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Abstract

The Mpemba effect refers to a phenomenon where a sample of hot water may cool and
begin to freeze more quickly than a cool or warm water sample prepared under identical
conditions. Although the effect has been known since the time of Aristotle, it is named after
the Tanzanian teenager Erasto Mpemba, who discovered the effect in the 1960s. Although
Mpemba and Osborne showed the effect in laboratory experiments, it has always been
mysterious, its underlying mechanism a topic of hot debate.

In this thesis, we experimentally show the Mpemba effect in a colloidal system with a
micron-sized silica bead diffusing in a bath. The bead is subjected to an external double-
well potential created by a feedback-based optical tweezer. When a system is quenched from
an initially hot equilibrium state to a cold equilibrium state, the evolution of the system
between the initial and the final state is a strongly nonequilibrium process. As a nonequi-
librium state cannot, in general, be characterized by a single temperature, we adopt the
notion of a “distance” measure as a proxy for temperature. We show Mpemba effects in
an asymmetric double-well potential. Our experimental results agree quantitatively with
predictions based on the Fokker-Planck equation. Using understanding gained from the
Mpemba effect, we design an experiment to investigate the opposite effect and present the
first experimental evidence for this inverse Mpemba effect. Contrary to the cooling effect,
the inverse effect is related to a phenomenon where a system that is initially cold heats up
faster than an initially warm system. By understanding the underlying mechanism of these
anomalous effects, we demonstrate strong Mpemba and inverse Mpemba effects, where a
system can cool or heat exponentially faster to the bath temperature than under typical
conditions. Finally, we ask whether asymmetry in the potential is necessary and show ex-
perimentally that an anomalous cooling effect can be observed in a symmetric potential,
leading to a higher-order Mpemba effect.

Keywords: Mpemba effect; inverse Mpemba effect; Fokker-Planck equation; thermal relax-
ation; metastability; free-energy landscape; nonequilibrium; feedback traps; optical tweezers;
virtual potentials
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Chapter 1

Introduction

1.1 Relaxation in physical systems

When a system is perturbed, it tends to relax back to equilibrium. The simplest theoretical
description of relaxation as a function of time t after a perturbation is an exponential law
∝ exp(−t/τ) with a characteristic time τ . Indeed, the decaying motion of damped harmonic
oscillators, thermal relaxation of a typical body to its ambient temperature, and discharging
of a capacitor all exhibit exponential relaxation, with decay rates independent of the time
at which the systems are perturbed from equilibrium.

However, in many cases, the relaxation of systems is far from exponential and may
depend on their history of perturbation [1]. The dynamics of disordered systems, starting
from an initial perturbed state towards its equilibrium, can often be slow and involve a
number of different relaxation mechanisms in parallel. For example, logarithmic relaxation
has been experimentally observed in compaction of sand in a tube [2], the current decay
in superconductors [3], volume relaxation in crumpling paper [4], mechanical relaxation of
plant roots [5], and frictional strength [6]. In solid-state physics, glassy systems show ex-
tremely slow dynamics below and just above the glass transition. In a variety of systems,
at short times (less than the time tw during which an external force has been applied), the
relaxation dynamics are logarithmic (∝ ln(tw/t)), whereas a power-law (∝ tw/t) is observed
at long times [7]. These relaxations are much slower than exponential or stretched expo-
nential decay, and their equilibration times are often experimentally unreachable. Similar
to glasses, proteins display a slow relaxation process best described by a stretched exponen-
tial when perturbed by temperature and pressure [8]. Stretched exponential behaviors are
also observed in systems such as molecular and electronic glasses [9], metallic glass-forming
melts [10], and granular systems [11]. The relaxation dynamics governed by these laws are
anomalously slow and can take longer than usual to relax. Generally, when such systems
are perturbed, relaxation to equilibrium involves the relaxation of a spectrum of modes.
Each of the modes relaxes independently and exponentially to its equilibrium, but with a
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different relaxation rate. In some cases, some of these modes may get trapped in metastable
states and relax with long equilibration times.

Although the best-known relaxation anomalies involve very slow relaxations, there is
another class where relaxation can be much faster than expected. The best-known of these
investigations concerns an anomalous cooling effect in water, known as the Mpemba effect
[12]. Under certain conditions, an initially hot sample of water can freeze faster than an
initially warm sample of water. The effect may appear counterintuitive, as our intuitions
are set by systems that remain at or near equilibrium; in that case, a system starting at a
higher temperature cannot reach equilibrium without passing through all the intermediate
temperatures. However, in a thermal quench, systems do not remain in equilibrium. Thus,
the state of the system at any instant is not described by a single temperature. A large
temperature gradient can be set up by convective currents within the volume and may be
represented by a temperature field T (x, t). One can calculate the spatial average of T (x, t)
as the water cools, but the average temperature does not represent the water that had
been initially prepared at the same temperature. Thus, the system does not necessarily
have to pass through all the intermediate states to reach equilibrium and can sometimes
cool faster. After their discovery in water, these anomalous cooling effects were observed
in other physical systems, suggesting that such behavior may be a general phenomenon in
nature.

1.2 History of the Mpemba effect

In 1963, a Tanzanian boy, Erasto Mpemba, made an accidental discovery that a container
of hot water could cool faster than a container of warm water when placed in the same
environment. When he was in Form 3 in Magamba Secondary School, Tanzania, he made
ice cream with his fellow students. While he was boiling the milk, another student mixed
his milk with sugar and poured it into the ice tray without boiling it. The fear of losing the
last available ice tray led Mpemba to decide to risk ruining the refrigerator by putting hot
milk into its freezer. After an hour and a half, he and his friend found that the boiled milk
had frozen into ice cream while the cold milk was still a thick liquid. He was ridiculed by his
physics teacher when he asked about his observation. Later he asked the same question to Dr.
Denis G. Osborne, who assured him that he would redo the experiment at his university.
When his technician found that Mpemba was correct, they ran more experiments and
published the first systematic study of the effect in 1969 [12]. They argued that the hot
liquid’s top surface cooled rapidly due to convection, leading to faster cooling of the hot
liquid. We will discuss this and other mechanisms for the Mpemba effect below, in Sec. 1.3.

Although the current interest in understanding the Mpemba effect gained momentum
after Mpemba’s discovery, its history stretches back 2300 years. Around 350 B.C., Aristotle
wrote, “if water has been previously heated, this contributes to the rapidity with which it
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freezes: for it cools more quickly [13, 14].” The effect was also discussed by Roger Bacon
in the 13th century [15], Giovanni Marliani in the 15th century [16], Francis Bacon [17] and
Descartes in the 17th century. These historical discussions provide evidence that people were
aware of the effect, but no explanations were given to support the observation. At present,
many explanations have been proposed for the effect, but none has been generally accepted.
We will discuss recent progress in the next section.

1.3 Explanations for the Mpemba effect

Mpemba explained his observation about hot water freezing faster than cold water as arising
from thermal convection. The rapid mixing of liquid in a hot sample of water led to a faster
cooling from the liquid’s top surface, and thus a faster cooling overall. However, this is not
the only possible mechanism. The effect was reproduced when the system was subjected to
variations in parameters that control the heat transfer rate. Possible mechanisms for the
Mpemba effect include

• Evaporation: If equal masses of water are taken at two starting temperatures, more
rapid evaporation from the hotter one may diminish its mass enough to compensate
for the greater temperature range it must cover to reach freezing. Kell, in 1968, argued
that mass loss due to evaporation could explain the Mpemba effect [18]. Advancing
Kell’s work, Vynnycky et al. modeled more precise geometry in which the experiment
was carried out to understand the potential role of evaporative cooling [19]. A recent
numerical study considered evaporation, radiation, and convection in a single droplet
of water and suggested that evaporation is the main reason behind the effect [20].
However, other observations indicate that the amount of water lost to evaporation is
insufficient to produce the effect and might be simply a contributory factor [12, 21,
22]. In particular, Wojciechowski et al. observed the effect in a closed container, where
evaporation was reduced [23].

• Convection: As the water cools, temperature gradients and convection currents de-
velop. For most temperatures, the water density decreases as the temperature is in-
creased, creating a “hot top” [24], where the top surface is warmer than the average
temperature of the water. Because the rate of cooling depends on the surface tem-
perature of the liquid and not on its mean temperature, the heat loss is greater for
the more inhomogeneous temperature distribution. Since a strong convective flow is
created in initially hot water, it cools faster than initially warm water. The tempera-
ture gradient set by convection also suggests that the initially hot system never passes
through a state equivalent to the starting point for the cooling of the initially warm
system [22].
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Although a hot water sample initially cools faster, it does not necessarily freeze first
[21]. Vynnycky et al. did not observe the Mpemba effect while considering natural
convection alone, both experimentally and theoretically [25]. However, they suggested
that the large deviation in the measured freezing times of systems from theoretical
predictions at a given temperature could allow the Mpemba effect to be observed.
They concluded that although the general timescale for freezing is determined by
natural convection, the actual time period is adjusted by supercooling.

• Supercooling: Supercooling occurs when water remains in the liquid phase below its
melting temperature. For situations where initially hot water supercools less, it may
freeze faster than initially warm water. Auerbach observed that hot water sponta-
neously froze faster with probability 0.53 (19 times out of 36 runs) and 0.24 (7 times
out of 29 runs) when the ambient temperature Ta was −8 ◦C < Ta < −5 ◦C and
−11 ◦C < Ta < −8 ◦C, respectively [26]. He pointed out that the initially hotter
water should have a greater temperature gradient and that a gradient is known to
trigger crystallization. However, the argument connecting temperature gradient and
rapid crystallization contradicted his experimental results. Jeng noted that the low
probability of finding the Mpemba effect and the limited number of trials in Auer-
bach’s experiments could explain the results by statistical coincidence [14]. Esposito
et al. pointed out that the statistical nature of the Mpemba effect can be explained in
terms of the transition between differently ordered phases in water and supercooling
[27]. When a liquid is cooled below 0 ◦C, supercooling is followed by nucleation. To
initiate the ice formation, some liquid molecules should arrange in a well-defined order
to form a minimum crystal (or nucleus). Nucleation and crystal growth processes are
both favored below 0 ◦C, and their onset time is stochastic.

• Dissolved gases: Warm water contains more dissolved gases than hot water. In an
attempt to argue that degassing leads to quicker freezing, Wojciechowski et al. noted
that water molecules surrounding solute gas molecules are more ordered than else-
where in the liquid [23]. Thus, the dissolved gas molecules significantly increase the
viscosity of the water and inhibit convective heat transport during the cooling process.
Contrary to Deeson [24], Freeman also observed that the increased amount of CO2

in warm water results in slow cooling [21]. Nonetheless, Osborne disagreed with the
hypothesis by saying that the faster cooling in Mpemba’s experiment was achieved
with recently heated water for both hot and warm systems, and the effect of dissolved
CO2 may be similar to the lost water mass through evaporation. Brownridge also did
not find any correlation between the amounts of dissolved CO2 and the cooling rate
or the time to freeze [28].

• Hydrogen bonds: Molecular-dynamics studies of water molecules have shown the sig-
nificance of the hydrogen bond (H-bond) interaction for understanding the atomistic
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behavior of water exhibiting the Mpemba effect. Zhang et al. proposed that the relax-
ation dynamics of the hydrogen bond (O:H–O) plays a primary role in heat conduc-
tion [29]. Unlike other materials that lengthen and soften when they absorb energy,
water behaves abnormally under heating, lengthening the O:H bond and shorten-
ing the H–O covalent bond through inter-oxygen Coulomb coupling between electron
pairs on adjacent oxygen ions [30]. This process turns the skin of water (a monolayer
at water-air interface) into a “supersolid” phase, where the water molecules form a
rigid, ordered structure and flow with zero viscosity [31, 32]. Zhang et al. argued that
skin-supersolidity is necessary to understand thermal-fluid transport in liquid water.
Thus, in their model, they partitioned a one-dimensional tube cell containing water
into a bulk region and a skin region to study thermal relaxation. They observed the
Mpemba-like cooling only when the thermal diffusivity αS of the skin was greater
than the thermal diffusivity αB of the bulk. Based on their numerical results, they
also observed that the liquid temperature decayed exponentially with cooling time
with a relaxation time τr that decreased exponentially with the increase of the initial
temperature or the initial energy storage of the liquid.

Tao et al. [33] modeled liquid water as a cluster of 1000 water molecules and observed
that increasing the temperature from 283 to 363 K leads to a decrease in the average
number of H-bonds per water molecule. They proposed that the weaker H-bonds with
predominantly electrostatic contributions were broken in hot water, and smaller water
clusters with strong H-bonding arrangements existed that accelerated the nucleation
process leading to a hexagonal lattice of solid ice. In contrast, the weaker hydrogen
bonds in warm water constantly reshuffle during cooling until there is insufficient
thermal energy to overcome their movement. Therefore, hot water freezes faster than
warm water in which the transformation from randomly arranged water clusters to
solid structure of ice costs time and energy.

• Dissolved solutes: The Mpemba effect can arise from the freezing-point depression in-
duced by solutes such as calcium or magnesium carbonates, whose solubility decreases
with increasing temperature [34]. Such solutes precipitate out in the pre-heated water1

and do not lower the freezing point as much as they would do in never-heated water.
Besides, lowering the freezing point reduces the temperature difference between the
liquid and the subfreezing environment. Hence, the never-heated water starts to freeze
later.

1Hard water mostly contains Ca(HCO3)2 introduced by the reaction between atmospheric carbon dioxide
and limestone rock: CaCO3 +CO2 +H2O←→ Ca(HCO3)2. Since the solubility of gases in liquids decreases
rapidly with increasing temperature, heating removes the dissolved CO2 from water. As a consequence, the
depletion of CO2 favors the backward reaction to compensate for the change in concentration of CO2 obeying
Le Chatelier’s principle and results in the precipitation of limestone, CaCO3 [34].
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• Environment: The cooling rate is influenced by the surrounding environment of the
experiment. Several factors such as frost, thermal conductivity, and cooling chamber
can affect the heat transfer between two bodies. For example, if water containers sit
on a layer of frost that conducts heat poorly, the hot sample would melt the layer
establishing a better thermal contact with the refrigerator floor. However, Mpemba’s
experiment was done with an insulated layer of styrofoam between the container and
the refrigerator surface. To study the effect of air circulation on the cooling rates,
Firth measured the freezing time of water samples initially in the temperature range
273–363 K [35]. He observed that the freezing time was maximum at 323 K when
cooled in a domestic refrigerator instead of 363 K in a minifridge, the latter being
four times smaller in size than the former2.

1.4 Mpemba effect in other systems

Although mainly observed in water, the Mpemba effect has been observed in other systems.
In this section, we summarize observations of the Mpemba effect in both experimental
systems and numerical simulations.

1.4.1 Experiments

• Magnetoresistance manganites: Chaddah et al. observed the Mpemba effect in half-
doped manganites La0.5Ca0.5MnO3 cooling in a magnetic field [36]. Generally, during
the cooling of a manganite in a magnetic field, both equilibrium (antiferromagnetic)
and kinetically arrested nonequilibrium (ferromagnetic) phases coexist. The fraction of
the nonequilibrium state fNE is a measure of how much a system is initially arrested in
a metastable nonequilibrium state. Chaddah et al. observed that a state with initially
higher magnetization M (and thus farther from equilibrium) overtakes a state with
initially lower M as they approach equilibrium (fNE = M = 0). While warming,
they measured the nucleation time for the system, starting at different M values at
a chosen measurement field, which dictates the nucleation size. They observed that
when nucleation starts at a lower temperature, the regions of the antiferromagnetic
phase have a large number of smaller nuclei with radii RC, where RC = 2σ/∆f is
the critical radius for the nuclei formation with σ the surface tension and ∆f the
difference in the bulk free energies of the antiferromagnetic and ferromagnetic phases
[37]. A lower RC is observed when the initial fNE is higher. The authors argued that
since a state with high fNE has many smaller nuclei and a higher interface area, a

2The cooling time of a water sample is affected by air convection currents induced inside the cooling envi-
ronment. These currents can persist for much longer in a large domestic refrigerator than a small minifridge.
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higher isothermal relaxation rate will be observed than the relaxation rate observed
in a lower magnetization state.

• Clathrate hydrate: Ahn et al. observed the Mpemba effect experimentally in clathrate
hydrates consisting of hydrogen-bonded water frameworks and enclathrated tetrahy-
drofuran (THF) molecules [38]. They observed that THF solutions display Mpemba-
like behavior in the temperature range 278–318 K, where warmer solutions form hy-
drates faster than colder solutions. At an initial temperature above 318 K, the forma-
tion time was delayed as some THF molecules in gas form at high temperature must
liquefy before they can form hydrates. They defined the freezing temperature as the
temperature at which the THF solution structurally transforms into THF hydrates.
They then measured the average freezing time of water and observed a non-monotonic,
quadratic dependence on the initial temperature of the solution. Further, Ahn et al.
studied the cooperative relationship between the intramolecular polar-covalent bonds
(O–H) and intermolecular hydrogen bonds (O:H) for the THF system. Using Raman
spectra, they observed that O:H stretching phonons of water in THF showed a blue
shift, and O–H stretching mode showed a redshift. The fact that such cooperative
relationships of the two bonds are also found in water may be the leading cause of the
Mpemba-like behavior in forming the THF hydrate [29].

• Polymers: Hu et al. studied crystallization in polylactide (PLA), an environmentally
friendly polymer produced from renewable resources [39]. Generally, cold polymers
crystallize faster than hot polymers due to self-nucleation (production of self-seeds
or self-nuclei within a polymer melt) originating from the residual orientation of the
chains that are inside the crystal [40]. However, quenched PLA crystallizes faster
when initially held at a higher temperature (Th) and annealed isothermally at a lower
temperature. The unusual Mpemba effect in PLA crystallization may arise from the
microscopic differences produced during sample preparation. Hu et al. argued that the
size of these local structures is large at higher Th, and thus the PLA chain mobility
increases with Th. Thus, during the crystallization process, the local structures with
larger sizes have better mobility and complete the adjustments or corrections of PLA
chain conformations. On the contrary, local structures with smaller sizes developed at
low Th diffuse less that, in return, delays the chain adjustment process, leading to a
Mpemba-like behavior during the formation of crystals.

• Water in rough-walled container: A recent experiment by Hallstadius, a high-school
student in Sweden, in collaboration with Burridge, indicates that hot water can super-
cool less if the number of nucleation sites within the cooling environment is increased
[41]. In their case, they increased the number of nucleation sites by roughening the
container walls. For sample preparation, they chose three identical plastic beakers
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with reasonably smooth interior walls. The inside of one of the beakers was rough-
ened with sandpaper, while the other two were roughened on the outside, making sure
that the mass of the three remained identical after roughening. For a pair of beakers
with smooth insides, they observed normal cooling. However, for a beaker with rough
inside, the freezing occurred faster than the water in an identical beaker with smooth
insides. They concluded that increased nucleation sites reduced the occurrence of su-
percooling by the formation of ice crystals.

1.4.2 Numerical studies

• Carbon nanotube resonators: Greaney et al. observed an anomalous and transient
process of intrinsic dissipation in simulations of the ring-down of flexural modes in
single-walled carbon nanotube (CNT) resonators [42]. An anti-correlation observed
between the excitation energy in the resonator and the decay time of the excited
modes is similar to the Mpemba effect. The anomalous dissipation is understood by
examining how the dissipated energy from the flexural modes is distributed into the
background modes of the tube. The authors developed a phenomenological model that
divided the background modes into two classes: (i) low-frequency background modes,
which interacted strongly with the flexural modes, and (ii) weakly interacting high-
frequency modes [42]. The model could predict the simulated CNT ring-down data
qualitatively but could not capture the expected attenuation profile. Nonetheless, the
study did emphasize that the origin of the anomalous dissipation is the internal degrees
of freedom, which are not in equilibrium and have different effective temperatures.

• Granular fluids: Lasanta et al. studied the Mpemba effect in granular fluids in settings
that did not involve a phase transition [43]. Contrary to a hard-spheres fluid where
energy and momentum are conserved, a granular fluid is a set of microscopic particles
with inelastic collisions that do not preserve energy and is intrinsically an out-of-
equilibrium system. They showed that the Mpemba effect results from the coupling of
the granular temperature and the kurtosis, which measures the lowest-order deviation
of the velocity distribution function from the Maxwellian shape. Initially, they studied
the granular fluid of smooth, hard spheres where the kurtosis is small. The non-
Gaussianities of the time evolution of temperature lead to not only the Mpemba
effect but also predict an inverse Mpemba effect, where an initially cooler system heats
faster. However, the smallness of the kurtosis limits the magnitude of these effects,
both in the homogeneously heated and freely cooled systems. By contrast, Torrente et
al. observed a giant Mpemba effect in a uniformly heated gas of inelastic rough hard
spheres where a sample with its initial temperature higher by more than one order
of magnitude compared to another sample can cool faster. [44]. Unlike the case of
smooth, hard spheres, rough spheres have a strong coupling between the translational
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and rotational degrees of freedom. Their study showed that the initially hotter system
must have its kinetic energy more concentrated in the translational modes than the
initially cooler one to facilitate the Mpemba effect.

• Spin glasses: Baity-Jesi et al. studied the nonequilibrium memory effect, encoded in
the glassy coherence length, responsible for the Mpemba effect in spin glasses [45].
They used energy density E (i.e., the instantaneous energy per spin) to measure the
nonequilibrium temperature. They prepared two systems at TA = 1.3 and TB = 1.2,
which were then left to evolve to reach an initial energy EA ≈ EB. When both the sys-
tems were quenched in a thermal reservoir at T = 0.7 (below the critical temperature
Tc), the hotter preparation relaxed to low energies faster than the colder preparation.
Although the initial preparation of the systems had similar energies (and tempera-
tures), a clear distinction between the relaxation rates suggested that that relaxation
processes are not completely governed by the initial temperatures. They observed the
role of coherence length ξ(t) ∝ t1/z(T ) in controlling the spin-glass dynamics, where
z(T < Tc) ≈ 9.6Tc/T . They argued that systems prepared at identical temperatures
could have different ξ depending on their heating histories. Thus, the necessary condi-
tion for the Mpemba effect imposes that ξA > ξB for a system with TA > TB. Similar
to the cooling effect, the heating effect was observed to be symmetric, facilitating the
inverse Mpemba effect in spin-glass systems.

