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Abstract

This thesis proposes a novel approach for indoor scene illumination modeling and augmented reality

rendering. Our key observation is that an indoor scene is well represented by a set of rectangular

spaces, where important illuminants reside on their boundary faces, such as a window on a wall or

a ceiling light. Given a perspective image or a panorama and detected rectangular spaces as inputs,

we estimate their cuboid shapes, and infer illumination components for each face of the cuboids

by a simple convolutional neural architecture. The process turns an image into a set of cuboid

environment maps, each of which is a simple extension of a traditional cube-map. For augmented

reality rendering, we simply take a linear combination of inferred environment maps and an input

image, producing surprisingly realistic illumination effects. This approach is simple and efficient,

avoids flickering, and achieves quantitatively more accurate and qualitatively more realistic effects

than competing substantially more complicated systems.

Keywords: illumination; virtual reality; augmented reality;
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Chapter 1

Introduction

Illumination Estimation is the process of estimating an incident illumination for either a single 3D

point, or for an entire scene. The incident illumination is typically represented as a spherical envi-

ronment map providing a 360 degree source for lighting. Using this illumination one can render a

character or object within a scene in a realistic fashion. In this thesis, we focus on a multi-scene il-

lumination modelling approach. We believe our robust illumination method is capable of producing

realistic renderings allowing for various applications in virtual remodelling, augmented reality, and

virtual reality. In terms of virtual remodeling our method will allow virtual real estate developers

and home owners to accurately preview renovations and furniture before purchases are made. In

augmented reality (AR) and virtual reality (VR) applications our method will increase the speed

and accuracy of objects rendered as well as provide a much larger area for object insertion.

With the growing quantity of data and the advent of deep neural networks (DNNs), the current

research trend is designing data driven illumination estimation models using sophisticated network

designs. While these methods have shown great potential, they are not without their weaknesses.

The first major weakness of most data driven methods is a lack of temporal consistency resulting

in flickering artifacts during video generation. Another major weakness is that most methods are

trained using regression. As HDR images are bimodal given the presence of a light source, and

regression is unimodal, it is not an ideal loss for illumination estimation. The last weakness is that all

current methods only model the immediate information in the image via estimating an environment

map for either a single point, or the single given scene.

Considering these weaknesses, this thesis proposes a new illumination modeling approach for

multi room/space environments. Instead of devising a complex neural architecture, we propose a

simple yet carefully designed algorithm with the following key observations: 1) indoor scenes con-

sist of rectangular spaces (e.g., rooms, corridors, or walk-in closets) and major illuminants reside

on their boundary faces ; 2) illumination classification instead of regression provides a less bias in-

ference target compared to regression due to estimating HDR values; and 3) temporal inconsistency

can be prevented via a simple linear interpolation between a source and a destination environment.

Concretely, given a perspective or a panorama image, space detection is performed. For each

detected indoor space, which is typically rectangular, we use a standard CNN to represent it as a
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Figure 1.1: Wide angle photography allows for the visibility of multiple indoor spaces. Our method
produces cuboid-maps for use in single space or multi-space indoor illumination modeling. These
cuboid-maps produce temporally coherent, realistic lighting effects, and once made can be re-
projected to any 3D point within the space.

cuboid. For every cuboid we classify their geometric and illumination factors such as its size, the

presence of a window on a wall, and ambient intensities. This process turns an image into a collec-

tion of “cuboid environment maps”.With a scene composed of a collection of cuboid environment

maps, and an object of interest to be inserted somewhere in the scene, one requires an incident il-

lumination map to render. In a final step, we project the cuboid map into a spherical illumination

image for that location and take the weighted average with the input panorama to obtain an inci-

dent illumination. This simple AR rendering algorithm is efficient (i.e., no CNN inference at every

frame), consistent without flickering, yet visually plausible.

Our approach is evaluated against state-of-the-art illumination inference algorithms based on

a quantitative pixel-wise rendering metric against a pseudo ground-truth as well as a qualitative

realism metric via a user study. This simple method outperforms all the existing methods with

complex neural architectures, and enables compelling AR experiences in the much wider indoor

spaces visible in wide angle or panoramic photography.

In summary, the contribution of this thesis is 3-fold: 1) A unique cuboid environment map for

indoor illumination modeling; 2) An efficient, consistent, and compelling rendering algorithm with

cuboid maps; and 3) State-of-the-art AR rendering results in multi room/space settings beyond com-

peting methods with complex neural architectures. We believe that our robust illumination inference

will have tremendous impacts in virtual remodeling, augmented reality (AR) and virtual reality (VR)

applications.

With the introduction and motivation covered, onto the remainder of the thesis. The thesis is

structured as follows: in Chapter 2 we introduce all related concepts and existing research on the

topic. Then in Chapter 3 we detail the main research on Cuboid-Maps including our data acquisition

protocol, the Cuboid-Map modelling method, and a simple neural architecture for cuboid parameter

inference. Chapter 4 consists of extensive qualitative and quantitative evaluations of existing base-

2



lines and state of the art methods. Then to conclude in chapter 5 we discuss the limitations of this

research and possible future directions.
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Chapter 2

Related Work

Illumination estimation has been a long-standing problem in both computer vision and graphics.

