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Abstract 

Phaeocystis is an ecologically important cosmopolitan genus with several species that 

form harmful algal blooms. Previous studies of the mechanisms of Phaeocystis blooms 

have been hindered by the small size of Phaeocystis cells and the complex Phaeocystis 

life cycle, which includes multiple free-living stages and a colonial stage that dominates 

during blooms. In this thesis, I apply 16S amplicon sequencing to explore the 

mechanisms underlying a P. globosa bloom in the Beibu Gulf. Using the spatial-temporal 

dynamics of P. globosa, bacteria, archaea, phytoplankton and environmental variables, I 

develop a model for the development and progression of the P. globosa bloom. After, I 

identify bacteria that interact with P. globosa during the bloom by studying the P. 

globosa colony microbiome. While P. globosa colonies had different bacterial 

compositions compared to seawater samples collected from the same locations, I did not 

find evidence for a core P. globosa colony microbiome. 

Keywords:  Phaeocystis globosa; harmful algal blooms; phytoplankton; Beibu Gulf; 

16S amplicon sequencing  
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Chapter 1. Introduction 

1.1. Phytoplankton 

The term phytoplankton is used to describe a diverse, polyphyletic group of 

organisms that are mostly unicellular autotrophs found in marine and fresh water 

(Falkowski and Raven 1997). Phytoplankton taxa can be distributed into at least eight 

major groups or phyla, including one major prokaryotic group (the cyanobacteria) and a 

handful of eukaryotic groups (Falkowski et al. 2004). The two major groups of eukaryotic 

phytoplankton are the diatoms, a monophyletic group with cells walls composed of 

intricate and striking patterns of silica, and the dinoflagellates, a monophyletic group with 

cells that contain a flagellum for swimming. Phytoplankton possess a complex 

evolutionary history with photosynthesis initially spreading from the cyanobacteria to a 

variety of eukaryotic clades via endosymbiosis (Delwiche 1999). Following this event, 

two major plastid lineages evolved: “green” and “red”, which differ based on their 

pigment composition and were both subsequently diversified by secondary and tertiary 

endosymbiotic events (Falkowski et al. 2004; Figure 1). Recognizing this complex 

evolutionary history and the resulting diversity is crucial for appreciating the importance 

of phytoplankton. 

Phytoplankton are key contributors to primary production and a variety of 

biogeochemical cycles. In addition to being responsible for most of the ocean’s primary 

production, phytoplankton also account for >45% of the planet’s annual net primary 

production (Field et al. 1998). The evolutionary diversity of phytoplankton translates into 

diverse contributions to the planet’s biogeochemical cycles (Litchman et al. 2015). For 

example, coccolithophorids contribute to the marine calcium cycle via the formation of 

calcium carbonate plates, which contribute to calcium carbonate rock formations. In 

contrast, diatoms contribute significantly to the global silica cycle due to their unique 

silica cell walls (Litchman et al. 2015). Despite their important contributions to our 

planet’s biogeochemical cycles, phytoplankton are more well-known for their ability to 

form harmful algal blooms.  
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Figure 1 The evolutionary history of phytoplankton. 
Source: From (Falkowski et al. 2004). Reprinted with permission from AAAS.  

1.2. Harmful algal blooms  

 

Figure 2 An algal bloom in Lake Eeerie.  
Source: National Oceanic and Atmospheric Administration 

Harmful algal blooms (HABs) are a global phenomenon (Zohdi and Abbaspour 

2019) that is increasingly important due to the growing impacts on human and 

ecosystem health and the resulting economic losses. Algal blooms are rapid 
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accumulations in the algae population that can often be easily recognized by water 

discolouration due to the algae pigments (Zohdi and Abbaspour 2019; Figure 2). Algal 

blooms that have associated negative impacts such as natural toxin production or 

dissolved oxygen depletion are labelled as HABs (Zohdi and Abbaspour 2019). Of the 

5,000+ phytoplankton species, only about 300 are known to form algal blooms and 

about 75 can form HABs (Malaei Tavana et al. 2008), most of which are cyanobacteria, 

diatoms and dinoflagellates (Zohdi and Abbaspour 2019). The causes of HABs are 

believed to be multi-faceted (Zohdi and Abbaspour 2019) with contributions from human 

activities i.e. eutrophication (Malaei Tavana et al. 2008) and natural factors i.e. current 

systems and weather patterns (Anderson 1994). The consequences of HABs are 

extensive and include the direct or indirect poisoning of humans and aquatic animals, 

decreased water quality, ecosystem damage and economic losses due to human health, 

fisheries, tourism, and recreation (Zohdi and Abbaspour 2019). Alarmingly, the number 

of HABs, the scale of the phenomenon and the downstream consequences have all 

increased in recent decades (Sellner et al. 2003, Zohdi and Abbaspour 2019; Figure 3), 

a trend that many researchers attribute to increased human activities such as 

eutrophication (Sellner et al. 2003). One example that follows this trend is HABs caused 

by members of the genus Phaeocystis.  

 

Figure 3 Comparison of harmful algal blooms (HABs) from 1970 and 2015. 
Outbreaks are measured by occurrences of paralytic shellfish 
poisoning (PSP), a syndrome of shellfish poisoning caused by 
toxins produced by some HAB species. 

Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 
International Journal of Environmental Science and Technology, Harmful algal blooms (red tide): 
a review of causes, impacts and approaches to monitoring and prediction, E. Zohdi and M. 
Abbaspour, Copyright © 2019, Islamic Azad University (IAU) (2019)  
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1.3. Phaeocystis  

Phaeocystis is a cosmopolitan haptophyte genus that is regarded as ecologically 

important and a nuisance. There are at least six species in the genus (Medlin and 

Zingone 2007), three of which have been identified as forming blooms: P. globosa, P. 

pouchetti and P. antarctica (Schoemann et al. 2005). While the genus has a global 

distribution, P. globosa blooms are restricted to temperate and tropical waters and P. 

pouchetti and P. antarctica bloom in the Arctic and Antarctic waters respectively 

(Schoemann et al. 2005).  Phaeocystis blooms are considered harmful for many reasons 

including the production of toxic haemolytic substances (van Rijssel et al. 2007), the 

resulting fish mortality and the formation of odorous foams on beaches (Schoemann et 

al. 2005). Despite their label as a nuisance, Phaeocystis are ecologically important: they 

are key organisms in driving biogeochemical cycles (Schoemann et al. 2005) and are 

significant producers of DMSP (Liss et al. 1994). DMSP produced by Phaeocystis is 

subsequently cleaved into DMS (Stefels and Dijkhuizen 1996), which reduces the effect 

of greenhouse gases such as carbon dioxide (Verity et al. 2007). The observed 

correlation between Phaeocystis blooms and DMS in the atmosphere (Turner et al. 

1995) suggests that these harmful blooms may paradoxically be important for global 

climate regulation. The global distribution, bloom-formation and ecological importance of 

Phaeocystis have resulted in extensive study of the genus, but our understanding of its 

blooms has been hindered by its complex life cycle (Verity et al. 2007). 

The formation of blooms by Phaeocystis is a life cycle event, which involves the 

transition from a free-living to a colonial morphotype. Phaeocystis has a complex, 

polymorphic life cycle with alteration between three types of free-living cells and colonial 

cells (Rousseau et al. 2007; Figure 4). Phaeocystis colonies consist of thousands of 

cells embedded in a polysaccharidic matrix (Schoemann et al. 2005; Figure 4a) that can 

reach up to 3 cm in size (Chen et al. 2002). Critically, the majority of Phaeocystis blooms 

consist of the colony form (Verity et al. 2007), which suggests that the success of the 

genus can largely be attributed to their ability to form colonies (Schoemann et al. 2005). 

Hypotheses that have been proposed to explain the function of colony formation in 

Phaeocystis include 1) a defensive role by reducing viral infections (Brussaard et al. 

2005) and predation (Noordkamp et al. 2000, Nejstgaard et al. 2007), 2) a reproductive 

role by facilitating sexual reproduction (Rousseau et al. 2013) and 3) a means of 
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sequestering micronutrients by promoting symbiotic relationships with bacteria (Bertrand 

et al. 2007, Delmont et al. 2014, Bender et al. 2018). Potential triggers of colony 

formation, which may be the same as the triggers of bloom formation (Bender et al. 

2018), include abiotic factors, such as nutrient availability (Bender et al. 2018) and light 

(Cariou et al. 1994), and biotic factors, such as grazing cues (Long et al. 2007) and viral 

infection (Brussaard et al. 2005). Overall, however, the mechanisms of colony and 

bloom formation in Phaeocystis remain unclear. One strategy that can be used to further 

our understanding of the bloom mechanisms is studying geographical regions that are 

recurrently impacted by Phaeocystis blooms. 

 

Figure 4 P. globosa colony (a) and free-living (b) stages. The P. globosa life 
cycle (c) is complex, with two haploid flagellate, one diploid 
flagellate and one diploid colonial stage. The diploid colonial stage 
is associated with the formation of blooms. The white scale bar in 
(b) is 1 µm. 

Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 
Biogeochemistry, A taxonomic review of the genus Phaeocystis, L. Medlin and A. Zingone, 
Copyright © 2007, Springer Science Business Media B.V. (2007). Adapted by permission from 
Springer Nature Customer Service Centre GmbH: Springer Nature, Biogeochemistry, The life 
cycle of Phaeocystis: state of knowledge and presumptive role in ecology, V. Rousseau et al., 
Copyright © 2007, Springer Science Business Media, Inc. (2007) 

1.4. P. globosa blooms in the Beibu Gulf 

The Beibu Gulf is a coastal region in southwest China (Figure 5) that has recently 

been impacted by recurrent P. globosa blooms (Xu et al. 2019). The region contains 

some of the most abundant fishing grounds in the coastal waters of China (Zhong 2015) 

but, like most of China’s coastal waters, has been subject to extensive eutrophication 
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(Han et al. 2012). While HAB occurrences from 1985-2010 in the Beibu Gulf were largely 

dominated by the cyanobacterium Microcystis aeruginosa and co-occurrences of 

cyanobacteria, dinoflagellates and diatoms, P. globosa is now the major species in 

blooms (Xu et al. 2019). The first documented P. globosa bloom occurred in 2011 and 

has been followed by large recurrent blooms in the subsequent years (Xu et al. 2019). 

The impact of these blooms on the local aquaculture industry is substantial and several 

of the blooms have also posed a threat to the cooling system of nuclear power plants 

(Xiaokun et al. 2019). While human activities have been identified as key contributors to 

HABs in the Beibu Gulf (Xu et al. 2019), the mechanisms of P. globosa blooms in the 

Beibu Gulf are currently unknown. Tracking the microbial community composition during 

a P. globosa bloom may provide insight into the mechanisms underlying this 

phenomenon. 

 

Figure 5 The Beibu Gulf.  

1.5. Methods for studying microbial community 
composition  

1.5.1. Culturing and microscopy  

Culturing and microscopy are fundamental, but limited, techniques in molecular 

ecology for determining microbial community composition. Since the first intentional 

isolation of bacteria for scientific purposes was achieved by Robert Kock and Julius Petri 
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in the 1870’s, culturing, a method of multiplying microbial organisms via reproduction in 

a controlled laboratory setting, has become the gold standard for microbial 

characterization. Culturing facilitates the production of a large number of cells from a 

clonal population that are amenable to numerous functional tests on their biochemistry, 

physiology and genetics (Hugerth and Andersson 2017). However, the number of 

species that can be characterized using culturing is limited because most bacteria 

cannot be cultivated with standard techniques. Growth requirements differ between 

organisms, with many having narrow windows of growth that prevent them from growing 

fast enough in the lab to be distinguishable (Lagier et al. 2015). Additionally, some 

microbes may fail to grow if important pathways are missing in their environment (Nye et 

al. 1999) or if they are dependent on molecules produced by other members of their 

community (D’Onofrio et al. 2010). Despite advances in culturing techniques, isolating 

and culturing bacteria remains a complex and time-consuming endeavour. An alternative 

to culturing is performing microscopy directly on environmental samples. Microscopy has 

vastly improved since the first observations of microbial organisms by Antony van 

Leeuwenhoek in the 1670’s, with techniques such as electron microscopy, confocal 

microscopy and photoswitchable fluorophores now available to be used on images of 

live or fixated bacteria  (Coltharp and Xiao 2012). However, there are also several 

limitations to microscopy: the taxonomic resolution obtained is typically inadequate for 

the diversity of microbes found in an environmental sample, years of training are 

required to be able to correctly visually identify microbes, cryptic species cannot be 

differentiated and biases due to observer effects are common (Hugerth and Andersson 

2017). Thus, while culturing and microscopy are still important tools in molecular 

ecology, the field has moved beyond the limitations of these techniques to molecular 

fingerprinting.  

1.5.2. Molecular fingerprinting 

Molecular fingerprinting, which uses molecular techniques to identify microbes, is 

an integral tool in molecular ecology for determining microbial community composition. 

The small subunit (SSU) of the ribosomal RNA (rRNA) gene (16S in prokaryotes and 

18S in eukaryotes) was one of the first genes to be established as suitable for inferring 

phylogenetic relationships between prokaryotes (Woese and Fox 1977) and was soon 

applied to study the composition of natural communities (Pace et al. 1985). The 
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advantages of the SSU rRNA gene are that it is universal i.e. found in all cellular life 

forms, highly conserved, rarely transferred horizontally and has both conserved regions 

that can be targeted by PCR primers and variable regions that can be used as molecular 

markers (Hugerth and Andersson 2017). While other genes do share these properties 

e.g. the large subunit rRNA, the length of the SSU rRNA gene was most suitable for 

early molecular techniques and the wealth of knowledge that has since been 

accumulated in databases makes it impractical for the field to switch to a different gene 

(Hugerth and Andersson 2017). Today, the SSU rRNA and the internal transcribed 

spacer (ITS) are the most commonly used genes for analyzing the phylogenetic 

composition of communities (Hugerth and Andersson 2017).  

High-throughput environmental fingerprinting approaches such as denaturing 

gradient gel electrophoresis (DGGE), automated ribosomal intergenic spacer analysis 

(ARISA) and terminal restriction fragment length polymorphism (T-RFLP) first arose in 

the 1990s. To perform DGGE, primers are designed to amplify the target gene sequence 

using PCR and the PCR products are subsequently run on a polyacrylamide gel to 

denature and separate the fragments (Muyzer et al. 1993). The resulting banding pattern 

can be used to compare changes in taxonomic composition between samples. Similarly, 

ARISA involves PCR amplification of the intergenic spacer region between the small and 

large subunits of the rRNA gene operon followed by running the resulting PCR 

fragments on a polyacrylamide gel (Fisher and Triplett 1999). Finally, T-RFLP uses the 

size of the terminal fragments of the amplified region following digestion with restriction 

enzymes to determine taxonomic composition (Liu et al. 1997). While DGGE, ARISA 

and T-RFLP were commonly used in the 1990s and early 2000s, these techniques have 

since been replaced with higher throughput and resolution molecular methods. 

1.5.3. DNA arrays 

Microarrays are an alternative to molecular fingerprinting that also arose in the 

1990s. DNA arrays are a group of technologies that use oligonucleotide probes attached 

to a surface in an array to quantify the relative concentration of nucleic acid species in a 

solution via the binding of labeled nucleic acids to the probes (Bumgarner 2013). While 

microarrays are higher throughput than techniques like DGGE, identification is restricted 

to sequences that are previously known, which limits its application as a general 

environmental survey tool (Hugerth and Andersson 2017). 
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1.5.4. Amplicon sequencing 

 

Figure 6 Illustration of a workflow for amplicon sequencing of environmental 
samples. Following DNA extraction, PCR is used to amplify a region 
of the 16S gene. The amplified regions are sequenced and assigned 
taxonomy by comparing the sequences to a database of sequences 
with known taxonomy.  

High throughput DNA sequencing i.e. next generation sequencing (NGS) has 

transformed the field of molecular ecology with the application of amplicon sequencing. 

While the exact sequencing approach differs between NGS platforms, all platforms 

facilitate the sequencing of millions of small fragments of DNA in parallel. Moreover, 

NGS technologies have become increasingly rapid, sensitive and cost-efficient (Sboner 

et al. 2011). Amplicon sequencing is a method of targeted NGS that uses PCR to 

amplify targeted regions in the genome (i.e. the SSU rRNA), which can then be pooled 

together from hundreds of samples and sequenced simultaneously. Taxonomic 

characterization of the generated sequences is based on similarity to the reference gene 

sequences available in public databases (Gupta et al. 2019; Figure 6).  The first study 

that used 454 pyrosequencing to assess microbial communities was performed in a 

marine water community (Sogin et al. 2006) and demonstrated a much larger microbial 

diversity than previously expected with an underappreciated number of low abundance 

organisms. The benefits of amplicon sequencing include increased throughput 

compared to historical techniques, increased phylogenetic resolution and the ability to 

determine the relative abundance of all microbes in a sample (amplicon sequencing 
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does not rely on whether the microbes can be cultured or identified based on 

morphology). However, some of the recognized limitations of amplicon sequencing 

include PCR biases due to variable primer binding efficiencies, the challenge of 

identification beyond the genus level due to a high similarity between SSU rRNA gene 

sequences from closely related species (Gupta et al. 2019) and the reality that amplicon 

sequencing only gives information on the relative abundance of gene copies in each 

sample. Amplicon sequencing cannot provide information on the absolute abundance of 

organisms and variation in gene copy number between genomes can make results 

misleading (Větrovský and Baldrian 2013). Despite theses limitations, amplicon 

sequencing has been used in major projects such as the Earth Microbiome project 

(Gilbert et al. 2014) and the Tara Oceans global ocean survey (Lima-Mendez et al. 

2015) to gain insight into the microbial community composition of environmental samples 

at a depth and resolution that has not been previously achieved. Amplicon sequencing 

has also been used to further our understanding of the mechanisms of phytoplankton 

blooms caused by a number of different species by observing the microbial community 

composition during the bloom (e.g. Needham and Fuhrman 2016). 

1.6. Thesis aims 

In this thesis, I report the application of 16S amplicon sequencing to explore the 

mechanisms of P. globosa blooms in the Beibu Gulf. The 16S rRNA gene was chosen to 

allow for simultaneous study of the bacteria, archaea and photosynthetic eukaryotes. 

The 16S rRNA gene is advantageous for studying photosynthetic eukaryote 

communities due to the low copy number variation in the chloroplast 16S rRNA gene 

compared to the 18S rRNA gene (Needham and Fuhrman 2016). First, I explore the 

composition of P. globosa and other microbes in the Beibu Gulf epipelagic layer. 