Focusing on the particular case of water, numerical studies have also been done in
other model systems such as molecular gases [46], driven molecular gas mixtures [47], in-
ertial suspensions [48], cold gases [49], and quantum systems [50]. Gijón et al. studied the
Mpemba-like effect in atomistic models of bulk water [51]. They modeled liquid water with
the rigid TIP4P model [52], where the kinetic energy was distributed equally between the
translational and rotational degrees of freedom at equilibrium, obeying the equipartition
theorem. For cases where the total kinetic energy was placed only in either the transla-
tional modes or the rotational modes, the breaking of equipartition resulted in lowering of
the system’s temperature by a few degrees. They argue that placing a water sample in a
colder environment creates a similar breaking of thermal equilibrium that could lead to the
anomalous cooling in Mpemba’s experiment.

Turning to granular systems, Santos et al. showed the Mpemba effect in homogeneous
and isotropic states of molecular gases driven by an external drag force with a velocity-
dependent friction coefficient [46]. Based on the kinetic theory framework used in this sys-
tem, González et al. predicted the Mpemba effect in a binary mixture of two gases [47]. The
mechanism stems from different amounts of heat transferred from the reservoir to different
components. Contrary to granular fluids, neither kurtosis nor nonlinear drag forces were re-
quired for the emergence of the effect. Takada et al. report on sheared inertial suspensions
and distinguish the generic normal Mpemba effect (where an initially hotter suspension cools
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down faster than an initially colder suspension) from the nontrivial anomalous Mpemba ef-
fect (where an initially hotter suspension that cools slowly initially eventually catches up
to an initially cooler suspension) [48]. Analogously, normal and anomalous inverse Mpemba
effects and mixed Mpemba effects (where both cooling and heating are present) are also
observed in these systems.

1.5 Mpemba effect in colloidal systems

In Sections 1.3 and 1.4, we have seen that the Mpemba effect has been observed not only
in water but also in a variety of other experimental and simulated systems. However, these
anomalous relaxations have proved difficult to explain clearly, and different mechanisms
may be at play. In an effort to simplify both the system and the relevant physics, we design
a simple experiment with a colloidal particle that diffuses in water and is subjected to
an external potential. The particle is confined in a tilted double-well potential, situated
asymmetrically in a box [xmin, xmax] (Fig. 1.1). The barrier height can be chosen in such
a way that there are two coarse-grained states (left and right domains in Fig. 1.1) with
dynamics as fast as 1–10 ms between them. The advantage of using such a simple setup
with a small timescale is that we can easily observe the Mpemba effect and obtain results
with high reproducibility.

Figure 1.1: Energy landscape for the Mpemba effect.

Thus, instead of being just able to trap the particle, we need to create a potential whose
shape is at least accurately known (to at least 0.1 kBT ) and can preferably be specified as
desired. In our experiment, the external potential imposed on the particle is a tilted double
well. To understand our experimental approach, which was developed specifically for these
experiments, we review methods for trapping and manipulation of particles in the next
section.
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1.6 Particle manipulation techniques

There has been an increasing interest in developing techniques to manipulate particles at
micro- and nano-scales [53–55]. Manipulation can be done either on an individual particle or
on a collection of particles. These techniques can be classified into active and passive meth-
ods. We will briefly review some of the widely used techniques and discuss their suitability
for creating the potentials desired in our experiment.

1.6.1 Passive trapping

Passive trapping requires an inherent local minimum in the potential. The simplest example
is a harmonic potential where a linear restoring force is exerted on a particle near the
potential minimum. The trapping force can arise from the interaction of a particle with
external inhomogeneous electric, magnetic, or temperature fields.

Optical tweezers

Light’s ability to exert forces has been known since 1619, when Kepler recognized that the
Sun’s rays deflect comet tails [56]. These optical forces are extremely small in magnitude
and proportional to the intensity of light [57]. This force, transferred to the illuminated
objects, results in the radiation pressure pushing the object along the beam’s propagation
direction. Light is composed of photons, a particle representing a quantum of light and
carrying energy u = hc/λ, where h is the Planck constant, c the speed of light, and λ the
wavelength of light. It carries a momentum p = p̂h/λ, where p̂ is the unit vector along the
propagation of light. For a normal incidence on a mirror, the change in momentum per unit
time is −2Np = −p̂ 2P/c, where N is the total number of photons in an incident light of
power P . The force F = 2P/c is so small and difficult to detect that it had no practical
application until Arthur Ashkin reported that one could use focused light to accelerate and
trap micrometer-sized particles [58]. In 1986, Ashkin et al. showed the first demonstration
of a single-beam optical tweezer (OT) to trap dielectric particles [59].

In a typical optical tweezers setup, a highly focused Gaussian beam is used to trap
dielectric particles. When the beam interacts with the particle, scattering and gradient
forces are exerted on the particle (Sec. 3.2). The scattering force pushes the particle in the
direction of the beam propagation, and the gradient force exerts a restoring force towards
the center of the beam (Fig. 1.2). If the contribution from the gradient forces is larger than
that of the scattering forces, a restoring force is also created in the axial direction, and a
stable trap is created. A description of the working principle of OT can be found in Sec. 3.2.

Although designed as an atom trap initially [60], optical tweezers were used in a variety
of experiments such as trapping of silica beads [59], the study of the orientation of tobacco
mosaic virus in the trap [61], damage-free trapping of E. coli using IR light to study its
reproduction [62], the study of the elastic and viscoelastic properties of cytoplasm [63], and
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Figure 1.2: Working principle of optical tweezers.A. Transverse trapping: When a particle is
displaced transversely from the focus of the beam, a restoring force pulls the particle towards
the region of the laser beam with maximum intensity. The shaded red region represents the
intensity profile of the trapping laser. B. Axial trapping: The resultant of the gradient force
and the scattering force (blue arrow) creates a restoring force that pulls the particle towards
the focus of the beam, yielding a stable trap.

so on. Since then, it has become a standard tool to exert piconewton forces on mesoscopic
particles and detect their motion for physical [64–67], chemical [68, 69], and biological
applications [63, 70–72]. OTs can manipulate particles with spatial resolution on the order
of 0.1–1 nm and measure dynamics on millisecond-to-microsecond time scales [73].

Magnetic tweezers

Magnetic tweezers are a versatile single-molecule tool for applying both force and torque to
tethered molecules, from individual molecules [74] to inter-molecular bonds [75] to whole
cells [76]. In 1950, Crick and Hughes first demonstrated magnetic tweezers, using magnets to
drag, twist, and prod magnetic particles within the cytoplasm of cells [77]. Later Smith et al.,
and Strick et al., used magnetic tweezers to stretch and coil an individual molecule of DNA
tethered between a flow cell surface and a microscopic magnetic particle [78, 79]. In a typical
setup, a light microscope is used to track the position of a magnetic (superparamagnetic or
weakly ferromagnetic) particle in an external magnetic field. An external magnetic field H
results in a magnetic induction B = µ0(H +m/V ), where m is the dipole moment of the
magnetic particle, µ0 the vacuum permeability, and V the volume of the magnetic particle.
The torque τ = m × B aligns the particle along the field. If the field has a gradient, the
particle experiences a force F = (m · ∇)B towards the region with higher field density
(Fig. 1.3).

Single-molecule manipulations such as optical tweezers and atomic force microscopes
address one molecule in an individual experiment; as a result, they suffer low experimental
throughput. Magnetic-force-based manipulation can facilitate parallel measurements of an
ensemble of particles [80, 81]. Since magnetic tweezers do not produce an energy potential
landscape that can restrict the motion of a particle in three dimensions, it is sometimes com-
bined with optical tweezers for manipulation and interaction [82, 83]. You et al. combined
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Figure 1.3: Working principle of magnetic tweezers. A pair of magnets produces a magnetic
field gradient along the axial direction, which exerts a force on the super-paramagnetic
beads in the upward direction. The force is controlled by moving the magnets in a vertical
direction. The rotating magnets induce rotation of the magnetic beads.

these two techniques to use F1-ATPase to rotate single-molecule double-stranded DNA and
thereby calculate the bending stiffness of DNA from the winding tension [84]. Magnetic
tweezers with fluorescence microscopy have also been used to measure the distance of two
fluorophores attached to single-stranded DNA as a function of the force applied by the mag-
netic field [85], probe the rotational motion of the fluorescent probe attached to a rotary
motor [86], study the energetics of the conformational transitions in supercoiled DNA [87],
and count the number of proteins bound to a single DNA molecule [88].

Magnetic tweezers are highly specific to the magnetic microparticles and do not interact
with other particles of the sample. However, unlike OTs, magnetic tweezers do not create a
three-dimensional trapping potential and require the attachment of the magnetic particles
through a tether to the surface. Nonetheless, active feedback control can be used to create an
effective trapping potential [89]. Passive magnetic tweezers have a typical spatial resolution
of 5–10 nm and temporal resolution on the order of 10−1–10−2 s [90]. Compared to OTs and
atomic force microscopes (AFMs), magnetic tweezers have low trap stiffness ≈ 10−3–10−6

pN/nm [90]. Note that the effective stiffness can be improved in feedback-based magnetic
tweezers with better detection techniques and data-acquisition systems [89].

Holographic tweezers

Holographic optical tweezers (HOTs) use a computer-controlled diffractive optical element
(DOE) to create arbitrary three-dimensional configurations of single-beam traps to capture
and manipulate mesoscopic objects [91, 92]. These optical traps can be made dynamic and
displaced in three dimensions by projecting a sequence of holograms [93–95]. Originally
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demonstrated with microfabricated DOEs [96, 97], holographic tweezers have since been
implemented with computer-controlled, liquid-crystal, spatial light modulators (SLMs) [95].
Holograms are placed on the DOE to shape the profile of an incoming optical beam. The
DOE is positioned at the front focal plane of the Fourier lens, which collects the first-order
diffracted beam so that the complex amplitude in the back focal plane of the Fourier lens
(microscope objective in a tweezer setup) is the Fourier transform of the complex amplitude
at the DOE plane (Fig. 1.4). Thus, to get a desired intensity pattern in the front focal plane,
it is sufficient to take its inverse Fourier transform to determine the appropriate hologram
to place on the DOE. Employing such holograms requires modulating both the amplitude
and phase of the incoming beam. Generally, amplitude modulations are undesirable as
they reduce the trapping efficiency of the beam. Thus, phase-only holograms, also known
as kinoforms [98], are employed to shape the wavefronts of the light beams. There are
several algorithms proposed to create holograms that most accurately and most rapidly
approximate desired trapping patterns [99].

DOE Fourier lens

1st order

Input beam

Focal plane

0th order

Figure 1.4: Working principle of holographic optical tweezers. A diffractive optical element
placed at the front focal length of the Fourier lens modifies the beam profile of the incoming
beam. The complex amplitude in the back focal plane of the Fourier lens is the Fourier
transform of the complex amplitude in the DOE plane. Adapted from [99].

Holographic tweezers can move particles precisely in three dimensions without any me-
chanically moving parts. Other applications of HOTs include trapping of multiple particles
[94, 100–103], light-field engineering [104, 105], and shaping arbitrary optical potentials
[106, 107]. Manipulation of soft biomaterials requires a proper characterization of HOTs
[108, 109]. An advantage of HOTs over conventional optical tweezers is that the trapping
stiffness of the holographic tweezers can be constant within ±3% over a range of 3 to 4 µm
[109].

The temporal resolution of the holographic tweezers is limited by refresh rate of the SLM
(≈ 100 Hz). Moreover, since the spatial scale of the holographic traps is diffraction-limited,
the requirement of designing a potential shape on sub-diffraction length scales becomes
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impossible. The electronic jitter during the transfer of the kinoform from the computer to
the SLM can create noisy, undesirable external forces on the trapped particles.

1.6.2 Active trapping

Active traps use dynamically controlled forces to create potentials, which are a discrete
approximation of a real potential. In a real potential, the force exerted by a potential changes
as soon as the particle changes. However, in an active trap, the forces are applied once per
feedback cycle. Since active traps just require forces to manipulate particles, the source of
these forces can be anything. Based on the type of interaction between a particle and an
external force-field, active traps can be electrokinetic, hydrodynamic, acoustic, or thermal.
We will now briefly discuss their working principles, applications, and the possibility of
being used in our experiment.

Electrokinetic traps

In 2005, Cohen and Moerner constructed an Anti-Brownian ELectrokinetic (ABEL) trap
based on active feedback using electrophoretic forces to trap nanoparticles as small as 20
nm in water [110]. The ABEL trap monitors the Brownian motion of a particle and applies
a feedback voltage in a microfluidic cell to create electrokinetic (electrophoresis and elec-
troosmotic) forces that cancel the Brownian motion (Fig. 1.5). Electrokinetic traps use both
electrophoretic and dielectrophoretic forces to apply an electric field to trap and manipulate
nanometer-to-millimeter-sized particles [111, 112]. Electrophoretic forces arise from the in-
teraction of the object’s fixed charge and the electric field, whereas dielectrophoretic forces
arise from the polarizability in a spatially inhomogeneous electric field. The restoring force
in an optical trap is a second-order interaction with the applied electric field and propor-
tional to the polarizability of the object, which scales as d3 (where d is the diameter of the
particle). Thus, it becomes extremely difficult to trap sub-50 nm particles. Electrokinetic
traps, on the other hand, use a first-order (∼ d) effect and that can impose velocities on
the trapped particles that are approximately 100 × greater than those applied by typical
optical tweezers [113].

ABEL traps have been used to study individual protein molecules without any attach-
ment to beads or surfaces, single virus particles, lipid vesicles, fluorescently labeled DNA,
single fluorophores, and semiconductor nanocrystals [114–116]. Cohen used the ABEL traps
to create more complicated arbitrary potentials based on feedback in 2D space [117]. Jun et
al. extended the technique to make more quantitative measurements in potentials created
by electrokinetic feedback, also known as virtual potentials [118]. Gavrilov et al. [119] used
virtual double-well potentials to test Landauer’s principle [120] in the context of stochas-
tic thermodynamics and information theory. These applications involved two-dimensional
manipulation of the trapped particle where the axial confinement is provided by the ge-
ometry of the trapping chamber. A further extension to a three-dimensional ABEL trap
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has been done using four electrodes in a tetrahedral arrangement to trap 40-nm fluorescent
nanoparticle in solution [121] and employing microfluidics [122].

Figure 1.5: Working principle of electrokinetic tweezers. Voltages V± are applied across a
pair of electrodes (e.g., platinum wires) to exert electrical forces on a particle. In a typical
setup, the forces (Fx, Fy) are applied in two dimensions. The position (x, y) of an object
is tracked in real time, and appropriate forces are exerted to approximately cancel the
Brownian motion.

It is possible to use electrokinetic forces to create potentials on nanometer scales with
fast dynamics. But these traps introduce drifts due to chemical reactions at the electrodes.
Thus, continuous measurement and correction are required to compensate for drifts in real
time [123].

Hydrodynamic traps

Hydrodynamic trapping is a method that utilizes fluid flow or microstructures in the chan-
nels to trap small particles in an aqueous solution [124]. Hydrodynamic trapping can be
contactless or involve contact [125, 126]. Contactless methods rely on the stagnation point
flows [127, 128] or microeddies [129] in microchannels. Figure 1.6A shows a system where a
particle is naturally trapped at the stagnation point of a flow along the input flow axis (com-
pression axis) but requires an active feedback control along the output flow axis (extension
axis), thereby forming a feedback-stabilized potential well [127]. Figure 1.6B shows a hydro-
dynamic trap based on eddy currents. When an oscillating fluid (≤ 1 kHz) interacts with a
fixed cylinder inside a microfluidic chamber, steady eddies are generated around the solid
boundaries. The number of eddies generated depends on the geometry of the solid boundary
and the oscillation conditions. Each eddy center can trap a particle, precisely at the chan-
nel midplane, away from the surface. Tanyeri et al. used an active flow control to trap and
manipulate particles of sizes 100 nm to 15 µm at the intersection of two flow channels [127,
128]. Johnson-Chavarria et al. used a microfluidic-based single-cell microbioreactor (SCM)
to investigate the growth over successive generations of cells grown in free solution, gene
expression, and intracellular diffusion of repressor proteins while precisely tuning the cell
growth environment [130].
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Figure 1.6: Working principle of hydrodynamics traps. A. Two opposite laminar flow fields
create a stagnation at the junction of two perpendicular microchannels. A particle can
be trapped at a position where the local fluid velocity is zero. B. The interaction of an
oscillating flow field with a cylinder (center) creates eddies around it. Each eddy can trap
a particle near its center without contacting any solid surface. The black discs are trapped
particles (not drawn to scale). Adapted from [127, 129].

Contact-based methods are efficient in trapping a very large number of particles to form
dynamic arrays for high-throughput studies [131–135]. Chen et al. used U-shaped micro-
wells for in situ culture of laterally trapped single cells and observed that the population
doubling time of both single HDF and K562 cells was larger than that of cells cultured
as bulk populations in static plates [136]. Lateral-trapping techniques have also enabled
gene-expression analysis [137], single-cell tumor apoptosis analysis [138], isolation of single
cells from an ensemble of suspended cells [139], and super-resolution imaging of specimens
[140, 141].

In general, hydrodynamic traps can easily trap and manipulate any objects with micro-
to nano-scale dimensions with no requirement on their material compositions. Contrary to
trapping with optical, acoustic, magnetic, or dielectrophoretic forces, where the force exerted
scales with the particle volume, hydrodynamic forces scale linearly with particle radius.
Despite these advantages, the low spatial resolution (1–10 µm) will limit the potential to
larger length scales, with slower characteristic time scales [127] and thus fewer repetitions
of the experiment.

Acoustic traps

Acoustic tweezers manipulate matter both spatially and temporally by using the interac-
tion of sound with solids, liquids, and gases. Because acoustic waves with frequencies in the
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kilohertz-to-megahertz range can be easily generated, acoustic traps can directly manipu-
late particles across length scales from 10−7–10−2 m [142]. In 1991, Wu first showed that
latex particles and frog eggs could be manipulated by acoustic tweezers using two collimated
focused ultrasonic transducers [143]. Acoustic tweezers provide unique characteristics com-

Figure 1.7: Working principle of acoustic tweezers. A. Standing-wave tweezers are formed
by interference between an incident and a reflected wave. Particles trapped at the pressure
nodes of a standing wave can be manipulated by changing the acoustic resonant frequency.
B. Using a high-frequency ultrasound transducer, a strong acoustic gradient in a focused
acoustic wave can trap a particle in three dimensions. C. Acoustic-streaming tweezers use
oscillation microbubbles inside a microfluidic channel to induce acoustic flows. Adapted
from [144, 145].

pared to other trapping techniques, such as high trapping forces per unit input power and
the ability to manipulate particles of sizes ranging from centimeter to micrometer [144, 145].
The primary types of acoustic tweezers are standing-wave tweezers, traveling-wave tweezers,
and acoustic-streaming tweezers. Standing-wave tweezers are formed by the interference of
incident and reflected waves establishing a pressure distribution in a fluid (Fig. 1.7A). The
pressure gradient, in return, produces the acoustic radiation force that assists in trapping
[146, 147]. Compared to standing-wave acoustic tweezers, the acoustic field strength of a
traveling-wave acoustic field is small [148]. Thus, manipulation in 3D space is achieved by
focusing the acoustic field in a small region and controlling its phase (Fig. 1.7B) [149].
Based on Gor’kov’s theory, an axisymmetric focused beam can transversely trap relatively
light and soft particles such as droplets at the central pressure maximum, but a relatively
dense and stiff particle would be repelled away from the beam axis [150]. Sometimes the
manipulation is done via acoustically induced fluid flows, also known as acoustic-streaming
tweezers [151, 152]. Such streaming is generated using oscillating microbubbles or oscillating
solid structures (Fig. 1.7C). These microbubbles can produce sufficient acoustic radiation
forces to trap and rotate particles at a fixed position. By gradually rotating C. elegans,
green fluorescent protein-expressing cells that appear to overlap in a single view can be
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resolved and clearly imaged [153]. Other applications include cell patterning [146], material
manufacture [154], cell transportation [155], and particle separation and sorting [156–158].

Acoustic tweezers have a diffraction-limited spatial resolution (1–10 µm), which is still
larger than we would prefer. Another issue is that the trapping force in an acoustic field
depends on the size and compressibility of the particle and cannot differentiate between cells
of different types with the same size. These issues can be addressed by combining acoustic
tweezers with other techniques such as magnetic [159], optical [160], and electrical forces
[161].

Thermal traps

Heating due to laser beams may affect the performance of trapping due to increased thermal
energy of the particle and damage biological samples [162–165]. However, the same effect
has been used to trap dielectric particles and bacteria and is known as opto-thermoelectric
nanotweezers (OTENT) [166]. When a temperature gradient is imposed in an electrolytic
solution, ions migrate directionally because of thermophoresis. The difference in Soret co-
efficients between oppositely charged ions separates the charges, generating an electric field
[167]. The dependence of thermoelectricity on temperature gradients rather than absolute
temperature change allows trapping at a significantly lower laser power (0.05–0.4 mW/µm2).
Thermophoresis and the convection current induced by illuminating a highly absorbent hy-
drogenated amorphous silicon-coated surface is observed to reduce the trapping optical
power required and create stiffer traps [168]. For strongly absorbing particles, the induced
thermal gradient repels the temporarily trapped particles away from the laser center. Upon
being slowed down by the viscous drag of the medium, the repelled particles are attracted
towards the optical trap (Fig. 1.8). An interplay between thermophoretic and optical forces
sets up an opto-thermal oscillation during three-dimensional manipulation [169].