In this section, classic and deep learning approaches for illumination inference, inverse rendering,

video tone mapping operators, and finally common panoramic datasets are discussed.

2.1 Illumination Inference

Illumination inference is a long-standing fundamental problem in computer vision and computer

graphics. Two methods are common amongst all illumination inference algorithms: one requiring

physical access to a scene, and deep learning data driven based methods.

2.1.1 Classic Methods

A classical but effective approach is to place a reflective sphere in a scene to capture an environment

map. In terms of classic methods, Debevec et al. [9] rendered virtual objects into real images by

using high dynamic range (HDR) environment maps, captured via bracketed exposures of a chrome

ball 2.1. Further research explored the use of a diffuse sphere [32] or a metallic/diffuse hybrid

sphere [10]. While these approaches are widely adopted in production systems, physical access to

scenes is required.

2.1.2 Neural illumination inference

With the emergence of deep neural networks, the current research trend is in designing a passive

data-driven approach, inferring a complete scene illumination even from a single image.

Gardner et al. use a CNN to identify the light locations and regress their intensities [14]. They

later extend the approach to handle spatially varying illuminations [13]. In their follow up work, they

represent illumination using a discrete set of light sources with various geometric and photometric

properties. They fit parameters to light sources via an optimization process comparing their renders

to the ground truth renders. These parameters are then estimated using deep learning. This method

lends itself to complicated issues regarding the quantity and placement of light sources for indoor
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Figure 2.1: This full dynamic range lighting environment was acquired by photographing a mirrored
ball balanced on the cap of a pen. (Image Source [9])

scenes. Our method differs as cuboid models provide some geometric assumptions i.e a light source

should be on a wall or ceiling, limiting the placement and quantity of light sources.

Neural illumination by Song et al. [35] turns a low dynamic range (LDR) perspective image into

a high dynamic range (HDR) environment map. Unlike [14], their pipeline is end-to-end and jointly

trained. They estimate HDR environment maps by 1) reprojecting the input image into a panoramic

canvas at the position of interest; and 2) using CNN to fill-in the missing pixels 2.2. While being

simple and effective, the approach requires the CNN inference at every frame, causing flickering

and being computational intensive.

Li et al. estimates an illumination sphere at every pixel only from a single image. This ambitious

task requires intensive supervised training data, which comes from fitting spherical gaussians to each

pixel within synthetic renderings [25]. This approach also does not account for spatially-varying

lighting considering depth. Similar to Neural illumination, it also suffers from flickering artifacts in

video generation.

Srinivasan et al. learn to generate a volumetric illumination model from a stereo image pair,

where differentiable spherical volume rendering is utilized [37] to create a self-reconstruction

loss [37]. These state-of-the-art approaches [37, 25] boast technically intriguing neural architec-

tures. However, we found it hard to reproduce compelling results. Our system is simple, trained via

simple supervised learning by exploiting the growing indoor panorama collections, and works well

in practice.

2.2 Inverse Rendering

Inverse rendering seeks to infer scene illumination, material, and geometric properties from a single

image.
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Figure 2.2: Neural Illumination’s Pipeline. (Image Source [35])

2.2.1 Classic Methods

Traditional optimization-based approaches require strong statistical prior assumptions and multiple

images. Haber et al. [16] and Kim et al. [20] require multi view stereo inputs. Haber et al. attain

geometry through multi-view stereo and estimate reflectance and lighting from image collections.

Kim et al. also use multi-view stereo to infer geometry, illumination and albedo. In terms of single

image inference, Barron et al. [1] propose SIRFS which uses an amalgamation of priors. Jeon et al.

[18] note that constraints on classic optimization systems are strict due to rich textures in images.

They propose simple constraints for texture-free inputs, which are attained through their texture

separate algorithm.

2.2.2 Deep Learning

Deep learning approaches rely on synthetic data and differentiable rendering. Synthetic images are

used by [34, 26, 6] to generate ground truth values. Yu et al. [40] use a differentiable renderer to

create a self supervised loop via a reconstruction loss. Sengupta et al. . [34] employ a differentiable

renderer to perform transfer learning from synthetic to real images. In the proposed cuboid repre-

sentation, we circumvent the issue of predicting per pixel geometry and illumination by providing

a discrete set parameters to classify.

2.3 Intrinsic image decomposition

Intrinsic image decomposition (IID) is the task of inferring shading and reflectance components

from an image without explicitly solving for an illumination [2].

Retinex theory and reflectance homogeneity are early promising domain priors [21]. They are

based on the observation that sudden changes in intensities come from reflectance and shading.

However, the heuristics fail in general scenes. Physics-based rendering on SUNCG dataset [36] was

used to train DNN models by Li et al. [24] and Zhou et al. [42]. Liu et al. [27] also use DNN

models but take an unsupervised approach by estimating marginal distributions.
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One of the key applications of IID is augmented reality rendering, but the quality is inferior

to illumination inference approaches, which directly renders 3D object models with the estimated

illuminations.