Second, I explore the spatial-temporal distribution of microbial organisms and 

environmental variables at three time points of a P. globosa bloom in the Beibu Gulf. 

These spatial-temporal patterns will provide an initial insight into the roles of different 

microbes and environmental factors in the community at different stages of the bloom. 

Third, I identify microbes with putative interactions with P. globosa colonies with a focus 

on the microbiome of P. globosa colonies sampled from the same bloom. Identifying 

microbes that are associated with P. globosa will facilitate the identification of microbes 

that are candidates for forming symbiotic relationships with P. globosa colonies during 
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blooms. Collectively, this explorative approach will further our understanding of the 

mechanisms underlying P. globosa blooms in the Beibu Gulf as well as the global 

mechanisms of Phaeocystis blooms.  

The explorative analysis of the mechanisms of P. globosa blooms in the Beibu 

Gulf reported here has three aims. In chapter two I present the methods that were used 

for data collection and the construction of a bioinformatics pipeline to address the three 

aims.  

The first aim, which is presented in chapter three, is to explore the composition of 

P. globosa and other microbes in the Beibu Gulf using 16S amplicon sequencing.  

The second aim, which is presented in chapter four, is to explore the spatial-

temporal dynamics of P. globosa, bacteria, archaea, phytoplankton and environmental 

factors during a P. globosa bloom in the Beibu Gulf using 16S amplicon sequencing. In 

this chapter I use the spatial-temporal distribution patterns of the microbes and 

environmental data to develop a model for the development and progression of the 

bloom.  

The third aim, which is presented in chapter five, is to explore microbes that 

potentially interact with P. globosa colonies during a bloom in the Beibu Gulf using 16S 

amplicon sequencing. In addition to the field samples, I use direct sequencing of P. 

globosa colonies to explore the P. globosa colony microbiome.  

Finally, in chapter six I present my conclusions on the mechanisms underlying P. 

globosa blooms in the Beibu Gulf and discuss future experiments that can be used to 

further this understanding.  
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Chapter 2. Data collection and bioinformatics 
pipeline 

In this chapter I present the methods that were used to collect 16S amplicon 

sequencing data during a P. globosa bloom in the Beibu Gulf and the bioinformatics 

pipeline that was used for the analysis of the amplicon sequencing data. My contribution 

to this chapter is the development and application of the bioinformatics pipeline.  

2.1. Data collection 

2.1.1. Sample collection 

 

Figure 7 Locations of thirty-five sampling sites in the Beibu Gulf.  

Three expedition voyages were conducted in 2019 in the Beibu Gulf during a P. 

globosa bloom to collect field and colony samples. The first expedition (January) was 

during the peak of the bloom, the second expedition (Feb-March) was during the initial 

decay of the bloom and the third expedition (April) was at a later decay stage of the 

bloom. Field samples were collected at thirty-five unique locations (Figure 7) at a range 

of water sampling depths (0-72m). Every location had a sample collected at the surface 
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(0m) and some locations had additional samples collected at additional depths below the 

surface (5-72m) where the water depth permitted. For each field sample (n = 231), 0.5-4 

L of seawater was collected and filtered using 200 µm mesh (Hebei Anping Wire Mesh 

Co., Ltd, China) to remove larger zooplankton and phytoplankton. A second filtration was 

performed using 10 µm polycarbonate membranes (Millipore, USA) followed by a final 

filtration using 0.2 µm polycarbonate membranes (Millipore, USA). The materials 

captured by the 10 µm membranes were 10-200 µm in size and represent the large 

filtration size fraction. The materials captured by the 0.2 µm membranes were 0.2-10 µm 

in size and represent the small filtration size fraction (Figure 8). The 10 µm and 0.2 µm 

membranes (n = 455) were transferred into liquid nitrogen for storage. Samples of whole 

P. globosa colonies (n = 6) were also collected during the January and Feb-March 

expeditions. Each colony sample was separated from the seawater using a Dispette, 

washed with sterile seawater three times and placed in a 2 mL cryopreservation tube for 

storage in liquid nitrogen.   

 

Figure 8 Filtration strategy for processing seawater samples. Field samples 
were filtered through 200 µm, 10 µm and 0.2 µm polycarbonate 
membranes. The materials captured by the 10 µm membranes were 
10-200 µm in size and represent the large filtration size fraction. The 
materials capture by the 0.2 µm membranes were 0.2-10 µm in size 
and represent the small filtration size fraction 
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A number of environmental variables were also measured during the expeditions 

to allow for the study of their role in bloom development and progression. Water depth, 

temperature and salinity were determined using a Conductivity-Temperature-Depth 

profile (Sea-Bird, America) and NO3, NO2, PO4, NO2, NH4 and SiO3 were measured with 

Skalar San++ CC Continuous Flow Analyzers (Netherlands). Chlorophyll a was 

measured from 0.3-0.5 L seawater samples that were collected and filtered using GF/F 

filters and stored at 0°C away from light. The filters were extracted using a buffered 

acetone solution (90%) for 24 h and the Chlorophyll a concentration in the extract was 

determined by a Fluorometer (Trilogy, Turner Design). 

2.1.2. Sample processing  

DNA was extracted from the field samples using the HP Plant DNA kit (Omega, 

USA) according to the manufacturer’s instructions with some modifications. Briefly, after 

the samples were taken out of liquid nitrogen, 500 µL CSPL buffer (Omega, USA) was 

immediately added so that the membranes were completely immersed. The membranes 

were cut with scissors 50 times and then crushed by a cell crusher (MP, USA) for 5 s at 

a speed of 4 m/s after adding 20 mg glass beads. The remaining procedure followed the 

manufacturer’s instructions. DNA was extracted from the colony samples using the HP 

Plant DNA kit (Omega, USA) according to the manufacturer’s instructions. The V3-V4 

region of the 16S rRNA gene was amplified from the extracted DNA using the 341F 

forward primer, CCTAYGGGRBGCASCAG, and the 806R reverse primer, 

GGACTACNNGGGTATCTAAT, with a unique barcode sequence at the 5’ end. PCR 

reactions were performed in 50 µL reactions with 50 ng of DNA template. The reaction 

conditions consisted of an initial denaturation at 94°C for 4 min, followed by 30 cycles of 

denaturation at 94°C for 1 min, annealing at 52°C for 90 s and elongation at 72°C for 2 

min, with a final extension at 72°C for 10 min. The quality of the libraries was assessed 

with a Qubit 2.0 Fluorometer (Thermo Scientific). Finally, the prepared libraries were 

sequenced with 2x250 paired-end reads using the NovaSeq Illumina platform (Illumina, 

USA; Biomarker Technologies, China) with an average of 89,072 reads/sample (range: 

54,470 - 112,635 reads/sample; Figure 9).  
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Figure 9 Histogram of the number of reads/sample. The red vertical line 
represents the mean. 

2.2. Bioinformatics pipeline  

2.2.1. Operational taxonomic units  

In the context of molecular ecology, the analysis of amplicon sequencing data 

typically begins with the construction of operational taxonomic units (OTUs). OTUs are 

defined by clustering sequences based on a similarity threshold, which is typically set to 

97% for 16S rRNA sequences. This similarity threshold is based on the DNA 

reassociation value that was previously accepted as the definition for bacterial species 

(Stackebrandt and Goebel 1994). Following this definition, OTUs are often used as the 

working definition of a species. OTUs can be used to merge variation within strains into 

a single cluster, merge variation between strains of a single species into a single cluster 

and to merge variation due to experimental error into a single cluster. Dealing with 

experimental error is particularly important with high-throughput sequencing where an 

error rate of ~0.1%/nucleotide (the standard Illumina error rate) results in many 

sequences having at least one error, which can obscure the underlying biology and 

artificially inflate sample diversity. OTU picking procedures can be divided into three 

main approaches: 1) closed reference methods, where reads are mapped and assigned 

to sequences in a databases and reads that fail to map are discarded, 2) open reference 

methods, where reads that fail to map to sequences in a reference database are 
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submitted to a de novo approach and 3) de novo methods, which employ either 

hierarchical clustering e.g. MOTHUR (Schloss et al. 2009) or heuristic methods e.g. 

Usearch (Edgar 2013) (Hugerth and Andersson 2017). While OTUs are widely used in 

molecular ecology, there are several recognized shortcomings: a reduction in 

phylogenetic resolution i.e. OTUs cannot differentiate between strains of the same 

species, the use of arbitrary identity thresholds (there is now evidence that the optimal 

identity threshold for the 16S rRNA gene is > 97% (Edgar 2018) and that the optimal 

identity threshold differs between genes), dataset dependency of de novo OTUs, and the 

loss of biological variation that is not represented in the reference database for closed 

reference OTUs (Callahan et al. 2017). Newer methods that remove the need to cluster 

sequences based on similarity and are independent of datasets and databases have 

thus been recently developed to overcome these shortcomings.  

2.2.2. Amplicon sequencing variants  

 Methods that resolve amplicon sequencing variants (ASVs) by inferring biological 

sequences and correcting or removing sequencing errors have recently been developed 

(Eren et al. 2015, Callahan et al. 2016, Edgar 2016, Amir et al. 2017) with the intention 

of replacing OTUs (Callahan et al. 2017). ASVs are inferred de novo and biological 

sequences are discriminated from sequencing errors on the basis of the expectation that 

biological sequences are more likely to be observed repeatedly than sequences that are 

errors (Callahan et al. 2017). In addition to having better sensitivity and resolution than 

OTU methods (Callahan et al. 2016), ASV labels are consistent because they represent 

a biological reality and can thus be compared even if they are inferred independently 

from different samples. This consistent labelling allows for data from studies to be 

merged for meta-analysis without reprocessing, facilitates replication and facilitates the 

use of ASVs as predictive biomarkers (Callahan et al. 2017). ASVs are also independent 

of the reference database, which allows for applications in less-studied environments, 

e.g. the ocean, and means that ASVs remain consistent even with changing reference 

databases (Callahan et al. 2017). DADA2, which uses an error model based on a matrix 

of nucleotide transition probability parameters and the abundance of each sequence in 

an iterative partitioning algorithm, is one of the most popular tools for generating ASVs 

(Callahan et al. 2016). Less popular tools that also use sequencing error models include 

UNOISE2 (Edgar 2016) and Deblur (Amir et al. 2017). Alternatively, Minimum-Entropy 
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Decomposition (MED) uses Shannon entropy to identify sequencing errors (Eren et al. 

2015). While these tools are able to produce similar microbial compositions based on 

relative abundance (Nearing et al. 2018), I elected to use DADA2 in this analysis 

pipeline because it tends to find more ASVs, suggesting that it could be better at finding 

rare organisms (Nearing et al. 2018).  

 

Figure 10 The DADA2 pipeline. Non-bolded text indicates the names of the 
functions run in the “dada2” R package (Callahan et al. 2016). *Only 
for paired-end reads.  

The full DADA2 pipeline (Figure 10) is well-documented and can be run in R 

using the “dada2” package (Callahan et al. 2016). The first step in the pipeline is filtering 

and trimming reads, which is necessary to e.g. remove reads that are too short for 
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downstream analysis, trim low-quality bases from the ends of reads and remove 

sequences with many expected errors. Next, a subset of reads is used to learn the 

model error rates, followed by dereplication of sequences and ASV inference using the 

core partitioning algorithm and the learned error model. If paired-end reads are used, 

read pairs are merged based on their exact overlap. PCR chimeras are removed using a 

global alignment that searches for a combination of left- and right-parents that exactly 

match the child sequence and finally, taxonomy is assigned to the remaining sequences 

(Callahan et al. 2016). Taxonomic classification of environmental 16S rRNA gene 

sequences is typically carried out using either homology-based approaches, which 

require alignment of query 16S rRNA sequences with 16S rRNA sequences present in 

the reference database e.g. UCLUST (Edgar 2010), or prediction-based approaches, the 

most common of which is the Ribosomal Database (RDP) Classifier (Wang et al. 2007). 

The RDP classifier uses a naïve Bayesian approach to classify sequences based on 

exact matches of 8-letter words and bootstrapping to give probability estimates. The 

DADA2 pipeline uses the RDP classifier to assign taxonomy to the genus-level and then 

species are assigned using exact matches (Callahan et al. 2016).  

2.2.3. Taxonomy reference databases  

The choice of a taxonomy reference database is an important component of 

analyzing amplicon sequencing data and depends upon the goals of the analysis. 

Reference taxonomy for 16S rRNA reads is usually based on one of thee reference 

databases: SILVA (Quast et al. 2013), RDP (Cole et al. 2014) or Greengenes (Mcdonald 

et al. 2011), all of which cover a large number of species and are manually curated and 

revised. The SILVA database contains taxonomic information for the domains of 

Bacteria, Archaea and Eukarya and is based primarily on phylogenies for the SSU rRNA 

genes (16S/18S) that are constructed from guide trees (Quast et al. 2013). In contrast, 

the RDP database contains taxonomic information for the 16S rRNA sequences from 

Bacteria and Archaea as well as the LSU rRNA (28S) sequences from Fungi (Cole et al. 

2014). Finally, the Greengenes databases is dedicated to Bacteria and Archaea 16S 

rRNA sequences with classification based on de novo tree construction, but has not 

been updated since 2013 (Mcdonald et al. 2011). The ideal database for assigning 

taxonomy depends largely on the targeted genes, targeted groups and the databases 

that are used most often in the area of study. I chose to use the SILVA database to 
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assign taxonomy because it is actively maintained, has SSU data for all three domains 

of life and is frequently used in studying ocean microbiome data (e.g. Sunagawa et al. 

2015), which facilitates the comparison of this data with other studies. To improve the 

taxonomic assignment for photosynthetic Eukaryotes, which have 16S plastidial genes, 

the PhytoREF database (Decelle et al. 2015) was used. The PhytoREF database 

contains plastidial 16S rDNA reference sequences that originate from a large diversity of 

eukaryotes, with a focus on marine microalgae. Sequences in the database undergo 

stringent quality filtering and are assigned to taxonomy using phylogeny-based methods 

(Decelle et al. 2015).  

2.2.4. Pipeline summary 

 

Figure 11 Analysis pipeline.  

Prior to processing the raw reads with DADA2 as part of the analysis pipeline 

(Figure 11), cutadapt v. 2.1 (Martin 2011) was used with the settings -minimum-length 

210, -maximum-length 250 and --discard-untrimmed to trim the primers from the ends of 

the reads and discard any read pairs that did not contain both primers or were too short 

or too long after trimming. Next, the trimmed reads were ran through the DADA2 pipeline 

using the “dada2” v. 1.12.1 (Callahan et al. 2016) R package in R v. 3.6.0 (R Core Team 

2019). The filterAndTrim() function was run with the settings minLen=220 and truncLen 

=c(220,220), which were selected based on the distribution of quality scores observed 
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using the plotQualityProfile() function (Figure A1) and the read length required to create 

a large enough overlap for the read pairs to merge downstream. The dada() function 

was run with pool=TRUE to pool samples for the ASV inference step and facilitate the 

discovery of rare ASVs. Finally, the mergePairs() function was run with minOverlap=10 

(instead of the default of 12) to allow read pairs from species with longer amplicons to 

merge. After processing reads though the DADA2 pipeline, the number of reads/sample 

ranged from 41,652 – 84,784 with a mean of 67,307 reads/sample (Figure 12).  

 

Figure 12 Histogram of the number of reads/sample after ASV inference using 
DADA2. The red vertical line represents the mean. 

The 64,357 ASVs generated were assigned taxonomy using the SILVA nr v. 132 

(Quast et al. 2013) database (Figure 11) using the assignTaxonomy() function to assign 

taxonomy using the RDP classifier up to the genus-level with the setting minBoot=80. 

The assignSpecies() function was used to assign species with the setting 

allowMultiple=TRUE to allow multiple species to be assigned to each ASV. To ensure 

the taxonomy assignment was not specific to the SILVA database, which could occur if 

the database representation of marine microbes was incomplete, I assigned taxonomy 

again using the same methods with the RDP v. 11.5 (Cole et al. 2014) database. While 

an accurate comparison between the two databases is challenging due to the different 

taxonomy systems implemented by each database, a comparison of the taxonomy of the 

top ten ASVs revealed similar taxonomy assignments from the two databases (Table 1). 

This provides some support that the results are independent of the SILVA database. 

However, it is important to consider that taxonomy assignments from any database are 

unlikely to be 100% accurate due to the incompleteness of taxonomy databases, which 
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could result in an ASV being incorrectly assigned to the most similar sequence in the 

databases.  

For the 2,655 ASVs that were assigned as “Chloroplast” by SILVA, taxonomy 

was assigned again using the PhytoREF v. 1.0 (Decelle et al. 2015) database (Figure 

11) with the assignTaxonomy() function and minBoot=80. Due to the smaller size of the 

PhytoREF database, which makes it challenging to assign species using exact matches, 

species were assigned using blastn from BLAST+ v. 2.10.0 (Camacho et al. 2009) 

against the PhytoREF database with the setting -qcov_hsp_perc 95 and the results were 

parsed to find the best hit(s) with PID > 90.  

After removing singletons, 55,985 ASVs remained, which were subsequently 

classified as abundant, intermediate or rare: 2,425 ASVs were classified as abundant 

(≥0.1% of reads in at least one sample), 15,236 were intermediate (<0.1% and >0.001% 

of reads in at least one sample) and 38,324 were rare (<0.001% of reads in all samples). 

Of the abundant ASVs, the majority (87.7%) could not be assigned to a classified 

species (this excludes species assignments such as “uncultured_bacterium”) using 

SILVA (Figure 13a), which reflects the incompleteness of the reference database for 

marine microbiome data. Only 6.3% of abundant ASVs were assigned to a single 

classified species, while 6.1% were assigned to >1 classified species (Figure 13a), 

demonstrating the occurrence of multiple species with the same V3-V4 16S rRNA 

sequence. A smaller proportion of abundant chloroplast ASVs (42.4%) could not be 

assigned to a classified species using PhytoREF (Figure 13b), likely because these 

ASVs were assigned to species less stringently using BLAST. Additionally, 21.1% of 

abundant chloroplast ASVs were assigned to >1 classified species (Figure 13b), likely 

due to the increased ambiguity from assigning species using BLAST. The rarefaction 

curve suggests that the sample depth was adequate for ASV discovery as the number of 

ASVs plateaued with the number of reads in each sample (Figure 14).  