Figure 1.8: Working principle of thermal tweezers. A radial temperature gradient is pro-
duced when light is directed on a thermo-plasmonic substrate. The temperature gradient
can trap positively charged metal nanoparticles at the center of the induced field or the
laser spot. Adapted from [166].

Since thermal trapping methods are inherently limited to 2D manipulation and exert
forces near the surface, it may be difficult to characterize the potential acting on a particle
due to hydrodynamic interactions with the surface [170].
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1.7 Combining feedback traps and optical tweezers

In Sec. 1.6, we discussed different trapping techniques and their applications. The require-
ment of any specific technique would depend upon the goal of an experiment. For the
work reported on in this thesis, we require a technique to create potentials on nanometer
length scales, with features that can provide fast dynamics on the order of milliseconds.
Thus, trapping techniques such as holographic tweezers, hydrodynamic and acoustic trap-
ping cannot be used because their spatial and temporal resolutions are too low. Although
magnetic tweezers have high resolution, their low trapping stiffness and sophisticated feed-
back control for three-dimensional confinement make them less desirable for our purpose.
The electrokinetic trap is a strong candidate to meet these demands and can arbitrarily
shape a potential at sub-diffraction length scales. However, the complex calibration proce-
dures required to compensate for chemical drifts in forces can be inconvenient [123]. Thus,
we decided to use optical tweezers in our experiments. They have high spatial and temporal
resolutions and provide inherent three-dimensional confinement of a dielectric particle in
space. However, creating a potential shown in Fig. 1.1 is still challenging with conventional
optical tweezers. Time-shared OTs have been used to create static double-well potentials by
rapidly scanning the trap center between two positions [171]. But controlling independently
parameters such as well separation, barrier height, tilt, and outer curvatures is impossible
by time-sharing the trap positions. In addition, optical tweezers based on time-shared and
holographic tweezers can create potentials that have micrometer-scaled features, limited by
diffraction (wavelength of light used for the tweezer). Thus, we require a new technique to
create arbitrary energy landscapes on sub-diffraction length scales with OTs. To meet these
requirements, we have developed a new apparatus based on feedback control with optical
tweezers. Using feedback-based optical tweezers, we can create double-well potentials on the
length scale of . 100 nm. The approximately tenfold decrease in length scales of feedback
tweezers implies a 100-fold decrease in time scales. Not only are measurements at compara-
ble statistics 100 times faster, but also the effects of temperature drifts on the equilibrium
trap positions become negligible.

1.8 Overview of the thesis

In this thesis, I will present the work and ideas developed by myself and Dr. John Bechhoefer
during my Ph.D. project.

Chapter 2 presents the theory of Brownian motion in overdamped systems. The motion
of a Brownian particle in an external potential is discussed in the context of both Langevin
and Fokker-Planck dynamics. The theoretical background laid in this chapter lays the foun-
dation of analysis for the Mpemba effect.

Chapter 3 presents the development of our new feedback-based optical tweezers. The
experimental setup to design such traps and step-by-step calibration methods for OTs are
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discussed in detail. We also demonstrate arbitrary shapes of potentials designed using our
apparatus.

Chapter 4 presents the work on the Mpemba effect. We demonstrate that we can ex-
perimentally observe the Mpemba effect in colloidal systems with high reproducibility and
quantitative agreement with the existing theory for Markov systems. We demonstrate that,
with the nanoscale potentials created by our feedback trap, we can perform an instanta-
neous quench in a bath and achieve an equilibration time of ≈ 100 ms, allowing us to do
many repetitions of the experiment. We also demonstrate the strong Mpemba effect and
present a geometrical interpretation of the conditions required for an exponential speedup
of a cooling process. The theory for the geometric interpretation is developed with Raphaël
Chétrite.

Chapter 5 discusses the experimental observation of the inverse Mpemba effect in col-
loidal systems. We also demonstrate the first experimental observation of the strong inverse
Mpemba effect.

Chapter 6 summarizes the work done in the thesis and discusses the future scope of this
work.

21



Chapter 2

Particle dynamics

The rapid oscillatory motion of pollen grains in the ovulum of a plant was the first mi-
croscopic observation of Brownian motion, named after a Scottish botanist Robert Brown
[172]. In 1905, Albert Einstein helped initiate the modern study of random processes with his
groundbreaking paper on Brownian motion [173], which led to a fully probabilistic formula-
tion of statistical mechanics and a well-established subject of physical investigation. Einstein
also showed that the mean-squared displacement of the Brownian particles is related to a
diffusion coefficient and so was able to derive a diffusion equation for the probability den-
sity of the Brownian particles. In 1908, Langevin showed that a random Markov force could
model the random collisions and interaction between the particle and its surrounding fluid.
The resulting dynamics were described by a stochastic differential equation [174]. Fokker in
1914 [175] and Planck in 1917 [176] introduced a partial differential equation that governs
the evolution of the probability density for the velocity of the Brownian particle under the
influence of a drift generated by the friction in the fluid. By solving the Fokker-Planck
equation, one obtains probability distribution functions, from which single-point averages
of macroscopic variables can be obtained.

In this chapter, we will briefly discuss the Langevin and Fokker-Planck approaches in the
context of a Brownian particle in a potential. The discussion here will lay the foundations
for the analysis in Chapter 4.

2.1 The Langevin equation

2.1.1 A free particle

If a small particle of mass m is immersed in a large container of fluid, friction or damping
forces act on the particle, and the equation of motion is given by [174, 177–179]

m
d2x

dt2 + γ
dx
dt =

√
2kBTγ ζ(t) , (2.1)
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where γ ≈ 6πηR is the Stokes friction coefficient for a sphere of radius R infinitely deep
inside a fluid with viscosity η, kB the Boltzmann constant, and ζ(t) Gaussian white noise
modeling thermal fluctuations of the bath at temperature T . Note that we have ignored the
frequency dependence of the frictional force due to the hydrodynamic interaction with the
surrounding fluid [170], as it is relevant only at frequencies fν higher than those relevant
for our experiment, where fν ≡ η/(πρR2) = 550 kHz with ρ = 1 gm/cm3 the density of
the fluid. Equation 2.1 is a stochastic differential equation that is known as the Langevin
equation. The mean of ζ(t), at a given time t, over an ensemble of particles is zero

〈ζ(t)〉 = 0. (2.2)

The autocorrelation between the values of ζ at different times t1 and t2 is assumed to be
zero unless |t1 − t2| is very small; i.e.,

〈ζ(t1)ζ(t2)〉 = δ(t1 − t2) , (2.3)

where δ(t1−t2) is the Dirac delta function. The assumption above seems reasonable because
the collisions of different molecules of the fluid with the small particle occur on very short
time scales (≈ 10−13 s) and are approximately independent.

2.1.2 A trapped particle

The dynamics of an optically trapped bead are well described by

m
d2x

dt2 = −γdx
dt − kx+

√
2kBTγ ζ(t) , (2.4)

where −kx is the restoring force due to an optical trap. For small displacements from the
trap center, the force produced by an optical potential U = (1/2)kx2 obeys Hooke’s law
and increases linearly with the displacement of the particle. Often, experiments with optical
tweezers are done in a low-Reynolds-number regime. In this regime, the particle stops within
a fraction of a microsecond when an applied force is removed. Since the damping is very
fast (generally smaller than the time scales typically used in experiments) and viscosity
dominates over inertia, the inertial term in Eq. 2.4 can be neglected, i.e., m = 0 to write

dx
dt = − x

τc
+
√

2Dζ(t) , (2.5)

where D = kBT/γ is the diffusion coefficient of the particle and τc = γ/k the trap charac-
teristic time. The solution, starting at x(t = 0) ≡ x0 is

x(t) = x0 e−t/τc +
√

2D
∫ t

0
dt′ e−(t−t′)/τcζ(t′) . (2.6)
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We can calculate the position autocorrelation function (ACF) of an optically trapped bead
as [99]

〈x(t1)x(t2)〉 = x0 e−(t1+t2)/τc +
√

2Dx0 e−t1/τc
∫ t2

0
dt′′ e−(t2−t′′)/τ 〈ζ(t′′)〉+

√
2Dx0 e−t2/τc×∫ t1

0
dt′ e−(t1−t′)/τc〈ζ(t′)〉+ 2D

∫ t1

0
dt′
∫ t2

0
dt′′ e−(t1+t2−t′−t′′)/τc〈ζ(t′)ζ(t′′)〉 .

(2.7)

The second and third terms in the above equation vanish because of Eq. 2.2. Thus, we have

〈x(t1)x(t2)〉 = x0 e−(t1+t2)/τc + 2D
∫ t1

0
dt′
∫ t2

0
dt′′ e−(t1+t2−t′−t′′)/τc〈ζ(t′)ζ(t′′)〉 . (2.8)

The only contribution to the integral in the second term comes when t′ = t′′, as implied by
Eq. 2.3. We can then simplify the equation as

〈x(t1)x(t2)〉 = x0 e−(t1+t2)/τc + 2D
∫ t1

0
dt′
∫ t2

0
dt′ e−(t1+t2−2t′)/τc ,

= x0 e−(t1+t2)/τc + 2D
∫ min(t1,t2)

0
dt′e−(t1+t2−2t′)/τc ,

= x0 e−(t1+t2)/τc + 2Dτc
2

[
e−(t1+t2−2t′)/τc

]min(t1,t2)

0
,

= x0 e−(t1+t2)/τc +Dτc
[
e−(t1+t2−2 min(t1,t2))/τc − e−(t1+t2)/τc

]
,

= x0 e−(t1+t2)/τc +Dτc
[
e−|t1−t2|/τc − e−(t1+t2)/τc

]
(2.9)

Substituting t = t1 and t2 = t+ τ , we rewrite Eq. 2.9 as

〈x(t)x(t+ τ)〉 = x0 e−(2t+τ)/τc +Dτc
[
e−|τ |/τc − e−(2t+τ)/τc

]
. (2.10)

In the long-time limit, t→∞, the autocorrelation is approximated as

〈x(t)x(t+ τ)〉 ≈ Dτce−|τ |/τc = kBT

k
e−|τ |/τc . (2.11)

For |τ | � τc, the correlations go to zero. Thus, position measurements far apart in time
are independent and uncorrelated. Equation 2.11 can also be derived from Eq. 2.17 using
Wiener-Khintchine theorem, which states that the ACF is the Fourier transform of the
power spectrum [180].

As the stiffness of the trap increases, the particle experiences a stronger restoring force,
and the characteristic time τ decreases. The particle in a stiff trap explores a smaller phase
space than the one in a weaker trap. The mean-squared displacement (MSD) of a trapped,
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diffusing particle is given as [99]

MSD(τ) ≡ 〈x(τ)− x(0)〉2 = 2kBT

k

[
1− e−|τ |/τc

]
, (2.12)

which reaches a plateau because of the confinement imposed by the trap. For τ � τc, we
obtain Einstein’s relation MSD(τ) = 2Dτ for a freely diffusing particle. The transition from
linear growth to the plateau occurs at about τc.

The trap characteristic time can be measured from the power spectral analysis of the
Brownian motion of a trapped particle. The power spectrum of a trapped particle trajectory
decomposes the motion x(t) into contributions at each frequency, each with a particular
power. The power spectrum density (PSD) of a signal x(t) is the squared modulus of its
Fourier transform.

The Fourier transform g̃(ω) of a function g(t) is defined as

g̃(ω) =
∫ ∞
−∞

dt eiωtg(t) , (2.13)

where ω = 2πf is the angular frequency. Taking the Fourier transform of Eq. 2.5, we obtain

−i ωx̃ = x̃

τc
+
√

2D ζ̃ , (2.14)

Thus, the Fourier transform of x(t) is

x̃ = τc
√

2D ζ̃

−1− iτc ω
. (2.15)

Taking the squared modulus of both sides of Eq. 2.15 gives the power spectral density of
the particle motion,

S(ω) ≡ |x̃|2 = 2D τ2
c

1 + ω2 τ2
c
. (2.16)

By substituting ω = 2πf and τc = 1/2πfc, we obtain

S(f) ≡ |x̃|2 = D

2π2(f2 + f2
c ) , (2.17)

where fc is the corner frequency of the power spectrum. The form of the power spectrum
in Eq. 2.17 is known as a Lorentzian [170, 181, 182].

2.2 Fokker-Planck equation

A complete solution of a macroscopic system requires solving all the microscopic equations
of the system. These methods can either be computationally extremely expensive or rather
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impossible in many cases. Instead, we can describe the system by macroscopic variables
that fluctuate in a stochastic way. The Fokker-Planck equation (FPE) is just an equation
of motion for the distribution function of fluctuating macroscopic variables. The FPE is a
special case of the Kramers-Moyal expansion [183] with the equation of motion of probability
given as

∂p(x, t)
∂t

=
[
−1
γ

∂

∂x
U ′(x) +D

∂2

∂x2

]
p(x, t) ≡ LFP p(x, t) , (2.18)

where LFP is the Fokker-Planck operator for the Brownian motion with U ′(x) ≡ dx U(x).
Note that we use the notation dx (or ∂x) to represent derivatives (or partial derivatives)
with respect to a variable x for inline equations. For heavily overdamped dynamics, the
velocity variables that would otherwise be present in the FP equation may be neglected. In
this limit, the FP equation is sometimes referred to as the Smoluchowski equation [183].

At steady state, the probability distribution ps(x) obeys

∂

∂x
J (x) = 0, (2.19)

where the probability current J (x) is defined to be

J (x) ≡ −U
′(x)
γ

p(x)−D∂p

∂x
. (2.20)

Equation 2.19 implies that the probability current should be constant in space. The value of
the constant depends on the boundary conditions imposed on the probability distribution.
If J (x) = 0 at the boundaries, the probability current is uniformly zero for all x, in the
stationary state. Then

J (x) ≡ −U
′(x)
γ

p(x)−D∂p

∂x
= 0 (2.21)

readily gives the steady-state solution as

ps(t) ∝ exp
[−U(x)

γD

]
. (2.22)

Comparing ps(x) with the Boltzmann distribution p = p0 exp[−U(x)/kBT ], we obtain the
Einstein relation D = kBT

γ , which is the simplest statement of the fluctuation-dissipation
theorem [178]. It relates the intensity of fluctuation (D) to the rate of energy dissipation
(γ) in a system at thermal equilibrium.
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For nonstationary solutions, the Fokker-Planck equation can be solved by assuming a
separation ansatz for the probability distribution

p(x, t) =
∞∑
k=1

ak(t)vk(x) . (2.23)

After inserting Eq. 2.23 into Eq. 2.18, we get the eigenvalue problem

LFPvk(x) ≡
[
D
∂

∂x

(
U ′(x)
kBT

)
+D

∂2

∂x2

]
vk(x) = −λkvk(x) , (2.24)

with time-dependent coefficients ak(t) given by

ak(t) = ak(0)e−λkt . (2.25)

Here vk(x) and λk are the eigenfunctions and eigenvalues of the Fokker-Planck operator
LFP with appropriate boundary conditions.

2.2.1 Adjoint of the Fokker-Planck operator

Since LFP is generally not Hermitian, we will also need to consider the eigenfunctions uk(x)
of the adjoint operator L†FP

L†FPuk(x) = −χkuk(x) , (2.26)

where χk are the eigenvalues of the adjoint operator L†FP. The adjoint of LFP is defined
such that

〈L†FPφ|ψ〉 = 〈φ|LFPψ〉 , (2.27)

for arbitrary functions φ(x) and ψ(x), where 〈· · · 〉 denotes the inner product

〈φ|ψ〉 =
∫

dxφ∗(x)ψ(x) . (2.28)

Below, we will prove that the eigenvalues λk of LFP are equal to the complex conjugate of
the eigenvalues χk of L†FP.

Thus, we will need to evaluate (numerically) not only the right eigenfunction but also
the associated left eigenfunction of the adjoint L†FP of the FP operator [184]. One subtlety is
that the boundary conditions for L†FP differ from those of the LFP operator. In our system,
the probability density function for a particle to be found at position x at a time t after
a quench, p(x, t), obeys the Fokker-Planck (FP) equation ∂tp = LFP p with the boundary
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condition

J (xmin) = J (xmax) = 0 , (2.29)

which expresses that there is no flux of particles in or out of the boundaries.
To find L†FP and its boundary conditions, we evaluate the inner product of functions

φ(x) and p(x)

〈φ|LFP p〉 =
∫ xmax

xmin
dx

[
φ(x) ∂

∂x

[
D
U ′(x)
kBT

p(x)
]]

+D

∫ xmax

xmin
dx φ(x)

(
∂2p

∂x2

)
. (2.30)

Evaluating both integrals by parts, we can write

〈φ|LFP p〉 = −
∫ xmax

xmin
dx

[
D
U ′(x)
kBT

(
∂φ

∂x

)
p(x)

]
+
[
φ(x)DU

′(x)
kBT

p(x)
]xmax

xmin

−D
∫ xmax

xmin
dx

(
∂φ

∂x

∂p

∂x

)
+D

[
φ(x)∂p

∂x

]xmax

xmin

. (2.31)

Integrating the third term in the above expression again by parts gives

〈φ|LFP p〉 =
∫ xmax

xmin
dx

[
−DU

′(x)
kBT

(
∂φ

∂x

)
+D

∂2φ

∂x2

]
p(x)

+
[
φ(x)DU

′(x)
kBT

p(x) + φ(x)D ∂p

∂x
−D

(
∂φ

∂x

)
p(x)

]xmax

xmin

=
〈
L†FPφ|p

〉
−
[
φ(x)J (x) +D

(
∂φ

∂x

)
p(x)

]xmax

xmin

, (2.32)

where L†FP = −DU ′(x)
kBT

∂x + D∂xx is the adjoint of LFP. In order to have 〈φ|LFP p〉 =〈
L†FPφ|p

〉
, all boundary terms in Eq. 2.32 have to vanish. The probability current J already

vanishes because of the condition imposed on the operator LFP (Eq. 2.29). Thus, a separate
boundary condition is imposed on L†FP such that it obeys Neumann boundary conditions
for φ,

∂φ

∂x

∣∣∣∣
x=xmin

= ∂φ

∂x

∣∣∣∣
x=xmax

= 0 . (2.33)

2.2.2 Eigenfunctions and eigenvalues of the Fokker-Planck operator

The eigenvalues of LFP and L†FP in Eqs. 2.24 and 2.26 are complex conjugates of each
other. To prove this claim, we take the inner product between vk and the corresponding
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eigenfunction uk of the adjoint operator:

−λk 〈uk|vk〉 = 〈uk|(−λk) vk〉

= 〈uk|LFP vk〉

= 〈L†FP uk|vk〉

= −χ∗k 〈uk|vk〉 . (2.34)

Thus, λk = χ∗k. In deriving the third step, we used the definition of adjoint of an operator
(Eq. 2.27).

For overdamped dynamics driven by forces due to a potential, the eigenvalues of the FP
operator are, in addition, real. To justify the claim, we observe that LFP can be written as a
self-adjoint operator L using a similarity transformation (Sec. 2.4.1, Eq. 2.66). The explicit
derivation of the self-adjoint transformation is given in the supplementary information of
this chapter. We also prove that since the expectation value of a Hermitian operator is
real, L is a real operator (Sec. 2.4.1, Eq. 2.72). Since similarity transformations preserve
eigenvalues (but not eigenfunctions), the eigenvalues of LFP and L are equal. Then, since
the self-adjoint operator L has real eigenvalues, so does LFP (Sec. 2.4.1, Eq. 2.74).

Finally, it is also straightforward to show that eigenfunctions uk and vk for different
eigenvalues are orthogonal, i.e.,

−λk 〈uj |vk〉 = 〈uj |(−λk) vk〉

= 〈uj |LFP vk〉

= 〈L†FP uj |vk〉

= −χ∗j 〈uj |vk〉

= −λj 〈uj |vk〉 . (2.35)

In the last line of Eq. 2.35, we have used λj = χ∗j . Thus, for λk 6= λj , 〈uj |vk〉 = 0. We may
normalize the functions according to

〈uj |vk〉 = δjk , (2.36)

where δjk = 1 for j = k, else δjk = 0.

2.2.3 Fokker-Planck equation with no drift

In the limit of vanishing drift coefficient and constant diffusion coefficient, Eq. 2.18 reduces
to a partial differential equation describing the evolution of a Wiener process. The equation
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for the transition probability p(x, t) ≡ p(x, t|x′ = 0, t′ = 0) is then the diffusion equation

∂p(x, t)
∂t

= D
∂2p(x, t)
∂x2 , (2.37)

with the initial condition

p(x, 0) = δ(x) . (2.38)

The solution to Eqs. 2.37 and 2.38 is [183]

p(x, t) = 1
4πDt exp

[
− x2

4Dt

]
. (2.39)

Thus, the fundamental solution of the Fokker-Planck equation for a freely diffusing particle
is a Gaussian distribution with time-dependent width.

2.3 Heat equation

Since the form of the Fokker-Planck equation is close to that of the classical heat-diffusion
equation, it is worth noting some similarities in solutions to the latter.

Consider a one-dimensional thin rod of length l that runs from x = 0 to x = l. Assume
that the sides of the rod are insulated so that the heat flow takes place only along the rod.
Let T (x, t) denote the temperature at position x and time t. Then T (x, t) obeys the heat
equation [185]

∂T

∂t
= κ

∂2T

∂x2 for all 0 < x < l and t > 0 (2.40)

where κ = K/cρ is the thermal diffusivity in the wire, which has thermal conductivity
K, specific heat c, and density ρ. As an example, we assume that the ends of the rod are
maintained at temperatures T (0, t) = T (l, t) = Tb and the initial temperature distribution
is T (x, 0) = f(x).