2.4 Video HDR Temporal Consistency

Typically, applying a tone mapping operator individually to each frame of a video leads to temporal

artifacts. The two main methodologies that exist to address this issue are preventive and a-priori.

Preventive methods focus on loss constraints during training or using a tone mapping operation

dependant on the context of the entire image. When rendering an object using an estimated HDR

illumination map into a real scene, these methods are not applicable. One would have to plan their

training and inference ahead of time to utilize these loss functions to insure temporally consistent

predictions. Due to their dependence on the context of the entire image, video tone mapping opera-

tors cannot handle the inconsistent predictions that lead to extreme temporal inconsistencies in local

sections of the image where the object is present. For these reasons, it is necessary to devise a way

to enforce temporal consistency for individual environment map predictions.

2.4.1 Video Tone Mapping

A number of tone mapping operators were modified to contain temporal components that allow

them to process HDR video attempting to prevent inconsistencies. Global operators apply the same

function to all pixels [12, 17, 38, 28, 5], for example x
1
γ . Local operators [22, 3, 4, 31], apply

different tone mapping functions depending on the local neighborhood of each pixel. Both styles of

tone mapping are extended over multiple frames in an attempt to prevent temporal inconsistencies.

2.4.2 Loss Function Modification

Deep learning preventive based solutions typically address this issue by modifying the loss. Xu et

al. [39] address this issue by training a network to output an entire video at once. By computing a

perceptual loss, squared error, and intrinsic loss over the output video, they believe they enforce tem-

poral consistent between predicts across frames. This method is not plausible for rendering pipeline

or a video of any reasonable length due to memory constraints. Eilertsten et al. [11] add a regulariza-

tion term to the loss function. They use a geometric transformation on consecutive frames, which if

these are temporally consistent, performing the warping to register the two frames should yield the

same result. Given that many illumination estimation methods do not produce videos in advance,

these methods are not applicable in this domain. In terms of post processing solutions, Marnerides

et al. [29] compose an LDR to HDR pipeline for single images. They note that since the model is

not designed for videos, flickering occurs between frames. To alleviate this, they smooth luminance

percentile curves. This process is very memory and time intensive. Guthier et al. [15] detect artifacts

if the overall brightness difference between successive frames is greater than a threshold. Through

an iterative process, the brightness is adjusted until reaching the brightness threshold.
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2.5 Panoramic Datasets

There are many existing datasets of indoor panoramas. Unfortunately, some of these datasets are

LDR only, while others are composed of synthetic data, which has been shown to not generalize

well to real data. Matterport is a panorama RGB-D indoor [7] dataset composed of home scans

from a lidar scanner. The dataset includes 90 buildings containing a total of 194,400 RGB-D images,

10,800 panoramas, and 24,727,520 textured triangles. All images are available in HDR. The Laval

indoor HDR dataset contains 2100+ high resolution indoor panoramas, captured using a Canon 5D

Mark III and a robotic panoramic tripod head [14]. Each capture was multi-exposed (22 f-stops)

and is fully HDR, without any saturation [14]. InteriorNet is a massive indoor panoramic dataset

composed of 20M images created via moving a camera through synthetic scenes [23]. In this thesis

we use a dataset generously provided by Lianjia consisting of scans of 1000 homes. These scans

resulted in 16000+ panoramas in 8K HDR. Each panorama was given with it’s associated depth,

and extrinsic matrix.

Figure 2.3: Examples of provided panoramas with depth.
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Chapter 3

Methods

A panorama of an indoor scene can be viewed as a 360 degree view of that indoor space. Within the

scene, one can identity sub spaces. For example, the popular open concept living room and kitchen

combo can be divided into a living room, and a kitchen. Each sub space or space itself, is typically

a cuboid; each space has four walls, a ceiling, and a floor. From the above, one can conclude that to

model the illumination of a space, one needs to define various cuboid parameters, and then fit them

using panoramas. With these spaces modeled as cuboids, in this thesis we propose that one can then

interpolate between these cuboids to rapidly produce accurate temporally consistent environment

maps. The following sections in this chapter detail the cuboid modelling, cuboid fitting, and the

rendering processes.

3.1 Cuboid Scene Illumination Modeling

Imagine you are in a living room, looking at a bedroom through a door, for example the right door

near the center in Fig. 3.2. It is very difficult to estimate the full surrounding luminance values of

that room from this view point. However, even with the partial observation through the doorway,

one can tell that the room is small, with a bright window on the left wall, and the ceiling has no

light. Following this intuition, we model the geometric and photometric properties of a scene as

a set of categorical labels instead of numeric ones. This section explains our categorical cuboid

representation and how we collect ground-truth and associate numeric values for the categories.

