images across different categories, where
we observe class imbalance.
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Figure 3.2: Distribution of images across the different classes.

In image classification tasks, each greyscale image is a two-dimensional matrix of pixels
that each takes a value between 0 and 255. Values closer to zero are darker patches, while
values closer to 255 represents brightness. A color image has separate red, blue, and green
channels (RGB) represented by three of these two-dimensional matrices stacked on top of
one another. We used Python (version 3.6.3) for all data pre-processing related tasks. We
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used the skimage module to resize the dimensions of the images to (224 x 224 x 3), which
denotes its height, width, and depth. This preserves the amount of information and is the
input shape expected by most current DNNs [13].

The final step in this process included applying parametric image manipulations on the
clean (undistorted) dataset to generate different sets of distorted images. Code for these
distortions is provided by Geirhos et al. [8] under an open-source license. However, they do
not provide the distorted images themselves, so we recreated them using their code. In this
study, we will consider six image distortions: greyscale, contrast, rotation, uniform noise,
low-pass and salt-and-pepper noise. These distortions are described below. Figures 3.2, 3.3,
and 3.4 depict examples of the stimuli image across three arbitrary categories (bird, dog,

car) for all distortion types.

This selection is a subset of the image distortions used by Geirhos et al. [8] (technical issues
prevented us from using the remaining distortions: phase noise and high-pass). This enables
us to compare our findings with that of human performance assessed by Geirhos et al. across
these distortions. Moreover, this set encompasses a wide range of perturbations that may
occur as a result of real-world conditions like faulty machinery, say. This will help us make
more robust comparisons that simulate practical settings. We made use of Compute Canada
to generate the six sets of corrupted images. This allowed us to parallelize the computational
load using a series of python scripts for each distortion and store six times the original data
size on the server.

Greyscale. In greyscale images, each pixel value only represents the amount of intensity
that ranges from black (low intensity) to white (high intensity). We used the rgb2gray

method in the Python skimage module to convert images into greyscale.

Contrast. Contrast refers to the differences in color or grayscale between different aspects
of an image. Having a high level of contrast makes objects in an image more discernible than
a low level. Applying a contrast level k (in percent) on a normalized image ([0, 1] range)
gives us the scaled image with each pixel value given as below. For our experiments, we
scale the images to a contrast level of 5%, according to the following equation from [8]:

scaled_value =
1 − k

100%
2 + initial_value · k

100%

Rotation. Rotation is a standard geometric distortion as well as a data augmentation
technique. It turns an image in a clockwise or counterclockwise direction by an angle θ.
In our case, we rotate the images in the anti-clockwise direction by 90◦. We do this by
transposing the original image matrix and reversing the column order.
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Uniform noise. Images can be noisy from using a low-resolution camera lens. This dis-
tortion can be modelled as uniform noise. It has also been shown that degradation in DNN
performance is particularly evident for additive noise or blur distortions [3]. The width pa-
rameter w is adjusted to tune the range [−w,w] of additive uniform noise added to each
pixel separately. Here, we first apply a contrast level of k = 30% on the original image and
then white uniform noise with w = 0.1 is added pixel-wise (i.e., to each pixel).

Low-pass (blurring). Blurring is a common image distortion that can occur due to a cam-
era being out of focus or moving objects. Moreover, it can simulate DNN performance on dis-
tant objects captured using poor camera sensors. Low pass or Gaussian filtering provides a
useful model for this type of image perturbation. It is controlled using the standard deviation
parameter of the Gaussian filter. We used the scipy.ndimage.filters.gaussian_filter

function with std = 7 for our low-pass experiments.

Salt-and-pepper noise. An image corrupted by this noise has dark pixels in the brighter
areas and bright pixels in the darker patches giving the semblance of sprinkled salt and
pepper. Also referred to as impulse noise, this may happen during image processing or
disruption in the transmission process. This image manipulation involves setting pixels to
black or white determined by the probability parameter p. First, we scale the original image
to a contrast level of 30% and then apply salt-and-pepper noise with p = 0.2.

Although these distortions encompass many real-world scenarios, it is possible to encounter
new, unfamiliar image corruptions under a different task setting. For instance, the ath-
letic apparel company Lululemon may want to identify their logo across images scraped off
the web. However, their logo might be crushed or scrunched up in some of the candidate
images under study. Our models, however, are not exposed to these types of natural and
realistic distortions. They were only trained on well-studied distortions to assess their per-
formance with those of humans fairly. Hence, our current image perturbations are not fully
representative of all practical distortions, which is a potential limitation of our work.
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Figure 3.3: Example stimulus image of class bird across all distortion types. From left to
right, image manipulations are: color (undistorted), greyscale, low contrast. Middle row:
rotation, uniform noise, salt-and-pepper noise. Bottom row: low-pass (blurring), high-pass,
phase noise [28].
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Figure 3.4: Example stimulus image of class dog across all distortion types. From left to
right, image manipulations are: color (undistorted), greyscale, low contrast. Middle row:
rotation, uniform noise, salt-and-pepper noise. Bottom row: low-pass (blurring), high-pass,
phase noise [28].
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Figure 3.5: Example stimulus image of class car across all distortion types. From left to
right, image manipulations are: color (undistorted), greyscale, low contrast. Middle row:
rotation, uniform noise, salt-and-pepper noise. Bottom row: low-pass (blurring), high-pass,
phase noise [28].
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3.3 Residual neural networks