Figure 2.1: Heat transfer in a one-dimensional thin rod.
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Since we have inhomogeneous boundary conditions, we cannot use separation of vari-
ables. We first find the steady-state temperature distribution TS(x) by solving

∂2TS(x)
∂x2 = 0 , (2.41)

which implies

TS(x) = Tb . (2.42)

Now we introduce a function v(x, t) that measures the difference between the temperature
T (x, t) and the steady-state value as

v(x, t) = T (x, t)− TS(x) . (2.43)

It can be easily shown that v(x, t) is a solution of the homogeneous equation

∂v

∂t
= κ

∂2v

∂x2 , (2.44)

with boundary conditions v(0, t) = v(l, t) = 0 and initial condition v(x, 0) = f(x)− TS(x).
Now, we use separation of variables and assume a solution to Eq. 2.44 of the form

v(x, t) = X(x)Y (t). (2.45)

Inserting Eq. 2.45 into the heat equation gives

X(x)Y ′(t) = κX ′′(x)Y (t) ⇐⇒ X ′′(x)
X(x) = 1

κ

Y ′(t)
Y (t) . (2.46)

The left-hand side depends only on x and the right-hand side depends only on t; and the
two sides are equal. We set both equal to some constant, σ. Thus, we have

X ′′(x)− σX(x) = 0 Y ′(t)− κσY (t) = 0 . (2.47)

For σ 6= 0, the general solution to Eq. 2.47 is

X(x) = Ae
√
σx +Be−

√
σx Y (t) = Ceκσt (2.48)

for arbitrary A, B, and C. The boundary condition at x = 0 implies A + B = 0. So with
A = −B, the condition at x = l imposes

A(e
√
σl − e−

√
σl) = 0 . (2.49)
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If A = 0, it would give a trivial solution v(x, t) = 0. So we must have

e
√
σl − e−

√
σl = 0 ⇐⇒ e2

√
σl = 1 ⇐⇒ 2

√
σl = 2imπ ⇐⇒ σ = −m2π

2

l2
(2.50)

for some integer m. Thus the overall solution is given as

vm(x, t) = X(x)Y (t) = A
(
ei
mπ
l
x − e−i

mπ
l
x
)

(Ce−κπ2m2t/l2) = 2iAC sin
[
mπ

l
x

]
e−κπ2m2t/l2

= Dm sin
[
mπ

l
x

]
e−κπ2m2t/l2 , (2.51)

where the weights Dm = −2iAC are determined by the initial conditions. If v2, v3,· · · are
solutions to the Eq 2.40, then the principle of superposition states that c2v2 + c3v3 + · · · is
also a solution. Thus,

v(x, t) =
∞∑
m=2

vm−2(x, t)

=
∞∑
m=2

Dm−2 sin
[(m− 2)π

l
x

]
e−κπ2(m−2)2t/l2 . (2.52)

Note that we begin the eigenfunction expansion atm = 2 to be consistent with the analogous
expansion of the Fokker-Planck solution by Lu and Raz [186]. Finally, we use the initial
condition v(x, 0) = f(x)− TS(x) to find Dm−2 as

f(x)− TS(x) = v(x, 0) =
∞∑
m=2

Dm−2 sin
[(m− 2)π

l
x

]
. (2.53)

Using the orthogonality property of the eigenfunctions sin
(

(m−2)π
l x

)
, we can obtain

Dm−2 = 2
l

∫ l

0
dx (f(x)− TS) sin

[(m− 2)πx
l

]
. (2.54)

Then, the solution of Eq. 2.40 is

T (x, t) = TS(x) +
∞∑
m=2

Dm−2 sin
[(m− 2)π

l
x

]
e−κπ2(m−2)2t/l2 ,

= Tb +
∞∑
m=2

Dm−2 sin
[(m− 2)π

l
x

]
e−κπ2(m−2)2t/l2 . (2.55)

Thus, an extended system relaxes to equilibrium via an infinite set of modes. As t → ∞,
each mode exponentially converges to zero, and T (x, t) reaches equilibrium temperature
TS(x). For m ≥ 3, the terms are exponentially smaller, and thus, the rate of cooling is
determined by the first term, i.e., m = 2 of the infinite series.
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Equation 2.55 shows that the temperature of the system, in general, depends on x and
t in a complicated way, and there is no unique temperature that can be defined for such
systems. However, in the mesoscopic case we focus on in this thesis, we describe a single
particle through a probability distribution function p(x, t). In this case, the equilibrium
state of the system is characterized by a Boltzmann distribution. However, as the system
cools to a lower temperature, the density p(x, t) does not necessarily obey the Boltzmann
distribution for intermediate times. Thus, the intermediate states of the system may not
be characterized by a unique temperature. To observe the relaxation of such a system, a
quantity that can measure the distance of the instantaneous state from the equilibrium
state is required. In statistical physics, functions such as the L1 distance and the Kullback-
Leibler (KL) divergence are often used in these situations. In order to serve as a proxy
for temperature, these distance functions should satisfy certain temperature-like properties
[186]. A detailed discussion of these distance functions and their properties will be given in
Chapter 4.

2.4 Supplementary information

2.4.1 A Similarity transformation of the Fokker-Planck operator

Here, we show that it is possible to transform the non-Hermitian Fokker-Planck operator
LFP to a Hermitian form. Consider the Fokker-Planck equation

∂p(x, t)
∂t

=
[
D
∂

∂x

(
U ′(x)
kBT

)
+D

∂2

∂x2

]
p(x, t) ≡ LFP p(x, t) , (2.56)

with arbitrary U(x). Let us introduce a new function

ψ(x, t) = p(x, t)√
π(x)

, (2.57)

where π(x) is the Boltzmann distribution:

π(x) = 1
Z
e−

U(x)
kBT with Z =

∫ xmax

xmin
dx e−

U(x)
kBT . (2.58)

Then we have

p(x, t) = ψ(x, t)
√
π(x) ,

= 1√
Z
ψ(x, t) e−

U(x)
2kBT . (2.59)
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Differentiating both sides, we get

∂p(x, t)
∂x

= 1√
Z

∂ψ(x, t)
∂x

e−
U(x)
2kBT + 1√

Z
ψ(x, t)

[
−U

′(x)
2kBT

]
e−

U(x)
2kBT ,

= 1√
Z

e−
U(x)
2kBT

[
∂ψ(x, t)
∂x

− U ′(x)
2kBT

ψ(x, t)
]
. (2.60)

After differentiating both sides of Eq. 2.60 and rearranging terms, we get

∂2p(x, t)
∂x2 = 1√

Z
e−

U(x)
2kBT

[
−U

′(x)
2kBT

(
∂ψ(x, t)
∂x

− U ′(x)
2kBT

ψ(x, t)
)]

+ 1√
Z
e−

U(x)
2kBT

[
∂2ψ

∂x2 −
U ′(x)
2kBT

∂ψ(x, t)
∂x

− U ′′(x)
2kBT

ψ(x, t)
]
,

= 1√
Z
e−

U(x)
2kBT

[
∂2ψ(x, t)
∂x2 − U ′(x)

kBT

∂ψ(x, t)
∂x

− U ′′(x)
2kBT

ψ(x, t) +
(
U ′(x)
2kBT

)2
ψ(x, t)

]
.

(2.61)

We can write Eq. 2.56 explicitly as

LFP p(x, t) =
[
D
∂

∂x

(
U ′(x)
kBT

)
+D

∂2

∂x2

]
p(x, t) ,

= D
U ′′(x)
kBT

p(x, t) +D
U ′(x)
kBT

∂p(x, t)
∂x

+D
∂2p(x, t)
∂x2 . (2.62)

Inserting Eqs. 2.60 and 2.61 in Eq. 2.62 and simplifying the expression gives

LFP p(x, t) =
√
π(x)

[
D

2
U ′′(x)
kBT

−D
(
U ′(x)
2kBT

)2
+D

∂2

∂x2

]
ψ(x, t) ,

=
√
π(x)Lψ(x, t) , (2.63)

where the operator L is given by

L = D

2
U ′′(x)
kBT

−D
(
U ′(x)
2kBT

)2
+D

∂2

∂x2 . (2.64)

Since the second-derivative operator is Hermitian, L is also Hermitian, i.e., L = L†. Using
p(x, t) =

√
π(x)ψ(x, t), Eq. 2.63 becomes

LFP p(x, t) = π(x)
1
2Lπ(x)−

1
2 p(x, t) . (2.65)

Comparing both sides, we get

LFP = π(x)
1
2Lπ(x)−

1
2 =⇒ L = π(x)−

1
2LFP π(x)

1
2 . (2.66)
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Using Eq. 2.56, we obtain the eigenvalue equation for ψ(x, t)

∂ψ(x, t)
∂t

= Lψ(x, t) . (2.67)

If p(x, t) =
√
π(x)ψ(x, t), then ψ(x, t) solves the eigenvalue problem of the operator L

with the same eigenvalues λk

Lψk = π
− 1

2
k LFPπ

1
2
k ψk ,

= π
− 1

2
k LFPpk ,

= −π−
1
2

k λkpk ,

= −λkπ
− 1

2
k π

1
2
k ψk ,

= −λkψk . (2.68)

In the fourth line, we substituted back pk = π
1
2
k ψk. It is now easy to show that L is a real

operator [187]. The expected value of L is defined as

〈L〉[ψk] ≡ 〈L〉 ≡ 〈ψk|Lψk〉 =
∫

dxψ∗kLψk . (2.69)

The complex conjugate of the expected value of L is then

〈L〉∗ =
∫

dx (ψ∗kLψk)∗ ,

=
∫

dxψk(Lψk)∗ . (2.70)

Rearranging the factors in the integrand, we get

〈L〉∗ =
∫

dx (Lψk)∗ψk = 〈Lψk|ψk〉 . (2.71)

Applying the definition of Hermitian operator

〈L〉∗ = 〈ψk|Lψk〉 ,

= 〈L〉 . (2.72)

Thus, 〈L〉 is real. Furthermore, we can show that if an operator is real, its eigenvalues are
real. Assume the operator L has eigenvalues λk with eigenfunctions ψk:

Lψk = −λkψk . (2.73)
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We can compute again the expected value of L in the state ψk:

〈L〉 = 〈ψk|Lψk〉 = −〈ψk|λψk〉 = −λk . (2.74)

From Eq. 2.72, the expected value of L is real, and so are the eigenvalues λk.
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Chapter 3

Optical Feedback traps

3.1 Feedback traps

Over the last three decades, optical tweezers [59, 188] have been used to exert piconewton
forces on mesoscopic particles and detect their motion for physical [64–67], chemical [68,
69], and biological applications [63, 70–72]. Generalizations of tweezers such as optofluidic
lattices [189, 190], plasmonic tweezers [191], and other techniques have been used to ma-
nipulate, sort and separate nanoparticles on nanometer scales [192]. In parallel with these
applications of optical tweezers, feedback forces have been another way to trap particles and
exert small forces. Although the details of such feedback traps vary, they share the common
feature of operating in a cycle where one measures the position of a particle, calculates the
desired trapping force, and then applies it (Fig. 3.1). Often the goal is simply to trap an
object, a task that has been done using many different types of force for the feedback, in-
cluding electrokinetic [111], magnetic [89], microfluidic flow [193], and thermophoretic forces
[166]. The objects trapped have ranged from colloidal particles to bacteria to proteins and
even to individual dye molecules diffusing in water [115]. Trapping allows one to measure,
with good statistics, physical properties of individual objects [194]. In other situations, the
goal is not simply to trap but to create a more-complicated force field, for example, a virtual
potential that can be a discrete approximation to a physical potential [195], an idea that has
been used to test fundamental aspects of statistical physics such as the relations between
information and thermodynamics [119, 196], or the measurement of the functional form of
the Gibbs-Shannon entropy function [197].

Feedback has been used previously in optical tweezers, but for relatively simple goals
such as increasing the stiffness of the trap relative to its normal value. Simmons et al.
[198] achieved a 400-fold gain in the stiffness using two-dimensional analog feedback control
provided by a pair of orthogonal acousto-optic deflectors (AODs). Using similar setups based
on digital feedback control, Ranaweera et al. [199] and Wallin et al. [200] achieved 29-fold
and 10-fold gains in stiffness, respectively.
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Figure 3.1: One cycle of the feedback trap.Measurement: estimate the current position of the
particle, Decision: calculate force based on the imposed potential (red), and Action: apply
the force by shifting the harmonic well center (blue). The force applied is a linear restoring
force with k the stiffness of the harmonic trap and ∆x the expected trap displacement.

Our goal is to create virtual potentials such as harmonic and double-well potentials.
In previous studies on feedback traps [119, 195], such virtual potentials were created by
applying electrokinetic forces, which are particularly well suited for applying strong forces
to nanometer-scale particles [115]. Here, we substitute the electrokinetic forces with forces
created by optical tweezers. A similar instrument was developed independently by Albay
et al. [201]. In this chapter, we will describe the experimental setup for optical feedback
tweezers. We will discuss how conventional optical tweezers can be used to create arbitrary
potentials.

The content of this chapter has been published in three papers. The first version of
the optical feedback tweezers was published in SPIE Proceedings [202]. Further extensions
of the technique to create complex potentials such as double-well potentials and isotropic
traps were published in Refs. [203, 204].

3.2 Principles of optical tweezers

The force exerted by an optical tweezer is classified into two scattering and gradient forces.
Scattering forces arise due to momentum transfer from the photons to the particle and push
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the particle along the light’s propagation direction. Gradient forces arise from gradients in
the electric field and act in the direction of increasing electric field strength.

The working principle of an optical trap can be explained in terms of ray optics or the
electromagnetic interaction between the trapped particle and the trapping beam. Depending
upon the size of a trapped particle (a bead of diameter d) trapped by a laser of wavelength
λ, trapping forces can be calculated easily by using either ray optics (valid for d� λ) or a
dipole approximation (valid for d� λ).

Figure 3.2: Working principle of optical tweezers based on ray optics. Because of the
refraction of the light beam by the bead, the momentum of the light changes. The net
change in momentum of light ∆pnet results in a force exerted on the bead. If the bead is
positioned below the focus, the beam pushes the particle towards the focus (A). If the bead
is laterally displaced from the trap center, the gradient force results in a net force towards
the center of the beam (B). Adapted from [182].

Ray optics describes the forces exerted on a particle in terms of changes in the momen-
tum flux of the trapping beam [205]. According to Newton’s third law, a reaction force acts
on the bead in the direction opposite to the change in momentum of light. The reaction
force pushes the bead either towards the beam or away from it. The force is attractive or
repulsive, depending on the ratio m = np/nm of the refractive index of the particle (np)
relative to the surrounding medium (nm). For the attractive case, the particle acts as a pos-
itive lens. If the particle is at the beam’s focus, individual rays of light refract symmetrically
through the particle, resulting in no net lateral force. If the particle is “upstream” from the
focus, it converges the beam more, and thus the momentum flux decreases. The change in
momentum results in a force acting on the particle in the direction of beam propagation
(Fig. 3.2A). Similarly, the force on the particle is opposite to the propagation of the beam
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if it is downstream of the focus. However, if the particle is shifted sideways, there is a lateral
gain in momentum towards the particle center. The reaction force acts towards the beam
axis (Fig. 3.2B). Notice that we have neglected the effect of surface reflections and inter-
nal reflections. In practice, these reflections add to the downstream scattering force. Thus,
apart from weakening the trap, the scattering force pushes the particle downstream, past
the focus.

If the particle is much smaller than the wavelength of light, then the Rayleigh-scattering
regime applies. The instantaneous electric field experienced by the particle in the electro-
magnetic field of light is uniform, and electrostatics can be applied for force calculation
[206]. The particle, in this case, acts as a dipole particle with dipole moment given by

d(r, t) = 4πε0n2
ma

3
(
m2 − 1
m2 + 2

)
E(r, t) , (3.1)

where ε0 is the dielectric constant of the vacuum, a the radius of the particle, nm the refrac-
tive index of the surrounding medium, and m the relative refractive index of the particle in
the medium. As the electric field is oscillating, the induced dipole moment oscillates syn-
chronously with the electric field and radiates secondary or scattering waves in all directions
[206]. This scattering event changes both the magnitude and the direction of the energy flux
of the electromagnetic wave. The corresponding momentum transfer also occurs, and the
scattering force associated with these changes is exerted on the particle. The scattering
force is given by

Fscat(r) =
(
nm
c

)
CscatI(r) , (3.2)

where c is the speed of light in vacuum, I(r) the intensity at position r and Cscat =
8
3π(kr)4a2

(
m2−1
m2+2

)2
the scattering cross-section with k = 2π/λ the wavenumber of the

trapping beam. The sign of the force is independent of the relative refractive index of the
particle; thus, the scattering force always pushes the particle along the direction of the
beam.

Because of the Lorentz force acting on a dipole in an electromagnetic field, a gradient
force also acts on the particle in an optical trap. The instantaneous gradient force is defined
by [206]

Fgrad(r, t) = [d(r, t) · ∇]E(r, t) ,

= 4πn2
mε0a

3
(
m2 − 1
m2 + 2

)
1
2∇E

2(r, t) . (3.3)
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The steady-state gradient force is the time average of Eq. 3.3 and is given by [206]

Fgrad(r) = 〈Fgrad(r, t)〉T ,

= 4πn2
mε0a

3
(
m2 − 1
m2 + 2

)
1
2∇

〈
E2(r, t)

〉
T

= πn2
mε0a

3
(
m2 − 1
m2 + 2

)
∇|E(r)|2 ,

= 2πnma
3

c

(
m2 − 1
m2 + 2

)
∇I(r) , (3.4)

where
〈
E2(r, t)

〉
T = 1

2 |E(r)|2 and I(r) = nmε0c
2 |E(r)|2. Thus, for m > 1, the gradient

force attracts the particle towards the region with maximum intensity, and vice versa. For
a Gaussian beam, the intensity distribution leads to Fgrad ∝ −∆x, to first order in the
displacement ∆x, a restoring force that acts as a Hookean spring.

In practice, the particle size usually falls in a regime where neither ray optics nor
Rayleigh scattering is a good approximation. This size range, where the particle’s dimen-
sions are comparable to the wavelength of light, is often called the resonance region [207].
An exact electromagnetic theory is needed to determine the scattering of the trapping beam
by the particle, and hence the optical force, based on either the Maxwell equations or the
vector Helmholtz equation [208, 209]. The generalized Lorenz-Mie theory (GLMT), an ex-
tension of the Lorenz-Mie theory for a spherical particle under planar illumination, is used
to model the trap for arbitrary illumination of an arbitrarily shaped particle [210–212]. Fur-
ther exploration of GLMT needs a detailed calculation of the incident and scattered wave
as a sum of vector spherical wavefunctions (VSWFs) to calculate the Mie coefficients. This
rigorous treatment of electromagnetic theory is outside the scope of this thesis.

3.3 Optical tweezers setup

Our optical tweezer setup is based on a custom-built microscope constructed on a vibration-
isolation table (Melles Griot) (Fig. 3.3). A linearly polarized 532 nm laser (Nd:YAG, Coher-
ent Genesis MX STM-series, 1 Watt) is used for trapping and detection. The laser passes
through a Faraday isolator (LINOS FI-530-2SV), which protects the laser cavity from back-
reflections. We use a spatial filter (SF) consisting of a microscope objective and a pinhole
to produce a clean Gaussian beam. The clean laser beam is separated into trapping and
detection beams using a 90:10 beam splitter. The polarization of the detection beam is
rotated by 90◦ with a half-wave plate to minimize any interference with the trapping laser.
The trapping beam passes through an assembly of two acousto-optic deflectors (AODs)
that provide orthogonal XY deflection (DTSXY-250-532, AA Opto Electronic). Each AOD
can change the intensity in the first-order diffraction beam and steer its angle using ana-
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log voltage-controlled oscillators (DFRA10Y-B-0-60.90, AA Opto Electronic). The trapping
beam is then expanded by a factor of two to slightly overfill the back aperture of the mi-
croscope objectives. A pair of relay lenses images the steering point of the AOD onto the
back focal plane of the trapping objective to translate beam rotation into linear motion in
the trapping plane.

532 nm
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Figure 3.3: Schematic diagram of the feedback-trap setup. FI = Faraday Isolator, M =
Mirror, SF = Spatial Filter, BS = Beam Splitter (non-polarizing), AOD = Acousto-Optic
Deflector, L = Lens, MO = Microscope Objective, SC = Sample Chamber, PBS = Po-
larizing Beam Splitter, HW = Half-Wave Plate, F = Short-Pass Filter, QPD = Quadrant
Photodiode, DM = Dichroic Mirror, PD = Photodiode, CS = Cover-Slip, Cam = Camera.
Planes conjugate to the back-focal plane of the trapping objective are shown in red-dashed
lines.

We use a water-immersion, high-numerical-aperture objective (Olympus 60X, UPlanSApo,
NA = 1.2) for trapping a 1.5 µm diameter spherical silica bead (Bangs Laboratories). The
detection beam enters through a low-numerical-aperture (40X, NA = 0.4) objective ori-
ented opposite to the propagation of the trapping beam. The weakly focused detection
beam minimizes trapping effects and extends the linear range for position detection [213,
214]. The trapping objective collects the forward scattered light from the detection beam.
A polarizing beam splitter (PBS25-532-HP, Thorlabs) separates the detection beam and
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the back-scattered light from the trapping laser by transmitting the former and reflecting
the latter. We use a quadrant photodiode (QPD, First Sensor, QP50-6-18u-SD2) to detect
the particle’s fluctuations. The QPD is placed at the back focal plane of the trapping ob-
jective for back-focal-plane interferometry (see Sec. 3.3.3) [215]. A 660 nm LED (Thorlabs,
M660L4) is used to illuminate the sample chamber. The illumination light is separated from
the trapping laser before it enters the camera using a short-pass filter (cut-off wavelength ≈
600 nm, Edmund Optics), which transmits wavelengths shorter than the cut-off wavelength
of the filter. A LabVIEW-based FPGA data-acquisition system (NI 7855R) collects the
voltage signals from the QPD and sends the command signals to AODs. The FPGA card
runs the control protocol with a user-defined deterministic time step.