3.1.1 Categorical Cuboid Representation

A scene is represented by a set of cuboids. Each cuboid (B) consists of the floor, the ceiling, and

the four walls (Ffloor, Fceil, Fwall−l, Fwall−r, Fwall−f , Fwall−b). We model the following geometric

and photometric properties of the geometric components.
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Size(B) ← {small, medium, large}

Lpresence(Fwall−∗, Fceil) ← {yes, no}

Lsize(Fwall−∗, Fceil) ← {small, medium, large}

Lstrength(Fwall−∗, Fceil) ← {dark, intermed, bright}

Ambient(F∗) ← {dark, intermed, bright}

The cuboid, like any space, has an associated size. The majority of light sources in a space do

not come from the floor, therefore we determine the presence of a light source on the walls and

ceiling only. Given the presence of a light source, one must determine its strength and size. Ceiling

lights and windows exhibit large differences in size. Thus, we model their sizes differently, with the

ceiling categories being much smaller A.6. Light strength does not vary between ceilings and walls.

As luminance is the light emitted, or reflected by a surface, each face also has an ambient term.

3.1.2 Cuboid Ground-truth collection

Any panorama can be modelled as a cuboid. Simple data statistics are used to convert continuous

numeric values into categorical labels for the various parameters of the cuboid.

3.1.2.1 Cuboid Size

Not all spaces are initially cuboids. In this work, we convert any 3-D polygonal shape into a cuboid

to determine its width, depth, and height. To determine the width and depth, we utilize floor plans

to generate bounding boxes over the extremities of each space. The height component is determined

via 2d to 3d reconstruction given ground truth depth. With a set of values in our training dataset,

we determine three representative values for classification as follows. We generate a discrete set

of candidate values. For every triplet of candidate values, for each training value, we compute the

binning error by the L1 distance from its closest candidate value. The average binning error across

all training values is the score for the triplet. We simply use the triplet candidate values with the

smallest error for the classification.

3.1.2.2 Light Parameters

We attain wall segmentations via projecting their locations into panoramas from floor plans. Using

all panoramas on a floor, and their associated depths, we create a representation of that floor in

3D. We orthographically project this 3D representation to create a floor plan. As the ground truth

floor plans are aligned with this orthographic projection in the world coordinate frame, one can use

backwards projection to segment walls. We iterate over all 4 walls of each room projecting them

into the panorama. Given all walls of the room, we segment the ceiling as the remaining upper half

of the pixels, and the floor as the lower half. This process can be seen in 3.1. We detect lights in
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Figure 3.1: As the floor plans are aligned with an orthographic projection of the house models in
the world coordinate frame, one can use backwards projection to segment walls.

HDR images using the non-maximal suppression method from [13]. Following [13], we first extract

the global maximum value of the panorama. If this max is larger than 15000, we search for a light.

To do this, we apply start by analyzing the 3 by 3 patch centered on the global maximum. We first

check if at least one value within the patch is at least 80% of the global maximum. If a suitable

value exists, the entire patch is set to 0, and the patch grows by 1 in each dimension i.e to 4x4, 5x5,

etc... All pixels above the threshold are considered part of the light source. This process is repeated

until no value is within 80% of the global maximum. If at least 1.5% of the pixels are selected, we

consider that location a light source. We use the average of the detected light values to represent the

lights’ strength with an HDR value. To determine a scale agnostic representation of size, we place

a bounding box around the extremities of the segmented pixels and represent the size of the light

source as a percentage of the wall.

3.1.2.3 Ambient Term

Using the same wall segmentations as detailed in the previous section, we removed values over a

threshold of 15000 (HDR images range from 0 to 45684) to prevent light sources from contributing

to the ambient parameter. The ambient term of each location is then calculated as the average of its

pixels.

3.1.2.4 Parameter Bins for Classification

In this section, we detail the optimized discrete parameter values for classification which can be

found in 3.1. Note that for the largest light strength and medium light size, we picked parameters

that improved the quality of the final renderings by visual inspection as we were not satisfied with

the optimal parameters.
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Figure 3.2: Given an input panorama or perspective image, we assume space detection has been
performed. Each detection is then sent through a Space Modeller to predict the various parameters
for each face of the cuboid, as well as the cuboid’s dimension. We orient the cuboids relative to the
given image. With an object of interest to be inserted at a designated 3D position, we project the
associated cuboid map into a spherical illumination image for this point. We then take the weighted
average with the input panorama to obtain a final environment map to be used for rendering.

Table 3.1: Parameter Bins for Classification
Min Mid Max

Cuboid Dimension (2.5, 2) (4.5, 3) (9, 5)

Ambient 250 1250 3500

Light Strength 14 000 22 000 42 500

Wall Light Size 5% 50% 92.5%

Ceiling Light Size 2.5% 17.5% 50%

With the cuboid model defined and the fitting processed detailed, we now require data to fit to.

The following section details the data generation protocol.

3.2 Dataset Generation

In this work Lianjia generously provided scans of 1000 homes. These scans resulted in 16000+
panoramas in 8K HDR. Each panorama was given with it’s associated depth, and extrinsic matrix.