Table 1 Comparison of taxonomy assigned from the Phylum to the Genus 
levels for the first ten ASVs using the SILVA (S) (Quast et al. 2013) 
and RDP (R) (Wang et al. 2007) databases (D).  

ASV D Phylum Class Order Family Genus 

ASV_1 S Cyanobacteria Oxyphotobacteri
a 

Synechococcales Cyanobiaceae Synechococcus_
CC9902 

ASV_1 R Cyanobacteria/C
hloroplast 

Cyanobacteria Family_II GpIIa NA 
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ASV D Phylum Class Order Family Genus 

ASV_2 S Proteobacteria Alphaproteobact
eria 

SAR11_clade Clade_I Clade_Ia 

ASV_2 R Proteobacteria Alphaproteobact
eria 

SAR11 Candidatus_Pela
gibacter 

NA 

ASV_3 S Proteobacteria Alphaproteobact
eria 

SAR11_clade Clade_I Clade_Ia 

ASV_3 R Proteobacteria Alphaproteobact
eria 

SAR11 Candidatus_Pela
gibacter 

NA 

ASV_4 S Actinobacteria Acidimicrobiia Actinomarinales Actinomarinacea
e 

Candidatus_Acti
nomarina 

ASV_4 R NA NA NA NA NA 

ASV_5 S Thaumarchaeota Nitrososphaeria Nitrosopumilales Nitrosopumilacea
e 

Candidatus_Nitro
sopumilus 

ASV_5 R Thaumarchaeota Nitrosopumilales Nitrosopumilacea
e 

Nitrosopumilus NA 

ASV_6 S Cyanobacteria Oxyphotobacteri
a 

Chloroplast NA NA 

ASV_6 R Cyanobacteria/C
hloroplast 

Chloroplast Chloroplast Bacillariophyta NA 

ASV_7 S Proteobacteria Gammaproteoba
cteria 

Alteromonadales Alteromonadace
ae 

Alteromonas 

ASV_7 R Proteobacteria Gammaproteoba
cteria 

Alteromonadales Alteromonadace
ae 

Alteromonas 

ASV_8 S Proteobacteria Alphaproteobact
eria 

SAR11_clade Clade_I Clade_Ia 

ASV_8 R Proteobacteria Alphaproteobact
eria 

SAR11 Candidatus_Pela
gibacter 

NA 

ASV_9 S Cyanobacteria Oxyphotobacteri
a 

Chloroplast NA NA 

ASV_9 R Cyanobacteria/C
hloroplast 

Chloroplast Chloroplast Bacillariophyta NA 

ASV_10 S Cyanobacteria Oxyphotobacteri
a 

Chloroplast NA NA 

ASV_10 R Cyanobacteria/C
hloroplast 

NA NA NA NA 
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Figure 13 The number of classified species assigned to each ASV for a) all 
abundant ASVs and b) abundant chloroplast ASVs. Abundant ASVs 
are defined as making up ≥0.1% of reads in at least one sample. The 
ASVs in a) were assigned to species using exact matches against 
the SILVA (Quast et al. 2013) database, while the ASVs in b) were 
assigned to species using BLAST against the PhytoREF (Decelle et 
al. 2015) database. 

 

Figure 14 Rarefaction curve generated using the “vegan” v. 2.5-6 (Oksanen et 
al. 2019) R package. 
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Chapter 3. Exploration of the microbial 
composition of the Beibu Gulf  

The aim of this chapter is to explore the composition of P. globosa and other 

microbes in the Beibu Gulf epipelagic layer using 16S amplicon sequencing data. First, I 

identify ASVs that represent P. globosa, explore the sequence conservation of the P. 

globosa 16S rRNA gene and explore the composition of the putative P. globosa ASVs in 

the field and colony samples. After, I explore the composition of the other microbial 

organisms detected in addition to P. globosa by the analysis of the field samples.  My 

contribution to this chapter is the data analysis and interpretation.   

3.1. P. globosa ASVs 

ASV_10 was identified as a perfect match to the 16S V3-V4 sequence from a 

published P. globosa chloroplast genome (NCBI reference sequence: 

NC_021637.1:39760-41245). To explore the level of conservation of the 16S rRNA gene 

across P. globosa strains, additional copies of the 16S rRNA gene were assembled from 

whole-genome sequencing of 49 different P. globosa strains collected from the Beibu 

Gulf (n = 15), the East China Sea (n = 3), Vietnam (n = 27) and Thailand (n = 4) 

(Appendix B). 47/49 strains had complete assemblies of the 16S rDNA sequence, 44 of 

which were identical to the full NC_021637.1 16S rDNA sequence. The other three 

strains, one from the Beibu Gulf, one from the East China Sea and one from Vietnam, 

each differed from the NC_021637.1 16S rDNA sequence by one nucleotide (PID = 

99.9%) at different positions. Only one of the three strains differed in the amplified V3-V4 

region, but this sequence was not identical to any of the ASVs. Given that the 

NC_021637.1 strain was collected from the North Sea, this provides evidence that the P. 

globosa 16S rRNA gene is highly conserved locally within the Beibu Gulf and 

internationally between strains in the Beibu Gulf, the East China Sea, Vietnam, Thailand 

and the North Sea. Next, I performed a phylogenetic analysis of additional ASVs in the 

Beibu Gulf that may represent P. globosa to further explore the level of conservation of 

the P. globosa 16S rRNA gene.  
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3.1.1. Methods for building phylogenies from marker gene 
sequencing data  

Many sophisticated model-based approaches exist for building phylogenetic 

trees from molecular data. In the case of marker gene sequencing data, phylogenies are 

used to represent hypotheses about the evolutionary relationships among OTUs/ASVs. 

The first step in building a phylogeny from this type of data is aligning the OTUs/ASVs 

using a multiple-sequence alignment program, the most common of which are Clustal 

(Larkin et al. 2007) and MAFFT (Katoh and Standley 2013). Both programs rely on 

similar methods: a pairwise distance matrix is built from the input sequences, which is 

used to construct an initial guide tree that is used to align the sequences. This initial 

alignment is scored and used to produce a new guide tree and subsequent alignment, 

which is done iteratively until a best-scoring alignment is reached. The next step after 

sequence alignment is selecting a model that best describes the evolutionary process 

that generated the data at hand. Model-based approaches for building phylogenies are 

now used more frequently than simpler approaches such as Maximum Parsimony and 

Neighbor-Joining methods. Model selection is performed within either a maximum 

likelihood (ML) framework, which typically involves comparing the ML score of a set of 

models using e.g. the Akaike information criterion (AIC), or a Bayesian inference 

framework. The selected model of evolution and the aligned OTUs/ASVs are then used 

to build the phylogeny using either ML software, e.g. RAxML (Stamatakis 2014), or 

Bayesian inference software such as MrBayes (Ronquist et al. 2012) and BEAST 

(Suchard et al. 2018). Finally, the reliability of the phylogenetic tree can be assessed 

using either ML or Bayesian inference. In the ML approach, branch support values are 

estimated using nonparametric bootstrapping. The bootstrapping procedure involves the 

production of pseudo-replicates by randomly resampling characters from the original 

data, which are subject to the same phylogenetic analysis as the original data. The 

bootstrap support for each clade is calculated as the proportion of times that the clade is 

obtained in the pseudo-replicates (Felsenstein 1985). In contrast, the Bayesian 

approach uses posterior probabilities to assess reliability.  
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Figure 15 Histogram of the percentage identity (PID) to the P. globosa 
NC_021637.1 reference sequence of ASVs assigned to P. globosa 
and with at least one read in one the six P. globosa colony samples.  

3.1.2. Phylogeny of putative P. globosa ASVs 

A phylogeny was constructed of the additional putative P. globosa ASVs in the 

data to generate a hypothesis of their evolutionary relationship to the other haptophytes. 

Of the 99 chloroplast ASVs assigned to P. globosa using PhytoREF (Decelle et al. 

2015), 40 ASVs had at least one read in one of the six P. globosa colony samples, 

providing some further support that these ASVs represented P. globosa. Additionally, 

most of the 40 putative P. globosa ASVs had PID > 99% to the P. globosa NC_021637.1 

reference sequence (Figure 15). The phylogeny was constructed using the top 20 most 

abundant putative P. globosa ASVs and 25 other haptophyte sequences from PhytoREF 

that were trimmed to the same primer sequences. The sequences (n = 45) were aligned 

using Clustal Omega v. 1.2.4 (Sievers et al. 2011) with default settings and manually 

edited using MEGA-X v. 10.0.5 (Kumar et al. 2018). Model selection, performed in 

MEGA using ML, selected K2+I as the model with the lowest AIC. The phylogeny was 

subsequently constructed in MEGA using the K2+I model with 1,000 bootstrap 

replicates. While most of the putative P. globosa ASVs were closely related to the P. 

globosa reference sequence, supporting a high level of conservation of the P. globosa 

16S V3-V4 region, one group of ASVs formed a separate clade (Figure 16).  
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Figure 16 Maximum likelihood phylogeny of 20 putative P. globosa ASVs and 
25 haptophyte sequences from PhytoREF. The phylogeny was 
constructed in MEGA-X (Kumar et al. 2018) using the K2+I model 
with 1000 bootstrap replicates. The scale bar represents the mean 
number of nucleotide substitutions per site and the node values 
represent the bootstrap support.  

3.1.3. ASV_10  

To further validate the utility of ASV_10 for tracking P. globosa throughout the 

bloom, I compared the relative abundance of ASV_10 between the field and colony 

samples (Figure 17a). As expected, ASV_10 made up most of the reads in the six 

colony samples (range: 0.80-0.94) (Figure 17a), but a lower fraction in the field samples 

(mean = 0.0065, median = 0.0022, range: 0.00-0.14) (Figure 17). Additionally, when 

considering only the 40 putative P. globosa ASVs, both the colony and field samples 

were dominated by ASV_10 (Figure 18). The high relative abundance of ASV_10 in the 
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colony samples and its dominance over the other putative P. globosa ASVs supports its 

application as a marker for P. globosa. The lower relative abundance of ASV_10 in the 

field samples (Figure 17b) is likely because most of the colonies were too large to pass 

through the filtration procedure, thus diluting their presence in the field samples to only 

very small colonies and free-living P. globosa cells.  

 

Figure 17 a) Comparison of the relative abundance of ASV_10 (P. globosa) in 
the field vs. colony samples and b) histogram of the relative 
abundance of ASV_10 in the field samples.  



29 

 

Figure 18 The relative abundance of ASV_10 and other putative P. globosa 
ASVs in a) the colony samples, b) the small filtration size surface 
field samples from the January expedition and c) the large filtration 
size surface field samples from the January expedition when 
considering only putative P. globosa ASVs. Only ASV_10 was 
detected in the Feb-March and April expeditions.  
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3.2. Composition of other microbial organisms in the Beibu 
Gulf  

 

Figure 19 a) The number of ASVs and b) the relative abundance of reads from 
the field samples assigned by SILVA (Quast et al. 2013) to the 
kingdoms Bacteria, Archaea and Eukaryota and the order 
Chloroplast. See text for the definitions of abundant, intermediate 
and rare. 

After excluding singletons, the majority of ASVs (n = 51,014) from the field 

samples were classified as Bacteria with only 2,546 ASVs classified as Chloroplasts and 

1,101 ASVs classified as Archaea (Figure 19a). The small number of ASVs (n = 718) 

classified as Eukaryota were from reads assigned to 18S rRNA sequences in the SILVA 

database. Most of the Eukaryota ASVs (666/718) were rare and only 0.017% of reads 

were classified as Eukaryota, which suggests that the amplification of 18S rRNA was 

rare. Like the number of ASVs, most of the reads (68.5%) from the field samples were 

classified as Bacteria, followed by 23.8% of reads as Chloroplasts and 7.7% of reads as 

Archaea (Figure 19b).  

3.2.1. Bacteria 

The majority of bacteria ASVs (47,014/51,014) were classified at the class level 

with most ASVs belonging to the Gammaproteobacteria (n = 18,204), Bacteroidia (n = 

7,823), Deltaproteobacteria (n = 5,933), Alphaproteobacteria (n = 5,671), 

Verrucomicrobiae (n = 1,310), Acidimicrobiia (n = 702) and Oxyphotobacteria (n = 652) 

(Figure 20a). Similarly, more reads were assigned to a class of Bacteria (67.9%) than 

were unclassified (0.6%). However, the Alphaproteobacteria were the class of bacteria 

with the most reads (28.5%), followed by the Gammaproteobacteria (18.7%), Bacteroidia 
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(6.2%), Acidimicrobiia (5.9%), Oxyphotobacteria (5.1%), Deltaproteobacteria (1.6%) and 

Verrucomicrobiae (1.0%) (Figure 20b).  

 

Figure 20  a) The number of ASVs and b) the relative abundance of reads from 
the field samples assigned by SILVA (Quast et al. 2013) to the 
different classes of Bacteria. Only the top 40 classes are shown. See 
text for the definitions of abundant, intermediate and rare. 
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Figure 21  a, c and e) The number of ASVs and b, d and f) the relative 
abundance of reads from the field samples assigned by SILVA 
(Quast et al. 2013) to the different a-b) orders, c-d) families and e-f) 
genera of Bacteria. Only the top 40 groups are shown for each level. 
See text for the definitions of abundant, intermediate and rare. 

 

Of the 38,143 ASVs assigned to an order of bacteria, the order with the most 

ASVs assigned (n = 3,863) was the Flavobacteriales from the class Bacteroidia (Figure 

21a). In contrast, when the number of reads was considered, the most common order of 

bacteria was the SAR11_clade (18.4% of reads) from the Alphaproteobacteria (Figure 
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21b). Of the 31,780 ASVs assigned to a family of bacteria, the family with the most ASVs 

(n = 2,584) was the Flavobacteriaceae (Figure 21c). Like the order level, the family of 

bacteria with the most reads assigned (15.9%) was Clade_I from the SAR11_clade 

(Figure 21d). Finally, of the 16,577 ASVs assigned to a genus of bacteria, the genus with 

the most ASVs (n = 527) was Subgroup_10 (n = 527 ASVs) from the class 

Thermoanaerobaculia. However, most of these ASVs were intermediate or rare and the 

genus Vibrio from the Gammaproteobacteria had the most abundant ASVs (Figure 21e). 

The genus of bacteria with the most reads (13.9%) was Clade_Ia from the SAR11_clade 

(Figure 21f). 

3.2.2. Archaea  

 

Figure 22  a) The number of ASVs and b) the relative abundance of reads from 
the field samples assigned by SILVA (Quast et al. 2013) to the 
different classes of Archaea. Abundant ASVs make up ≥0.1% of 
reads in at least one sample, See text for the definitions of 
abundant, intermediate and rare. 

Most Archaea ASVs (996/1,101) were classified at the class level with the most 

ASVs assigned to the Woesearchaeia (n = 393), Thermoplasmata (n = 330) and 

Nitrososphaeria (n = 189) (Figure 22a). However, the majority of ASVs assigned to the 

Woesearchaeia were intermediate or rare and thus the classes of Archaea with the most 

reads were the Nitrososphaeria (4.5% of reads) and Thermoplasmata (3.1% of reads) 

(Figure 22b).  
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Of the 511 ASVs assigned to an order of Archaea, most were assigned to 

Marine_Group_II (n = 257) from the class Thermoplasmata or the Nitrosopumilales (n = 

188) from the class Nitrososphaeria (Figure 23a). Similarly, most reads were assigned to 

either the Nitrosopumilales (4.5% of reads) or Marine_Group_II (3.1% of reads) (Figure 

23b). Of the 206 ASVs assigned to a family of Archaea, almost all (n = 188) were 

assigned to the Nitrosopumilaceae (from the Nitrososphaeria) as the taxonomy for the 

Marine_Group_II does not go beyond the order level (Figure 23c). Likewise, the 

Nitrosopumilaceae were the order of Archaea with the most reads (4.5%) (Figure 23d). 

Of the 149 ASVs assigned to an Archaea genus, most were assigned to 

Candidatus_Nitrosopumilus (n = 104) and Candidatus_Nitrosopelagicus (n = 30), both 

from the Nitrososphaeria (Figure 23e). These two genera also had the most reads: 3.6% 

of reads were assigned to Candidatus_Nitrosopumilus and 0.9% to 

Candidatus_Nitrosopelagicus (Figure 23f).  
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Figure 23 a, c and e) The number of ASVs and b, d and f) the relative 
abundance of reads from the field samples assigned by SILVA 
(Quast et al. 2013) to the different a-b) orders, c-d) families and e-f) 
genera of Archaea. See text for the definitions of abundant, 
intermediate and rare. 



36 

3.2.3. Chloroplasts 

Most Chloroplast ASVs (2,307/2,557) were classified at the class level with the 

most ASVs assigned to the Bacillariophyta i.e. the diatoms (n = 1,518), 

Prymnesiophyceae (n = 304), Dictyophyceae (n = 105) and Cryptophyceae (n = 104) 

(Figure 24a). The three classes of Eukaryotes from the Chloroplasts with the most reads 

were the Bacillariophyta (20.5% of reads), Prymnesiophyceae (1.5% of reads) and the 

Cryptophyceae (1.1% of reads) (Figure 24b).   

 

Figure 24  a) The number of ASVs and b) the relative abundance of reads from 
the field samples assigned by PhytoREF (Decelle et al. 2015) to the 
different classes of Eukaryota. See text for the definitions of 
abundant, intermediate and rare.  

Of the 1,029 ASVs assigned to an order of Eukaryotes from the Chloroplasts, most 

were assigned to the Pyrenomonadales (n = 104) from the Cryptophyceae, followed by 

the Chaetocerotales (n = 96) from the Bacillariophyta and the Phaeocystales (n = 82) 

from the Prymnesiophyceae (Figure 25a). The three orders with the most reads were all 

from the Bacillariophyta: the Thalassiosirales (4.7% of reads), Chaetocerotales (1.2% of 

reads) and Coscinodiscales (1.1% of reads) (Figure 25b). Of the 842 Chloroplast ASVs 

assigned to a family, the most ASVs (n = 82) were assigned to the Phaeocystaceae (n = 

82) (Figure 25c). The family with the most reads (1.1%) was the Coscinodiscaceae, 

while the Phaeocystaceae had the third-most reads (0.7%) (Figure 25d). Finally, of the 

603 ASVs assigned to a genus from the Chloroplasts, the most ASVs (n = 68) were 

assigned to an unclassified group of Dictyophyceae, followed by the genus Phaeocystis 
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(n = 40) (Figure 25e). The genus with the most reads (1.0%) was an unclassified group 

of Coscinodiscaceae (Figure 25f).  