Having outlined the overall setup, we will now review the working principles of our
setup’s essential components, such as Faraday isolators, acousto-optic deflectors, and beam-
position detectors.

3.3.1 Faraday isolator

A Faraday isolator is a device that transmits light in one direction while blocking the light
in the opposite direction [216]. It is typically used to prevent unwanted feedback from back
reflections into an optical oscillator, such as a laser cavity [217, 218]. These isolators are
based on the Faraday effect, which is a first-ordermagneto-optic interaction. When a linearly
polarized light is passed through a material placed parallel to a magnetic field, the plane
of polarization of the emergent light is rotated by an angle θ that is proportional to the
thickness d of the sample and the strength of the magnetic field B, according to the relation
[216],

θ = V Bd, (3.5)

where V is the Verdet constant, which depends on both the temperature and the wavelength.

For a given material, the sense of rotation is independent of the propagation direction
of light. The repeated forward and backward propagation has a cumulative effect on the
rotation angle. Typically, a Faraday isolator consists of three components: an input polarizer,
a Faraday rotator, and an output analyzer. As shown in Fig. 3.4, incident light enters an
input polarizer, which polarizes the otherwise unpolarized light. Upon passing through the
Faraday rotator, the plane of polarization is rotated by 45◦. When the back-reflection at
45◦ passes through the rotator, the polarization axis is further rotated by 45◦. Thus, the
back-reflection, polarized in the horizontal plane, is either absorbed or reflected by the input
polarizer. As a result, Faraday isolators prevent beam reflections from returning to the laser
cavity. Inside the cavity, interference between the delayed reflected beam and the laser field
can destabilize the laser cavity, leading to large unwanted intensity oscillations [217, 218].

43



Figure 3.4: Schematic diagram of the Faraday isolator. A Faraday rotator placed between a
polarizer-analyzer pair prevents the back-reflection (light green) of the incident light (green)
from entering the laser cavity. Adapted from [216].

3.3.2 Acousto-optic deflector

The basic principles of acousto-optic devices are based on the scattering of light by the
periodic index variations generated by an acoustic wave in the supporting medium. These
periodic variations form a moving index grating, generated by a traveling acoustic wave, or
a standing index grating, generated by a standing acoustic wave. Typically, the size of these
grating periods ranges from the order of 1 µm to a few centimeters. The grating period in
our setup is ≈ 9 µm. The period and the modulation depth of these gratings can be varied
by varying the frequency and amplitude of the acoustic wave, respectively.

Figure 3.5 shows a typical configuration of an acousto-optic deflector. A preamplified
signal is sent through a transducer attached at the bottom of the device to launch an
acoustic wave of frequency fa. Upon interaction with the gratings set up by the acoustic
wave, the incident light is scattered by the periodic modulation of refractive index along
the propagation direction of the acoustic wave. If the interaction length is sufficiently long,
and the laser beam is incident at the Bragg angle θB = 0.5λ/Λa, with Λa the wavelength of
the acoustic wave, the deflection angle for the first-order light is given by

θd = λfa
2nva

, (3.6)

where λ is the wavelength of the incident light, n the refractive index of the traveling
medium, and va the acoustic wave velocity. In the configuration shown in Fig. 3.5, an
acoustic absorber helps create traveling acoustic waves inside the crystal. Thus, the density
modulation is ρ(x) ∼ eiκx along the propagation direction, where κ = 2π/Λa. The Bragg
condition is then satisfied for m = 0 and +1 only. Using Eq. 3.6, we observe that, for a
fixed angle of incidence, the deflection angle can be controlled through the acoustic wave
frequency. For a given acoustic frequency fa, when the angle of incidence is equal to the
Bragg angle, i.e., θi = θB, the first-order efficiency is maximum.
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Figure 3.5: Schematic diagram of an acousto-optic deflector. When a light beam is incident
at an angle θB, the first-order diffracted beam is produced at an angle θd. The maximum
deflection angle θmax is determined by the RF frequency sent to the piezo-transducer, bonded
to the crystal. The crystal is typically skew cut and fitted with an acoustic absorbing
material on the opposite end to avoid reflection of the acoustic wave back into the crystal.

The acousto-optic crystal is made up of TeO2, and the acoustic wave velocity through
the medium is va = 650 m/s. The variation of the diffraction efficiency upon changes in
the acoustic frequency shows that the Bragg condition is met near the central frequency
(75 MHz) of the acoustic range (50 MHz) (Fig. 3.6). The maximum efficiency is ≈ 73%, near
the middle of the scan voltage. The AOD modulation that corresponds to the maximum
efficiency indicates the matching of Bragg’s criterion for diffraction. The approximately flat
plateau in the AOD-calibration graph indicates that the output efficiency of the device does
not change much during steering of the beam through small angles about the Bragg angle.

The deflection of the first-order beam is not instantaneous. Since it takes a finite amount
of time for an acoustic wave to travel through the laser beam, the switching between different
angles takes time. This settling time is called the rise time and given as

TR = Ω φ

va
, (3.7)

where Ω is a constant depending on the laser beam profile, φ the beam diameter, and va

the acoustic velocity. For a beam diameter of 3 mm and Ω = 0.66 (TEM00), the rise time
is ≈ 3 µs. Other scanning strategies include galvanometer mirrors, piezoelectric mirrors,

45



 !!

"!

!

#
$$
%&
%'
(
&
)
*+
,
-

 !"!

./0*1234567%2(*+8-

Figure 3.6: Diffraction efficiency of the acousto-optic deflector. The ratio of power in the
first-order beam to incident power changes as the beam is steered at different angles by
changing the AOD modulation voltage. The modulation voltage changes the acoustic wave
frequency through a voltage-controlled oscillator (VCO) driver. For a given incident angle
of the incoming beam, the Bragg diffraction depends on the acoustic wave frequency.

and electro-optic deflectors [219]. Scanning mirrors are typically slow, with response & 100
µs. However, a response time of about 1 µs can be achieved using electro-optic deflectors
(EODs) [220]. Although EODs have lower deflection-angle errors and higher linearity in
deflection angle than AODs, their higher cost and smaller deflection angle (≈ 20 mrad vs.
≈ 40 mrad) limit their use in a typical optical-tweezer setup [221].

3.3.3 Detection scheme

Once a bead is trapped, we need to detect its motion. We use an interferometry-based de-
tection scheme to detect the particle position. Interferometric detection can provide high
spatial and temporal resolution — angstroms and microseconds, respectively. The interfer-
ence signal is monitored with a quadrant photodiode (QPD) positioned along the optical
axis at a plane conjugate to the back focal plane (BFP) of the condenser [215]. The intensity
pattern in the BFP does not depend on the position of the trapping beam focus, and the
pattern in the BFP represents the angular-intensity distribution of the interference between
the forward-scattered light from the trapped bead and the unscattered light.

The laser-based detection scheme uses a low-power laser (taken from the trapping beam)
with polarization rotated to be orthogonal to that of the trapping beam. The trapping beam
is dynamically shifted to provide feedback forces. Under such circumstances, it is necessary
to decouple the detection beam from the trapping beam to simplify the position measure-
ments. It should be noted that the detection laser is introduced through a low-numerical-
aperture objective to create a wide detection spot that enlarges the linear range for position
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detection (Fig. 3.7) [213, 214]. We also do a nonlinear calibration of the position signal
obtained from QPD to further extend the range of the position-detection measurements.

Figure 3.7: Interferometry-based detection scheme. The interference between the unscat-
tered and scattered light is collected by the trapping objective in the forward direction. The
interference signal is monitored with a QPD placed at a plane conjugate to the back focal
plane of the trapping objective.

The light pattern on the QPD is converted to an electrical signal readable by a data-
acquisition system. A QPD is a set of four identical P or N silicon photodiodes separated
by a small gap. When light is incident on the detector, a photocurrent is detected by each
photodiode (labeled A, B, C, and D in Fig. 3.7). The output voltages are obtained by
routing the photocurrents from each quadrant into current-to-voltage amplifiers. Thus the
QPD circuit provides three signals Vx, Vy, and Vz as

Vx = (VB + VC)− (VA − VD) ,

Vy = (VA + VB)− (VC − VD) ,

Vz = VA + VB + VC + VD. (3.8)

Often the X and Y signals are normalized by dividing the sum signal Vz to reduce
the dependence of the output on the light intensity. We have used a standard silicon QPD
(QP50-618u-SD2) from First Sensor. Operating with zero bias, the detector has a bandwidth
≈ 150 kHz.

3.3.4 Control and data acquisition

As we discussed in Sec. 3.3.2, the trap’s position is controlled by repositioning the laser focus
in the trapping plane by an AOD. The acquisition of particle position in the trap and gener-
ation of control signal requires a controller. We use a LabVIEW-based field-programmable
gate array (FPGA) data-acquisition system to receive signals and send control commands.

An FPGA has a finite number of hardware resources such as programmable logic, I/O,
and memory resources [222–224]. Contrary to a processor or a microcontroller, these limited
resources often constrain FPGAs in storage. These resources are located at regular intervals
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across the chip, which allows for short paths between the resources. These short paths
reduce the minimum execution time of a code on the FPGA target. Since there are multiple
instances of each resource on an FPGA, multiple concurrent (parallel) processes can run
on the same device simultaneously while minimizing resource conflicts. Another benefit of
an FPGA-based acquisition device is the precise and deterministic time of sampling. The
precise timing set by the hardware control is important to digital protocols and high-speed
control applications because it can affect a system’s ability to communicate or the stability
of the controlled system.

For a typical application, we need two parts of the controller program (code): one runs
on the target, and the other runs independently on the host. In the target version, one down-
loads the actions such as input acquisitions, calculation of control signals, and generation
of output signals. An FPGA must receive configuration instructions before it can perform
any computation. The compiler generates configuration instructions for the FPGA that im-
plements the written code. After the compilation, the compiler arranges the programmable
resources on the FPGA to create a circuit that performs the designed actions. On the other
hand, the host program, running on a standard computer, intermittently sends and receives
signals from the target device. The transfer of signal takes place through direct memory
access (DMA) communication, consisting of two DMA first-in-first-out (FIFO) buffers: one
FIFO on the host computer and the other on the FPGA target. Our 7855R controller has
three DMA channels that provide high-throughput and lossless data transfer at the 100 kHz
rates used.

3.4 Sample preparation

We trap a colloidal particle diffusing in water. The sample chamber consists of a 1-mm-thick
glass slide and a coverslip (25 mm × 25 mm, No. 1.5). We use a 100-µm-thick spacer wire
(black lines in Fig. 3.8) to create a small volume, ≈ 60 µl. We begin by applying two parallel
stripes of nail polish and placing two straight spacer wires. A coverslip is put on the wires
by applying gentle pressure.

We place the assembly in an oven at 60◦C to dry the nail polish quickly. After it has
dried, we pipette ≈ 40 µl of a dilute bead solution in deionized water. Finally, we seal
the remaining sides with nail polish and leave it to dry at room temperature. The sample
chamber is mounted on a compact dovetail linear stage (DS25-XYZ, Newport) for three-
dimensional positioning.

3.5 Calibration

To create dynamics that can be quantitatively measured requires a careful chain of cal-
ibration. First, using the camera as a length standard, we calibrate the image pixel size.
Next, we calibrate the trap displacement produced by a change in the modulation voltage in
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25 mm

Figure 3.8: Schematic of the sample chamber. A chamber containing silica beads is mounted
on an assembly of linear stages for three-dimensional manipulation.

the AOD. Having determined the camera and AOD calibration constants, we calibrate the
response of the QPD against the AOD modulation voltage. Finally, we calibrate the force
exerted by the trap on the particle. The calibration process for QPD and force has to be
repeated each time before measurement. We will now discuss the step-by-step calibration
procedure performed each time before an experiment.

3.5.1 Position calibration

A three-step calibration maps the voltage signals produced by the QPD (V) to displace-
ment (µm). We first calibrate the camera using a standard micrometer scale. Using Im-
ageJ (https://imagej.nih.gov/ij/index.html), we found that the average size of one pixel
is 79.0 ± 0.4 nm. We then calibrate the AOD by discretely moving the trap position and
recording the image of the trapped bead. Figure 3.9 shows the response of the AOD for the
change of the modulation voltage. We explored either side of the trap center by varying the
modulation voltage from −0.1 to +0.1 V, and the trap displacement in µm was measured
from the displacement of the image on the camera. This is a one-time calibration for the
AOD, provided there is no change in the optics of the experiment.

Once we calibrate the camera and AOD, we also need to calibrate the response of the
QPD against the AOD modulation voltage. Figure 3.10A shows a typical response of the
QPD as a function of trap displacement. The response of the QPD is linear only over a very
small region (≈ 350 nm) around the trap center (indicated by the region between dashed-
vertical lines). Although the AOD is linear over a relatively large range, the small range of
linear response of the QPD limits the accuracy of the linear feedback algorithms used by
the feedback traps. A nonlinear calibration is required for larger trap displacements.
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Figure 3.9: Calibration of the AOD. The modulation voltage is varied from −0.1 V to +0.1
V (≈ 1.6 µm) to calibrate the AOD using a camera.

For the nonlinear calibration (NLC) of the QPD signal, we fit a 5th-order polynomial to
the QPD response (Fig. 3.10B). Once the fit parameters are obtained, we feed the QPD sig-
nal through the fit equation (now with known parameters) to remove the nonlinearity from
the QPD signal. Figure 3.11 shows the QPD signal after the NLC. Although the calibration
procedure works well, it is susceptible to drifts in the system. To reduce these effects, we
developed a routine in LabVIEW to automate the NLC procedure in our experiment. The
calibration process is repeated whenever we move the sample chamber or trap a new particle
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Figure 3.10: Calibration of the QPD signal. A. The signal from QPD for small displacement
about the center of the detection beam varies non-linearly. Dashed vertical lines indicate
region of approximately linear response. B. Nonlinear fit of the QPD signal to a 5th-order
polynomial.
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Figure 3.11: Expected displacement vs. measured displacement. A nonlinear calibration
linearizes the measured displacement signal shown in Fig. 3.10B. The superimposed solid
blue line is a plot of y = x (with no curve fitting). The root-mean-square error of the
residuals is 1.3%.

to avoid errors caused by instrument drift (≈ 1 nm s−1) or bead-size variations. Note that
separate calibration protocols are needed for X and Y directions.

3.5.2 Trap-stiffness calibration

Once the trap position is calibrated, we need to calibrate the stiffness of the trap. The
standard calibration method in optical tweezers is the power spectral analysis of the Brow-
nian motion of the trapped particle [170]. The power spectral density (PSD) of a variable
x(t) is defined as the expectation value of the squared modulus of its Fourier transform.
The Einstein-Ornstein-Uhlenbeck theory predicts a Lorentzian spectrum for an overdamped
Brownian particle (Eq. 2.17) [181]. However, in practice, the trajectory x(t) is sampled with
frequency fs = ∆t−1, which causes aliasing. In other words, the sampling process can-
not distinguish frequency components of the signal that differ from each other by integer
multiples of the sampling frequency: They all add up to a single amplitude. However, in
our setup, the bandwidth of the signal is limited to ≈ 150 kHz by the detector (QPD)
and the signal is sampled at 100 kHz by the data acquisition device1. Since the corner
frequency fc = k/2πγ ≈ 300 Hz of the trap is sufficiently below the Nyquist frequency

1In a more careful setup, I would have used either a sampling rate around 300 kHz or an antialiasing
filter with a bandwidth of 50 kHz. However, in this case, the signal is so attenuated and the electronic noise
so small that these steps were not necessary.
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(fNyq = fs/2 ≈ 50 kHz), the power attenuates by approximately four orders of magnitude
for frequencies near fNyq. We thus do not expect significant aliasing in our signals. Our
model then ignores the aliasing effects from the detector. However, a more careful analysis
of the power spectrum that accurately accounts for aliasing can be done by including the
response function of the detector [170].

The Langevin equation for a discretely sampled position x(t) is given as (see Chapter 2)
[170]

xi+1 = c xi + ∆x ηi , (3.9)

with 〈ηi〉 = 0 and 〈ηiηj〉 = δij for all i,j, where δij is the Kronecker delta function (δij = 1
for i = j, 0 otherwise). The expectation 〈· · · 〉 is an average with respect to the ensemble of
realizations of the stochastic variable ηi. The ηi are independent Gaussian random numbers
with zero mean and unit variance. The remaining terms c and ∆x can be calculated by
integrating the Langevin equation over a time interval ∆t = f−1

s , to find

c = exp(−πfc/fNyq) , (3.10)

and

∆x =
(

(1− c2)D
2πfc

)1/2

. (3.11)

Taking the discrete Fourier transform of Eq. 3.9, we obtain [170]

Sk = 〈|x̂k|2/τ〉 = (∆x)2 ∆t
1 + c2 − 2 c cos(2πk∆t) , (3.12)

where x̂k is the discrete Fourier transform of xk sampled for a time τ .
Figure 3.12B is a typical power spectral density of a trapped bead’s position x(t)

(Fig. 3.12A) sampled at ∆t = 10 µs. We fit the experimental PSD with Eq. 3.12 to es-
timate the values of D and fc. The corner frequency divides the spectrum into two regimes.
For frequency f � fc, the power spectrum is constant, indicating suppressed motion of the
particle. For fNyq � f � fc, the power spectrum decreases approximately as 1/f2, indi-
cating free diffusion. The power spectrum has been averaged over n = 50 non-overlapping
intervals (also known as blocking) to reduce the noise (PSDnoise = Savg/

√
n) in the PSD

[225]. The accurate estimation of k requires accuracy in both D and fc. As we use a least-
square fitting to estimate these parameters, we get a systematic bias in D: The least-squares
fitting method assumes that the weights are uncorrelated with the experimental data. How-
ever, we use experimental (PSDnoise) as weights for the fitting. As Nørrelykke and Flyvbjerg
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Figure 3.12: Calibration of trap stiffness.A. Time series of the position of a trapped particle.
B. Power spectrum of a trapped bead. The blue line is a fit to the aliased Lorentizian
(Eq. 3.12). The corner frequency measured from the fit is fc = 236 ± 2 Hz. The reduced
chi-squared value χ2

ν ≈ 1.02, where ν = 19998. The shaded gray region in the normalized
residual plot indicates one standard deviation (1σ) from the mean.

calculated, we multiply Eq. 3.12 by the factor = n/(n− 2), which approximately removes
the bias in the estimate of D [225].

Because the Brownian particle is in thermal equilibrium with the bath, its probability
distribution follows the Boltzmann distribution given by [226]

π(x) = 1
Z

exp
[−U(x)
kBT

]
, (3.13)

where Z =
∫

dx e−U(x)/kBT normalizes the probability distribution. By solving Eq. 3.13 for
U(x), we obtain

U(x) = −kBT ln [π(x)] + U0 , (3.14)

where U0 = −kBT lnZ. Figure 3.13A represents a frequency estimate of the probability
for a measured position x at a time t to fall within the interval [xi, xi+1), where xi =
i∆x, with ∆x the bin width. Figure 3.13B represents the potential energy obtained from
the probability distribution p(x). Assuming U = 1

2kx
2, we can fit either the probability

distribution or the potential with appropriate function to obtain the trap stiffness k. The
determination of the potential by this method is subjected to systematic errors due to
uncorrelated noise such as low-frequency mechanical drift in the setup and detection errors.
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Figure 3.13: Potential and equipartition analysis. A. Position histogram and B. potential
corresponding to the data shown in Fig. 3.12. The red markers are the experimental data,
and solid blue lines are fits using Eq. 3.13 and Eq. 3.14, respectively. Values of trap constants
measured from the fits are k = 19.05±0.18 and 19.02±0.21 pN/µm forA andB, respectively.

If the trap is harmonic and the measurement errors are � σx, a simple theory based on
the equipartition theorem can give the stiffness as

k = kBT

σ2
x

, (3.15)

where σ2
x is the position variance. The equipartition method is independent of the particle’s

shape or size; however, this method requires a calibrated detection system and removal of
measurement noise; i.e, σ2

x = σ2
tot − σ2

meas, where σ2
tot is the total variance and σ2

meas the
measurement variance of the signal.

Other passive techniques, such as mean-squared displacement, autocorrelation analysis,
and step response, are often used to estimate the stiffness of optical traps [99, 198, 227].
Active calibration techniques include estimating the trap stiffness from the displacement of
a trapped particle caused by a fluid flow. A power spectral density of an oscillating particle
in a fluid has been used to calibrate both position and stiffness simultaneously [228]. In our
experiment, we require very good estimates of D and k to accurately apply feedback forces
on the trapped particle to impose arbitrary potentials. Some of the methods described above
are affected by low-frequency drifts and noise. Frequency-domain analysis permits one to
remove these sources of noise; for these reasons, power spectrum analysis is a reliable method
to calibrate optical tweezers. The spectral analysis has also been generalized to include
hydrodynamic effects [170]. When a rigid body moves through a dense fluid, the friction
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acting on the body moving in an infinitely deep fluid depends on the body’s past motion and
can be obtained from the Navier-Stokes equation [229]. However, in practice, a particle in a
trap is near a surface, and the hydrodynamic interaction between the microsphere and the
surface must be accounted for. The effect of the finite depth of the fluid can be addressed by
considering Faxén’s correction for the drag coefficient [230]. To reduce the hydrodynamics
effect in our experiment, we trap beads at a depth of ≈ 50 µm (h/r ≈ 30) from the surface.
The hydrodynamic interaction with the surface has an effect of ≈ 2%. We do account for
this error in our analysis.