Depth annotations were generated through the use of a LiDAR camera. Typically reflective surfaces

do not produce depth readings. In the provided dataset, surfaces which produce depth readings are

placed in front of those that do not. This provides a dense depth map for each panorama. Each home

also comes with annotated floorplans, in which the annotations include any passageway between

spaces, space labels, and window locations. Using a floorplan, we detect visible pairs of panoramas

spanning different spaces, as well as annotate the location of the passageway between spaces in the

source panorama. Visibility testing is performed using depth values as follows: given a destination

pixel in the source image, PDest, and the destination panorama location, DLoc, in the world coor-

dinate frame, depth values are used to project the designated pixel to world PDest −→ PW orld. If
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(PW orld − DLoc)2 ≤ 0.05 meters these panoramas can see each other, and thus are paired. Each

visible panorama is considered an individual space and modelled as a cuboid. This process is de-

tailed in 3.3. Examples of detected spaces can be seen in 3.4. This creates 13058 pairs. This is split

this into 11750 pairs for training and 1308 pairs for testing.

With sufficient training data, and the cuboid model, one must now be able to infer the model for

unseen examples. The next section covers cuboid model inference.

Figure 3.3: Using floor plans panos in adjacent spaces are paired. The passage way between the
spaces are annotated. Visibility testing via depth values is performed to insure at least one panorama
is visible in the destination room.

3.3 Cuboid Model Inference

In order to build a space composed of cuboid environment maps, we use ground truth bounding

boxes of cuboid spaces, then classify their respective geometric and photometric properties. Space

detection is reserved for future work.

3.3.1 Space Detection During Inference

Space detection is performed by projecting any labelled passageway between spaces on the given

floor plans into the panorama. Panoramas are paired based on their visibility through these passage-

ways accomplished through depth testing. We did not have time to train a space detection network,

therefore we use floor plans to generate all space detections. Since various object detection frame-

works exist [33, 30] and can be generalized to detect spaces given sufficient data, we do not cover

their performance in this work and leave this for future work.

3.3.2 Cuboid Inference

We use Resnet-18 as a backbone network. Resnet is composed of four stages, then an average

pooling operation, then a fully connected layer to perform classification. After the average pooling,
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we replace the single fully connected layer with twelve separate fully connected layers. Each of

these layers accepts a 2048 feature vector. Six of these layers make predictions for the ambient

value for each face in the cuboid. The remaining five predict the presence of a light for all faces

but the one representing the floor. Any positive prediction for the presence of a light is then passed

into another unique two fully connected layers for said face. These predict the strength and size of

this light source. This set of layers can be seen in 3.2 as the face parameter classification subset

of the space modeller. The twelfth and final layer predicts the space dimensions, seen in 3.2 as the

dimension classification subsection of the space modeller. This work was implemented in Pytorch.

We utilized a work-station with dual Xeon CPUs and dual NVIDIA Titan RTX GPUs. The network

is trained with a batch size of 20, for 50 epochs. The ADAM optimizer is utilized with a standard

cross-entropy loss. The initial learning rate is 0.0002 and decays by 50% every 15 epochs.

3.4 Rendering and Illumination Interpolation

After attaining all cuboids present in the given image, one must formulate the space of cuboid

environment maps to be used for illumination estimation.

3.4.1 From Cuboid to Environment Map

During inference one does not have access to floor plans. As the input is an image centered on the

passageway into another room, we use the depth value in the center of the image, at the base of

the passageway. Given extrinsic camera parameters and this depth value, one can orient a cuboid

in the world coordinate frame. The (width, height, depth) dimensions are then used to create a

cuboid relative to the determined position. Each face is meshed to a certain resolution and is given

it’s respective ambient parameter as a constant. If a light has been determined present, it is placed in

the center of the plane consuming the percentage of the wall it has been assigned using the average

aspect ratio of lights over the dataset, 1.14. The entire area is set to the predetermined or predicted

strength value. Our representation can now be projected to anywhere in the destination room using

the proper extrinsic matrix to produce an environment map at that 3D location. Examples of spaces

composed of cuboids can be seen in 1.1.

3.4.2 Illumination Interpolation

Individual predictions suffer from spatial inconsistencies producing wildly varying light values for

small movements. This results in flickering in videos between frames producing a severe loss of

realism. With a source panorama, an object, a final destination for said object, and a prediction

environment map for that location, we propose that one linearly interpolates between the source

panorama and the final destination to completely remove temporal inconsistencies. The interpolation

blending weight is derived via computing the object’s euclidean distance to the source panorama and

the final destination. These distances are inverted, summed, and the percentage of the total inverted
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distance is the linear blending parameter assigned to each panorama 3.2. This system is highly

effective and efficient preventing a user from having to make per frame predictions.

15



Figure 3.4: Space Detection Results Pre-Visibility Testing.
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Chapter 4

Experiments

Our Cuboid-Maps are evaluated against three baselines on the generated dataset. This chapter out-

lines the baseline models, qualitative, and quantitative evaluations.