Deep Neural Networks (DNNs) are a class of neural networks that have several layers
between the input and output layers, hence the name “deep”. Typically for complex tasks,
DNNs leverage hierarchal feature extraction to learn low/mid/high-level representations
[9]. Unsurprisingly, deeper networks achieve high accuracy on a wide range of datasets
[31]. Following this rationale, a natural question arises —“Will adding more and more
layers always lead to improved performance?” He et al. [13] found that as they increased
the network depth, the accuracy reaches a plateau and then suffers a steep decline. This
phenomenon was not a result of overfitting whereby the model learns the training data well
(low training error) but is unable to generalize to unseen data (higher test error). In their
case, they observed a high training error and consequently a higher test error.

In an attempt to tackle this, He et al. [13] proposed that one can create a deeper network by
taking a shallow network and adding extra layers that simply learn the identity function.
The resulting architecture should then give the same output as the shallow model and
have at least the same accuracy. However, their experiments showed that it was difficult
for the networks to learn the identity function and not improve performance. Instead, they
hypothesized that it was easier for the network to learn the deviations from the identity
mapping, i.e., residuals, than the function itself. In other words, it is easier to come up with
a solution like F (x) = 0 rather than F (x) = x using stacks of convolution and activation
layers. Here, the layers are trying to learn the residuals and are collectively termed as a
residual block (ResBlock; [13]). These residual blocks form the crux of the deep learning
residual framework, and the networks following this paradigm are called Residual Neural
Networks (ResNets; [13]).

3.3.1 Residual blocks

To better understand the ResNet architecture, we need to first dig deeper into the building
blocks of this network shown in Figure 3.5. Let us call our input x. In a regular DNN (shown
on the left side), this input x passes through all the layers, and the weights for the output
f(x) are learned directly for each layer. On the right portion of the figure, the ResNet ‘skips’
the learning for f(x) in the dotted region and instead needs to learn the residuals f(x) −x.
The input x is then added to the residuals f(x) − x to get the desired output f(x). This is
called a residual or skip connection.
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Figure 3.6: From left to right: a regular block and a residual block (ResBlock).

As mentioned earlier, a deeper network can be constructed by adding layers with their
output equal to their input. This allows the network to maintain the same accuracy. Thus,
if the goal is to get f(x) = x, then the ResNet needs to learn the residuals f(x)−x = 0. This
implies pushing the weights and biases within the dotted region of the figure to zero, which
is easier than learning a specific mapping. This is the fundamental concept that ResNets
are built upon, with each skip connection constituting a residual block.

The addition of skip connections also helps the network overcome the infamous vanishing
gradient problem. In the absence of this shortcut, the gradients tend to zero due to re-
peated chain rule during backpropagation. In contrast to this, ResNets mitigate this issue
by allowing the gradients to skip layers.

3.3.2 ResNet-50 Implementation

Let us briefly explore the architecture of ResNet-50 network as shown in Figure 3.6. This
will serve as the baseline model for our experiments. The “50” indicates that it is composed
of 50 layers and has over 23 million trainable parameters [13]. In addition to that, it has
been pretrained on millions of images from ImageNet. It is a widely employed network for
image recognition tasks due to its deep architecture and transfer learning features. The
same architecture was also used by Geirhos et al. [8] to compare with human performance.
All of these aspects collectively make it a good benchmark model.

The learning is done in 5 stages [13]. The first stage is a convolution layer followed by a
pooling layer. Each of the next four stages corresponds to a residual block. Every residual
block has 3 layers with both 1 × 1 and 3 × 3 convolutions. The convolutional layer is
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followed by a common non-linear activation function called Rectified Linear Unit (ReLU).
It is defined as g(z) = max(0, z) that sets negative inputs to zero and anything greater
than 0 remains the same. ReLU activation function also overcomes the vanishing gradient
problem, allowing models to learn more efficiently and perform better. Within each residual
block, we skip three layers and then add the input before the final ReLU function.

Figure 3.7: The ResNet-50 architecture.
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3.4 AugMix networks

AugMix is a framework designed to train DNNs to be more robust to out-of-distribution
data. AugMix takes as training input an image, a set of transformations and a number k.
Here, k denotes the number of repetitions of the augmentation procedure. Next, it initializes
a matrix of zeros (called augmentation matrix) and draws k observations from a Dirichlet
distribution with parameter α (affecting the skewness of the distribution over the different
types of operations).

For each repetition, AugMix randomly chooses three operations from a transformation set.
It uses these operations, either by themselves or by composing them together to create a
transformation chain. By default, the algorithm creates three transformation chains. Each
of these chains can vary in length (number of compositions). Then, one chain from amongst
them is uniformly selected at random. The augmentation matrix is populated with the
product of the weight times the output formed by feeding the original image into the selected
augmentation chain.

Once all iterations are complete, another sampling step is performed. A valuem is randomly
drawn from a beta distribution. This beta distribution is also parameterized by the same
α that the Dirichlet distribution is parameterized by. This mixing proportion m combines
the original image with the augmented image from the chain. The image output by this
algorithm is a weighted combination of the original image and augmented image (represented
by the augmentation matrix). The output image from the AugMix layer now incorporates
several aspects of randomness ranging from the type and intensity of operations, length of
the chain and the mixing proportion. Figure 3.7 is an example realization of the AugMix
process described above.