With all the requirements of a feedback trap and the calibration protocols, we are ready
to implement the apparatus to create virtual potentials. In the next few sections, I will
outline the technical applications of our setup.

3.6 Virtual harmonic potential

As shown in Fig. 3.1, force is exerted by moving the trap center relative to the beam.
The force required at a position xn is calculated by evaluating the spatial derivative of the
potential at xn−1, using Fn = −U ′(xn−1), where U(x) is the potential to be imposed and
U ′(x) = dx U . These forces generated by an optical tweezer are approximated as Fn = βxn,
where β is a proportional feedback constant. The dimensionless feedback constant can also
be expressed as β = ∆t/tr, where tr is the relaxation time of the corresponding physical
potential [118]. Unlike a real potential, where forces are applied continuously as the particle
changes, feedback traps apply forces once per cycle. Thus, although the β in a feedback trap
is similar to the force constant in a real harmonic potential, it can affect the dynamics of
the particle differently. For β � 1, the dynamics of the particle in a virtual trap are similar
to dynamics in a real potential and obey the equipartition theorem [118]. For a total delay
td ≈ 2∆t (characteristic of our setup), the discrete dynamics of the particle in a virtual
potential created by optical tweezers follows

xn+1 = xn − β̃(xn − xtn) + ξn

xt
n = xn(1−G)

xn = xn−2 + ξmn , (3.16)

where xn is the true position of the particle, x̄n the observed position, xt
n the trap position

at time tn and ξn and ξmn reflect integrated thermal and measurement noise [231]. The
gain G = kv/kt is the ratio of stiffnesses of the desired virtual feedback trap to the usual
tweezer force constant. Notice that G = 1 implies placing the trap at x = 0: this is the
usual operation of optical tweezers. The trap constant β̃ = (kv/γ)tr[1 − exp(−∆t/tr)] is
dimensionless and reflects the relaxation in the tweezer during the feedback-loop update time
interval ∆t with relaxation time tr = γ/kt. Here, γ ≈ 6πηr is the Stokes-Einstein friction

55



coefficient for a particle of radius r in a fluid of viscosity η. For ∆t� tr, β̃ ≈ (kv/γ)∆t ≡ β,
the usual result for constant-force feedback traps. For ∆t � tr, we have β̃ ≈ (kv/γ)tr. We
operate the trap in the first limit, with ∆t = 10 µs and tr ≈ 0.8 ms, so that β̃ ≈ β ≈ 0.01.
The feedback delay time, including the delay from the AOD electronics (10 µs), is td = 20
µs ≈ 2∆t.
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Figure 3.14: Power spectral density for different values of proportional feedback gain (β =
∆t/tr). The power spectrum for the “natural” trap without feedback (“open-loop”) is shown
in red. Feedback can create both weaker and stiffer traps. The corresponding values of trap
stiffness (excluding β = 0.3) are 1.36±0.05, 7.33±0.11, 19.84±0.16, and 243±0.49 pN/µm,
respectively.

In Figure 3.14, we show that the feedback trap can alter the effective stiffness k of the
virtual potential. We obtained a 30-fold gain in the stiffness of the trap compared to that
of the underlying harmonic trap. Often changes in trap stiffness are created by varying
the total laser intensity in the trap. In a feedback trap, a similar control is achieved by
changing the feedback gain β. For larger values of β, the particle starts to oscillate because
of overcorrection of the perturbations, as indicated by the emergence of the peak in the power
spectrum [231]. The motion is undesirable both for the longer relaxation time created by
the oscillations and for the greater variance in the particle position. The frequency at which
the resonance appears depends on the time delay (td) of the feedback loop. In Fig. 3.14, we
exclude the resonant β = 0.3 curve from our estimate of bandwidth increase.

3.7 Isotropic traps

As shown in Fig. 3.14, the feedback trap can reduce trap strength. In the usual version of
an optical trap, the axial stiffness is typically 3–4 times smaller than the transverse stiffness
because of radiation pressure and the weaker gradient of intensity along the axis of the
focused laser beam [188]. Anisotropic traps used as force sensors have the disadvantage that
the measurement bandwidth differs according to the direction of the force that is applied.
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An isotropic trap would allow unbiased measurement of dynamics in a three-dimensional
environment.
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Figure 3.15: Power spectrum density of the isotropic trap. A. Power spectrum density of
the x, y and z signals before the feedback (kxt = 27.35 ± 0.20, kyt = 20.72 ± 0.17, and
kzt = 7.48 ± 0.13 pN/µm. B. Power spectrum density of the x, y, and z signals after the
feedback (kxv = 7.34± 0.10, kyv = 7.42± 0.12, and kzv = 7.48± 0.13 pN/µm).

Here, we show that we can use feedback to reduce the lateral stiffness of the trap to make
the trap isotropic, with equal stiffness in the lateral and axial directions (Fig. 3.15). The
axial position of the trapped particle is estimated from the total intensity of the scattered
light on the detector. Currently, the higher noise level of axial measurements limits the
bandwidth that can be achieved through feedback to ≈ 2 kHz, as compared to transverse
sensitivity (≈ 50 kHz). With improved axial sensitivity, it should be possible to create an
isotropic trap by increasing the axial stiffness to match the lateral stiffness.

3.8 Virtual double-well potential

We create a static virtual double well with our feedback trap. Such potentials have previously
been created with rapidly scanning single-beam optical tweezers between two positions
[171]. However, multiplexed optical tweezers can impose only a limited range of potentials.
Here, we define a double-well potential from three parabolic pieces that are joined together
in a way that makes the function and its first derivative continuous but has two jump
discontinuities in the second derivative. The parametric form allows independent control of
well separation and barrier height. To simplify the equations, we scale energy by kBT and
lengths by

√
D∆t, where D is the diffusion constant of the particle, and ∆t is the sampling
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time. Specifically, we define

U(x′) ≡



1
2β(x′ + x′m)2 x′ ≤ −x′p

−1
2

 2Eb(
x′m

2−2Eb
β

)x′2 + Eb −x′p < x′ < x′p

1
2β(x′ − x′m)2 x′ ≥ x′p ,

(3.17)

where x′m is the well position, β = 0.03 the proportional feedback constant near the mini-
mum of the potential well, and Eb the potential barrier. The matching point is defined by
enforcing continuity of U and ∂x′U and given as

x′p =
(

k1
k1 + k2

)
x′m . (3.18)

The force constants of the stabilizing potential k1 and the destabilizing potential k2 can be
calculated from the values of β and Eb as

k1 = β
γ

∆t and k2 =

 2Eb

x′m
2 − 2Eb

β

 γ

∆t . (3.19)

This parametrization of a double-well potential is more flexible than the one used in
Ref. [202], as we can independently control the well separation and barrier height, keeping
the curvature at the bottom of the wells fixed.

Figure 3.16 shows a family of double-well potential curves reconstructed from their
respective time series using the Boltzmann distribution, π(x′) ∼ exp[−U(x′)/kBT ], where
the well separation is 60 nm. The black curves in Fig. 3.16 are calculated from Eq. 3.17 with
imposed parameters that are not fit to the data (gray markers). We have confirmed that
best-fit values for parameters such as Eb and xm are within 5% of the values imposed by the
control program. The errors in these parameters can be the cumulative effect of systematic
errors in our calibration procedure. Although these errors are small for our purpose, a more
careful calibration can be done to create virtual potentials by including systematic error in
the feedback algorithm.

Another important feature of a feedback trap is that the scale of potentials is not limited
by the optical resolution of the microscope. The ability to create double-well potentials with
low energy barrier but high well curvature is important, as it traps the particle in a well-
defined volume of space while still allowing for fast transitions between macrostates. In
Figure 3.16, the well separation was 60 nm. To test the smallest scale we could create,
we increased the feedback gain [231] to α ≈ 0.14, which roughly corresponds to critical
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Figure 3.16: Virtual double-well potentials with different barrier heights (Eb/kBT = 0, 2,
and 3) and fixed well separation. Gray markers denote potentials reconstructed from the
Boltzmann distribution of the position measurements; the superimposed solid black lines
show the imposed potentials. The residuals are calculated for Eb/kBT = 3, which has the
maximum root-mean-square error of ≈ 0.12 kBT . Time series duration is 50 s for all three
cases.

damping. At such large values of feedback gain, the effective damping of the trap dynamics
is reduced.
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Figure 3.17: A. Time series showing spontaneous hops between two states. B. The recon-
structed potential (gray markers) shows wells 10.6 nm apart and a barrier height 0.16 kBT .
Black solid line is a fit using Eq. 3.17.
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Figure 3.17A shows the time series for the smallest well separation that we could achieve
with feedback under these conditions. At 10.6 nm, the well separation is far below the
diffraction limit ≈ 220 nm (Fig. 3.17B). Time-shared traps cannot create potentials with
independently tunable barrier height, well separation, and well curvature. Spatial light mod-
ulators cannot create these shapes at sub-diffractive-limit length scales [171]. Although the
energy barrier is quite low (0.16 kBT ), the small curvature of the barrier and sufficiently
large separation of wells still lead to two-state behavior in the time series, where the dwell
time in a well is ≈ 10× the transition time between wells with the transition rate rk given
by Kramer’s formula rk = 1/(2πγ)

√
k1k2 exp[−Eb/(kBT )] [232]. A full analysis would need

to account for the effects of measurement errors, which smooth the histogram and thus the
potential.

3.9 Discussion

In this chapter, we have demonstrated a feedback trap system based on optical tweezers.
Using this feedback technique, we have created virtual harmonic potentials with different
stiffness constants, static double wells with independently tunable parameters, and isotropic
traps. These applications of optical tweezers have not been shown before using techniques
such as time-shared traps. Although our work is for two-dimensional traps, it can be readily
extended to feedback in three dimensions, using the intensity to measure the axial position
(as done here) or using a variety of more sophisticated techniques [233–235] and a method
to move the trap position axially.

The ability to create and control energy landscapes at scales comparable to the size
of proteins offers intriguing possibilities for biophysical applications. For example, recent
experiments suggest that protein folding can be well described by diffusive dynamics on
an effectively one-dimensional energy surface [236]. Using the techniques developed here,
one could create model systems with similar dynamics. Also, one could place a colloidal
particle in a potential whose dynamics could imitate, in a controllable way, the dynamics of
a ligand. Even more intriguingly, those dynamics could be adaptive, allowing exploration of
phenomena such as catch bonds, whose dissociation lifetime increases sharply when pulled
[237]. Such studies would likely be facilitated by using smaller particles. Techniques such as
interferometric scattering microscopy (iSCAT) have shown that by interfering a reference
beam with scattered light, it is possible to detect colloidal particles and even proteins on
a 10-nm scale [238, 239]. Reducing the delays and feedback latency will allow a further
reduction in the scale of potentials.

Finally, time-dependent potentials can be used to carry out interesting stochastic ther-
modynamic experiments. With feedback bandwidths 1000× faster than the Bechhoefer lab’s
previous work on slow stochastic processes [119, 196, 197], we can address problems with
faster dynamics such as finite-time transformations in non-equilibrium thermodynamics
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[240, 241]. Such experiments could also take advantage of another feature of feedback traps
based on optical tweezers: because the applied forces are localized (in contrast to traps
based on electrokinetic forces), they allow custom energy landscapes containing multiple
particles.
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Chapter 4

Mpemba effect

That an initially hot object might cool more quickly than an initially warm object seems
impossible, because our intuitions tend to be shaped by systems that remain at or near ther-
mal equilibrium. If an object is cooled slowly, its time-dependent state is well characterized
by a temperature, and a hot object cannot cool without passing through all intermediate
temperatures. Nonetheless, when rapidly quenched by placing a system in contact with a
cold bath, the Mpemba effect is often observed in settings where a phase transition occurs
[242, 243]. In this chapter, we provide clear experimental evidence for the Mpemba effect
in a colloidal system that lacks a phase transition. Our results agree quantitatively with
theoretical predictions giving a general explanation for the Mpemba effect [186], and we
take advantage of our understanding of the underlying physics to achieve cooling times that
are exponentially faster than the time to cool under typical initial conditions.

The bulk of this chapter was published in Nature [244]. The theory, developed with
Raphaël Chétrite, for the geometric interpretation of the Mpemba effect was published in
Frontiers in Physics [245].

4.1 Definition of the Mpemba effect

Past investigations of the Mpemba effect have suffered from vague, mutually inconsistent
definitions. We thus begin by defining the Mpemba effect in terms of three temperatures
Th > Tw > Tc, for which the time th to cool a system from a hot to a cold state is shorter
than the time tw to cool it from an intermediate warm state to the same cold state. In the
above definition, “hot” describes an initial state that is at thermal equilibrium at tempera-
ture Th, while “warm” describes an initial state at thermal equilibrium at temperature Tw.
The cold temperature Tc = Tb is that of the thermal bath of water and is the identical final
state for all initial conditions studied. All terms in our definition are unambiguous: the only
ingredients are the equilibrium start and end states, characterized by the usual notion of
temperature, and the time it takes to go from one state to another. By contrast, previous
definitions of the Mpemba effect have been based on criteria such as the “time to start
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freezing” [12, 243], which is hard to reproduce because of sensitivity to details of sample
preparation [14], including impurities in the water, cleanliness of the sample container, and
number of times heated.
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Figure 4.1: Schematic diagram of the energy landscape and Boltzmann distribution for the
Mpemba effect. A. The solid black line represents the energy landscape U(x), set asymmet-
rically within the box [xmin, xmax] with infinite potential walls at the domain boundaries.
The asymmetry coefficient α ≡ |xmax/xmin|, where xmax is changed to vary α. The outer
slopes of the potential (indicated by solid gray markers) correspond to the maximum force
that can be exerted by the optical tweezers. The difference in energy between metastable
and stable states is ∆E. B. The Boltzmann distribution π(x;Tb) at the bath tempera-
ture. The interval pr is the probability for a particle to initially be in the right domain for
Th → ∞. At the bath temperature, the probability to be in the ground state (right well)
is pr0 . We find that the Mpemba effect is strongest for pr ≈ pr0 , a condition that allows
the probability contained in the initial “basin of attraction” to drain directly to the ground
state. Similarly, for the left well, pl ≈ pl0 , with pl = 1− pr and pl0 = 1− pr0 .

4.2 Energy landscape for the Mpemba effect

In our experiment, a single Brownian particle diffuses in water, subject to forces from
a carefully shaped potential (Fig. 4.1A). We construct a one-dimensional virtual tilted
double-well potential using a feedback-optical tweezer (Fig. 3.1). It is a continuous piecewise
potential with a double well joined by linear potentials at the extremes (Eq. 4.2). The overall
potential is set in an asymmetric domain. The tilted double-well potential is parametrized
as

U0(x) = Eb

[
1− 2

(
x

xm

)2
+
(
x

xm

)4
]
− 1

2∆E
(
x

xm

)
, (4.1)

where Eb = 2 is the barrier height, ∆E = 1.3 the tilt in the potential, and xm = 40 nm the
well position. In Eq. 4.1, energies are scaled by kBTb and lengths by

√
D∆t ≈ 1.8 nm, where

kB is the Boltzmann constant, Tb the bath temperature (set by the room temperature),
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D = 0.32 µm2/s the diffusion coefficient of the particle, and ∆t = 10 µs the sampling time.
The bath temperature is typically ≈ 23 ◦C. Its precise value for different runs is unimportant
since the potential and all related energies are scaled by kBTb and thus are independent of
the bath temperature value. In our experiment, the temperature quenches are large, never
less than a factor of two in absolute temperature. Minor changes in the trap position due
to temperature drifts during runs (≈ 0.1 nm/run) then do not directly have a significant
effect on the dynamics of p(x, t).

The overall potential energy landscape U(x) of the system is given as

U(x) ≡



U0(xl) + Fmaxx x ≤ xl

U0(x) xl ≤ x ≤ xr

U0(xr)− Fmaxx x ≥ xr,

(4.2)

where xl ≈ −66 nm and xr ≈ 68 nm are positions defined so that |U ′0(xl)| = |U ′0(xr)| = Fmax

(≈ 20 pN). The potential U(x) and its first derivatives (forces) are continuous everywhere,
but the second derivative has jump discontinuities at xl and xr. To implement the double-
well potential in Eq. 4.1 requires a force whose magnitude increases indefinitely at large
distances from the well minima. However, optical tweezers are limited to a maximum force
Fmax, given a fixed beam power. To accommodate this physical constraint, we match the
double-well potential of Eq. 4.1 beyond xl and xr to a linear potential whose slope corre-
sponds to the maximum force an optical tweezer can exert.

The tilted double well creates a bistable potential with two macrostates: the shallow left
well corresponds to a metastable macrostate, and the deep right well to a stable macrostate.
The linear parts of the potential provide direct kinetic paths towards the minima, and the
barrier allows spontaneous hopping between the wells. Because spatial dimensions are small
and the energy barrier low, the bead can rapidly equilibrate with the bath (. 0.1 s). We
can then easily carry out several thousand trials, forming a statistical ensemble from which
accurate measurements of both equilibrium and nonequilibrium states are possible. As we
will see below, to observe the Mpemba effect, we should place the potential asymmetrically
between the potential boundaries, xmin and xmax, which determine the region in space
explored by the particle at high temperatures. The parameter α ≡ |xmax/xmin| defines the
degree of asymmetry within the domain “box.” In our experiments, we change α by varying
xmax while fixing xmin.

4.2.1 Choice of potential energy landscape

We have engineered our potential in such a way that the equilibration times for both hot
and warm systems are . 0.1 s. Such short times allow us to reach the equilibrium state with
the bath, to connect directly to our definition of the Mpemba effect. They also allow for
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Figure 4.2: Schematic of potential energy landscape. The bath potential energy is shown
with different slopes. A steep slope represents high velocities with which the particles are
quenched towards the minima. The steepness of the linear potential determines both the
time and temperature scales.

easy acquisition of several thousand runs. From such an ensemble, we can accurately recon-
struct the time-dependent nonequilibrium state p(x, t) of the system as it cools. Moreover,
because we recalibrate after each quench, we avoid the effects of drifts. In particular, even
after allowing all transient effects due to the preparation of an experiment to die away, we
consistently observe drifts in position measurements on the order of 1 nm s−1. Given length
scales of ≈ 100 nm, these can become significant after several seconds. By limiting runs to
0.1 s, we ensure that effects due to drifts are negligible.

Having chosen the overall scale of the potential, we needed to define its actual shape.
The barrier height and tilt are adjusted in such a way that the system, when trapped in the
metastable state, takes longer to reach the equilibrium than the system that finds a direct
path towards the equilibrium.

As Eq. 4.2 implies, we also impose a linear potential for x < xl and x > xr (gray
markers, Fig. 4.1A). The principal motivation, in our case, is that the tweezers can impose
a maximum force Fmax, and we simply allow the imposed force field to saturate when that
limit is reached. Because the maximum forces are large, we can reach large energies; the
potential can easily range up to ≈ 100 kBTb. Such energy ranges are much larger than
ordinary materials. However, we use such large energy scales solely as a means to create
short time scales.

If time scales were allowed to be longer, then we could create similar dynamics with much
reduced energy scales. The velocity at which the particle is pulled towards a minimum is
determined by the force as vmax = Fmax/γ ≈ Etot/γ ` ≈ 60 µm/s, where Fmax ≈ 20 pN
(0.2 kBTb/nm) is the maximum force exerted by the optical tweezer, Etot ≈ 100 the energy
(scaled by kBTb) at the domain boundaries, γ the viscous drag coefficient, and ` the distance
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between the basins of attraction and the respective domain boundaries. Thus, the kinetic
timescale is approximated as τ ≈ `2/DEtot ≈ 0.3 ms, where D = kBTb/γ ≈ 0.32 µm2/s is
the diffusion constant of the particle at the bath temperature Tb. Thus, we choose a large
energy scale to have a fast relaxation towards the two macrostates. If we were to use a
lower maximum slope of potential, we would have the same overall structure and range of
Mpemba effects, but their time scale would be correspondingly longer. Figure 4.2 illustrates
qualitatively how similar effects can be seen in potentials where there is a reduced maximum
slope. Previous work [246] carried out in a potential similar to the yellow case indeed shows
the Mpemba effect, but with a longer equilibration time (≈ 100 s) and smaller temperature
range.

4.3 Imposing an instantaneous quench via initial conditions

In our experiment, the particle is always in contact with water at temperature Tb; however,
the initial state of the system is drawn from a Boltzmann distribution at a higher initial
temperature. All temperatures are measured relative to the bath temperature Tb, and all
energies are scaled by kBTb. However, physically preparing systems that are in thermal
equilibrium at high temperatures such as T0 = 1000 is not possible in our setup. Nor is
it possible to create an instantaneous quench by changing the temperature of the bath.
Instead, we sample initial positions from an equilibrium distribution and place the particle
at those positions in the beginning of each run by applying a stronger force via the optical
trap. To implement this, we calculate the cumulative distribution function (CDF) from the
equilibrium probability density function (PDF) [246, 247]. The CDF for a random variable
X is given as

FX(x) =
∫ x

xmin
dx p(x) , (4.3)

where the PDF p(x) is integrated over the range [xmin, x] to calculate the CDF, FX(x).
Since the CDF is in the range [0, 1], we use a uniform random number generator to generate
numbers between 0 and 1. A combination of binary-search algorithm and linear interpolation
based on the neighboring values is used to get the accurate position (Fig. 4.3). We create
lookup tables (LUTs) of the CDF functions at different temperatures and sample the initial
position in a similar way for each run. Because the initial potential includes hard walls,
the probability to draw an initial condition with x < xmin or x > xmax is zero. We thus
normalize the PDF and CDF on the range [xmin, xmax].