 

Figure 25 a, c and e) The number of ASVs and b, d and f) the relative 
abundance of reads from the field samples assigned by PhytoREF 
(Decelle et al. 2015) to the different a-b) orders, c-d) families and e-f) 
genera of Eukaryota. Only the top 40 groups are shown for each 
level. See text for the definitions of abundant, intermediate and rare. 



38 

3.3. Discussion 

ASV_10 was identified as a suitable molecular marker for P. globosa due to the 

low level of intraspecific variation in the P. globosa 16S rRNA gene. To my knowledge, 

no previous studies have investigated the conservation of the 16S rRNA gene in P. 

globosa as previous work has focused largely on the conservation of the 18S SSU 

rRNA, 28S LSU rRNA, ITS and other plastid regions such as the RUBISCO spacer 

regions (Lange et al. 2002, Medlin and Zingone 2007, Xiaokun et al. 2019, Qingchun et 

al. 2020). I found a high level of conservation of the P. globosa 16S rRNA gene in both 

1) the 16S rRNA sequences assembled from whole-genome sequencing of strains from 

the Beibu Gulf, the East China Sea, Vietnam and Thailand and 2) the ASVs from the 

16S V3-V4 region in the Beibu Gulf. This high level of conservation may be explained at 

least partly by the mutation rates of the P. globosa chloroplast genome, which are lower 

than in the mitochondria and nucleus (Smith et al. 2014). Despite the high level of 

conservation of the 16S rRNA, I did find some evidence for intraspecific variation in this 

gene. While ASV_10 dominated the field and colony samples when considering only 

putative P. globosa ASVs, other putative P. globosa ASVs were also present in low 

levels (Figure 18). Interestingly, the phylogenetic analysis identified an additional clade 

of putative P. globosa ASVs that was separate from ASV_10 (Figure 16). While these 

ASVs may represent P. globosa, it is also possible that they represent other species 

such as cryptic P. globosa-like species. This would be consistent with previous 

suggestions that P. globosa colonies are actually complexes of up to three or four cryptic 

species (Medlin and Zingone 2007). Alternatively, some of the observed variation may 

be due to sequencing errors that were not corrected by DADA2. Overall, while I 

identified some level of intraspecific variation in the P. globosa 16S rRNA gene, the 

dominance of ASV_10 in the colony samples (Figure 17a) and over the other P. globosa 

ASVs makes it a suitable molecular marker for P. globosa for the remaining analyses.  

The remaining composition of microbes in the Beibu Gulf epipelagic layer was 

generally consistent with studies from surrounding regions. At the class level, I found 

that the Alphaproteobacteria were the class of Bacteria with the most reads (28.5%), 

followed by the Gammaproteobacteria (18.7%), Bacteroidia (6.2%), Acidimicrobiia 

(5.9%) and Oxyphotobacteria (5.1%) (Figure 20b). Similarly, a previous study of free-

living bacteria from the Beibu Gulf during a P. globosa bloom found that the bacterial 
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community was dominated by the phyla Proteobacteria (Alphaproteobacteria and 

Gammaproteobacteria), Bacteroidetes (Bacteroidia) and Actinobacteria (Acidimicrobiia) 

(Li et al. 2020b). My results are also consistent with the bacterial composition of nearby 

areas, e.g. the South China Sea, which is mainly composed of Alphaproteobacteria 

(mostly SAR11), Gammaproteobacteria, Cyanobacteria and Bacteroidetes (Zhang et al. 

2018) and the western North Pacific ocean, which is mainly composed of 

Alphaproteobacteria (mostly SAR11 and Roseobacter), Gammaproteobacteria (mostly 

SAR86 and Alteromonas) and the Bacteroidetes during phytoplankton blooms (Tada et 

al. 2011). For the archaea, I found that most reads were assigned to either the 

Nitrosopumilales (4.5% of reads) from the class Nitrososphaeria or Marine_Group_II 

(MGII) from the class Thermoplasmata (3.1% of reads) (Figure 23b). Similarly, a recent 

study in the South China Sea found that the archaea communities were composed 

mainly of Nitrososphaeria and MGII (Li et al. 2020b). In contrast, another study in the 

South China Sea found that archaea communities were dominated by MGII at all depths 

(Liu et al. 2017). Finally, I found that the three classes of Eukaryotes from the 

Chloroplasts with the most reads were the Bacillariophyta (20.5% of reads), 

Prymnesiophyceae (1.5% of reads) and the Cryptophyceae (1.1% of reads) (Figure 

24b). The dominance of diatoms (i.e. Bacillariophyta) is not surprising given that other 

typically abundant groups of Eukaryotes like the Dinophyceae mostly do not have 

chloroplasts and cannot be detected using the 16S rRNA gene. Overall, the microbial 

composition of the Beibu Gulf epipelagic layer was mostly consistent with other studies 

in nearby regions and my next aim involved exploring the spatial-temporal dynamics of 

these microbes during the P. globosa bloom to better understand their role in the bloom.  
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Chapter 4. Spatial-temporal dynamics of microbes 
and environmental variables during a P. globosa 
bloom in the Beibu Gulf 

In the previous chapter I explored the composition of P. globosa and other 

microbes in the Beibu Gulf. The aim of this chapter is to explore the spatial-temporal 

dynamics of P. globosa, bacteria, archaea, phytoplankton, and environmental factors 

during a P. globosa bloom in the Beibu Gulf. First, I explore the spatial-temporal 

dynamics of P. globosa during its bloom. Next, I explore the temporal dynamics of the 

alpha and beta diversity of the bacteria, archaea and chloroplasts during the bloom. 

After, I explore the spatial-temporal dynamics of different groups of bacteria, archaea 

and chloroplasts. Finally, I explore the spatial-temporal dynamics of the environmental 

variables and their relationships with ASV_10 (P. globosa) and other microbes. 

Collectively, this exploration will improve our understanding of the mechanisms of the P. 

globosa bloom in the Beibu Gulf through the establishment of a preliminary model for the 

development and progression of the bloom. My contribution to this chapter is the data 

analysis and interpretation.   

4.1. Spatial-temporal dynamics of P. globosa  

The spatial-temporal distribution of P. globosa throughout the bloom was 

explored using ASV_10 as a marker. This was done by agglomerating samples collected 

from different water sampling depths at the same sampling location, expedition, and 

filtration size followed by a centred log-ratio (clr) transformation of the compositional 

ASV table. After, I used interpolation, a procedure that predicts values for cells in raster 

from a limited number of sample points, and mapped the interpolated clr values in QGIS 

v. 3.8 (QGIS.org 2020). I also used linear mixed-effects models with sample location as 

a random effect to test for the effect of expedition, filtration size and water sampling 

depth on the relative abundance of ASV_10 using the “nlme” v. 3.1-142 (Pinheiro et al. 

2020) and “multcomp” v. 1.4-12 (Hothorn et al. 2008) packages in R.  

The relative abundance of ASV_10 varied with expedition (P < 0.0001) with the 

greatest relative abundance in the January expedition (Figure 26). This supports the 

January expedition as the peak of the bloom and the Feb-March and April expeditions as 
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different stages of decay of the bloom. Interestingly, the relative abundance of ASV_10 

also varied with the filtration size (P = 0.0065) as the relative abundance was greater in 

the 0.22-10 µm size fraction (Figure 26). One possible explanation for this is that more 

free-living P. globosa cells were captured in the smaller size fraction and most of the 

colonies were too large to be captured in the 10-200 µm size fraction. There was no 

relationship between the relative abundance of ASV_10 and the water sampling depth 

(P = 0.49). Mapping the relative abundance of ASV_10 also allowed for exploration of its 

spatial distribution, which showed that during the January and Feb-March expeditions 

the bloom appeared to be most intense in the northeast region of the Beibu Gulf near 

Weizhou Island (Figure 26b). 

 

Figure 26  a) Variation in the relative abundance of ASV_10 (P. globosa) with 
expedition and flitration size fraction. The significance of size and 
expedition were tested using a linear mixed effects model with size, 
expedition and water sampling depth as fixed effects and sampling 
location as a random effect. Pairwise comparisons for expedition 
were performed using Tukey’s method. b) The spatial distribution of 
ASV_10 at each expedition and filtration size fraction. The mapped 
values are interpolated from a centred log-ratio transformation in 
QGIS (QGIS.org 2020).  
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4.2. Temporal dynamics of the alpha and beta diversity of 
microbial organisms   

4.2.1. Alpha diversity 

Alpha diversity is a measurement of the diversity within a single sample that can 

be estimated in many ways. The most naïve way of measuring alpha diversity is 

counting the observed richness i.e. the number of OTUs/ASVs in each sample. 

However, it can be challenging to identify every taxon in a sample and thus, techniques 

that consider the incompleteness of the sampling effort are often used. For example, the 

Chao1 estimator considers the number of singletons and doubletons in its estimate of 

alpha diversity. The evenness of the distribution of species in a sample is another 

important measure of diversity and several metrics have been developed that combine 

species richness and evenness into a single measure. For example, the calculation of 

the Simpson index corresponds to the odds that two individual microbes sampled at 

random will belong to the same OTU/ASV. Similarly, Shannon’s diversity index is based 

on entropy and measures the uncertainty involved in predicting the species of an 

individual sample at random (Hugerth and Andersson 2017). It is common practice to 

include multiple measurements of different components of alpha diversity when 

analyzing microbial data. 

The analysis of the alpha diversity of the field samples was performed for 1) all 

microbes, 2) bacteria, 3) archaea and 4) chloroplasts. For each group, four different 

metrics of alpha diversity were calculated for each of the field samples: the observed 

richness, Chao1, Shannon and InvSimpson (the inverse of the Simpson index). 

Statistical analysis was performed using linear mixed-effects models with sample 

location as a random effect to test for the effect of expedition, filtration size and water 

sampling depth on each diversity metric for each group using the “nlme” v. 3.1-142 

(Pinheiro et al. 2020) R package. Pairwise comparisons were performed using Tukey’s 

method with the  “multcomp” v. 1.4-12 (Hothorn et al. 2008) package.  
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Figure 27 Variation in alpha diversity of a) all microbes, b) bacteria, c) archaea 
and d) chloroplasts across different expeditions and flitration size 
fractions sampled from a P. globosa bloom in the Beibu Gulf. 
Different letters: P < 0.05.  

When all microbes were considered, the observed richness and the Chao1 index 

were greater in the samples from the large filtration size and the April expedition (Table 

2, Figure 27a). However, the Shannon and InvSimpson indices, which also take 

community evenness into account, were greater in the small filtration size. The diversity 

was lowest in the Feb-March expedition using the Shannon index and lowest in the Feb-

March and April expeditions using the InvSimpson index (Table 2, Figure 27a). This 

suggests that while the number of ASVs increased in the April expedition, the 

communities from this expedition did not become more even. The results were the same 

when only the bacteria where considered except the samples from the large filtration 

size were more diverse for all metrics other than InvSimpson, which had no relationship 

with filtration size (Table 2, Figure 27b). When considering only the archaea, the 

samples from the small filtration size were more diverse for all metrics except 

InvSimpson, which also had no relationship with filtration size. The alpha diversity of the 
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archaea was lowest in the April expedition for the observed richness and the Chao1 

index, but highest in the Feb-March and April expeditions for the indices that take 

evenness into account (Table 2, Figure 27c). This suggests that the number of archaea 

ASVs decreased in later expeditions, but the communities became more even. Finally, 

the alpha diversity of the chloroplasts was greater in the samples from the large filtration 

size for all indices except the InvSimpson, which had no relationship with filtration size. 

The diversity of the chloroplasts was lowest in the April expedition for all four metrics 

(Table 2, Figure 27d) as the number of chloroplast ASVs and the community evenness 

both decreased in later expeditions. 

Table 2 Results from linear-mixed effects models with sampling location as 
a random effect, water sampling depth, flitration size and expedition 
as fixed effects and different alpha diversity metrics as the 
dependent variable. Variables that are significant (P < 0.05) are 
bolded.  

Group Metric Variable F-value P-value 

All Observed Depth 3.7 0.06 

Filtration size 105.9 < 0.0001 

Expedition 27.0 < 0.0001 

Chao1 Depth 4.0 0.05 

Filtration size 105.0 < 0.0001 

Expedition 28.9 < 0.0001 

Shannon Depth 0.8 0.38 

Filtration size 10.1 0.002 

Expedition 9.3 0.0001 

InvSimpson Depth 0.1 0.73 

Filtration size 45.9 < 0.0001 

Expedition 11.0 < 0.0001 

Bacteria Observed Depth 4.9 0.03 

Filtration size 44.3 < 0.0001 

Expedition 48.6 < 0.0001 

Chao1 Depth 5.2 0.02 

Filtration size 43.9 < 0.0001 

Expedition 50.7 < 0.0001 

Shannon Depth 0.0 0.91 

Filtration size 12.5 0.0004 

Expedition 8.7 0.0002 

InvSimpson Depth 0.0 0.87 

Filtration size 0.4 0.51 

Expedition 10.5 < 0.0001 

Archaea Observed Depth 44.8 < 0.0001 
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Group Metric Variable F-value P-value 

Filtration size 111.4 < 0.0001 

Expedition 17.0 < 0.0001 

Chao1 Depth 44.6 < 0.0001 

Filtration size 112.8 < 0.0001 

Expedition 16.4 < 0.0001 

Shannon Depth 6.9 0.009 

Filtration size 25.7 < 0.0001 

Expedition 8.8 0.0002 

InvSimpson Depth 0.2 0.69 

Filtration size 5.0 0.03 

Expedition 19.2 < 0.0001 

Chloroplasts Observed Depth 1.2 0.27 

Filtration size 682.6 < 0.0001 

Expedition 51.1 < 0.0001 

Chao1 Depth 1.0 0.32 

Filtration size 666.4 < 0.0001 

Expedition 50.4 < 0.0001 

Shannon Depth 4.2 0.04 

Filtration size 35.7 < 0.0001 

Expedition 46.7 < 0.0001 

InvSimpson Depth 2.5 0.12 

Filtration size 0.0 0.98 

Expedition 31.3 < 0.0001 

4.2.2. Beta diversity  

Beta diversity measures the degree to which two samples differ and can be 

measured in many ways. Prior to measuring the beta diversity of microbial sequencing 

data, samples must be normalized to account for differences in the he read depth of 

each sample. While there are a number of normalization techniques available for data of 

this type (see McMurdie and Holmes 2014), normalization is typically accomplished by 

rarefying, where a minimum library size is selected, libraries that have fewer reads than 

the minimum sized are discarded and the remaining libraries are subsampled without 

replacement to the minimum library size (Hughes and Hellmann 2005). The subsequent 

calculation of beta diversity involves the use of a distance metric to measure the 

dissimilarity between samples. The most widely known distance metric is the Euclidian 

distance, which does not perform well in datasets with many zeroes i.e. microbial 

community composition data. Alternative metrics such as the Jensen-Shannon or Bray-
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Curtis dissimilarity are more appropriate for zero-inflated datasets and are thus more 

commonly used in microbial ecology (Hugerth and Andersson 2017). Phylogenetic 

information can also be incorporated into distance metrics i.e. the UniFrac distance, 

which may be more biologically meaningful because it accounts for evolutionary 

distances between species. However, the calculation of these metrics is more complex 

as it relies on the construction of an accurate phylogenetic tree and the correct 

placement of OTUs/ASVs on the tree (Hugerth and Andersson 2017). The Bray-Curtis 

dissimilarity metric was selected for the analyses here because of its simplicity and 

common use in microbial ecology.  

Beta diversity analysis results in the creation of a highly dimensional matrix of 

pairwise distance measures between each of the samples, which must be condensed 

into two- or three-dimensional space to be visualized. One of the most common methods 

to achieve this is Principal Component Analysis (PCA) (Ringnér 2008). PCA is a 

dimensionality reduction technique that increases data interpretability by creating new 

uncorrelated variables (principle components) that successively maximize variance. The 

first few components often explain a large amount of the variance, allowing a visual 

inspection of the distance between samples in two- or three-dimensional space. 

However, because PCA uses Euclidian distance, it is seldom appropriate for microbial 

data. Instead, Principle Coordinate Analysis (PCoA), which can be used with any of the 

dissimilarity metrics, is frequently used. Samples plotted on a PCA/PCoA plot can be 

coloured according to metadata values to explore how samples from, e.g. different time 

points, differ from each other. Finally, non-parametric statistical tests can used to test 

hypotheses such as whether a priori groupings of samples (e.g. different treatments) 

correspond to statistically different microbial communities. Common tests for this are 

PERMANOVA and ANOSIM, which assesses whether ranks of distances of objects 

within classes that are defined a priori are smaller than those between classes (Hugerth 

and Andersson 2017).  

The analysis of the beta diversity of the field samples was performed for 1) all 

microbes, 2) bacteria, 3) archaea and 4) chloroplasts. For each group, I rarefied the ASV 

counts for the abundant ASVs to a different number of reads depending on the number 

of reads in each sample (All: 39,668 reads, Bacteria: 10,000 reads, Archaea: 100 reads, 

Chloroplasts: 1,000 reads) and ordinated the Bray-Curtis dissimilarity matrix using a 

PCoA with the “phyloseq” v. 1.28.0 (McMurdie and Holmes 2013) R package. I tested for 
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differences in the community composition of samples from different expeditions, filtration 

size fractions and water sampling depths using the ANOSIM statistic from the “vegan” v. 

2.5-6 (Oksanen et al. 2019) R package.  

 

Figure 28  Variation in the community composition of a) all microbes, b) 
bacteria, c) archaea and d) chloroplasts between different expedition 
time points and filtration size fractions visualized using PCoA from 
the Bray-Curtis dissimilarity matrices.  

When all microbes were included, the community composition differed 

significantly between samples from different expeditions (ANOSIM statistic R = 0.23, P = 

0.001) and filtration sizes (R = 0.26, P = 0.001). The first principal component, which 

explained 27% of the variance, separated the samples by size and the second principal 

component, which explained 12% of the variance, separated the samples by expedition 

as there was a progressive change in community composition with time (Figure 28a). 