Figure 3.8: An example of AugMix. The final image is a weighted combination of the original
and the augmented images. Diagram taken from [17], used with permission.
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To train a neural network on these transformations, Hendrycks et al. compute the Jenson-
Shannon Divergence Consistency (JSD) loss. These images (original and augmented ver-
sions) can be thought of as inputs into a posterior distribution. These distributions assign
a probability to a particular class label, given the input image received. The JSD loss func-
tion seeks to minimize the difference in the posterior distributions induced by the original
image, and its augmented variant [17]. This process ensures that models learn to become
insensitive to a diverse range of variations in the input when predicting class labels.

3.5 Push-Pull networks

The Push-Pull layer [32] is a novel layer designed to simulate the functions of the V1
(the primary visual) area [19] of the human brain [33]. The primary goal is to capture a
phenomenon known as push-pull inhibition. Here, a specific part of the brain called the
excitatory receptive field is excited by a positive stimulus (push). Another area called the
inhibitory receptive field attempts to hinder this response with a negative stimulus (pull).
Due to this natural response mechanism, the human visual system can respond to visual
stimuli even in the presence of noise like snow, fog, blur, etc.

Figure 3.9: Schematic representation of the Push-Pull inhibition. The push kernel represents
the excitatory receptive field, whereas the pull kernel mimics the inhibitory receptive field.
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In order to model these processes, the Push-Pull layer has two convolution kernels (or filters)
called the push and the pull kernels as shown in Figure 3.8. Analogous to the human brain,
the push kernel represents the excitatory receptive field while the pull kernel mimics the
inhibitory receptive field. In practice, the pull kernel is larger than the push kernel. The
weights for the push kernel are learnable parameters. For the pull kernel, we compute the
weights by inverting the pull weights and upsampling by a factor h. The response from each
of these kernels is activated non-linearly using ReLU (explained in Subsection 3.3.2). The
output of this layer is computed by subtracting a fraction α of the pull response from that
of the push response as summarized in Equation 3.1 from [32]. We used the default settings
for h = 2 and α = 1 [32].

P (I) = θ(k ∗ I) − α · θ(−k↑h ∗ I) (3.1)

Here, θ is a rectified linear unit (ReLU) activation function, α is the inhibition strength
of the pull kernel and h denotes the upsampling factor of the push kernel k, where h > 1.
To implement the Push-Pull network, one can replace the first convolution layer in existing
DNN architectures like ResNet-50 as shown in Figure 3.9. Although this layer could be
placed virtually anywhere in the network, this particular setting is recommended to better
model the initial stages of brain activity where low-level visual features are processed.

Figure 3.10: Modified ResNet-50 architecture with a Push-Pull layer added.
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3.6 Human performance from Geirhos et al.

Our main goal is to compare the performance of deep networks to humans on classifying
OOD data. We use human performance data from Geirhos et al. [8] and closely follow the
conditions of their experiments. This is done to perform a fair comparison of their results
with those from our experiments using AugMix, Push-Pull, and our novel AugMix+Push-
Pull. Geirhos et al. provide their data under a Creative Commons Attribution 4.0 Interna-
tional license, and we acquired these data from GitHub1. These data are publicly available,
and we rely exclusively on secondary use of these anonymous data. Geirhos et al. chose
to carry out a controlled lab experiment instead of using third-party services like Amazon
Mechanical Turk to enroll human participants. This gives them the flexibility to design
and control the conditions of these experiments to make fair comparisons with deep neural
networks.

Geirhos et al. make use of the ImageNet Large Scale Visual Recognition Challenge (ILSRVR)
2012 database [28] that has millions of images with over a thousand categories. However,
in order to draw close behavioral comparisons with humans, this ImageNet data was down-
sampled to 16 distinct and broader-level categories as mentioned in Section 3.1. A total of
twelve distortion types were applied to record human accuracies on this data. Some were a
set of binary image manipulations like color vs. greyscale, true color vs. false color, original
vs. equalised power spectrum. Other common image distortions included contrast, rotation,
phase noise, uniform noise, low pass, high pass, and salt-and-pepper noise. Additionally,
they considered three Eidolon stimuli [20] which correspond to a type of parametric image
distortion. Note that there is no human data available for salt-and-pepper noise.

In Geirhos et al., three observers participated in the colour and contrast experiments. Six
observers were selected for the opponent colour, high-pass filter, low-pass filter, phase noise,
and power equalisation experiments. In the uniform noise and Eidolon experiments, five
observers had participated. For every human experiment, a blank screen with a central fix-
ation square was presented for 300s. The image then appeared on the screen for another
200s, followed by a noise mask that lasted 200s. Finally, the observers were given 1500s to
make their choice. A forced-choice image categorization paradigm was implemented where
the participants are asked to click on the category they thought the displayed image resem-
bled the most. The rationale behind the background noise mask is to prevent the feedback
loops in the human brain from being activated. Deep neural networks rely on feedforward
connections, whereas the human brain is more dynamic in nature, having recurrent loops
of information [23]. For more details about this paradigm, see [8].