4.1 Baseline Models

Our method is compared to Srinivasan et al. [37], Li et al. [25], and Song et al. [35]. For Neural

Illumination [35] we provide ground-truth geometry. In addition, 3-D to 2-D rasterization is used to

insure the projection to the destination location is as dense and accurate as possible. To do this we

first project the 3D triangular faces into the panorama using perspective projection. Then, we loop

over all pixels in the panorama and test whether they lie within the resulting 2D triangle. If they

do, we fill the pixel with the triangle’s color. Our final modification to Neural Illumination is that

we replace their in-painting U-Net with the more recent PEN-Net [41] due to it’s proven improved

performance in in-painting versus U-Net. This method will be referred to as Neural Illumination ++

in the results. Results from rasterization versus the naive projection can be seen in 4.1.

Neural Illumination ++ [35] and Lighthouse [37] were both retrained on our data. We were

incapable of retraining Li et al. [25] due to it’s dependency on synthetic data to produce ground

truth spherical gaussians per pixel. As UCSD and lighthouse were trained with perspective LDR

image inputs, the inputs for all methods are perspective LDRs. All of the quantitative metrics are

computed on HDR images. In the event a method produces LDR output, we used a known inverse-

tone mapping operator, x2.1, to produce a proper HDR output. It should be noted that our method

can be trained with LDR or HDR inputs, as well as panoramic or perspective inputs.

4.2 Quantitative Evaluation

4.2.1 Network Inference

The results of the network inference can be found in table 4.1. The network is highly capable of

predicting room size achieving an accuracy of 97%. Presence of light detection accuracy is con-

sistent across all faces. Light strength predictions are highest for back walls, which when windows
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Figure 4.1: Results from rasterizing instead of using naive forward projection for Neural Illumina-
tion ++.

are present, are usually visible through a spatial passageway. Ceiling light strength values are the

lowest, while the size detection results are the highest, both cases are likely due to their frequent

small size. Ambient value detection is consistent across all faces except the floor. We believe this is

because there is larger variability in floor values due to glare / strong highlights from windows and

ceiling lights on the floor.

4.2.2 Comparison to Ground Truth Renders

As the environment maps produced via cuboids are not designed to be an exact replica of the ground

truth environment map, we have decided to compare against other methods via computing the MSE

between each method’s render and the ground truth’s render. Table 4.2 shows that the cuboid model

outperforms all other baselines when rendering only the object by a significant margin. When con-

sidering the entire rendered scene, our method also outperforms all other baselines. We believe this

is because of two reasons. First, when given partial information of the desired space, it is much

simpler to predict per face values for illumination rather than per pixel. Second, we choose classi-

fication instead of regression. This decreases the model’s risk of predicting large HDR values for

a light’s strength common with regression. Since the model is an approximation, in 4.2 one can

find the lowest error achievable. This error, while not capable of becoming 0 as other methods that

directly predict environment maps, is rather low. In defense of cuboid modelling, any method which

predicts a re-usable approximation, or an approximation of illumination for a space, will always

have some error versus a method that predicts per point illumination.
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Table 4.1: Cuboid Parameter Classification Accuracy out of 100.

Parameter
Position Front Back Left Right Ceiling Floor Size

Cuboid Size - - - - - - 97

Presence of Light 88 86 88 87 86 - -

Light Strength 70 76 71 70 60 - -

Light Size 86 78 79 81 91 - -

Ambient 87 85 87 86 85 74 -

Table 4.2: MSE computed on the renders VS the ground truth render

Lighthouse UCSD Neural Illum ++ Ours Ours GT

Object Only 1.98 1.64 0.58 0.31 0.29

Entire Image 0.078 0.053 0.025 0.017 0.014

4.2.3 User Study

Given a real image of an indoor scene, we insert an object at two points in the scene that should dis-

play a large difference in lighting. We render the object using predictions for each baseline method.

Users are shown three sets of results: two methods, and the ground truth render. Users are asked to

pick which is more realistic, or whether the methods produce similar results, with the ground truth

as a reference. An example question can be seen in 4.2.

The scenes were categorized into either Easy or Hard cases. An Easy case, is a case in which a

single, or multiple light sources is visible in the input image. Example Easy cases can be seen in the

first two scenes in 4.4. In Hard cases the perspective input does not directly show any light source,

but does display hints via specular highlights available in the scene. An example Hard case can be

seen as the third scene in 4.4. Scores for each method were computed as +1 if preferred, 0 if similar,

and -1 if not preferred. The average of all scores was taken. A score of 1.0 indicates that method

was preferred 100% of the time, 0 both methods were similar in all cases, and -1.0 indicates the

method was never preferred. In 4.3 one can see that in both categories of comparisons against all

methods, our method is preferred. Neural Illumination ++ takes second place outperforming UCSD

and Lighthouse. UCSD performs the worst in all comparisons. This is likely because of their inflex-

ible model requiring extensive synthetic data for training not allowing for any form of retraining

on our real dataset. For the easy category our preference rates are high against all baselines. This

indicates that, given the visibility of a light source in an input image, our method is more consistent

in properly modeling it. We believe this is because we choose classification instead of regression,

decreasing the model’s risk of predicting large HDR values for a light’s strength common with re-
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Figure 4.2: User study example question.

gression. The results in the Hard category suggest our illumination modeling strategy considering

more environment cues to predict the presence of unseen light sources.