Similarly, for bacteria, community composition differed significantly between samples 

from different filtration sizes (R = 0.17, P = 0.001) and different expeditions (R = 0.24, P 

= 0.001) with a progressive change in bacteria community composition from January to 

April (Figure 28b). For the archaea, the community composition also differed significantly 

between samples from different filtration sizes (R = 0.075, P = 0.001) and different 
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expeditions (R = 0.27, P = 0.001). However, there was no progressive change across all 

three expeditions as the Feb-March and April expeditions did not cluster separately in 

the PCoA plot (Figure 28c). Finally, the community composition of chloroplasts differed 

significantly between samples from different filtration sizes (R = 0.21, P = 0.001) and 

different expeditions (R = 0.45, P = 0.001) with a progressive change in community 

composition from January to April (Figure 28d). There was no variation with community 

composition and water sampling depth for any of the groups (P > 0.05 in all cases) 

Overall, the beta diversity analysis provided evidence of change in the microbial 

community composition in the Beibu Gulf over time during the P. globosa bloom and 

between different filtration sizes.   

4.3. Spatial-temporal dynamics of other microbial 
organisms  

4.3.1. Bacteria  

Consistent with the observed richness of the bacteria ASVs, the overall relative 

abundance of bacteria was greater in the 0.22-10 µm filtration size (linear mixed effects 

model with sampling location as a random effect P < 0.0001) and increased from the 

January to the April expedition (P < 0.0001; Figure 29). The observed increase in the 

relative abundance of bacteria at the end of the bloom is consistent with the idea that 

there is an increase in heterotrophic bacteria during the decay phase of the bloom in 

response to elevated levels of algal-derived organic material (Teeling et al. 2012). 

 

Figure 29 Relative abundance of bacteria across different expeditions and 
filtration size fractions during a P. globosa bloom in the Beibu Gulf.  
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Figure 30 Composition of the major a) classes, b) orders and c) families of 
bacteria in individual surface samples grouped by filtration size and 
expeditions from a P. globosa bloom in the Beibu Gulf.   
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 In agreement with the results from the beta diversity analysis, there was distinct 

bacterial communities from surface samples across different filtration sizes and 

expeditions at the class, order and family levels (Figure 30). I decided to further explore 

the spatial-temporal dynamics of specific groups of bacteria to better understand their 

role in the bloom. First, I agglomerated samples collected from different water sampling 

depths at the same sampling location, expedition, and filtration size, and performed a 

centred log-ratio (clr) transformation for each ASV separately from the compositional 

ASV table. This was followed by interpolation of the clr-transformed values and mapping 

of the interpolated clr values in R using the “tmap” v. 3.0 (Tennekes 2018) package. 

Statistical analysis of the temporal changes in different groups was performed using 

linear mixed-effects models from the R package “nlme” v. 3.1-142 (Pinheiro et al. 2020). 

In the models, sample location was specified as a random effect, expedition, filtration 

size and water sampling depth as fixed effects and the relative abundance of the group 

as the dependent variable.  

Alphaproteobacteria  

 

Figure 31 Spatial-temporal distribution of two clades of SAR11 during a P. 
globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and flitration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values. 
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Figure 32 Spatial-temporal distribution of three orders of Alphaproteobacteria 
during a P. globosa bloom in the Beibu Gulf. Map titles correspond 
to the expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values. 

Several groups of microbes from the Alphaproteobacteria displayed interesting 

spatial-temporal patterns throughout the P. globosa bloom in the Beibu Gulf. The most 

abundant order of bacteria in this study, the chemoheterotrophic SAR11_clade, had 

contrasting temporal patterns for its different clades. While members of the more 

abundant Clade_I decreased in relative abundance from January to April (P < 0.0001; 
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Figure 30c and Figure 31a), Clade_II showed the opposite pattern as the group 

increased in relative abundance from January to April (P < 0.0001; Figure 30c and 

Figure 31b). Thus while members of Clade_I may be outcompeted by other groups that 

are better able to respond to the increase in available substrates at the end of the bloom, 

some members of Clade_II may be able to increase their growth rates in response to the 

increase in available substrates. The order Rhodobacterales, which are regarded as 

important consumers of carbon (Buchan et al. 2014) and amino acids (Alonso-Saez and 

Gasol 2007) during and after phytoplankton blooms, also increased in relative 

abundance at the end of the bloom (P < 0.0001; Figure 30b and Figure 32a). Other 

groups from the Alphaproteobacteria with interesting spatial-temporal patterns included 

the chemoorganotrophic Caulobacterales and the Sphingomonadales, which degrade a 

wide range of hydrocarbons (Kertesz et al. 2019). Both groups had the greatest relative 

abundance during the April expedition (P < 0.0001 for both; Figure 32b-c).  

Gammaproteobacteria  

A handful of groups of Gammaproteobacteria also exhibited compelling spatial-

temporal patterns throughout the P. globosa bloom in the Beibu Gulf. The order 

Nitrosococcales, which derive their energy from the oxidation of ammonium, increased in 

relative abundance during the April expedition (P < 0.0001; Figure 30b and Figure 33a). 

Similarly, the Salinisphaerales, a group with little known about its source of energy, 

distinctly increased in relative abundance at the end of the bloom (P = 0.0005; Figure 

33b). In contrast, the Steroidobacterales were one of the few groups of bacteria that had 

the greatest relative abundance during the peak of the bloom in January (P < 0.0001; 

Figure 33c). Most members of this order were from the genus Woeseia, which belongs 

to a family that contains a broad range of energy-yielding metabolisms in its genome 

(Mußmann et al. 2017) that may have allowed them to thrive during the peak of the 

bloom. The family Colwelliaceae, which has previously been associated with the decay 

of Phaeocystis blooms (Delmont et al. 2014) displayed contrasting temporal patterns 

between its two most abundant genera (Figure 34). While ASVs from the genus 

Colwellia generally had the greatest relative abundance in the January expedition, ASVs 

from the genus Thalassotalea peaked in relative abundance in the April abundance, 

suggesting different roles for the two genera in the decay of the bloom. The family 

Oleiphilaceae, which is represented by one species that feeds almost exclusively on 
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hydrocarbons (Golyshin et al. 2002) exhibited marked variation in temporal patterns at 

the ASV-level (Figure 35).  

 

Figure 33 Spatial-temporal distribution of three orders of 
Gammaproteobacteria during a P. globosa bloom in the Beibu Gulf. 
Map titles correspond to the expedition month and filtration size 
fraction. Mapping was performed by agglomerating samples 
collected from different water sampling depths at the same sampling 
location, expedition, and filtration size, and interpolating the 
centered log-ratio (clr) transformed values. 
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Figure 34 Heatmap of abundant ASVs from the family Colwelliaceae. Rows 
represent ASVs and columns represent samples, which are ordered 
by expedition. The heatmap was generated using the 
plot_taxa_heatmap() function from the R package 
“microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”.  

 

Figure 35 Heatmap of abundant ASVs from the family Oleiphilaceae. Rows 
represent ASVs and columns represent samples, which are ordered 
by expedition. The heatmap was generated using the 
plot_taxa_heatmap() function from the R package 
“microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”. 

Bacteroidia  

Consistent with their specialization in the degradation of high molecular weight 

organic matter, the class Bacteroidia increased in relative abundance during the April 

expedition, particularly in the larger 10-200 µm filtration size fraction (P < 0.0001; Figure 

30a). The Flavobacteriales, which were the main order of Bacteroidia observed in the 

Beibu Gulf, increased in relative abundance at the end of the bloom in April (P < 0.0001; 

Figure 30b and Figure 36a).Other less abundant orders such as the Chitinophagales 

and the Cytophagales displayed similar patterns (P < 0.0001 for both; Figure 36b-c). 

This supports the role of microbes from these orders in the degradation of organic matter 

from the bloom.  
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Figure 36 Spatial-temporal distribution of three orders of Bacteroidia during a 
P. globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values.   
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Oxyphotobacteria 

The dominant order of cyanobacteria in the Beibu Gulf, the Synechococcales, 

increased in relative abundance from the January to April expedition (P < 0.0001; Figure 

30b and Figure 37). Given that only N2, CO2, water and mineral elements are needed by 

cyanobacteria for growth in the light (Mur et al. 1999), this temporal pattern may have 

occurred because the cyanobacteria were under less competition from Phaeocystis and 

other phytoplankton at the end of the bloom.  

 

Figure 37 Spatial-temporal distribution of the Synechococcales during a P. 
globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values.   

Verrucomicrobiae 

The Verrucomicrobiae, which are predominantly heterotrophic with carbohydrate-

degrading metabolisms and genomes enriched in glycoside hydrolases (Martinez-Garcia 

et al. 2012), had the greatest relative abundance during the April expedition (P < 0.0001; 

Figure 38). This is consistent with the idea that the Verrucomicrobiae play a role in the 

degradation of carbohydrates from P. globosa and other phytoplankton at the end of the 

bloom.  
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Figure 38 Spatial-temporal distribution of the Verrucomicrobiae during a P. 
globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values.   

Random forest model analysis  

The random forest classifier is an ensemble learning method that is frequently 

used both for classification and feature importance. Decisions trees, where the leaves of 

the tree represent class labels and the branches represent conjunctions of features that 

lead to those class labels, are used by random forest models for classification. More 

specifically, a random forest classifier uses many decisions trees at training time and 

classifies cases using the mode of the classes from all the trees in the forest. The 

training set for each tree uses a subset of cases that are drawn by sampling with 

replacement and a subset of features is used to split each node in each tree. One of the 

advantages of using an ensemble of trees is that it corrects for overfitting, which is 

common with decision trees. In addition to the classification of cases, random forest 

models can also be used to measure feature importance. This can be accomplished 

using permutational methods, which randomly permute the values of each feature and 

compare the number of cases that are correctly classified in the permuted data vs. the 

untouched data, or the Gini index, which uses the number of nodes that include the 

feature from all the trees to measure feature importance.  

To identify bacteria ASVs with distinct temporal patterns, a random forest 

classifier was used to measure feature importance. The random forest model was 

trained using the RandomForestClassifier from the “scikit-learn” v. 0.23.0 (Pedregosa et 
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al. 2011) module in Python v. 3.7.4 with expedition as the model label and the top 500 

most abundant ASVs (after excluding the chloroplast ASVs) as the features. The model 

was trained using 1,000 trees and the feature importance was measured using the 

default feature_importances_, which uses the Gini index. The input ASVs were ranked 

according to their feature importance and a heatmap was produced with the top fifty 

most important ASVs for classifying expedition. The heatmap was generated using the 

plot_taxa_heatmap() function from the R package “microbiomeutilities” v. 0.99.0 (Shetty 

and Lahti 2019) with transformation set to “clr”. 

 

Figure 39 Heatmap of the top fifty most important non-chloroplast ASVs for 
classifying expedition, identified using a random forest classifier. 
Rows represent ASVs and columns represent samples, which are 
ordered by expedition. The heatmap was generated using the 
plot_taxa_heatmap() function from the R package 
“microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”. 

Random forest analysis identified a marked amount of temporal variation at the 

ASV-level. The random forest classifier picked out ASVs with three distinct temporal 

patterns: 1) ASVs with the greatest relative abundance at the peak of the bloom 

(January), 2) ASVs with the greatest relative abundance at the early decay stage of the 

bloom (Feb-March) and 3) ASVs with the greatest relative abundant at the late decay 

stage of the bloom (April) (Figure 39). In many cases, closely related ASVs exhibited 

distinct temporal patterns, supporting a previously underappreciated amount of variation 

in niches within taxonomic groups. For example, ASV_374, which belongs to the genus 

Woeseia, peaked in relative abundance during the Feb-March expedition (P < 0.0001; 
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Figure 40a). In contrast, ASV_387, which belongs to the same genus, had the greatest 

relative abundance at the peak of the bloom in January (P < 0.0001; Figure 40b). 

Despite being assigned to the same genus, these two ASVs displayed distinct temporal 

patterns, supporting the use of different ecological niches during the bloom.  

 

Figure 40 Spatial-temporal distribution of two ASVs from the genus Woeseia 
with contrasting temporal patterns during a P. globosa bloom in the 
Beibu Gulf. Map titles correspond to the expedition month and 
filtration size fraction. Mapping was performed by agglomerating 
samples collected from different water sampling depths at the same 
sampling location, expedition, and filtration size, and interpolating 
the centered log-ratio (clr) transformed values.   
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4.3.2. Archaea  

 

Figure 41 Relative abundance of archaea across different expeditions and 
filtration size fractions during a P. globosa bloom in the Beibu Gulf. 

Consistent with the observed richness of the archaea ASVs, the overall relative 

abundance of archaea was greater in the 0.22-10 µm (linear mixed effects model with 

sampling location as a random effect P < 0.0001) filtration size and decreased from the 

January to the April expedition (P < 0.0001; Figure 41). The composition of the archaea 

communities from the surface samples changed across the different filtration sizes and 

expeditions at the class level (Figure 42). Using the same methods as for the bacteria, I 

further explored the spatial-temporal dynamics of specific groups of archaea to better 

understand their role in the bloom. 

 

Figure 42 Composition of the classes of archaea in individual surface samples 
grouped by filtration size and expeditions from a P. globosa bloom 
in the Beibu Gulf.   
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Nitrososphaeria 

The Nitrososphaeria, a class from the phylum Thaumarchaeota, decreased in 

relative abundance from the January to the April expedition (P < 0.0001; Figure 42 and 

Figure 43). 

  

Figure 43 Spatial-temporal distribution of the Nitrososphaeria during a P. 
globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values.   

Thermoplasmata  

 

Figure 44 Spatial-temporal distribution of the Thermoplasmata during a P. 
globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values.   
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The Thermoplasmata, which were dominated by the order Marine_Group_II 

(MGII), peaked in relative abundance during the Feb-March and April expeditions (P = 

0.02; Figure 42 and Figure 44). These results are consistent with the speculation of the 

MGII as facultative colonizers of particles (Santoro et al. 2019) and suggests that they 

were involved in the degradation of Phaeocystis colonies and other phytoplankton. Just 

as was observed for several groups of bacteria, the temporal dynamics of members of 

the MGII showed remarkable variation at the ASV level (Figure 45). This suggests that 

members of the MGII have intra-group variation in their metabolic roles and interactions 

with other species during the bloom.  

 

Figure 45 Heatmap of the top fifty abundant ASVs from the order 
Marine_Group_II. Rows represent ASVs and columns represent 
samples, which are ordered by expedition. The heatmap was 
generated using the plot_taxa_heatmap() function from the R 
package “microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”. 

4.3.3. Chloroplasts 

Consistent with the observed richness of the chloroplast ASVs, the overall 

relative abundance of chloroplasts was greater in the 10-200 µm filtration size (linear 

mixed effects model with sampling location as a random effect P < 0.0001) and 

decreased from the January to the April expedition (P = 0.0002; Figure 46). Also 

consistent with the beta diversity analysis, there was distinct chloroplast communities 

from surface samples across different filtration sizes and expeditions at the at the class 
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and order levels (Figure 47). Using the same methods as for the bacteria and the 

archaea, I further explored the spatial-temporal dynamics of specific groups of 

chloroplasts to better understand their role in the bloom. 

 

Figure 46 Relative abundance of chloroplasts across different expeditions and 
filtration size fractions during a P. globosa bloom in the Beibu Gulf. 

 

Figure 47 Composition of the major a) classes and b) orders of chloroplasts in 
individual surface samples grouped by filtration size and 
expeditions from a P. globosa bloom in the Beibu Gulf.   
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The three most abundant classes of chloroplasts, the Bacillariophyta (P = 0.005), 

Prymnesiophyceae (P < 0.0001) and Cryptophyceae (P < 0.0001), all decreased in 

relative abundance from the January to the April expedition (Figure 47a and Figure 48).  

 

Figure 48 Spatial-temporal distribution of three classes of chloroplasts during 
a P. globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month and filtration size fraction. Mapping was 
performed by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values.   
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Random forest model analysis  

 

Figure 49 Heatmap of the top fifty most important chloroplast ASVs for 
classifying expedition, identified using a random forest classifier. 
Rows represent ASVs and columns represent samples, which are 
ordered by expedition. The heatmap was generated using the 
plot_taxa_heatmap() function from the R package 
“microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”. 

To identify chloroplast ASVs with distinct temporal patterns, a random forest 

classifier was used to measure feature importance. The random forest classifier was 

trained using the same methods as for the bacteria, except the top 500 most abundant 

chloroplast ASVs were used instead of the bacteria ASVs. Using the random forest 

classifier, pronounced variation in temporal patterns at the ASV-level was observed. 

While the majority of the top fifty most important ASVs for classifying expedition showed 

the expected temporal pattern for the chloroplasts, i.e. a decrease in relative abundance 

from the January to April expedition, there were also chloroplast ASVs that peaked in 

relative abundance in the Feb-March and April expeditions instead (Figure 49). For 

example, ASV_34 (Proboscia indica) had the greatest relative abundance in the Feb-

March expedition. Most ASVs from the same order as ASV_34, the Rhizosoleniales, had 

the same temporal pattern (Figure 50). The ASVs that had the greatest relative 

abundance in the April expedition included ASV_179 (Phalacroma mitra, a 

dinoflagellate) ASV_17 & ASV_98 (Rhizosolenia setigara/Cymbella intermedia), ASV_18 

(Virgulinella fragilis), ASV_6 (Gyrosigma fasciola) and ASV_64 (Chaetoceros socialis). 

As was the case for several groups of bacteria and archaea, different ASVs within the 
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same order as ASV_64, the Chaetocerotales, had contrasting temporal patterns (Figure 

51). Overall, the variation in temporal pattern for the chloroplasts at the ASV level may 

reflect different abiotic requirements and/or interactions with other species.  

 

Figure 50 Heatmap of abundant ASVs from the order Rhizosoleniales. Rows 
represent ASVs and columns represent samples, which are ordered 
by expedition. The heatmap was generated using the 
plot_taxa_heatmap() function from the R package 
“microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”.  

 

Figure 51 Heatmap of abundant ASVs from the order Chaetocerotales. Rows 
represent ASVs and columns represent samples, which are ordered 
by expedition. The heatmap was generated using the 
plot_taxa_heatmap() function from the R package 
“microbiomeutilities” v. 0.99.0 (Shetty and Lahti 2019) with 
transformation set to “clr”. 

4.4. Environmental variables  

4.4.1. Geographic distance vs. beta diversity  

Prior to exploring the environmental variables driving the P. globosa bloom, I 

examined whether the geographic distance between samples impacted the similarity of 

the microbial communities. This was done for the surface samples from each expedition 

and filtration size fraction by regressing the pairwise geographic distances between the 
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samples against the pairwise Bray-Curtis distance metrics calculated using all microbes. 