1https://github.com/rgeirhos/generalisation-humans-DNNs/
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In order to make comparisons, Geirhos et al. trained different networks on clean (undis-
torted) data as well as on each of the distortions. For our comparative analysis, we choose
the paradigm where networks are trained on clean (undistorted) data only and tested on
different types of distortions. We believe that this setting is most representative of the real
world where machine learning models are deployed. It is also a better test of model ro-
bustness since most tasks are trained on clean images, and we are uncertain of the exact
distortion we might encounter. Extending Geirhos et al. we perform this classification and
experiment and compare to their human data using networks designed to handle OOD data
(instead of just the ResNet, as was done in Geirhos et al.).

As we conclude this chapter, we have covered the foundational concepts of the ResNet-
50 architecture, AugMix framework and Push-Pull network. We also briefly outlined the
essential details of the human experiments carried out by Geirhos. There is a whole host
of model robustness techniques, and we will focus on these methods for the experiments
discussed in the next chapter.
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Chapter 4

Experiments and results

In this chapter, we outline the steps taken for training our current set of networks. We
then present our results using non-pretrained and pretrained versions of these experiments.
Thereafter, we discuss how we compare the performance of DNNs with humans using dif-
ferent statistically rigorous testing procedures.

4.1 Training procedures

We carried out extensive experiments with four types of DNNs (baseline ResNet, AugMix,
Push-Pull and AugMix+Push-Pull). Each DNN has an underlying ResNet-50 architecture
with 15 output neurons to match the number of categories in the dataset. Besides the
baseline ResNet, we make modifications to the other DNNs as described in Chapter 3.
AugMix includes a custom data augmentation scheme during the training stage. The Push-
Pull DNN replaces the first convolution layer in ResNet-50 with a Push-Pull layer. We
include a fourth network that is a combination of AugMix and Push-Pull. We also examine
a novel merger of these two paradigms: (AugMix+Push-Pull).

In this work, we make use of a single train/test split in a 75:25 ratio. For each network,
the training is done on the clean (undistorted) training set. We choose the default values
specified by Geirhos et al. [8] for most of the hyperparameters. To maintain consistency,
we employ the same configurations for each architecture summarized in Table 4.1. Also, we
use stochastic gradient descent (SGD) as our optimizer. We will now explain each of these
training choices briefly.
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Table 4.1: Hyperparameter configurations used during training.

Hyperparameter Configuration

Epochs 15
Batch size 32

Learning rate 0.1
Momentum 0.9
Weight decay 0.0001

Batch size is the number of training examples used in a single iteration (one forward/back-
ward pass), whereas an epoch is one complete pass through the entire training dataset.

Gradient descent is an optimization algorithm that determines the weights of a network that
minimize the error function. It does so by taking a step in the direction towards the lowest
point of this function. This direction is opposite to the gradient (or slope) hence the name
‘gradient descent’. Gradient descent uses all of the training examples in each iteration to
compute gradients and update the model’s weights. Stochastic gradient descent, on the
other hand, introduces randomness in the gradient descent process by selecting one sample
point (or a subset of points) at each step.

A hyperparameter called the learning rate determines the magnitude of the descent, i.e.,
step size. In other words, the learning rate controls how much a model’s weight changes
during training. A large learning rate might miss local minima but converges quicker. Con-
versely, a small learning rate avoids skipping over any local minima but takes longer to
converge.

Classical SGD usually finds it difficult to navigate towards the optimum when stuck in a
ravine. Ravines are regions where the surface curves more steeply in one direction than in
another [9]. It tends to oscillate in those regions and ends up finding a local minima. Here,
the error is low but not the lowest. Momentum overcomes this phenomenon by pushing
the gradients in the right direction and out of the regions it was stuck oscillating in.

Weight decay or regularization is applied to a model’s weights in order to penalize its
complexity. This technique avoids overfitting by constraining a network’s weights and forcing
it to learn mostly generalizable features.

We used the following hyperparameter values as listed in Table 4.1. We set our batch
size to 32. We thus used 32 training examples are used to compute the error gradient
before updating our model’s weights. We trained all of our models for 15 epochs. Each
network, therefore, makes 15 complete passes through the training dataset. We observed
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validation accuracy plateauing after 12 epochs (shown in Figure 4.1). Hence, we found 15
epochs to be sufficient for training our models. We were also bound by time and budget
constraints in terms of model training. A learning rate of 0.1 is employed so that the model
can learn well within our training time. We pick a momentum value of 0.9, adding 90% of
the previous gradient update to the new gradient update. We use a weight decay of 0.0001.
This value forces different networks under consideration to generalize well during our limited
training time. Once training is complete, we evaluate each model on unseen test data for
each distortion type. Note that the test set for each distortion contains the same images
distributed across different classes. We evaluate model performance using top1 accuracy
in PyTorch, i.e., the model’s highest probability class equals the correct target label. This
metric is the same as base classification accuracy.
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Figure 4.1: Validation accuracy versus epochs for baseline ResNet. The accuracy plateaus
after 12 epochs, indicating convergence of the training.