After an effectively instantaneous quench at t = 0, the particle position evolves accord-
ing to the imposed virtual potential U(x) under thermal environment fluctuations for 60
ms. This protocol is repeated N = 1000 times, with the resulting data used to create a
statistical ensemble from which we estimate the state of the system every 10 µs. Although
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Figure 4.3: Cumulative probability distribution at the bath temperature. An algorithm
based on binary search and linear interpolation is used to map the CDF (F ) to position x
(dashed lines). Asymmetry coefficient α = 9.

the initial conditions are calculated assuming infinite walls at the domain boundaries, we
cannot physically impose an infinite potential wall in the experiment. There is a maximum
possible force applied by an optical trap. Thus, the dynamics of a particle may violate
the motion and can briefly explore the regions outside the domain defined by the infinite
walls. By simulating the particle dynamics using the Langevin equation, we found that these
violations occur only 0.003% of the total time of the experiment (see section 4.10.1).

Figure 4.4A–C shows example time traces of evolution in the potential U(x). From
the time traces, we form frequency estimates of the probability density function p(x, t)
that records the system state as it evolves between the initial state p(x, 0) = π(x;T0) ∝
exp[−U(x)/kBT0] and the final state at equilibrium with the bath, characterized by π(x;Tb),
where T0 is the initial temperature of the system.

At intermediate times while the system is relaxing, the dynamical state p(x, t) does
not, in general, have the form of a Boltzmann distribution for the potential U(x) at any
temperature; nevertheless, we can define a scalar quantity [183, 248] that measures the
“distance” D between p(x, t) and the Boltzmann distribution in equilibrium with the bath,
π(x;Tb). For simplicity, we choose an L1 measure of distance, but any measure that is
monotonic with T0 will also work.

4.4 Measuring the distance to equilibrium

Consider a colloidal particle immersed in a fluid bath of temperature Tb and subject to a
one-dimensional potential U(x). For systems in thermal equilibrium, the position x of the
particle, when sampled from an ensemble of identically prepared systems, will obey the
Boltzmann distribution (Eq. 3.13),
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Figure 4.4: Dynamics of system relaxation to equilibrium.A–C. Ten trajectories of a particle
released from the equilibrium distributions at hot (red), warm (blue), and cold (black)
temperatures into the cold bath, with the evolving probability density p(x, t) shown for
three times.

π(x;Tb) = 1
Z

e−U(x)/kBTb . (4.4)

For a nonequilibrium system, it is not possible, in general, to define an equivalent notion
of temperature. In a macroscopic system such as the ones used for previous experiments
on the Mpemba effect, the system is typically in local equilibrium and may be described
by a temperature field, T (x, t). When subject to the temperature quench specified by the
protocol used in the Mpemba effect, temperature gradients are large, and it is impossible
to characterize the system accurately by a single time-dependent temperature, such as the
spatial average of T (x, t). In addition, a fluid object can have internal fluid motions that
arise because of the quench (such as convection currents created when the top cools off more
quickly than the bottom), meaning that other fields may be relevant, too.
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In the mesoscopic single-colloidal-particle system studied here, we can measure the one-
dimensional instantaneous probability distribution p(x, t), the probability density for the
measured position to lie between x and x + dx, by conducting a series of experiments on
identically prepared trials. The set of trials forms an ensemble. In general, p(x, t) does not
correspond to a Boltzmann distribution of the form of Eq. 4.4, for any choice of “effective”
temperature. As a result, we cannot assign an intermediate temperature to the system
as it relaxes to equilibrium. Instead, we follow Lu and Raz [186], who argue that even
though it is in general impossible to define an intermediate temperature, one can nonetheless
define a “distance measure” between probability distributions. They further argue that the
observation of the Mpemba effect is independent of the choice of the functional that measures
the distance from thermal equilibrium, if the measure satisfies three properties:

1. D[p(x, t), π(x, Tb)] should be a monotonically non-increasing function of time during
relaxation towards equilibrium;

2. D[π(x, T0), π(x, Tb)] should be a monotonically increasing function of T0 for all T0 > Tb,
so that initially hotter states are farther from the bath distribution;

3. D[p(x, t), π(x, Tb)] should be a continuous and convex function of probability p when
evaluated at any particular value of x and t.

Although we often write D using a simplified notation that omits terms from its arguments,
it is important to remember that it is a functional that depends on both a dynamic prob-
ability distribution p(x, t) and a reference equilibrium distribution π(x, Tb). Note that the
measure is not required to be a proper distance, allowing for the asymmetric Kullback-
Leibler (KL) divergence as one possibility.

Although our results are based on L1 distance measures, we will check that similar
results are found using the KL divergence. We begin by defining and discussing the L1

distance and KL divergence here.

4.4.1 L1 distance

To evaluate this distance from trajectory data, we partition the position measurements into
Nb bins:

DL1 [p(x, t);π(x;Tb)] =
Nb∑
i=1
|pi − πi| , (4.5)

where pi ≡ P (xi, t) is the frequency estimate of the probability for a measured position x
at a time t after the quench to fall within the interval [xi, xi+1), where xi ≡ i∆x, with
∆x = (|xmax| + |xmin|)/Nb. Similarly, πi ≡ π(xi; Tb) is the histogram estimate of the
Boltzmann distribution at temperature Tb. The smallest L1 distance measured between the
two distributions is limited by the statistical noise due to the finite sample size. To make
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a naive calculation for two uniform distributions (not necessarily in equilibrium), we can
write

pi = Nc
N

, (4.6)

where Nc = N/Nb is the average number of counts in each bin and N the number of counts
across all bins. The variance σ2 of pi for a typical bin is approximately

σ2
pi = Nc

N2 = 1
NbN

. (4.7)

The variance of |pi−πi| is expected to be comparable to the variance of (pi−πi), which
is σ2

pi + σ2
πi = 2Nc/N

2. Then, summing over Nb bins (neglecting correlations) and taking a
square root to estimate the standard deviation leads us to expect fluctuations of

σDL1
= O

√Nb
N

 . (4.8)

Numerically, we confirm this scaling of fluctuations. Note that even though we impose
a particular potential and therefore have an expected Boltzmann distribution, we use the
empirical estimate for πi. A more sophisticated approach—not needed here—would be to
calculate the mean absolute difference of two Poisson variables, which can be expressed in
terms of a Skellam distribution [249]. The main point is that the noise level scales with the
number of trials N that constitute the ensemble as N−1/2.

As shown in Fig. 4.5, we use the L1 distance curve to determine the time at which the
system reaches equilibrium (D ≈ 0, within noise levels—black curve). The crossing between
the distance curves of the hot and warm system indicates that the Mpemba effect exists.
Note that the effect is independent of the noise level of the control experiment because once
the hot distance curve crosses the warm distance curve, the former stays below the latter
until they both reach equilibrium.

4.4.2 Kullback-Leibler (KL) divergence.

Another possible measure of distance is the KL divergence [250]. Using similar definitions
of the distributions, we write

DKL [p(x, t); π(x;Tb)] ≡
Nb∑
i=1

pi ln
(
pi
πi

)
=

Nb∑
i=1

[pi ln pi − pi ln πi] . (4.9)
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Figure 4.5: L1 distance shows the Mpemba effect. The L1 distances calculated for systems
at three different temperatures (Th = 1000, Tw = 12, and Tc = 1) from their respective
time traces. The initially hot system starts a greater distance from equilibrium than the
initially warm system but equilibrates first (th < tw), illustrating the Mpemba effect. The
cold distance plot is a control experiment where the particle is released from the equilibrium
distribution at the bath’s temperature. At each time, the distribution fluctuates from the
average by an always-positive distance. There are N = 1000 runs per initial temperature;
asymmetry coefficient α = 3.

The KL divergence measures the relative entropy between two probability distributions. It
has a physical motivation in that it can be related to the nonequilibrium free energy of a
system as Fnoneq = Feq +DKL [p(x, t); π(x;Tb)] and can thereby be connected to the entropy
produced during the relaxation process [186, 251]. Both equilibrium and nonequilibrium free
energies here are scaled by kBTb.

Figure 4.6 shows the KL divergence curves based on the data presented in Fig. 4.5. The
figure illustrates that the observation of the Mpemba effect does not depend on the choice
of distance function, provided the choices satisfy the temperature-like properties mentioned
in Sec. 4.4. The numerical details and shape of the individual curves may change, but the
crossing of curves is a robust observation, as proved earlier by Lu and Raz [186].

Although the KL divergence can measure the distance from thermal equilibrium, it has
two inconvenient features that led us to prefer the L1 distance. The first is that some bins
will have zero counts. If these zero-value bins were counted in Eq. (4.9), the measured KL
divergence would be infinite. To avoid such issues, we regularize the equilibrium distribution
by adding a single pseudocount to each bin [252]. We then normalize the histogram to
estimate the probability density. Although the use of pseudocounts biases the distance
estimation slightly, there is no effect on the presence or absence of distance-curve crossing
(Fig. 4.6), as demonstrated by the fact that the results with the KL divergence agree

71



 ! "

 !"

"

# 
$
%

 ! "  !" " " "  

&'()#*(+,

-./

012(

3.45

#!6# 7##!

Figure 4.6: The KL divergence calculated based on the data used to calculate DL1 in Fig. 4.5.

qualitatively with those using the other distance measure. The second inconvenience of the
KL divergence is that to extract the a2 coefficient (see Sec. 4.6) requires a Taylor expansion,
which is not needed when using the L1 norm.

Thus, we choose L1 distance for our analysis. From now onward, we will use the no-
tation D (with no subscript) to represent the L1 distance. Figure 4.5 shows a qualitative
representation of the Mpemba effect based on the crossing of the distance curves. However,
the equilibration times of systems starting at different initial temperatures is a direct mea-
sure of the cooling time. We found that the relaxation dynamics of the cooling system are
dependent on both the initial temperature and the asymmetry in the domain of the bath
potential. In the next section, we will do a systematic study of the effect of the domain sizes
on the Mpemba effect.

4.5 Observation of the Mpemba effect in asymmetric do-
mains

To determine how the Mpemba effect depends on the shape of the potential, we first place the
double-well potential in a symmetric box (α = 1). Figure 4.7A shows the measured times to
reach equilibrium for systems that start at different initial temperatures. The equilibration
time increases sharply and saturates at high temperatures, where the initial probability
distribution is nearly uniform. Since the equilibration time monotonically increases with
initial temperature, there is no Mpemba effect.

The situation changes qualitatively when xmax is increased and the box becomes asym-
metric. For α = 3 (Fig. 4.7B), the equilibration time increases initially but then de-
creases rapidly for higher initial temperatures (T0 > 10), indicating the Mpemba effect. For
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Figure 4.7: Equilibration time as a function of initial system temperature. A–C. Solid
markers are the equilibration times for asymmetry coefficients α = 1, 3, 9. Regions of each
plot with a negative slope indicate the Mpemba effect. The error bars represent standard
deviations calculated using Eq. 4.40 in section 4.10.2.

α = 9 (Fig. 4.7C), the equilibration time decreases at intermediate temperatures, where
the Mpemba effect is observed, but increases again at very high temperatures.

To understand the different equilibration-time curves in Fig. 4.7, we should examine
more closely the distance curves D(t), which summarize the relaxation of the system to
thermal equilibrium. Figure 4.8A shows data for α = 9, corresponding to the curve in
Fig. 4.7C. On the semilog plots, straight lines represent exponential decay. For T0 = 100,
the Mpemba effect is particularly clear, and the system appears to relax to equilibrium as a
single exponential. For other initial temperatures, the relaxation seems to involve multiple
exponential relaxation processes.

4.6 Analysis based on eigenfunction expansion

To interpret the dynamical behavior of D(t), we apply a recent approach that connects
the Mpemba effect to an eigenvalue expansion [186]. In our experiment, the particle is
continuously under the influence of drag forces and random forces. The time evolution of
the particle is generally described by the Langevin equation (Eq. 3.9). Equivalently, these
dynamics can also be described in terms of the time evolution of the probability density
p(x, t) of particle positions by the Fokker-Planck (FP) equation as (Eq. 2.25)

∂p(x, t)
∂t

=
[
−1
γ

∂

∂x
F (x) + kBTb

γ

∂2

∂x2

]
p(x, t) ≡ LFP p(x, t) . (4.10)

The underlying probability density p(x, t) can be expressed as an infinite sum of eigenfunc-
tions of the Fokker-Planck equation (FPE) as

p(x, t) = π(x;Tb) +
∞∑
k=2

ak(α, T0) e−λkt vk(x;α, Tb) , (4.11)
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Figure 4.8: Controlling relaxation times. A. L1 distance for systems with initial tempera-
tures Tb = 1 (black), Tw = 12 (blue), and T0 = {2, 40, 100, 400, 1000} (red), with α = 9.
At low and high Th, no Mpemba effect is observed. At intermediate Th, the distance curves
cross, indicating a more rapid cooling of the hot system. B. L1 distance for domain asym-
metries α = {1, 1.3, 3, 6, 9}, for Tb = 1 (red), Tw = 12 (blue), and Th = 1000 (red). The
Mpemba effect is observed for intermediate asymmetry. The control experiment is repeated
for each measurement.

where π(x;Tb) is the equilibrium probability density function, achieved for t→∞. The kth

eigenfunction vk(x;α, Tb) is a spatial function that depends on the form of the potential
U(x), including the asymmetry coefficient α, and the bath temperature Tb. The contribution
of eigenfunction vk decays exponentially, at a rate exp(−λkt), where the eigenvalues λk ≥
0 are ordered so that 0 = λ1 < λ2 < · · · . Since λ2 < λ3, the higher-order terms are
exponentially small; thus, the eigenvalue λ2 corresponds to the slowest relaxation rate.
Note that relaxation ∼ e−λ3t is exponentially faster than relaxation ∼ e−λ2t, so that the
condition a2 = 0 corresponds to an exponential speed-up of relaxation rate. At long times,
Eq. 4.11 implies that the density function is dominated by the first two terms of the infinite
series:

p(x, t) ≈ π(x;Tb) + a2(α, T0) e−λ2t v2(x;α, Tb) , (4.12)

where the coefficient a2(α, T0) is a real number that depends on the initial temperature and
the potential energy.
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4.6.1 Calculation of the a2 coefficient

To calculate a2(α, T0), we evaluate the inner product between the left eigenfunction u2(x;α, Tb)
and the initial probability distribution p(x, 0) = π(x;T0). Then,

〈u2|π(x;T0)〉 = 〈u2|π(x;Tb)〉+
∞∑
k=2

ak(α, T0)〈u2|vk〉 , (4.13)

where the inner product between two functions f(x) and g(x) in the interval [xmin, xmax]
is defined as 〈f |g〉 ≡

∫ xmax
xmin

dx f(x)g(x). The left and right eigenfunctions are biorthogonal,
〈u2|vk〉 = 0 for k 6= 2 (Sec. 2.2.2). We can evaluate the scalar products in Eq. (4.13) to find
〈u2|π(x;T0)〉 = a2(α, T0)〈u2|v2〉, or

a2(α, T0) = 〈u2|π(x;T0)〉
〈u2|v2〉

, (4.14)

where the normalization factor 〈u2|v2〉 = 0.55, given our normalization convention, which
is to take 〈ui|ui〉 = 〈vi|vi〉 = 1, for i = 1, 2, · · · . In Eq. (4.14), we recall that u2(x) and v2(x)
depend on the bath temperature Tb and the asymmetry coefficient, α. Thus, a2 captures
the “overlap” between the initial system state and the second left eigenfunction.

We have shown that the FP operator is non-Hermitian, and thus the left and right
eigenfunctions are different (Sec. 2.2.1). We numerically solve the FP equation for our
system using standard Mathematica operations to find the eigenfunctions. Figure 4.9 shows
the negative left and positive right eigenfunctions corresponding to the smallest non-zero
eigenvalue of LFP. To clearly show both the eigenfunctions, we have plotted the negative
left eigenfunction here. Note that the overall sign of the eigenfunctions is arbitrary. Once
we fix the sign of one eigenfunction, the sign of the others follows accordingly.

Equation (4.12) has several consequences:

• The equilibration time of an initial state depends on its a2 coefficient.

• The difference in equilibration times tw − th is independent of the noise level of D(t).

• The magnitude of the a2 coefficient may be extracted from the time course of D(t).

• For a2 = 0, the system reaches equilibrium at an exponentially faster rate than systems
with non-zero values of a2 (decay dominated by λ3 > λ2).

• The Mpemba effect correlates with the condition [186] that |a2(α, Th)| < |a2(α, Tw)|.

The last point implies that the Mpemba effect occurs over a range of initial temperatures
for which |a2(α, T0)| decreases as T0 increases.
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Figure 4.9: Eigenfunction for the FP operator for a double-well potential. u2(x) and v2(x)
are the left and right eigenfunctions, respectively, and correspond to the smallest non-zero
eigenvalue of the FP operator. The negative of the left eigenfunction is plotted to aid
visualisation. The eigenfunctions are calculated for α = 3.

4.6.2 Relationship between ∆D and the a2 coefficient

In the experiment, we do not measure the second left and right eigenfunctions directly but
rather a quantity ∆D proportional to |a2(α, T0)|. To connect these quantities in the long-
time limit, we rearrange Eq. 4.12 as p(x, t)−π(x;Tb) ≈ a2(α, T0) e−λ2t v2(x) for k = 2 and
take the absolute difference between the dynamic and reference probabilities. Note that,
in the long-time limit, we have neglected the terms for k > 2, as they are exponentially
smaller. However, in the experiment, we calculate the frequency estimate of the probability
and thus summing over all the bins for the absolute difference between the two probabilities
gives

Nb∑
i=1
|pi − πi| =

Nb∑
i=1
|a2(α, T0) e−λ2t vi|+ σD , (4.15)

where vi ≡ v2(i∆x) for x ∈ [i∆x, (i+ 1)∆x) and σD is the noise in the D measurement due
to finite sampling (Eq. 4.8). The left-hand term in Eq. 4.15 is the L1 distance between the
discretized distributions p(x, t) and π(x;Tb). Thus, neglecting the terms for k > 2, we have

D[p(x, t); π(x;Tb)] ≡ D(t) = |a2(α, T0)| e−λ2t
Nb∑
i=1
|vi|+ σD ,

= |a2(α, T0)| e−λ2t V + σD , (4.16)
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where V ≡ ∑Nb
i=1 |vi|. The D(t) plot typically has two regimes. The first corresponds to a

fast initial relaxation, and the second to the slow barrier hopping. Note that the fast initial
relaxation is absent in experiments starting at the cold temperature.

Following these points, we analyze the D(t) curves by extracting from them a quantity
∆D that is sketched in Fig. 4.10A. For a2 6= 0, it may be estimated by globally fitting
a single exponential to the long-time asymptotic regimes of all the Th decays in Fig. 4.8,
extrapolating back in time to find the intercept at t = 0, and subtracting the noise level σD
resulting from finite sampling (Eq. 4.8). Thus, ∆D is related to |a2(α, T0)| by

∆D = |a2(α, T0)|V . (4.17)

For the fit based on Eq. 4.16, each D(t) decay curve has three parameters, a2, λ2, and
V . The first, a2, depends on T0 and α. The other two parameters, λ2 and V , are common
to all the data sets, as they depend only on the properties of the bath. Thus, the fit is
local with respect to product |a2|V but global with respect to λ2. We note that it is also
necessary to choose, by hand, the starting point for each decay curve. We verified that the
values of the fit parameters are robust to the choice of starting point, typically varying by
amounts consistent with the statistical estimates of the parameter error estimates.

After we have extracted the ∆D values from the experiment, we fit to the data a predic-
tion based on Eq. 4.17, using a2 coefficients that are numerically calculated from Eq. 4.14.
The remaining fit parameter V agrees with the numerically calculated value based on the
eigenfunctions. For cases where |a2(α, T0)| ≈ 0, the decay is dominated by λ3, and thus the
slow part of the distance curve is absent. In this case, we fit the region of the distance curve
after the fast initial kinetic part reaches the noise level.

Carrying out the analysis sketched above, we extract a2(α, T0) and confirm that the
Mpemba effect is indeed associated with an a2 that decreases with the initial temperature
(Fig. 4.10B). We fit the measured values of ∆D(α, T0) with the numerical result from the
FPE to estimate the scaling factor multiplying the |a2(α, T0)| coefficients. The scaling factor
from the fit, 0.96± 0.03, agrees with the numerical value ≈ 0.967 calculated using the FPE
and its numerically determined eigenfunctions. The variation of ∆D (and thus, a2) with
temperature for this fixed α shows non-monotonic behavior that also reflects the presence
of the Mpemba effect. However, the eigenfunction analysis does not itself explain why the
a2 coefficient has a non-monotonic dependence on T0.

4.7 Strong Mpemba effect

To gain more physical insight, we conducted further experiments probing the Mpemba
effect at fixed temperatures but variable asymmetry. In particular, we fixed the hot initial
temperature Th = 1000, which is so high that the initial probability density p(x, 0) =
π(x;Th) is approximately a uniform distribution over the domain (xmin, xmax). Figure 4.8B
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Figure 4.10: Measurements of ∆D at fixed α. A. ∆D is measured by extrapolating the long-
time limit of the logarithm of the D curve back to the quench time (t = 0). B. Markers are
∆D measurements based on distance plots for different initial temperatures for α = 9. Solid
line in B is based on the calculated |a2(α, T0)| coefficient multiplied by an experimentally
determined scaling factor (Eq. 4.17). The error bars represent one standard deviation and
are calculated from the fits.

shows distance plots for different α, for hot and warm initial temperatures Th = 1000,
Tw = 12. As the asymmetry varies from α = 1 to α = 9, we see the same sequence of
normal, anomalous (Mpemba), and normal relaxations to thermal equilibrium that we saw
in Fig. 4.8A, where α was fixed and T0 was varied.