4.3 Qualitative Evaluation

4.3.1 Static Renders

In 4.4 We insert an object at two points in the scene that should display a large difference in lighting.

We render the object using predictions for each baseline method. For the first pair of positions one

can see that all baseline methods are darker closer to the light source, while mine, like the ground

truth, is brighter. The second pair of positions shows that both UCSD and Lighthouse produce

predictions that are composed of bright ambient values only. While Neural Illum ++ does produce

specular highlights on the object, they are to a much lesser degree than those produced by ours and

the ground truth. In the third example one can see that our method predicts the presence of an unseen

light.

Investigating produced environment maps is a pivotal part of illumination estimation. In 4.5 one

can see that our environment maps do an excellent job of spatially positioning light sources in a

space. All examples display that our method produces more intense specular highlights versus all

other methods, indicating that not only does it position lights properly, it models their strength and

size accurately as well. The first, second, and third examples show that our model also considers

that the ambient contribution of a plane with a sufficiently strong light source is higher. In terms

of baselines, the figure shows that UCSD predicts a very low resolution environment map. These

lower resolution maps produce less sharp shadows and lighting on objects. When light sources are
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Figure 4.3: The user study scores preferences for each pair of methods in Easy situations in which
a single or multiple light sources are visible, and Hard situations in which no light sources are
immediately apparent. The tables should be read row-by-row. For example, the bottom row shows
the results of Our method against the other methods. A score of 1.0 indicates that method was
preferred 100% of the time, 0 the methods are completely similar, and -1.0 the method was never
preferred.

visible, all methods place them reasonably well. In the fourth example in which the light source is

not visible, it’s existence and localization in the environment map suffers in all baselines.

4.3.2 Illumination Interpolation

Per pixel predictions are typically temporally incoherent producing flickering artifacts when creat-

ing videos. As seen in 4.6 one can see the effectiveness of our illumination interpolation to avoid

such artifacts. In all videos beyond this example, the flickering is completely eliminated producing

a much higher quality product, while simultaneously being faster than per pixel predictions.
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Figure 4.4: Renders given two points of object insertion. In all cases you can see that our method
produces more specular highlights properly representing the spatial position of the object relative to
the light source.
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Figure 4.5: Renders and environment maps produced by each method. Our method clearly displays
better spatial awareness placing light sources at the correct position within the scene. In cases other
methods do get the correct light placement, the regressed values are not high enough to create the
same illumination effects produced by the ground truth or our model.
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Figure 4.6: Interpolating results when using per pixel eliminates the production of any flickering
artifacts
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Chapter 5

Conclusion and Future Work

This thesis introduces a cuboid structure for illumination estimation, and proposes a simple method

of using linear interpolation to prevent flickering for any illumination inference system. In this

section we will present the limitations of this work, suggest future work, and finally, conclude the

thesis.

5.1 Limitations

No method is perfect. One of the limitations of the current approach is that it produces gray scale

intensity values, resulting in unnatural looking renders under heavily colored light sources 5.1. Our

environment maps also do not replicate the ground truth environment maps resulting in a loss of

realism when rendering highly specular or metallic objects. In terms of cuboid construction, we

position the light sources in the center of the cuboid faces, at a fixed aspect ratio. Thus, when light

sources are higher on the wall, our renders may look unnatural depending on the strength of the

light. While we claim classification loss is much better than regression for the task of illumination

estimation, it is not without it’s weaknesses. One weakness of using a classification approach is that

outliers have no chance of being modelled properly, especially in terms of their spatial dimensions.

Lastly, we do not perform space detection.

5.2 Future Work

The backbone network used was very simple. Future work could explore using either an entirely

different backbone network or facial based attention to increase our classification results. Extensions

could also include positioning light sources vertically and horizontally on a face, rather than in the

center. Additionally, one could model 3D objects in the cuboid to insure light is properly occluded.

Lastly, implementing an automated space detection system would make a massive difference: one

could model an entire area with a single panorama input. This will be the main focus of future work.
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Figure 5.1: Our method only outputs gray scale HDR values. This creates unrealistic renders when
in a heavily colored area.