These experiments are done for both the non-pretrained and pretrained versions of the
networks. In case of no pretraining, we trained the networks from scratch using our subset
of ImageNet (15 categories). In the case of pretraining, we use weights for all the layers
(except the fully connected layers) that have been published for ResNet and trained using
all of ImageNet. These weights are publicly released along with the PyTorch package1.
This is done to adjust for the 15 classes in our dataset as ResNet was originally trained
on 1,000 categories of ImageNet. For Push-Pull, we also train the Push-Pull layer and the
first two residual blocks in addition to the fully connected layers. This ensures that residual
blocks after the Push-Pull layer can adapt to the new responses, as the output from a

1https://pytorch.org/hub/pytorch_vision_resnet/
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Push-Pull layer is different from that of a usual convolution layer. All of our networks were
implemented in PyTorch. We conducted our analysis using high-capacity NVIDIA Tesla
V100 SXM2 GPUs provided by Compute Canada.

4.2 Results

We examined the performance of several variations of the ResNet architecture with pre-
training and no pretraining. In Table 4.2, we report the classification accuracy (in percent)
for all the models and humans across the different image manipulations on the 15-class
ImageNet dataset.

Table 4.2: Classification accuracy (in %) for pretrained as well as non-pretrained networks
are included, along with human accuracies from [8].

Distortion
Baseline ResNet AugMix Push-Pull AugMix + Push-Pull

Humans
Non-Pretrained Pretrained Non-Pretrained Pretrained Non-Pretrained Pretrained Non-Pretrained Pretrained

Clean (undistorted) 76.02 84.58 88.59 99.50 85.71 79.39 82.01 98.19 88.5

Greyscale 70.94 80.20 84.59 97.94 83.04 74.85 77.54 95.56 86.6

Contrast (5%) 32.05 32.04 38.28 55.75 32.05 31.43 32.08 47.62 47.6

Rotation (90◦) 55.25 64.31 64.87 85.44 65.48 64.86 58.18 76.94 78.5

Uniform (0.1) 41.8 49.27 57.68 69.25 53.00 54.06 67.03 81.98 45.6

Low-pass (std=7) 47.73 34.31 62.00 59.41 46.51 34.01 71.04 74.89 48.5

Salt-and-pepper (0.2) 32.36 32.19 53.20 51.05 32.76 45.89 44.07 41.27 NA

4.2.1 Non-pretrained networks

In Figure 4.2, we show the mean classification accuracy (mcA) for the non-pretrained net-
works across all distortions (excluding clean data). We see that humans continue to substan-
tially outperform the baseline ResNet as has been shown in previous papers [8]. However,
the strongest model in our current set of DNNs is AugMix. We observe that AugMix exhibits
the highest mean corruption accuracy and is comparable to humans that are fairly robust to
distortions. This indicates that, on average, AugMix is able to generalize in a more human-
like way than other networks. We note that AugMix is closely followed by the combined
network AugMix+Push-Pull with competing mean accuracy to humans. Although Push-
Pull has a lower accuracy than humans, it still shows a considerable improvement over the
baseline ResNet. The baseline ResNet has the worst performance overall on distorted data.
These findings are particularly interesting as AugMix and Push-Pull are DNNs designed to
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handle OOD. These modified network architectures do indeed provide an accuracy boost
to regular DNNs in case of image distortions.

Baseline ResNet

AugMix

Push−Pull

AugMix+Push−Pull

Humans

0 20 40 60
Mean accuracy (%)

Figure 4.2: Mean corruption accuracy of DNNs with no pretraining and humans across all
image distortion types. AugMix and AugMix+Push-Pull are on par with humans.

Figure 4.3 shows a comparison of the classification accuracy on individual distortions for the
human subjects and the deep network models. In the case of non-pretrained networks, both
AugMix and AugMix+Push-Pull have comparable performance to humans, even surpassing
it in two cases: low-pass and uniform noise, with the AugMix+Push-Pull being the better
performing network. It is fascinating to highlight these two use cases that show more robust
performance of DNNs. Firstly, low-pass (or blurring) has real-world implications as it is
highly likely for images to suffer from this as a result of low-quality camera sensors. Also,
Geirhos et al. [8] findings showed that regular DNNs found it more difficult to generalize
to uniform noise as compared to other distortions. Even though we do not have human
data for salt-and-pepper noise, we notice a similar pattern on this distortion, with AugMix
and AugMix+Push-Pull being the front runners. For all other image manipulations, humans
continued to outperform DNNs. We also note that the Push-Pull layer significantly improves
over the baseline ResNet for all corruptions except low-pass, where it is only slightly worse.
It appeared to be more tolerant of image manipulations like rotation and greyscale.
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Figure 4.3: Classification accuracy of DNNs with no pretraining and humans on clean and
distorted data. AugMix and AugMix+Push-Pull outperform humans on low-pass and uni-
form noise. Push-Pull performs better than baseline ResNet on all noises except low-pass.

The results suggest that the modified DNNs (AugMix, Push-Pull, AugMix+Push-Pull)
are considerably more robust to corruptions than the baseline ResNet. The human visual
system is considered highly robust to different types of distortions and noises. AugMix and
AugMix+Push-Pull matching and, in some cases surpassing human performance is a crucial
step towards robust machine learning and the creation of better models of human object
recognition.

4.2.2 Pretrained networks

A similar pattern to the non-pretrained experiments emerges in terms of performance for
pretrained DNNs, as shown in Figure 4.4. AugMix continues to be the best performing
network on average. However, with pretraining, AugMix surpasses human performance by
a large margin. AugMix+Push-Pull is the only other pretrained network to outperform
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humans and is only slightly worse than AugMix. We also notice an increased mean accuracy
for the baseline ResNet upon pretraining. Looking at the errors made by the pretrained
networks and humans in Figure 4.5 we notice that for pretraining, DNNs outperform humans
on all the distortions. For instance, AugMix exhibits the best performance for all distortions
except for low-pass and uniform noise. AugMix+Push-Pull beats every other network (and
even humans) for these two distortions, which is consistent with what we saw for the non-
pretrained architectures.