The relationship between geographic distance and the Bray-Curtis distance was 

significant for all the expeditions and filtration sizes (P < 0.0001 in all cases) as sampling 

locations that had less geographic distance between them had more similar microbial 

communities (Figure 52). One explanation for this observation is that sampling locations 

that are closer together tend to have more similar abiotic environments, i.e. temperature 

and nutrient levels, which results in similar microbial community assemblages.  

 

Figure 52 The relationship between the pairwise geographic distance between 
samples and the pairwise Bray-Curtis distance (calculated using all 
microbes) for the surface samples from different expeditions and 
filtration sizes. The regression slope is significant for all expeditions 
and filtration sizes (P < 0.0001 for all).  

4.4.2. Correlations between environmental variables  

From the eight measured environmental variables, seven pairs had moderate or 

strong correlations (|spearman ρ| ≥ 0.5). Five of these correlations were positive: NH3 

and temperature, PO4 and NO3, NO2 and NO3, SiO3 and NO3, and SiO3 and PO4 (Figure 

53). The two negative correlations were between SiO3 and temperature and SiO3 and 

NH3 (Figure 53).  
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Figure 53 Pairs of environmental variables from the Beibu Gulf with moderate 
or strong correlations (|spearman ρ| ≥ 0.5). 

4.4.3. Spatial-temporal dynamics of environmental variables in the 
Beibu Gulf 

 

Figure 54 Relationship of eight environmental variables with expedition month 
during a P. globosa bloom in the Beibu Gulf. Blue stars indicate 
variables with a significant relationship with expedition (ANOVA 
corrected for multiple comparisons P < 0.05).  
 

Like many of the microbes detected in the Beibu Gulf, the environmental 

variables exhibited distinct spatial-temporal patterns during the P. globosa bloom. Five of 
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the environmental variables changed with expedition (ANOVA corrected for multiple 

comparisons P < 0.05): temperature and NH3 increased from the January to April 

expedition, while NO3, PO4 and SiO3 decreased (Figure 54). The directionalities of the 

loading arrows from a PCA using the eight environmental variables were consistent with 

this result (Figure 55). None of the environmental variables were related to the water 

sampling depth (|spearman ρ| < 0.5 for all). To further explore the spatial-temporal 

distribution of the environmental variables, the measurements from the surface samples 

were interpolated and in R using the “tmap” v. 3.0 (Tennekes 2018) package. In addition 

to its temporal pattern, temperature had a distinct spatial pattern as higher temperatures 

were observed farther away from the coast (Figure 56a). A similar spatial pattern was 

observed for salinity (Figure 56b), whereas chlorophyll a had the opposite pattern with 

higher values observed near the coast (Figure 56f). The spatial patterns of NO3 and NO2 

were also similar to each other as both variables had greater values on the east side of 

the Beibu Gulf (Figure 56c and e). The spatial patterns for PO4, NH3 and SiO3 were less 

clear (Figure 56d and f-g).  

 

Figure 55 PCA biplot of eight environmental variables measured during a P. 
globosa bloom in the Beibu Gulf. Observations are shown as points 
(coloured by expedition month) and variable loadings are shown as 
arrows.  
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Figure 56 Spatial-temporal distribution of eight environmental variables during 
a P. globosa bloom in the Beibu Gulf. Map titles correspond to the 
expedition month. Mapping was performed for each variable by 
interpolating the values from the surface samples.  

4.4.4. Correlation of environmental variables with P. globosa 

To explore potential drivers of the P. globosa bloom in the Beibu Gulf, I tested for 

environmental variables that were correlated with P. globosa (ASV_10). Temperature, 

NH3 and SiO3 had moderate-strong correlations (|spearman ρ| ≥ 0.5) with the log relative 

abundance of ASV_10 in the surface samples from both filtration sizes (Figure 57). The 

directions of these correlations were consistent with the temporal patterns of ASV_10 

and the environmental variables. For example, the negative correlation between NH3 

and ASV_10 occurred because NH3 increased from the January to April expedition, 

while the relative abundance of ASV_10 decreased from the January to April expedition 

(Figure 58). Similarly, temperature, which increased from the January to April expedition 

(Figure 54 and Figure 56a), was negatively correlated with ASV_10 (Figure 57). In 

contrast, SiO3, which decreased from the January to April expedition (Figure 54 and 

Figure 56g), was positively correlated with ASV_10 (Figure 57). Additionally, after 

controlling for expedition month there was no relationship between any of the 

environmental variables and the relative abundance of ASV_10 (P > 0.05 in all cases) 

for both filtration sizes. This provides additional support that the observed correlations 
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between ASV_10 and temperature, NH3 and SiO3 were due to temporal patterns rather 

than spatial patterns.  

 

Figure 57 Relationships of eight environmental variables with the log relative 
abundance of ASV_10 (P. globosa) in the surface samples from a) 
0.2-10 µm filtration size fraction and b) 10-200 µm filtration size 
fraction. Blue stars indicate variables with |spearman ρ| ≥ 0.5. 
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Figure 58 a) Spatial-temporal distribution of NH3 mapped from the interpolated 
values from the surface samples, b) spatial-temporal distribution of 
ASV_10 (P. globosa) mapped by agglomerating samples collected 
from different water sampling depths at the same sampling location, 
expedition, and filtration size, and interpolating the centered log-
ratio (clr) transformed values, and c) the relationship between NH3 
and the log relative abundance of ASV_10 in the surface samples 
from the 0.22-10 µm filtration size.  

4.4.5. Canonical correspondence analysis 

A canonical correspondence analysis (CCA) was implemented to explore 

correlations between the other ASVs and the environmental variables. CCA is similar to 

PCA, but instead of projecting one set of variables, CCA projects two sets of variables in 

a way that maximizes the correlations between the projections. CCA is thus often used 

as an exploratory technique for finding correlations between two sets of variables. A 

CCA was run on the data using the Bray-Curtis dissimilarity metric calculated for all 

microbes and the eight environmental variables as the constraining variables. Overall, 

the CCA explained 9% of the variance in the data. The first component (CCA1) 

explained 3.21% of the variance and reflected the temporal variation in the data (Figure 

59a). In contrast, the second component (CCA2) explained 1.82% of the variance and 

appeared to reflect the spatial variation in the data as the loading arrows for salinity and 

chlorophyll a pointed in opposite directions along its axis (Figure 59a), reflecting the 

opposing spatial distributions of the two variables (Figure 56b and h). Plotting the 

centroids for the top fifteen most abundant orders provided initial insights into 

correlations between different groups and environmental variables (Figure 59b). For 

example, the Nitrosococcales and the Synechococcales, which both increased in relative 
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abundance from the January to the April expedition, appeared to be positively correlated 

with temperature and NH3 (Figure 59b).  

 

Figure 59 Biplots from a canonical correspondence analysis (CCA) using all 
microbes and eight environmental variables. The points in a) 
represent individual samples coloured by expedition and the points 
in b) represent centroids for the fifteen most abundant orders 
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4.4.6. Correlation of environmental variables with other microbes  

 

Figure 60 ASVs that are correlated (P < 0.05 and |spearman ρ| ≥ 0.5) with 
environmental variables in the surface samples from the 0.2-10 µm 
filtration size. Each bar represents an individual ASV. Only the top 
100 ASVs are shown for temperature, NH3 and SiO3.  
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Figure 61  a) Spatial-temporal distribution of NO2 mapped from the interpolated 
values from the surface samples, b) spatial-temporal distribution of 
ASV_27 (genus Candidatus_Nitrosopumilus) mapped by 
agglomerating samples collected from different water sampling 
depths at the same sampling location, expedition, and filtration size, 
and interpolating the centered log-ratio (clr) transformed values, and 
c) the relationship between NO2 and the log relative abundance of 
ASV_27 in the surface samples from the 0.22-10 µm filtration size. 

A spearman correlation matrix was generated to further explore correlations 

between other ASVs and the environmental variables. The correlation matrix was 

produced using the surface samples from the small filtration size and subsequently 

filtered for pairs of ASVs and environmental variables with Bonferroni adjusted P < 0.05 

and |ρ| ≥ 0.5. The environmental variables with the most correlated ASVs were NH3 (n = 

246), temperature (n = 181) and SiO3 (n = 104). The ASVs that were correlated with 

these three variables had distinct temporal patterns. For example, many of the ASVs 

that were positively correlated with SiO3 were chloroplasts that increased in relative 

abundance from the January to April expedition (Figure 60f). Four of eight of the ASVs 

that were positively correlated with NO3 and four of thirteen of the ASVs that were 

positively correlated with NO2 were Nitrosopumilales (Figure 60c and d) from the 

archaea class Nitrososphaeria. For example, ASV_27 from the genus 

Candidatus_Nitrosopumilus was positively correlated with NO2 (ρ = 0.59; Figure 61). The 

Nitrososphaeria gain energy from the oxidation of NH3 and their abundance is closely 

tied to the flux of NH4, NO2 and NO3 (Wuchter et al. 2006, Santoro et al. 2019). 

Consistent with this, in the Beibu Gulf the Nitrososphaeria had the greatest relative 
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abundance in the January expedition, when NH3 levels were lowest and the levels of 

NO2/NO3 were highest, and decreased in relative abundance in the Feb-March and April 

expeditions when NH3 levels were highest and the levels of NO2/NO3 were lowest. The 

ASV with the third highest positive correlation coefficient for NH3 was ASV_20 

(Methylophaga marina) from the Nitrosococcales (ρ = 0.78; Figure 62). The 

Nitrosococcales gain their energy from the oxidation of NH3, which explains their overall 

increase in relative abundance from the January to April expedition and the strong 

positive correlation of ASV_20 with NH3.  

 

Figure 62 a) Spatial-temporal distribution of NH3 mapped from the interpolated 
values from the surface samples, b) spatial-temporal distribution of 
ASV_20 (Methylophaga marina) mapped by agglomerating samples 
collected from different water sampling depths at the same sampling 
location, expedition, and filtration size, and interpolating the 
centered log-ratio (clr) transformed values, and c) the relationship 
between NH3 and the log relative abundance of ASV_20 in the 
surface samples from the 0.22-10 µm filtration size. 

4.5. Discussion 

The aim of this chapter was to explore the spatial-temporal dynamics of P. 

globosa, bacteria, archaea, phytoplankton and environmental factors during a P. globosa 

bloom in the Beibu Gulf. Distinct communities of bacteria, archaea and eukaryotes were 

observed at the three different time points during the bloom. In many cases different 

groups had distinct temporal patterns, which could be related to their ecological niches 
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during the bloom using descriptions from the literature as well as the temporal patterns 

of the environmental variables. Additionally, variation in the temporal response to the 

bloom at the ASV-level was observed for the bacteria, archaea and chloroplast ASVs, 

which provides evidence for an underappreciated amount of variation of niches within 

taxonomic groups.  

A distinct succession of bacterial groups was observed across the three 

expeditions during the P. globosa bloom in the Beibu Gulf (Figure 30). Successions of 

bacteria during phytoplankton blooms are linked to the abilities of different bacteria to 

degrade algal-derived organic matter (Teeling et al. 2012). Bacteria that reside on algal 

cells or colonies also alter their structure as a phytoplankton bloom progresses, which is 

in part driven by responses of bacteria to phytoplankton exudates like DMSP (Delmont 

et al. 2014). Phaeocystis blooms provide ecological niches for microbial heterotrophs 

(Delmont et al. 2014) as the majority of biomass produced by Phaeocystis blooms is 

remineralized by heterotrophic bacteria at the end of the bloom, which may explain the 

increase in alpha diversity and relative abundance of bacteria in the April expedition 

(Figure 27b and Figure 29). The composition of organic matter that can be utilized by 

bacteria changes throughout Phaeocystis blooms, which results in changes in the 

bacterial community structures (Alderkamp et al. 2007). For example, complex 

carbohydrates like glucan and mucopolysaccharides that are produced during 

Phaeocystis blooms may shape the composition of bacterial communities that are 

specialised in the degradation of complex carbohydrates (Arrieta and Herndl 2002). One 

example of this in the Beibu Gulf is the increase at the end of the bloom in the relative 

abundance of the different groups of Bacteroidetes (Figure 36), which are specialized in 

the degradation of high molecular weight organic matter. This observation is consistent 

with the increase in the contribution of Bacteroidetes that was observed during the decay 

of a P. globosa bloom in the North Sea (Alderkamp et al. 2006). Similarly, I observed an 

increase at the end of the bloom in the relative abundance of the Rhodobacterales 

(Figure 32a), which are involved in the degradation or organic carbon after 

phytoplankton blooms (Buchan et al. 2014) and have been observed to increase in 

contribution during the decay of experimental (Brussaard et al. 2005) and natural 

(Alderkamp et al. 2006) P. globosa blooms. Phaeocystis blooms may also alter the 

structure of particle-associated bacteria as the bloom progresses because the colonies 

provide a habitat for bacterial species (Delmont et al. 2014) For example, particle-
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associated bacteria during a P. antarctica bloom were enriched in the genus Colwellia 

(Delmont et al. 2014), which also had the greatest relative abundance during the peak of 

the bloom in the Beibu Gulf (Figure 34). Strikingly, there was a marked amount of 

variation in response to the bloom from different groups of bacteria at the ASV-level (e.g. 

Figure 35 and Figure 40), which suggests that many of these groups have intragroup 

variation in their ability to utilize organic matter or associate with particles like P. globosa 

colonies. 

Like the bacteria, there was distinct changes in the archaea communities across 

the three expeditions during the P. globosa bloom (Figure 42).The MGII have been 

observed to form blooms that are coincident with or just following phytoplankton blooms 

(Galand et al. 2010, Needham and Fuhrman 2016), which may be related to their 

speculated role as facultative colonizers of particles (Orsi et al. 2015, 2016, Santoro et 

al. 2019). The peak in abundance of MGII during the Feb-March expedition in the Beibu 

Gulf (Figure 44) suggests that the MGII may have been involved in the early degradation 

of Phaeocystis colonies and other phytoplankton. As was observed for many groups of 

bacteria, the MGII also had variation in their temporal response to the bloom at the ASV-

level (Figure 45), suggesting different metabolic roles within the group. The other major 

group of archaea in the Beibu Gulf was the Nitrososphaeria, which are known to gain 

energy from the oxidation of ammonia and have previously had their abundance 

correlated to changes in ammonium and other nitrogen compounds (Wuchter et al. 

2006, Santoro et al. 2019). Consistent with this, four ASVs in the Beibu Gulf from the 

Nitrososphaeria were positively correlated with NO2 and NO3 (e.g. Figure 61) and the 

relative abundance of the Nitrososphaeria peaked in the January expedition (Figure 43) 

when NH3  levels were lowest and NO2/NO3 were highest (Figure 54).  

I observed distinct changes in the chloroplast ASVs across the three expeditions 

during the P. globosa bloom (Figure 47), which can largely be explained by the temporal 

patterns of the environmental variables. As expected, the relative abundance of ASV_10 

(P. globosa) peaked during the January expedition (Figure 26). The development of 

Phaeocystis blooms has previously been associated with changes in daily irradiance, 

temperature and increasing nutrient loads, especially NO3 and PO4 (Riegman et al. 

1992, Peperzak et al. 1998), which were both highest in the January expedition in the 

Beibu Gulf (Figure 54). This is consistent with the P. globosa bloom in the Beibu Gulf 

being triggered by high levels of N and P coupled with changes in the daily irradiance 
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and temperature. The majority of chloroplast ASVs also had the greatest relative 

abundance in the January expedition at the peak of the bloom (Figure 46), but some 

chloroplast ASVs displayed different temporal patterns (Figure 49, Figure 50 and Figure 

51), which could be explained by differences in nutrient requirements and/or different 

interactions with other species in the environment. In addition to N and P, Si is an 

important nutrient for the diatoms, which is not used by Phaeocystis. A previous review 

from the North Sea found that Phaeocystis blooms after the spring diatom bloom once Si 

has been depleted because Phaeocystis cannot compete with diatoms for N and P 

(Peperzak et al. 1998). In contrast, Phaeocystis-diatom blooms occur concurrently in the 

Dutch coastal zone, presumably because high Si concentrations allow diatoms to bloom 

at the same time (Peperzak et al. 1998). In the Beibu Gulf, it is likely that the high SiO3 

concentrations in the January expedition (Figure 54) allowed the diatoms and other 

phytoplankton to thrive alongside Phaeocystis.  

 

Figure 63 Model of the development and progression of the P. globosa bloom 
in the Beibu Gulf.  

Based on the observed spatial-temporal patterns of microbes and environmental 

variables, I developed a preliminary model for the development and progression of the 

P. globosa bloom in the Beibu Gulf (Figure 63). The P. globosa bloom was likely 

triggered in January by changing temperature and irradiance levels and high levels of 

NO3 and PO4. I hypothesize that the high levels of NO3, PO4 and SiO3 allowed the 

diatoms and other phytoplankton to thrive alongside Phaeocystis. As the bloom 
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progressed, NO3, PO4 and SiO3 were depleted by P. globosa and other phytoplankton 

and levels of NH3 increased from the degradation of phytoplankton biomass and a 

decrease in the relative abundance of the Nitrososphaeria (Thaumarchaeota), which 

deplete NH3. Other groups that gain energy from oxidizing ammonia, e.g. the 

Nitrosococcales, then increased in relative abundance at the end of the bloom due to the 

increase in NH3. Finally, groups of heterotrophic bacteria, e.g. the Flavobacteriales, 

increased in relative abundance at the end of the bloom due to their ability to thrive off 

organic materials produced during bloom decay. This model describes an initial 

understanding of the mechanisms underlying the P. globosa bloom in the Beibu Gulf and 

is based off the spatial-temporal patterns of the microbes and environmental variables 

during the bloom. Two limitations of the analyses used to develop the preliminary model 

are 1) the use of observational data, which limits the strength of the evidence supporting 

the model, and 2) the lack of technical and biological replicates. To address the second 

limitation, for the temporal analyses, samples collected at the same time points, but 

different sampling locations, were used as pseudo-replicates. Future studies could 

benefit from 1) the collection of experimental data using controlled conditions such as 

mesocosms to strengthen the evidence supporting the model and 2) the use of technical 

and biological replicates. In the next chapter, our understanding of the P. globosa bloom 

mechanisms is further advanced by exploring microbes that potentially interacted with P. 

globosa during the bloom.  
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Chapter 5. Exploration of microbes that interact 
with P. globosa during a P. globosa bloom in the 
Beibu Gulf 

The aim of this chapter is to explore microbes that potentially interact with P. 

globosa colonies during a bloom in the Beibu Gulf using 16S amplicon sequencing. First, 

I identify ASVs that potentially interacted with P. globosa using interaction networks 

constructed from the field samples. Next, I identify ASVs that were associated with large 

particles, such as P. globosa colonies, by identifying ASVs enriched in the large filtration 

size fraction from the field samples. Finally, I explore the P. globosa colony microbiome 

using the 16S gene sequences from the colony samples. My contribution to this chapter 

is the data analysis and interpretation.   