5.3 Conclusion

This thesis introduces a cuboid structure for illumination estimation, and proposes a simple method

of using linear interpolation to prevent flickering for any illumination inference system. The pro-

posed cuboid map illumination modelling is classification based avoiding pitfalls associated with L2

loss. Our method also uses only a single network to estimate illumination while all other’s methods

covered use at least 3. Quantitatively, the inference model effectively classifies faces of the cuboid

allowing for our qualitative and quantitative evaluations to demonstrate consistent improvements

over the existing techniques. In both Easy and Hard cases our method outperforms all other base-

lines according to our user study. Our performance in the hard category indicates that when given

partial information of the desired space, it is much simpler to predict per face values for illumina-

tion rather than per pixel. In terms of matching the pseudo ground truth renderings, our method also

significantly out performs all baselines. To conclude, we believe the cuboid structure often produces

feasible illumination maps whether or not lights are observed directly in the input that can be rapidly

reprojected to produce a variety of high quality renders.
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Appendix A

Appendix

A.1 Rendering Software: Blender

In this thesis all renderings were created with Blender 2.90a. Blender provides two methods of
rendering, a real time engine, Eevee, and a slower more advanced engine, Cycles. Cycles averages
randomized rays from the camera into the scene using Monte-Carlo simulation [8]. The rays are
continually reflected or refracted until they either get absorbed by objects, hit a light source or reach
their bounce limit. This process, when applied to paths of light is called path tracing. Eevee uses
rasterization via OpenGL 3.3 [8]. Rasterization works projects the faces of a model onto the pixels
that make up the 2D image. The pixels have their RGB values adjsuted according to an objects
various BRDFs and location in the scene i.e is it in a shadow. Eevee provides real time rendering
[8]. As always, there is no free lunch, and this speed comes at the cost of accuracy. In this thesis we
exclusively use Cycles.

A.1.1 HDR Environment Lighting Setup

HDR lighting provides realistic lighting and shadows due to the images higher range of luminance
levels. They improve reflections from metallic and glossy materials created in 3D as panoramic
HDR environment maps, give these materials a world around them to reflect. In Blender one must
set up their HDR environment map as either 1) a background that casts no light, 2) a background
that casts light or 3) is invisible, but casts light. Regardless of the setup, it’s light contribution value
must be set. This is widely dependant on the HDR’s range of values. For all renderings and videos
in this thesis we set a light contribution value of 0.0008. As our environment maps are estimated,
we use the third setup for all renderings (i.e HDR environment map is invisible and only contributes
light). This setup can be seen in A.1.

A.1.2 Enhancing Shadows to Remove Glare

High quality shadows make a rendered object look much more realistic. We perform two optimiza-
tions to provide higher quality shadows. First, we add a glossy BRDF to shadow catcher and set
roughness to 0.4. This produces a more reflective material versus the default solid color plane that
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Figure A.1: Blender uses a shader node system. In this figure one can see the background is loaded in
the node with the orange tab. To insure it only lights objects in the scene and is not the background,
we use a light path node specifying that the HDR environment should only light objects in the
camera’s view.

catches shadows in blender. The second optimization to improve shadow quality is from [19]. The
object O, shadow S, and background B, are rendered separately. The shadow is initially composited
on a background of all white, 1.0 values. With these three renders we perform the following:

S
′ = S2

Out = (S′ ∗B) ∗OMask + O

S
′

is a darker shadow. This shadow, with dark RGB values close to 0, weights the image values
lower. Then the object is then composited on top.

A.2 Cuboid Parameter Distribution and Confusion Matrices

In the following figures one can find a in-depth analysis of errors, as well as the exact test data
distributions for all variables, for each face. Starting with the light presence, the back face of the
cube is the only face in which the data distribution is not skewed towards "No Light". Light strength
value distributions show that in all cases, the medium strength is the most frequent. Our predictions
indicate they are done proportionally to the dataset distribution for all faces but the ceiling. Strength
predictions for the ceiling are skewed towards stronger values. Light sizes for all faces are heavily
skewed towards smaller lights. Despite this, our system predicts a good spread of light sizes. In
terms of the ambient parameter, the floor’s ambient values tend to be much brighter than the rest of
the faces. This is likely due to it’s constant exposure to both wall and ceiling light sources.
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A.3 Cuboid Parameters Binned

In A.6 one can see the binning results of Light Size for walls and ceilings. Note that the ceiling lights
are much smaller and have virtually no large lights. Therefore we decided to separate ceiling light
size from wall light size to prevent a extremely skewed distribution. A.7 looks bell shaped. While
we did try to regress this value due to it’s distribution shape, ultimately classification provided better
results. Lastly in A.8 one can see that the large majority of ambient values are very small.

A.4 More Qualitative Results

Below one can find more qualitative results of our method.
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Figure A.2: Light Presence confusion matrices and data distribution per cuboid face.
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Figure A.3: Light Strength confusion matrices and data distribution per cuboid face.

35



Figure A.4: Light Size confusion matrices and data distribution per cuboid face.
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Figure A.5: Ambient value confusion matrices and data distribution per cuboid face.

37



Figure A.6: Binning results of Light Size for walls and ceilings. Note that the ceiling lights are much
smaller and have virtually no large lights.

Figure A.7: Binning results of Light Strength for all faces but the floor.
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Figure A.8: Binning results of Ambient values for all faces.

Figure A.9: Two Stills Qualitative Evaluation 2

39



Figure A.10: Renders With Environment Maps 2
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Figure A.11: Renders With Environment Maps 3
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