Baseline ResNet

AugMix

Push−Pull

AugMix+Push−Pull

Humans

0 20 40 60
Mean accuracy (%)

Figure 4.4: Mean corruption accuracy of pretrained DNNs and humans across all image
distortion types. AugMix and AugMix+Push-Pull surpass human performance.
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Figure 4.5: Classification accuracy of pretrained DNNs and humans on clean and distorted
data. AugMix and AugMix+Push-Pull together outperform humans on all distortions. The
pretrained Push-Pull performs worse than its non-pretrained counterpart.

The pretraining of the CNN layers contributes to an improvement over the non-pretrained
counterparts for all networks except for the Push-Pull network. The pretrained Push-Pull
network has roughly the same mean accuracy as baseline ResNet in this paradigm and
even performs worse in case of greyscale distortion. In the original paper on the Push-Pull
framework, Strisciuglio et al. [32] train all the networks from scratch. However, they suggest
that one can replace the convolution layers of an already trained model with the Push–Pull
layers. As mentioned in Section 3.5, the output from a Push-Pull layer is different from that
of a usual convolutional layer. Strisciuglio et al. suggest that to combine the layers, we need
to apply certain fine-tuning procedures in case of pretraining so that the layers after the
Push-Pull layer can adjust to these new responses.

Based on our results, using a pretrained Push-Pull model does not seem feasible. In light
of the fine-tuning recommendation made by the authors, we changed our default learning
rate (0.1) and experimented with a smaller value (0.01). This gave us an increase in test
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accuracy on clean (undistorted) data from 69.1% to 79.3%. We conclude that there might be
subtle intricacies in how the pretrained Push-Pull network should be fine-tuned. Deploying
the Push–Pull layer changes the learning dynamics of these classification models, making
the optimization process less straightforward. Since it is a novel layer, this problem may
not be feasibly addressed by simply applying general rules of thumb for tuning. This is an
interesting area for future research. We cannot justify the degradation in the performance
suffered by the Push-Pull for the pretrained criterion. Hence, we compare with human
performance only the non-pretrained DNNs in our study.

4.3 Comparing with human performance

Comparing the classification accuracies on different distortion types in Figure 4.6, we see
that there is no consistent pattern in how humans and models behave. In some cases, DNNs
surpass human performance, while in others they do not generalize so well.
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Figure 4.6: DNN versus human accuracy on different distortion types. AugMix and Push-
Pull lie closer to the 45◦ line in both cases, suggesting resemblance to human performance.

34



Thus, we need more concrete measures to identify these underlying patterns and closeness
in relationship. In order to find the most human-like DNN architecture, we will test for
similarity between their performances in two ways:

• Distance-based similarity. One aspect of closeness can be defined as the smallest
difference between human and DNN performance.

• Pattern based similarity. Another aspect of similarity can be operationalized by
looking at patterns across the different noises between humans and a particular DNN.

4.3.1 Distance-based similarity measures

For distance-based similarity measures, we use t-tests to assess the similarity of each network
with humans and sign tests to draw pairwise comparisons between networks.

t-tests for similarity with humans

Let us take the difference between the accuracy of a DNN, say ai, for the ith distortion
with respect to humans hi. Let dresnet, daugmix, dpush-pull and daugmix+push-pull denote the
difference for baseline ResNet, AugMix, Push-Pull and Augmix+Push-Pull respectively.
For example, dresnet = resneti −hi = (−12.476,−15.662,−15.555,−23.250,−3.797,−0.767),
where each data point corresponds to one of the six distortions (including clean data) used
in our study. Let d̄resnet then be the mean difference between DNN and human accuracy
across the different data points.

We make use of one sample t-tests to determine if there is a statistically significant difference
between the mean accuracy of a DNN versus humans. For instance, our hypothesis for
baseline ResNet is stated as:

Ho : d̄resnet = 0 against Ha : Not Ho.

Here, our null hypothesis states that the mean accuracy of humans and DNN is the same,
whereas our alternative hypothesis tests if they are different. We carry out these tests for
each DNN in a similar fashion and obtain the results as shown below.

One Sample t-test

data: baseline _ resent
t = -3.5079 , df = 5, p-value = 0.01714

35



alternative hypothesis : true mean is not equal to 0
95 percent confidence interval :

-20.651084 -3.184582
sample estimates :
mean of x
-11.91783

One Sample t-test

data: augmix
t = 0.025873 , df = 5, p-value = 0.9804
alternative hypothesis : true mean is not equal to 0
95 percent confidence interval :

-11.42531 11.65764
sample estimates :
mean of x
0.1161667

One Sample t-test

data: push_pull
t = -1.4494 , df = 5, p-value = 0.2069
alternative hypothesis : true mean is not equal to 0
95 percent confidence interval :

-13.640585 3.804251
sample estimates :
mean of x
-4.918167

One Sample t-test

data: augmix _with_push_pull
t = -0.16281 , df = 5, p-value = 0.877
alternative hypothesis : true mean is not equal to 0
95 percent confidence interval :