5.1. Interaction networks  

Interaction networks are a powerful tool in molecular ecology for generating 

hypotheses of ecological interactions between taxa. A microbial interaction network is a 

set of microbial taxa (nodes) connected by edges that represent potential biological 

interactions between taxa. These edges can represent positive interactions, e.g. 

mutualism or commensalism, if two taxa co-occur more frequently than expected by 

chance or negative interactions, e.g. competition, if they co-occur less frequently than 

expected by chance. While it is challenging to determine whether pattern of co-

occurrence are due to interactions between taxa or environmental constraints, 

interaction networks are still a useful first step in developing interaction hypotheses 

(Hugerth and Andersson 2017). Microbial relationships depicted from interaction 

networks can be used to determine drivers in environmental ecology (e.g. Lima-Mendez 

et al. 2015) and for generating hypotheses for further study (Weiss et al. 2016). 

However, constructing a microbial interaction network is a challenging task.  
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Figure 64 Interaction networks for the surface samples from a) the small 
filtration size fraction and b) the large filtration size fraction. 
Interactions were inferred at the ASV-level using FastSpar (Watts et 
al. 2019), filtered for correlations with |Pearson’s coefficient| ≥ 0.6 
and P = 0.001 and collapsed into higher taxonomy levels for 
visualization. Node size corresponds to the number of ASVs in the 
group. Blue edges represent positive interactions, red edges 
represent negative interactions and edge width corresponds to the 
number of ASVs that are correlated between the two groups.  
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A number of methods have been developed to address the challenges of building 

interaction networks from molecular ecology data. The simplest methods rely upon 

measures of correlation such as Spearman’s and Pearson’s. However, simple 

correlation approaches are impeded by limiting sampling depth and the compositionality 

of the data, which can induce spurious correlations (Friedman and Alm 2012, Hugerth 

and Andersson 2017). Sparse Correlations for Compositional data (SparCC) 

circumvents these challenges by estimating correlations using the log-ratio 

transformation of compositional data under the assumptions that microbial networks are 

large-scale and sparse (Friedman and Alm 2012). Another challenge in building 

molecular interaction networks is that many microbes display diverse types of 

relationships, e.g. exponential or periodic, that cannot be detected by a single test 

(Reshef et al. 2011). Maximal Information Coefficient (MIC) is designed to capture a 

wide range of associations between taxa by implementing a non-parametric approach 

for detecting associations that uses a measure of the predictability of two variables in 

relation to each other. (Reshef et al. 2011). The tool CoNet also addresses this 

challenge by combining information from several different standard comparison metrics 

(Faust et al. 2012). Finally, Local Similarity Analysis (LSA) is a tool that is optimized to 

detect non-linear and time-sensitive relationships from time-series data (Ruan et al. 

2006).  

I elected to use FastSpar, a C++ implementation of the SparCC algorithm that is 

faster and less memory intensive (Watts et al. 2019), to generate hypotheses for species 

that interact with P. globosa during its bloom in the Beibu Gulf. Two interaction networks 

were constructed from the surface samples: one for the small filtration size fraction and 

one for the large. For each network, ASVs with an average of less than two reads per 

sample were filtered out (as reccomended by Friedman and Alm 2012) and 1,000 

bootstrap permutations were used to calculate the P-values.  The resulting interactions 

were filtered for |Pearson’s correlation coefficient| ≥ 0.6 and P = 0.001. While it would be 

ideal to correct the P-values for multiple comparisons, this approach is too 

computationally intensive in this case due to the large number of permutations required 

to obtain a significant corrected P-value. The smallest possible P-value for 1,000 

bootstrap permutations (P = 0.001) was thus applied as the threshold for significance. 

Cytoscape (Shannon et al. 2003) was used to visualize the interaction network.  
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Figure 65 Histograms of the number of interactions/ASV inferred using 
FastSpar (Watts et al. 2019) for the surface samples from a) the 
small filtration size fraction and b) the large filtration size fraction. 

 The interaction network from the small filtration size fraction had 1,099 

interactions from 1,232 ASVS, 874 of which were positive and 225 were negative (Figure 

64a). The network from the large filtration size fraction had 1,149 interactions from 1,625 

ASVs, but less of these were negative as there were 1,096 positive interactions and only 

53 negative interactions (Figure 64b). For both interaction networks, the majority of 

ASVs had zero interactions (Figure 65). The mean interactions/ASV in the small filtration 

size network was 1.78 with a maximum of 36 interactions from ASV_20 (Methylophaga 

marina). The group with the most interactions was SAR11 (n = 502) (Figure 64a). For 

the large filtration size network, there was a mean of 1.41 interactions/ASV with a 

maximum of 50 interactions from ASV_16 from the AEGEAN-169_marine_group. Like 

the small filtration size fraction network, the group with the most interactions was SAR11 

(n = 822) (Figure 64b). 

5.1.1. Microbes with potential interactions with P. globosa   

The ASVs that were correlated with ASV_10 (P. globosa) in the interaction 

networks generated hypotheses for taxa with biologically meaningful interactions with P. 

globosa. Twenty-six ASVs were correlated with ASV_10 in the surface samples from the 

small filtration size (four positive and fourteen negative) (Table 3) and eighteen ASVs 

were correlated with ASV_10 in the samples from the large filtration size (four positive 
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and fourteen negative) (Table 4), many of which were correlated in both networks. The 

ASVs that were positively correlated with ASV_10 had the same temporal pattern 

(decrease in relative abundance from the January to the April expedition) and are 

candidates for forming symbiotic relationships with P. globosa colonies. However, these 

ASVs may also have similar abiotic requirements to P. globosa that explain their positive 

correlations. The ASVs that were negatively correlated with P. globosa have the 

opposite temporal pattern (increase in relative abundance from the January to April 

expedition) and are candidates for taxa that compete with P. globosa or feed on 

decaying P. globosa colonies. However, these negative correlations may also have 

occurred because these ASVs have opposing abiotic requirements to P. globosa. 

Further investigation is required to determine the role of these taxa correlated with P. 

globosa during its bloom.  

Table 3 ASVs that were correlated with ASV_10 (P. globosa) in the surface 
samples from the small filtration size fraction. Correlations were 
calculated using FastSpar (Watts et al. 2019) and filtered for 
|Pearson’s coefficient| ≥ 0.6 and P = 0.001.  

ASV 
Correlation 
coefficient  Order Family  Genus 

ASV_23 0.7307 Thalassiosirales NA NA 

ASV_30 0.7303 Thiomicrospirales Thioglobaceae SUP05_cluster 

ASV_72 0.7176 Pyrenomonadales Pyrenomonadales_XX Pyrenomonadales_XXX 

ASV_42 0.6645 Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas 

ASV_257 0.6318 NA NA NA 

ASV_170 0.6259 Betaproteobacteriales Methylophilaceae NA 

ASV_122 0.6228 Pyrenomonadales Pyrenomonadales_XX Pyrenomonadales_XXX 

ASV_343 0.6139 Prymnesiales Chrysochromulinaceae Chrysochromulinaceae_X 

ASV_251 0.6127 Nitrosococcales Nitrosococcaceae Cm1-21 

ASV_87 0.6104 Pyrenomonadales NA NA 

ASV_248 0.6093 Betaproteobacteriales Methylophilaceae NA 

ASV_58 0.6061 Pyrenomonadales Pyrenomonadales_XX Pyrenomonadales_XXX 

ASV_390 -0.6064 Oceanospirillales Alcanivoracaceae Alcanivorax 

ASV_528 -0.6073 Acidithiobacillales Acidithiobacillaceae KCM-B-112 

ASV_522 -0.6130 Oceanospirillales SS1-B-06-26 NA 

ASV_354 -0.6265 NA NA NA 

ASV_642 -0.6320 Flavobacteriales Cryomorphaceae NA 

ASV_133 -0.6385 Vibrionales Vibrionaceae Catenococcus 

ASV_45 -0.6410 NA NA NA 

ASV_208 -0.6516 Salinisphaerales Salinisphaeraceae Salinisphaera 

ASV_1 -0.6587 Synechococcales Cyanobiaceae Synechococcus_CC9902 
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ASV 
Correlation 
coefficient  Order Family  Genus 

ASV_35 -0.6614 Rhodobacterales Rhodobacteraceae NA 

ASV_407 -0.6623 Flavobacteriales Flavobacteriaceae Formosa 

ASV_322 -0.6679 Oceanospirillales Oleiphilaceae Oleiphilus 

ASV_81 -0.6861 Chitinophagales Saprospiraceae Lewinella 

ASV_20 -0.6862 Nitrosococcales Methylophagaceae Methylophaga 

Table 4 ASVs that were correlated with ASV_10 (P. globosa) in the surface 
samples from the large filtration size fraction. Correlations were 
calculated using FastSpar (Watts et al. 2019) and filtered for 
|Pearson’s coefficient| ≥ 0.6 and P = 0.001. 

ASV 
Correlation 
coefficient Order Family Genus 

ASV_92 0.6857 NA NA NA 

ASV_87 0.6259 Pyrenomonadales NA NA 

ASV_36 0.6259 Thalassiosirales NA NA 

ASV_23 0.6226 Thalassiosirales NA NA 

ASV_169 -0.6025 Cellvibrionales Halieaceae OM60(NOR5) clade 

ASV_88 -0.6205 Synechococcales Cyanobiaceae Cyanobium_PCC-6307 

ASV_522 -0.6241 Oceanospirillales SS1-B-06-26 NA 

ASV_528 -0.6366 Acidithiobacillales Acidithiobacillaceae KCM-B-112 

ASV_263 -0.6374 Rhodobacterales Rhodobacteraceae Tropicibacter 

ASV_390 -0.6420 Oceanospirillales Alcanivoracaceae Alcanivorax 

ASV_473 -0.6486 Flavobacteriales Flavobacteriaceae NA 

ASV_1 -0.6529 Synechococcales Cyanobiaceae Synechococcus_CC9902 

ASV_208 -0.6568 Salinisphaerales Salinisphaeraceae Salinisphaera 

ASV_133 -0.6649 Vibrionales Vibrionaceae Catenococcus 

ASV_322 -0.6766 Oceanospirillales Oleiphilaceae Oleiphilus 

ASV_45 -0.6818 NA NA NA 

ASV_20 -0.6910 Nitrosococcales Methylophagaceae Methylophaga 

ASV_81 -0.7029 Chitinophagales Saprospiraceae Lewinella 

 

5.2.   Particle-associated microbes   

5.2.1. Methods for identifying differentially abundant ASVs 

Normalization is a critical step in identifying differentially abundant OTUs/ASVs 

due to the differences in library size and the sparsity of OTU/ASV tables that is inherent 

in molecular ecology data (Weiss et al. 2017). Rarefying is commonly used for 

normalization and is considered the standard in molecular ecology (Weiss et al. 2017), 
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but a number of alternative normalization methods exist. One alternative approach 

involves scaling the counts of the count matrix by a quantile of the data. For example, 

the log upper quartile (logUQ) scales each sample by the 75th percentile of its count 

distribution followed by a log transformation (Bullard et al. 2010). Cumulative sum 

scaling (CSS) is similar to logUQ, but uses a distribution-dependent threshold for  

determining the quantile divisor of each sample and only scales the segments of the 

distribution that are relatively invariant across samples (Paulson et al. 2013). The 

variance stabilization approach implemented by DESeq2 calculates a scaling factor for 

each OTU/ASV in each column and divides all the reads for each column by the median 

of its scaling factors. A mean-variance relation is then fit for all OTUs/ASVs using a 

negative binomial (NB) generalized linear model (GLM) to adjust the matrix counts so 

that the variance in the counts across samples is approximately independent of its mean 

(Love et al. 2014). Finally, edgeR uses a Trimmed Mean by M-Values (TMM) scaling 

factor, which is calculated as the weighted mean of log-ratios between each pair of 

samples. The normalization factors for each sample are a product of the TMM scaling 

factor and the original library size (Robinson et al. 2010).  

Following normalization, the identification of differentially abundant OTUs/ASVs 

is a challenging task due to the zero-inflation and over-dispersion of microbiome data. 

The simplest approaches for identifying differentially abundant OTUs/ASVs use 

nonparametric tests, e.g. the Mann-Whitney/Wilcoxon rank-sum test for tests of two 

groups and the Kruskal-Wallis test for tests of multiple groups, on the rarefied count data 

(Weiss et al. 2017). These approaches, however, do not account for the compositionality 

of microbial marker gene data. Alternatively, analysis of composition of microbiomes 

(ANCOM) accounts for the composition of microbiome data by comparing the log-ratio of 

the abundance of each OTU/ASV to the abundance of all the remaining OTUs/ASVs one 

at a time using the Mann-Whitney U (Mandal et al. 2015). More recently, parametric 

models developed for differential gene expression testing on RNA-Seq data have been 

applied to microbial marker gene data. These models are composed of GLMs that 

assume a distribution; often either a Poisson, NB or zero-inflated lognormal (Weiss et al. 

2017). Some of the more popular tools are DESeq2 (Love et al. 2014) and edgeR 

(Robinson et al. 2010), both of which assume a NB model. In contrast, metagenomeSeq, 

a tool designed for metagenomics data (Paulson et al. 2013), assumes a zero-inflated 

Gaussian model. There is currently no consensus in the field as to which of these tools 



88 

performs best on microbial marker gene data (Weiss et al. 2017) so I elected to use both 

DESeq2 and edgeR for the analyses to increase the strength of the results.  

5.2.2. ASVs with differential abundance between filtration sizes 

 

Figure 66 Bacteria and archaea ASVs identified by DESeq2 (Love et al. 2014) 
and edgeR (Robinson et al. 2010) as differentially abundant between 
the small (0.2-10 µm) and large (2-10 µm) filtration sizes in the 
surface samples from each expedition. Each bar represents an 
indiviudal ASV. Log2FoldChange > 0 indicates ASVs that are more 
abundant in the large filtration size and log2FoldChange < 0 
indicates ASVs that are more abundant in the small filtration size.  

DESeq2 and edgeR were used to identify particle-associated microbes that may 

have interacted with P. globosa during its bloom. First, DESeq2 was run on the surface 

samples from each of the three expedition separately to identify bacteria and archaea 

ASVs that were differentially abundant (threshold P < 0.05) between the samples from 

the small and the large filtration sizes in each expedition. Next, the same analysis was 

performed using edgeR and the differentially abundant ASVs from DESeq2 were filtered 

to only include ASVs that were also differentially abundant (threshold FDR < 0.05) using 

edgeR. Bacteria and archaea ASVs that were enriched in the large (10-200 µm) filtration 

size are more likely to be associated with large particles such as P. globosa colonies.  
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Figure 67 Spatial-temporal distribution of ASV_4 (Candidatus_Actinomarina) 
mapped by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values. 

 

Figure 68 Venn diagram of ASVs that were identified by DESeq2 (Love et al. 
2014) and edgeR (Robinson et al. 2010) as enriched in the large 
filtration size fraction in the surface samples from each expedition 
month. 

The ASVs that were enriched in the large filtration size revealed hypotheses for 

microbes that interacted with P. globosa colonies at different stages of the bloom. In all 
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three expeditions, there were more ASVs that were enriched in the large filtration size 

than in the small (Figure 66). The ASVs that were enriched in the small filtration size 

were mostly from the SAR11_clade, the genera NS4_marine_group, NS5_marine_group 

and Candidatus_Actinomarina, and the archaea Marine_Group_II (Figure 66). These 

groups represent mostly free-living taxa that have small or very small-sized cells. For 

example, ASV_4, from the very small-sized Candidatus_Actinomarina, was enriched in 

the small filtration size in the January and April expeditions (Figure 67). Interestingly, 

only five ASVs were enriched in the large filtration size for all three expeditions (Figure 

68). These five ASVs included one Alteromonadaceae, one Rhodobacteraceae, one 

Cytophagales, one Flavobacteriales (Aquibacter) and one Sandaracinaceae. The small 

number of ASVs enriched in the large filtration size for all three expeditions suggests 

that the microbes associated with large particles, including P. globosa, changed at 

different stages of the bloom. The 102 ASVs that were enriched in the large filtration size 

in the January expedition (Figure 68) are candidates for forming symbiotic relationships 

with P. globosa colonies at peak of bloom. Two examples are ASV_268 (Colwellia 

aquaemaris) and ASV_1173 (Nioella sediminis), both of which were enriched in the large 

filtration size for only the January expedition (Figure 69). The April expedition had the 

most ASVs enriched in the large filtration size (n = 442; Figure 68), which is consistent 

with more ASVs being involved in the degradation of and associated with organic 

materials at this time point. These ASVs are candidates for involvement in the 

degradation of P. globosa colonies. For example, ASV_965 (Roseovarius atlanticus) is a 

member of the Roseobacter group, which are important organic carbon consumers after 

phytoplankton blooms (Buchan et al. 2014), and was enriched in the large filtration size 

for only the April expedition (Figure 70). Overall, many of the ASVs identified by this 

analysis are candidates for taxa that interact with P. globosa during its bloom but require 

further investigation to determine their role.  
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Figure 69 Spatial-temporal distribution of a) ASV_268 (Colwellia aquaemaris) 
and b) ASV_1173 (Nioella sediminis) mapped by agglomerating 
samples collected from different water sampling depths at the same 
sampling location, expedition, and filtration size, and interpolating 
the centered log-ratio (clr) transformed values. 

 

Figure 70 Spatial-temporal distribution of ASV_965 (Roseovarius atlanticus) 
mapped by agglomerating samples collected from different water 
sampling depths at the same sampling location, expedition, and 
filtration size, and interpolating the centered log-ratio (clr) 
transformed values. 
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5.3. The P. globosa colony microbiome  

 

Figure 71 a) The two locations P. globosa colonies were sampled in the Beibu 
Gulf. b) The relative abundance of ASV_10 (P. globosa) and the 
families of bacteria and archaea (after removing chloroplast reads) 
in the colony samples. Samples are labelled by sampling location 
and expedition month. c) PCoA plot of the bacteria and archaea 
reads from the colony samples.  