-20.79583 18.31849
sample estimates :
mean of x
-1.238667

Our preliminary analysis using a t-test shows that we only reject the null hypothesis for
the baseline ResNet network. This implies that there is a statistically significant difference
between how baseline ResNet performs and how humans perform. We do not reject the null
hypothesis for AugMix, Push-Pull and AugMix+Push-Pull. Hence, there is no evidence that
the performance of these networks on distorted data is not similar to human performance.
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However, we would still like to find the architecture that most closely resembles the func-
tioning of a human brain (failure to reject the null does now allow us to accept the null).
Motivated by these results, we conduct a sign test to make pairwise comparisons across
DNNs. In other words, we try to answer the question if a particular DNN is closer to hu-
mans when compared with another DNN. This will help us make more direct comparisons
to find the most human-like architecture (i.e., the pairwise sign tests allow us to reformulate
the null so that rejecting the null tells us which network is more human-like).

Sign tests for pairwise comparisons between networks

We have recorded the p-values for twelve sign tests corresponding to each combination as
shown in Table 4.3.

Let us now discuss in detail the specifics of the sign test with respect to an arbitrary DNN-
DNN pair, say AugMix compared with AugMix+Push-Pull. Let wi be a variable denoting
the closeness to human performance defined as:

wi =

1, if AugMix is closer to humans than AugMix+Push-Pull for the ith distortion

0, otherwise

Now, w follows a Bernoulli distribution with probability of success p, where success is
defined as AugMix being closer to humans than AugMix+Push-Pull. We make use of one
sided (directional) sign tests to determine which network is closer. Our hypothesis for this
test is stated as:

Ho : p = 0.5 against Ha : p > 0.5

In other words, our null hypothesis says that both AugMix and AugMix+Push-Pull are
equally likely to be closer to humans, whereas the alternative hypothesis tests if AugMix
is closer. We carry out the tests for every DNN-DNN combination in a similar fashion and
obtain the results as shown below in Table 4.3. Note that the diagonal elements will be
empty cells.
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Table 4.3: P-values obtained using sign test for every DNN-DNN pair.

Baseline ResNet AugMix Push-Pull Augmix+Push-Pull
Baseline ResNet 0.8906 0.8906 0.8906

AugMix 0.3437 0.6562 0.01563
Push-Pull 0.3437 0.6562 0.1094

Augmix+Push-Pull 0.3437 1 0.9844

We get a significant p-value at nominal significance highlighted in blue, and we only reject
the null hypothesis for the AugMix and AugMix+Push-Pull pair. The results suggest that
AugMix is closer to human performance for OOD than AugMix+Push-Pull. This implies
that adding the Push-Pull layer to AugMix is pulling it away from human-like performance
rather than making it more brain-like.

4.3.2 Pattern-based similarity measures

In the case of pattern-based similarity, we use two measures. First, we rank the networks
for each distortion depending on how close it is to humans. Secondly, we use Spearman
correlation to look for monotonic patterns between DNN performance and that of humans.

Ranking closeness to humans

In this subsection, we are interested in looking for similarity in patterns between how a
human brain perceives distortions and how a DNN does. For each distortion, we rank
the networks based on the absolute distance from human accuracy. The closest DNN will
have the least absolute difference between their accuracies. Since we have four networks
under consideration, rank 1 is the closest to human performance and rank 4 being the
furthest. Figure 4.7 is a stacked visual representation of these rankings across different image
distortions. Based on this chart, we can see that AugMix has the highest proportion of 1’s,
indicating that it is closer to humans more often than other networks. It is also interesting to
note that although Push-Pull, which is designed to mimic humans dealing with distortions,
does come in second most of the time, if not first. The network AugMix+Push-Pull is rated
second, third, and fourth in balanced proportions. The baseline ResNet does not make it to
the top three for most distortions.
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Figure 4.7: Ranking closeness of DNNs to humans. AugMix is the majority holder of rank
1. Push-Pull ranks second most of the time.

Spearman correlation

Earlier, we looked at the ranks of different DNNs based on how close they were to humans.
Another lens through which we can test for patterns across distortions is through Spearman
correlation. This measure tests how well the relationship between two variables can be
characterized through a monotonic function. For each DNN, we analyze the correlation
between their ranked accuracies and that of humans. Thus, this correlation will be high if
both the DNN and humans exhibit similar performance patterns when we move from one
distortion to the next. Similarly, we will get a low value when the two are not monotonically
related. For instance, say human performance on uniform noise was ranked last. If AugMix’s
performance on uniform noise was also ranked last, we would expect AugMix and humans
to be strongly correlated.

We find that baseline ResNet and AugMix have a high correlation value as depicted by
Figure 4.8. Based on our previous distance-based similarity measures, this result is consistent
in showing that AugMix is the most human-like architecture. However, it is interesting to
note that at least in terms of behavorial patterns across different distortions, baseline ResNet
mimics some aspects of human performance.
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Figure 4.8: Spearman correlation between DNNs and human performance. AugMix and
baseline ResNet have the highest correlation values indicating strong monotonic relation-
ships with humans.