The P. globosa colony microbiome showed substantial variation by sampling 

location (Figure 71). The composition of the bacteria and archaea reads in the colony 

samples differed considerably between the ZN4-1 and ZN4-3 sampling locations. 

Colonies sampled from ZN4-3 location were dominated by the family Rhizobiaceae, 

while the two most abundant families in the colonies from the ZN4-1 location were 

Alcanivoracaceae and Nisaeaceae (Figure 71b). This was also reflected by the PCoA of 

the bacteria and archaea reads from the colony samples (Figure 71c), which was 

performed by rarefying to 837 reads/sample and ordinating the Bray-Curtis dissimilarity 

matrix. The first axis of the PCoA explained 66.2% of the variation and separated the 

samples by location (ZN4-1 vs. ZN4-3). The second axis of the PCoA explained 16.7% 

of the variation and separated the two different samples from the ZN4-3 location (ZN4-3-
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46 vs. ZN4-3-48). Interestingly, the two samples from the ZN4-1 location clustered 

closely together despite being sampled during different expedition months (January vs. 

Feb-March).  

 

Figure 72 The relative abundance of families of bacteria and archaea (after 
removing chloroplast reads) in the field and colony samples from 
the ZN4-3 location and the January expedition.  

ASVs that were likely to be associated with P. globosa colonies were identified 

by comparing the colony samples with the field samples from the same location and 

expedition. ASVs enriched in the colony samples represent microbes that were likely 

either attached to the outside of or located inside a P. globosa colony. The composition 

of the bacteria and archaea in the January expedition at the ZN4-3 location differed 

substantially between the field and colony samples (Figure 72). Six ASVs were identified 

by both DESeq2 and edgeR analysis as significantly enriched (P < 0.05 for DESeq2 and 

FDR < 0.05 for edgeR) in the two ZN4-3-46 colony samples compared to the ZN4-3 field 

samples (Table 5). Similarly, four ASVs were enriched in the two ZN4-3-48 colony 

samples compared to the ZN4-3 field samples (Table 6). Two ASVs, including 

Lentilitoribacter donghaensis, were enriched in both the ZN4-3-46 and ZN4-3-48 colony 

samples compared to the ZN4-3 field samples (Table 7).  
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Table 5 ASVs identified by DESeq2 and edgeR as enriched in the two ZN4-3-
46 colony samples compared to the ZN4-3 field samples. The 
log2FoldChange values are from DESeq2.   

ASV 
log2 

FoldChange Family Genus Species 

ASV_201 18.57593 Rhizobiaceae Lentilitoribacter Lentilitoribacter_donghaensis 

ASV_794 16.41617 Hyphomonadaceae Maricaulis NA 

ASV_1173 15.78868 Rhodobacteraceae Nioella Nioella_sediminis 

ASV_2624 13.92337 Alteromonadaceae Aestuariibacter NA 

ASV_630 10.92051 Kangiellaceae Aliikangiella NA 

ASV_506 8.646819 Rhodobacteraceae NA NA 

 

Table 6 ASVs identifed by DESeq2 and edgeR as enriched in the two ZN4-3-
48 colony samples compared to the ZN4-3 field samples. The 
log2FoldChange values are from DESeq2. 

ASV 
log2 

FoldChange Family Genus Species 

ASV_201 19.12964 Rhizobiaceae Lentilitoribacter Lentilitoribacter_donghaensis 

ASV_1407 15.37035 Hyphomonadaceae NA NA 

ASV_1467 15.21268 Methylophagaceae 
Marine_Methylotrophic_ 
Group_3 NA 

ASV_506 8.00869 Rhodobacteraceae NA NA 

 

Table 7 ASVs identified by DESeq2 and edgeR as enriched in both the ZN4-
3-46 and ZN4-3-48 colony samples compared to the ZN4-3 field 
samples. 

ASV Family Genus Species 

ASV_201 Rhizobiaceae Lentilitoribacter Lentilitoribacter_donghaensis 

ASV_506 Rhodobacteraceae NA NA 

 

Like the ZN4-3 location, the composition of the bacteria and archaea in the 

January and Feb-March expeditions at the ZN4-1 location differed between the field and 

colony samples (Figure 73). Two ASVs were significantly enriched in the ZN4-1 colony 

samples compared to the ZN4-1 field samples from the same expeditions, Nisaea 

denitrificans and Alcanivorax borkumensis (Table 8). Neither of these ASVs were 

enriched in the ZN4-3 colony samples, suggesting that the P. globosa colony 

microbiome may be location-dependent.  
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Figure 73  The relative abundance of families of bacteria and archaea (after 
removing chloroplast reads) in the field and colony samples from 
the ZN4-1 location and the January and Feb-March expeditions. 

Table 8 ASVs identifed by DESeq2 and edgeR as enriched in the two ZN4-1 
colony samples compared to the ZN4-1 field samples. The 
log2FoldChange values are from DESeq2. 

ASV 

log2 
FoldChange Family Genus Species 

ASV_1345 15.67868 Nisaeaceae Nisaea 
Nisaea_denitrificans/ 
Nisaea_denitrificans_DSM_18348 

ASV_390 15.45297 Alcanivoracaceae Alcanivorax 
Alcanivorax_borkumensis/ 
Alcanivorax_borkumensis_SK2 

 

Finally, seven ASVs were enriched in the colony samples from at least one 

location and in the large filtration size from at least one expedition (Table 9). The 

enriched ASVs included the species Lentilitoribacter donghaensis, Nioella sediminis and 

Alcanivorax borkumensis. This provides support that these microbes are associated with 

large particles in the environment, but this association may not be specific to P. globosa 

colonies.  

Table 9 ASVs enriched in the colony samples from at least one sampling 
location and in the large filtration size from at least one expedition.  

ASV Family Genus Species 

ASV_201 Rhizobiaceae Lentilitoribacter Lentilitoribacter_donghaensis 
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ASV Family Genus Species 

ASV_390 Alcanivoracaceae Alcanivorax 
Alcanivorax_borkumensis/ 
Alcanivorax_borkumensis_SK2 

ASV_630 Kangiellaceae Aliikangiella NA 

ASV_794 Hyphomonadaceae Maricaulis NA 

ASV_1173 Rhodobacteraceae Nioella Nioella_sediminis 

ASV_1407 Hyphomonadaceae NA NA 

ASV_1467 Methylophagaceae 
Marine_Methylotrophic_ 
Group_3 NA 

 

5.4. Discussion 

In this chapter microbes that potentially interacted with P. globosa colonies 

during a bloom in the Beibu Gulf were identified using 16S amplicon sequencing. ASVs 

with potential interactions with P. globosa were identified by building interaction 

networks, identifying particle-associated microbes and exploring the P. globosa colony 

microbiome through sequencing entire P. globosa colonies from a naturally occurring 

bloom. Interestingly, while the P. globosa colonies had different bacterial compositions 

compared to seawater samples collected from the same locations, there was no core set 

of bacteria in the colonies sampled from different locations.  

ASVs that were positively or negatively correlated with ASV_10 (P. globosa) 

during the bloom were identified using interaction networks. The ASVs that were 

positively correlated with ASV_10 (Table 3 and Table 4) had the same temporal 

dynamics as ASV_10 as they decreased in relative abundance from the January to the 

April expedition. These ASVs represent candidates for forming symbiotic or commensal 

interactions with P. globosa. In contrast, the ASVs that were negatively correlated with 

ASV_10 (Table 3 and Table 4) had the opposite temporal dynamics and increased in 

relative abundance from the January to the April expedition. These ASVs are candidates 

for forming competitive or predator-prey interactions with P. globosa. However, the 

observed correlations may also be explained by the abiotic requirements of the ASVs. 

For example, many of the ASVs that were positively correlated with P. globosa were 

chloroplasts (Table 3 and Table 4), which have similar nutrient requirements to P. 

globosa. Ultimately, further investigations, such as laboratory observations of 

interactions between different species, is required to determine the roles of these ASVs 

in the P. globosa bloom. 
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Particle-associated microbes were identified that were enriched in the large 

filtration size fraction for each of the three expeditions during the P. globosa bloom 

(Figure 66). Given the large size of the P. globosa colonies, the particle-associated 

microbes may have been associated with P. globosa colonies or other large particles in 

the environment, e.g. other phytoplankton. Some of the particle-associated microbes 

may also be represented by microbes that are not associated with particles, but instead 

form large colonies like P. globosa. Interestingly, the ASVs that were particle-associated 

changed with expedition (Figure 68), suggesting that the microbes that were associated 

with particles such as P. globosa colonies changed throughout the bloom. For example, 

ASV_268 (Colwellia aquaemaris) and ASV_1173 (Nioella sediminis), both of which were 

identified as particle-associated for only the January expedition, are two examples of 

candidates for forming symbiotic relationships with P. globosa colonies at the peak of the 

bloom (Figure 69). The enrichment of Colwellia aquaemaris in the large filtration size 

during the January expedition is consistent with a previous study of a P. antarctica 

bloom, which found that particle-associated bacteria at 250m depth were enriched in 

Colwellia (Delmont et al. 2014). Overall, while the particle-associated microbes 

represent interesting hypotheses for microbes that interacted with P. globosa colonies, 

there is no evidence that these interactions were specific to P. globosa colonies and 

further investigation of their role in the bloom is necessary.  

 A variable P. globosa colony microbiome was discovered by sequencing entire 

colonies from multiple locations during a P. globosa bloom in the Beibu Gulf. The 

interactions between phytoplankton and bacteria are complex, involving the exchange of 

cofactors, micronutrients, proteins and signalling molecules, which results in mutualistic, 

commensal, competitive and antagonistic interactions (Behringer et al. 2018). The first 

step in understanding these interactions is determining the types of bacteria that are 

associated with the phytoplankton. Cultivation studies are an inherently biased approach 

for determining the bacteria associated with phytoplankton because most marine 

bacteria cannot be maintained using current culturing techniques (Rappe and 

Giovannoni 2003). Direct sequencing of the 16S rRNA genes from P. globosa colonies 

from a naturally occurring bloom was thus used to explore the P. globosa colony 

microbiome, which, to my knowledge, has never been done. In theory, the ASVs 

identified in the P. globosa colony samples represent microbes that were located inside 

the colonies or attached to the outside, which would provide some evidence for their 
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interaction with P. globosa. Interestingly, while the P. globosa colonies had different 

bacterial compositions compared to seawater samples collected from the same locations 

(Figure 72 and Figure 73), there was no core set of bacteria that were enriched in the 

colonies sampled from different locations. The bacteria associated with the P. globosa 

colonies were location-dependent as the ZN4-3-46 and ZN4-3-48 colony samples were 

more similar to each other than the ZN4-1 colony samples (Figure 71). This suggests 

that the P. globosa colony microbiome may be flexible and dependent on the 

surrounding environment. Consistent with these results, previous studies have found 

that marine bacteria from diatom cultures and diatom-dominated blooms belong to a 

small number of genera compared to the total genera found in seawater (e.g. Baker and 

Kemp 2014). However, I did not identify a core set of bacteria shared by different strains, 

which has been previously observed for two species of coccolithophores (Green et al. 

2015) and two diatom species (Behringer et al. 2018). These results are more consistent 

with the findings that 13 different cultures of the green algae Ostreococcus tauri 

contained varying bacteria with no core microbiome (Abby et al. 2014). Several species 

were identified that are worth further investigation of their interactions with P. globosa, 

including Lentilitoribacter donghaensis, Nioella sediminis, Nisaea denitrificans and 

Alcanivorax borkumensis, due to their presence in the P. globosa colony microbiome.  
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Chapter 6. Conclusions and future directions  

6.1. Conclusions 

In this thesis, the mechanisms underlying the recurrent P. globosa blooms in the 

Beibu Gulf were explored using 16S amplicon sequencing. In chapter two, I developed a 

bioinformatics pipeline for analyzing the amplicon sequencing data collected from field 

and colony samples during a P. globosa bloom. In chapter three, I identified the 16S 

rRNA gene as a suitable marker for tracking P. globosa due to low levels of intraspecific 

variation in the gene. Additionally, I found that the composition of the bacteria, archaea 

and eukaryotes in the Beibu Gulf was generally consistent with other studies in the 

Beibu Gulf and nearby regions. In chapter four, I observed distinct communities of 

bacteria, archaea and eukaryotes at three different time points during the P. globosa 

bloom. In many cases different groups had distinct temporal patterns, which could be 

related to their ecological niches during the bloom using descriptions from the literature 

as well as the temporal patterns of the environmental variables Additionally, I identified 

variation in the temporal response to the bloom at the ASV-level for the bacteria, 

archaea and chloroplast ASVs, which provides evidence for a previously 

underappreciated amount of variation of niches within taxonomic group. Using the 

spatial-temporal dynamics of P. globosa, other bacteria, archaea and phytoplankton and 

the environmental variables, I developed a preliminary model for the development and 

progression of the P. globosa bloom in the Beibu Gulf. Finally, in chapter five I identified 

bacteria that potentially interacted with P. globosa during the bloom by studying the P. 

globosa colony microbiome. Interestingly, while the P. globosa colonies had different 

bacterial compositions compared to seawater samples collected from the same 

locations, there was no core set of bacteria in the colonies sampled from different 

locations. This suggests that P. globosa may not have a core microbiome and that the 

bacteria that interact with P. globosa colonies vary with strain or location.   

6.2. Future directions 

There are several different types of data that could be collected to further 

advance our understanding of the mechanisms underlying the P. globosa looms in the 

Beibu Gulf. First, the strength of this analysis could be improved with the use of technical 
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and biological replicates. The amplicon sequencing approach used here could be 

improved in the future from the use of longer reads, e.g. PacBio, to increase the 

taxonomic resolution of the ASVs (Martins et al. 2020). The results from this work will 

also become more useful as taxonomy databases become more complete and more 

ASVs can be annotated to the species level. Future expeditions will likely be planned to 

sample future P. globosa blooms in the Beibu Gulf at additional time points. Collecting 

additional samples prior to the start of the bloom (e.g. Lamy et al. 2010) will improve our 

understanding of the changes that occurred to trigger bloom formation. Additionally, 

collecting samples at a finer timescale, i.e. daily samples for a week at the peak of the 

bloom (Needham and Fuhrman 2016), will improve our understanding of the 

mechanisms underlying the peak of the bloom on a finer timescale. While changes in the 

community composition were observable using 16S amplicon sequencing data, this data 

did not provide information on the change in activity of different microbes at different 

stages of the bloom. Collecting metatranscriptomics data at different time points during 

the bloom would allow for insight into the functional roles of different species at different 

time points of the bloom (e.g. Nowinski et al. 2019). The support for the preliminary 

model could also be strengthened using data from experimental systems such as 

mesocosms that simulate the conditions during a P. globosa bloom in the Beibu Gulf. 

Additionally, the analysis of the P. globosa colony microbiome would benefit from an 

increase in sample size. Future expeditions will likely plan the collection of a larger 

sample size of colonies from a future P. globosa bloom to further investigate the bacteria 

identified here as potentially interacting with P. globosa colonies. Finally, further 

investigation of the microbes identified as potentially interacting with P. globosa could be 

performed by observing these interactions in a laboratory environment.  
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Appendix A.  
 
DADA2 read quality plots  

 

Figure A1 Example output from the DADA2 plotQualityProfile() function for the 
forward reads from twelve samples. The gray-scale is a heatmap of 
the frequency of each quality score at each base position. The green 
lines represent the mean quality score at each position, the orange 
lines show the quartiles of the quality score distribution and the red 
lines shows the scaled proportion of reads that extend to at least 
that position.   
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Appendix B.  
 
P. globosa strains 16S rDNA sequence assembly 
methods  

Forty-nine P. globosa strains were selected from bloom water samples using a 

micropipette under an inverted light microscope Nikon TS2 (Tokyo, Japan), washed and 

transferred to culture dishes, which were subsequently maintained at 20ºC under a 

12:12 h light:dark cycle. DNA was extracted for whole-genome sequencing from each of 

the cultured strains using the HP Plant DNA kit (Omega, USA) according to the 

manufacturer’s instructions.The quality of the extracted DNA was monitored on 1% 

agarose gels and the DNA concentrations were measured using the Qubit® DNA Assay 

Kit with the Qubit® 2.0 Fluorometer (Life Technologies, CA, USA). Sequencing libraries 

were generated using NEBNext DNA Library Prep Kit following the manufacturer's 

recommendations with indices added to each sample. Briefly, the genomic DNA was 

randomly fragmented to a size of 350 bp by shearing, DNA fragments were end 

polished, A-tailed and ligated with the NEBNext adapter for Illumina sequencing and 

further PCR enrichment was performed using generic P5 and P7 oligo adapters. The 

PCR products were purified (AMPure XP system) and the resulting libraries were 

analyzed for size distribution using the Agilent 2100 Bioanalyzer system and quantified 

using real-time PCR. Libraries were sequenced on the NovaSeq Illumina platform 

(Illumina, San Diego, CA, USA) using 2x150 paired-end reads at a depth of 35 million 

reads/sample (~100X coverage).  

The 16S rRNA gene sequences were assembled using the whole-genome 

sequencing reads for each strain. The raw reads were filtered by 1) removing reads with 

>10% unidentified nucleotides (N), 2) removing reads with > 50% bases with Phred 

score < 5, 3) removing reads with > 10 nucleotides aligned to the adapter sequences 

and 4) removing PCR duplicates. The filtered reads were assembled using Platanus-

allee v. 2.0.2 (Kajitani et al. 2019), ABySS v. 2.1.5 (Jackman et al. 2017) and SPAdes 

(Bankevich et al. 2012). Next, the chloroplast DNA (cpDNA) scaffolds were identified 

using BLAST (Camacho et al. 2009) against the NC_021637.1 P. globosa chloroplast 

genome. Finally, the 16S rDNA sequences were determined by two methods: 1) BLAST 

analysis of the NC_021637.1 16S rDNA sequence against the assembled cpDNA 
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scaffolds for each strain or 2) alignment of the filtered reads for each strain to the 

NC_021637.1 16S rDNA sequence using BWA v. 0.7.17 (Li and Durbin 2009), extraction 

of the aligned reads using SAMtools v. 1.9 (Li et al. 2009) and assembly with SPAdes 

(Bankevich et al. 2012).  