As we end this chapter, we observe that the above results suggest that AugMix is the most
human-like architecture compared to the other DNNs under consideration. These findings
do not support our initial hypotheses that a Push-Pull paradigm for OOD would be the most
brain-like network as it is designed to mimic the functions of the human brain. Instead, we
find that AugMix is closest and that combining it with Push-Pull layers (AugMix+Push-
Pull) actually pulls the network away from human-like performance. It is possible that
there could be some underlying representational capacity present in the human brain that
is lacking in Push-Pull. Conversely, this could indicate that some of the internal mechanisms
of the AugMix network are more similar to the human visual system. These findings can
be used to advance our understanding and guide future research into more robust machine
learning models. It may be useful to derive inspiration from the human visual system to
build better models of object recognition that achieve state-of-the-art performance even on
distorted data, but despite Push-Pull’s inspiration from the V1, we find evidence that this
inspiration is not translated into human-like behaviour.
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Chapter 5

Conclusions and Future Work

DNNs are garnering more and more attention due to their state-of-the-art precision, which
surpasses human performance in many areas. In this work, we were interested in the
paradigm wherein these models encounter data they have not seen during training, termed
as out-of-distribution data. More specifically, we focused on image recognition tasks with a
wide variety of applications in medicine, self-driving cars, social media networks, etc. We
compared object recognition by DNNs with how humans recognize objects in an image.
Due to its inherent ability to withstand noisy settings, the human visual system possesses
desirable properties that can be leveraged for image recognition tasks. To achieve human-
like artificial intelligence, we would like to deploy a real-world model that can mimic these
generalization capabilities of the human brain, or at least come close to it. This sets in
motion the search for tools needed to investigate this empirically.

To that end, we explored deep neural networks that are designed to be robust to out-
of-distribution and distorted data and compared them with human performance. These
methods are motivated by a need to adapt and overcome limitations of existing DNNs,
for instance, ResNet-50. We approached this problem in two ways. The first way explored
an external method using a regular DNN coupled with a stochastic data augmentation
technique called AugMix. The other way looked at making internal modifications to the
regular DNN architecture. Stepping back into early neuroscience models naturally gave
way to the bedrock of the methodology behind the Push-Pull layer. The alterations made
by the Push-Pull layer are inspired by the functioning of the human brain (V1) and were
therefore hypothesized to be more human-like. We also considered a blend of this intrinsic
and extrinsic approach by combining AugMix and Push-Pull into a novel network. We
considered six different types of distortions for our analysis to cover a wide range of practical
scenarios. Furthermore, we conducted our experiments on a subset of the ImageNet dataset,
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a popular benchmark in object recognition. We used statistically rigorous testing procedures
to draw comparisons with humans as opposed to standard error-based rules of thumb [8].

The purpose of this research is to offer insights into two broad questions: What is the
most human-like DNN architecture? Our results demonstrated that AugMix tends to be
functionally similar to the human visual system, as measured by classification accuracy.
This was an interesting result as it also beat the Push-Pull network, which is designed
to capture the essence of the human brain when faced with noisy images. We validated
our findings by looking at this similarity through various lenses and metrics like hypothesis
testing and ranked correlation. We found that contrary to our intuition, pretraining actually
worsened the performance of the Push-Pull network. We could only provide our own intuitive
explanations for this contradiction, and thus it requires further investigation.

The second question we tackled was: How do we advance our understanding of the analogy
between deep learning networks and the human brain in the pursuit of building better
models of human object recognition? Identifying DNNs that best emulate the mechanisms
of the brain becomes the current best understanding of how the brain functions and lays
the foundation for future experiments.

In the ever-expanding literature of robust machine inference and cognitive sciences, human-
inspired models of deep learning have carved out a fairly prominent niche—particularly for
object recognition tasks. We summarize a few areas of future work here:

1. We carry out our experiments for a single test/train split. An immediate extension
would be to repeat it for multiple such splits. This would give us the flexibility to
access more metrics that test similarity with humans.

2. We found that pretraining for the Push-Pull network requires further attention to the
fine-tuning procedures. Future work around this could lead to improved performance
and comparison between humans and pretrained networks included in this study.

3. For our experiments, we considered only one paradigm from Geirhos et al. [8] where
we train on clean (undistorted) data only and test on the different types of distortions.
It would be interesting to simulate the other scenarios using our current set of DNNs.
In other words, what happens when customized networks like AugMix and Push-Pull
are trained on one or more distortions and then tested on other noises? Does this
translate to improved performance on unseen distortions for these custom networks
as compared to regular DNNs? Does it make the networks more or less human-like?

4. We explored four types of DNN architectures to handle OOD. However, this is a
mere drop in an ocean full of artificial neural networks. A future endeavour useful
for researchers would be to add more baseline and customized DNNs to expand our
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comparative study and benchmark human performance. There exist several other
models like Stylized ImageNet [7] that use shape-based feature representations for
neural network learning. There is also DeepAugment [14] which is a data augmentation
technique that perturbs images by introducing distortions during forward propagation.
This is different from AugMix (AugMix applies simple augmentation operations only
to the raw images themselves).

5. We only explored image data. Future work could include behavioral studies in which
the interaction between humans and their environment is compared to reinforcement
learning.

Our comparative study examines human-like performance in four DNNs (Push-Pull, Aug-
Mix, ResNet and AugMix+Push-Pull). However, there are many more avenues to go down
along the road to artificial intelligence, making this a fascinating and growing field to ex-
plore.
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