Figure 4.11 shows the ∆D (∝ |a2|) values as a function of aspect ratio α for the warm
and hot cases. We first notice that the value of the a2 coefficient for the warm system
is roughly constant, as increasing the asymmetry does not significantly change its initial
state. The behavior of the a2 coefficient for the hot system is more complicated. For small
asymmetry, |a2(α, Tw)| < |a2(α, Th)|, and the warm system cools down faster; i.e., tw < th

(Eq. 4.42). This corresponds to normal cooling. For larger asymmetries, the situation is
reversed, and we observe the Mpemba effect. For an asymmetry α ≈ 3, the |a2(α, Th)|
coefficient vanishes. Such a situation corresponds to the recently identified strong Mpemba
effect [253] and implies an exponential speed-up of the cooling process.

In the limit of large Th, it is easy to understand this normal-anomalous-normal sequence
of relaxation behavior. Because the initial probability density at Th is approximately uni-
form, we can approximate the relative probability pr to be in the right-hand domain (0, xmax)
as

pr = |xmax|
|xmin|+ |xmax|

= α

1 + α
. (4.18)

We can refer to this subset of initial conditions as the ground-state basin because it
constitutes the states that, in the absence of thermal fluctuations, would flow into the
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Figure 4.11: Measurements of ∆D at fixed initial temperatures. Red and blue markers denote
∆D measurements based on distance plots of the hot (Th = 1000) and warm (Tw = 12)
systems for different asymmetry coefficients. Solid line is based on the calculated |a2(α, T0)|
coefficient multiplied by an experimentally determined scaling factor V (Eq. 4.17). Dashed
line shows fit based on Eqs. (4.18), (4.19). The error bars represent one standard deviation
and are calculated from the fits.

well corresponding to the stable state. Similarly, the metastable state attracts the initial
conditions (xmin, 0), which may be termed the metastable-state basin. On the one hand,
when the particle is released from its initial position to evolve under the influence of the
potential, it rapidly moves to one of the two wells. Thus, after a fast transient, we expect
the probability to be in the ground-state well to be ≈ pr. On the other hand, the measured
probability for a system in thermal equilibrium (Fig. 4.1B) to occupy the ground state
is pr0 ≈ 0.7. If the asymmetry α is chosen so that pr = pr0 , then the system will be in
equilibrium after this initial transient. But for any other α, there will be a mismatch and
pr 6= pr0 . The system will then relax to equilibrium by thermal hops over the barrier. This
process is slowed by the Kramers factor exp(Eb/kBTb) ≈ 7 in our system, implying a longer
time to reach equilibrium than processes that relax within a single local well.

The above argument leads to a simple prediction for the asymmetry dependence of
the a2 coefficient for the hot system in Fig. 4.11 and hence for ∆D. If the dynamic and
the reference probabilities are close, we can approximate their difference using a Taylor
expansion,

∆D(α, T ) ∝ |pr − p0| . (4.19)

We then fit to the data shown in Fig. 4.11 (dashed line). The fit agrees well with the
experimental observations and with a numerical calculation based on the FPE eigenfunctions
(solid line).
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4.8 Geometric interpretation of the Mpemba effect

The analysis based on the eigenfunction expansion of the probability density does not lead
to good physical insight into the conditions needed to produce or observe the Mpemba
effect. Here, we offer a more physical interpretation of the Mpemba effect explored so far.

4.8.1 Thermalization in a double-well potential with metastability

A common feature of experiments showing Mpemba effects is that they involve a temper-
ature quench: the system is cooled very rapidly. We model this situation by making the
high-temperature initial state an initial condition for dynamics that take place entirely in
contact with a bath of fixed temperature. In effect, the quench is infinitely fast. We recall
that the thermalization dynamics are given by the Langevin equation (Sec. 2.1)

ẋ = −U
′(x)
γ

+
√

2kBTb
γ

η, (4.20)

with γ a friction coefficient and η(t) Gaussian white noise modeling thermal fluctuations
from the bath, with 〈η(t)〉 = 0 and 〈η(t) η(t′)〉 = δ(t − t′). The noise-strength 2kBTb/γ

enforces the fluctuation-dissipation relation [180, 254]. The potential U(x) is a double-well
potential with barrier height E0 � kBTb and two coarse-grained states, denoted L and R
in Figure 4.12A. The range of particle motions is also constrained to a finite range; the
potential is implicitly infinite at the extremities. By tilting the potential, one state has a
higher energy than the other (difference is ∆E) and the potential becomes a toy model for
the water-ice phase transition. However, the energy barrier E0, while high enough that the
two states are well defined, is also low enough that many transitions over the barrier are
observed during a typical experiment.

Figure 4.12 illustrates our experimental scenario, with (A) showing the potential and
(B) the dynamics of a quench from a high temperature. With a moderately high barrier,
both wells have significant probability for the equilibrium state π(x, Tb) (Figure 4.12B,
right). For U(x), the barrier E0 = 2.0, the energy difference between states is ∆E = 1.3, and
the hot temperature Th = 1000; energies are scaled by kBTb and are, hence, dimensionless.

At a temperature corresponding to T0, the equilibrium free energy of the system is

F eq
T0

= −kBT0 lnZ ≡ −kBT0 ln
[∫ +∞

−∞
dx exp

(
−U(x)
kBT0

)]
. (4.21)

and the corresponding equilibrium Boltzmann density is

π(x, T0) = 1
Z

exp
[
−U(x)
kBT0

]
= exp

[
−
U(x)− F eq

T0

kBT0

]
, (4.22)

The metastability of U means that the system evolves on two very different time scales:
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Figure 4.12: Two-stage dynamics. A. Tilted double-well potential U(x) with coarse-grained
states {L,R}. The potential includes infinitely steep walls at the domain boundaries (not
shown). B. Evolution of the probability density function for position: a high-temperature
equilibrium initial state π(x;T0) (left) has a fast relaxation to a local equilibrium state
pleq(x;T0, Tb) (middle) and a slow relaxation to global equilibrium π(x;Tb) at the colder
bath temperature (right).

Stage 1 is a fast relaxation to local equilibrium. The initial, high-temperature Boltzmann
density rapidly evolves to a state that is at local equilibrium with respect to the bath
temperature. A local equilibrium is a density that is similar locally to π(x;Tb) but with
altered fractions of systems in the left or right wells. Using marginalization and the definition
of conditional probability, we can write such a local-equilibrium state as

pleq(x;T0, Tb) = P ( be in the left well at T0)P (x| be in the left well at Tb)

+ P ( be in the right well at T0)P (x| be in the right well at Tb) . (4.23)

More precisely, the local equilibrium density is

pleq(x;T0, Tb) =


aL

(
π(x;Tb)∫ 0

−∞dx′π(x′;Tb)

)
x < 0 (left well) ,

aR

(
π(x;Tb)∫∞

0 dx′π(x′;Tb)

)
x > 0 (right well) ,

(4.24)

with 0 ≤ aL ≤ 1. Choosing aL + aR = 1 ensures normalization of the probability density.
In a fast quench, we assume that the fraction of initial systems at equilibrium at the

higher temperature T0 is unchanged when local equilibrium is established. Essentially, we
ignore the diffusion of trajectories that start on one side of the barrier and end up on the
other at the end of the transient. In this approximation, the fraction that ends up in each
well corresponds to that of the initial state, π(x;T0). Thus,

aL =
∫ 0

−∞
dx′ π(x′;T0) and aR =

∫ ∞
0

dx′ π(x′;T0) . (4.25)
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As shown in Figure 4.12B, center, the local-equilibrium distribution pleq(x;T0, Tb) is dis-
continuous at x = 0; higher barriers will reduce the discontinuity, of order e−E0/(kBTb) � 1
(see section 4.10.4).

Stage 2 is a final relaxation to global equilibrium on a slow time scale: the overall
populations in each well (coarse-grained state) change, and the density converges to the
Boltzmann density π(x;Tb). Local equilibrium is maintained during the evolution, which
is illustrated schematically in Fig 4.12B. In this metastable regime, the equilibration time
was analyzed long ago by Kramers [180, 232, 255, 256]. It also corresponds to the long-time
limit of Eq. 4.12; as a result, the final relaxation is exponential, with decay rate λ2.

4.8.2 Metastable Mpemba effect

Given this scenario of thermal relaxation as a two-stage process, we can readily understand
how the Mpemba effect can occur. The idea is to follow the dynamics in the function
space of all admissible probability density functions p(x, t). If we expand the solution in
eigenfunctions analogously to Eq. 2.55, we see that the infinite-dimensional function space
is spanned by the eigenfunctions. To visualize the motion, we project it onto the 2D subspace
spanned by the eigenfunctions v2(x) and v3(x). The system state is then characterized as
a parametric plot of the amplitudes a2(t) and a3(t). A similar geometric plot was used to
explore quenching in an anti-ferromagnetic Ising spin system in [253].

Figure 4.13 shows the geometry of trajectories. They are organized about two static,
1D curves, labeled G and Gleq. The red curve (G) represents the set of all equilibrium
Gibbs-Boltzmann densities, p(x;T0), for 0 ≤ T0 < ∞. It is sometimes known as the quasi-
static locus. The green curve (Gleq) represents the set of all local-equilibrium densities of
the form of Eq. 4.24, as parametrized by aL ∈ [0, 1]. Both curves are represented as 2D
parametric plots but lie in the full infinite-dimensional space. Both G and Gleq have finite
length, in general. (The entire length is not shown in the figure.) The two curves intersect
at a2 = a3 = 0, which describes the global equilibrium π(x;Tb) with respect to the bath
(large hollow marker with dot). The apparent crossing near a2 ≈ 0.4 is spurious, as the 3D
projections in Fig. 4.13B show.

The dynamical trajectories are represented by the variously shaded gray curves. At
time t = 0, the systems are in equilibrium along the red curve at a variety of temperatures
{1, 1.2, 1.5, 3, 50, 100, 1000} × Tb, which are indicated by black markers. The curves then
move rapidly towards the green curve (local equilibrium). The time course is suggested by
the dark-to-light gradient. Once they reach the vicinity of Gleq, they closely follow this green
curve back to the global-equilibrium state.

Within this representation, we note the “arrival point” of each trajectory when it “hits”
Gleq. For small temperatures (1, 1.2, 1.5, 3), the distance between this arrival point and the
global-equilibrium state increases monotonically with T0. For larger temperatures (50, 100,
1000), however, the distance decreases until, at T0 = 1000Tb, it nearly vanishes (denoting
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Figure 4.13: Dynamics of a2, a3, and a4 coefficients. A. Probability-density dynamics in the
plane defined by the a2 and a3 coefficients. The red curve G denotes the set of equilibrium
densities, the green curve Gleq the set of local-equilibrium densities. Arrows indicate the
slow relaxation along Gleq to global equilibrium, at the intersection with G (denoted by
the large hollow marker with a dot at its center at T0 = 1). Gray lines denote the rapid
relaxation from an initial condition (temperature relative to the bath indicated by a marker
along G). The time progression of p(x, t), projected onto the a2–a3 plane, is from dark to
light. B. 3D projections of the a2, a3, and a4 coefficients shown in A. Curves are calculated
from the double-well potential described in Eq. 4.2, with domain asymmetry α = 3.

the strong Mpemba effect). Along Gleq, the system is in the limit described by Eq. 4.12
and relaxes exponentially to global equilibrium. Relaxation along Gleq therefore must be
monotonic with the distance away from global equilibrium. Trajectories that arrive along
this curve that are farther from global equilibrium will take longer to relax. The Kullback-
Leibler divergenceDKL between the local equilibrium density pleq(x;T0, Tb) given in Eq. 4.24
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and the global equilibrium density π(x;Tb) can be written as

DKL
(
pleq(x;T0, Tb), π(x;Tb)

)
=
∫ ∞
−∞

dx pleq(x;T0, Tb) ln
[
pleq(x;T0, Tb)
π(x;Tb)

]

=
∫ 0

−∞
dx aL

(
π(x;Tb)∫ 0

−∞ dx′ π(x′;Tb)

)
ln aLπ(x;Tb)

[
∫ 0
−∞ dx′ π(x′;Tb)]π(x;Tb)

+
∫ ∞

0
dx aR

(
π(x;Tb)∫∞

0 dx′ π(x′;Tb)

)
ln aRπ(x;Tb)

[
∫∞

0 dx′ π(x′;Tb)]π(x;Tb)

= aL ln
(
aL
a∗L

)
+ aR ln

(
aR
a∗R

)

= DKL

[(
aL

aR

)
,

(
a∗L
a∗R

)]
. (4.26)

In the fourth line, a∗L ≡
∫ 0
−∞ dxπ(x;Tb) and a∗R ≡

∫∞
0 dxπ(x;Tb). In the fifth line, the

vectors represent two-state probability distributions. Note that in the “short Stage 1” ap-
proximation of Equation (4.25), the final expression for DKL involves two coarse-grained
probability distributions, with ( aL

aR ) depending only on T0 and
(
a∗L
a∗R

)
only on Tb.

We then investigate the monotonicity of DKL

[(
aL

aR

)
,

(
a∗L
a∗R

)]
by differentiating:

dDKL
daL

= ln
(
aL
aR

)
− ln

(
a∗L
a∗R

)
, (4.27)

which is positive for aL > a∗L and negative for aL < a∗L. (Recall that aL + aR = a∗L + a∗R =
1.) Thus, DKL

(
pleq, π

)
is monotonic in aL on either side of equilibrium. In particular,

DKL[pleq(x;T0, Tb), π(x;Tb)] is a monotonic function of aL (defined in Eq. 4.25), which is
the natural parameter for the manifold Gleq.

Now we can understand how the (metastable) Mpemba effect can arise. In the example
shown in Fig. 4.13, the distance along Gleq initially increases with T0 and so does the total
equilibration time. But then this distance decreases for higher temperatures, leading to the
Mpemba effect. We note that in our approximation, the time to traverse the initial stage is
much shorter than the time to relax along the green curve, so that variations in the length
of the initial trajectory are irrelevant.

If the bath temperature were changed at a finite rate (rather than a hot system being
quenched directly into the bath), then the dynamics would be different. For example, if the
system is very slowly cooled from the initial temperature to final bath temperature, the
trajectory would follow the quasi-static locus (red curve G) and no Mpemba effect would be
possible. Having shown that no Mpemba effect is possible with an infinitely slow quench and
that the effect can be observed in the limit of an infinitely rapid quench, we can conclude
that the Mpemba effect requires a sufficiently fast temperature quench.
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4.8.3 Metastable Mpemba effect in terms of extractable work

Our final goal is to express the criterion for the Mpemba effect in more physical terms.
For the metastable setting described above, we will find such a criterion in terms of a
thermodynamic work. We recall that the second law of thermodynamics for a system in
contact with a single thermal bath of temperature Tb can be expressed in terms of work
and free energy rather than entropy:

W ≥ 4Fneq,Tb , (4.28)

where W is the work received by the system and 4Fneq denotes the difference in nonequi-
librium free energies (final − initial values). See, for example, [197], Eq. 5 and associated
references.

We recall also that the nonequilibrium free energy generalizes the familiar notion of free
energy to systems out of equilibrium. Thus, in analogy to Eq. 4.21, we define

Fneq,Tb (p) ≡ E(p)− kBTbS (p) , (4.29)

where the average energy E(p) and Gibbs-Shannon entropy S(p) are given by

E(p) ≡
∫ +∞

−∞
dx p(x)U(x) and S(p) ≡ −

∫ +∞

−∞
dx p(x) ln p(x) . (4.30)

These expressions reduce to their usual definitions for p = π(x;Tb) but can be evaluated,
as well, over nonequilibrium densities.

In the formulation of the second law of Eq. 4.28, the initial and final states are arbitrary.
In our case, the initial state is the (approximate) local equilibrium reached at the end of
Stage 1. In the final state, the system is in equilibrium with the bath.

Physically −4Fneq represents the maximum amount of work that may be extracted
from the nonequilibrium isothermal protocol [257]. We will refer to this quantity as the
extractable work.

Wex ≡ −4Fneq,Tb . (4.31)
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To derive the relationship between the difference in nonequilibrium free energies 4Fneq

and the Kullback-Leibler divergence [258], we begin with Eq. 4.26 as

DKL
(
pleq, g

)
=
∫ ∞
−∞

dx pleq(x) ln
[
pleq(x)
π(x)

]

=
∫ ∞
−∞

dx pleq(x) ln pleq(x)−
∫ ∞
−∞

dx pleq(x) ln π(x)

= −S
(
pleq

)
−
∫ ∞
−∞

dx pleq(x) [−βbU(x) + βbF (π)]

= −S
(
pleq

)
+ βb

[
E
(
pleq

)]
− βbF (π)

= βb
[
F
(
pleq

)
− F (π)

]
. (4.32)

To simplify notation, we have written pleq for pleq(x;T, Tb) and π for π(x;Tb). We can write
Eq. 4.32 explicitly as

4Fneq = −
[
F
(
pleq
T,Tb

)
− F (π(Tb)

]
= −kBTbDKL

(
pleq
T,Tb

, π(x;Tb)
)
. (4.33)

In our set-up, the extractable work between the “intermediate” time (end of Stage 1)
where Fneq,Tb = Fneq,Tb

(
pleq(x;T0, Tb)

)
, and the final time of the slow evolution (where

Fneq,Tb = Feq,Tb), is given by Eq. 4.33:

Wex (T0, Tb) = kBTbDKL
(
pleq(x;T0, Tb), π(x, Tb)

)
. (4.34)

In Sec. 4.8.2 and Fig. 4.13, we saw that DKL(pleq(T0, Tb), πTb) can be non-monotonic as
a function of T0. We thus conclude that there can be a non-monotonic dependence on T0 of
the function

T0 7−→Wex (T0, Tb) . (4.35)

This is the main result of this section: If the metastable Mpemba effect occurs, then the
extractable work from the local-equilibrium state at the end of Stage 1 is non-monotonic in
the initial temperature T0. Figure 4.14 shows an example, again calculated for the potential
described by Eq. 4.2.

In addition to having a clear physical interpretation,Wex(T0, Tb) is easily calculated as a
simple numerical integral of equilibrium Boltzmann distributions for two temperatures. By
contrast, to establish the non-monotonicity of a2, the criterion of [186], one must first find
the left eigenfunction u2 by solving the boundary-value problem associated with the adjoint
Fokker-Planck operator. Note that in this geometric picture, the local equilibrium Gleq lies
approximately along the a2 axis and thus is equivalent to the picture previously established
(see Eq. 4.12). In this picture, the dynamics, in the long-time limit, were governed by the
a2 coefficients.
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Figure 4.14: Extractable work is a non-monotonic function of initial temperature T0 for the
double-well potential of Figure 4.12A.

4.9 Discussion

The results presented in this chapter experimentally demonstrate the Mpemba effect. We
have shown that the Mpemba effect is defined by a non-monotonic dependence of relaxation
time on initial temperature. Using our understanding of the phenomenology of the Mpemba
effect, we identified special combinations of experimental parameters where the a2 coefficient
vanishes (strong Mpemba effect), which correspond to exponentially faster cooling. For a 1D
potential with a metastable and a stable minimum, we presented a geometric interpretation
of the effect as a two-stage relaxation in the function space of all admissible probability
densities. In such a situation, we showed that the Mpemba effect is associated with a
non-monotonic temperature dependence of the maximum extractable work of the local
equilibrium state at the end of Stage 1, which is a much more physical quantity than a2

coefficients.
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4.10 Supplementary information

4.10.1 Infinite potential vs. finite potential

A systematic deviation in the imposed potential from the desired shape arises because the
initial conditions for the cooling experiment were calculated assuming infinite walls at the
domain boundaries. However, physically imposing an infinite potential wall is impossible,
meaning that there is a maximum possible force exerted by the virtual potential while the
particle is evolving towards equilibrium with the bath. Nevertheless, we can and do take
into account the infinite walls in creating the initial conditions for particles released in the
potential. In almost all cases, the inward forces cause the particles to move towards positions
in the interior of the experimental domain. In rare cases, a fluctuation from the bath can
briefly push a particle outside the domain defined by the infinite walls. Thus, particles
moving in the physically imposed potential can have motion that violates very slightly the
potential assumed in defining the initial conditions and assumed in calculating quantities
such as the eigenfunctions of the FPE.
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Figure 4.15: Finite maximum slope of the potential does not affect particle dy-
namics significantly. A. The energy landscape for the Mpemba effect. Solid line depicts
the initial energy landscape with infinite potential walls at the domain boundaries. The
equilibrium distribution of the particle is calculated based on this potential (U0). Dashed
line shows the potential (Uquenched) in which the particle is quenched. B. Langevin simu-
lations of the Mpemba effect using both potentials show no significant differences between
the two cases.

To test whether such violations are important, we simulate the overdamped particle
motion in the feedback trap using a discretized Langevin equation [231]

xn+1 = xn + 1
γ
Fn ∆t+ ξn ,

x̄n+1 = xn + χn , (4.36)

where xn is the true position of the particle, x̄n the observed position at time tn, and ξn

and χn are the integrated thermal and measurement noises. The force Fn = −∂x U(x̄n,∆t)
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is applied at a deterministic time step of ∆t = 10 µs. Langevin simulations based on
Eq. (4.36) for both the idealized and physical potentials (Fig. 4.15) show that these small
violations have no significant effect on the quantity of interest, the distance function D. As
an independent, experimental assessment, we have also measured the fraction of time that
a particle spends outside the box created by the infinite walls of the assumed potential.
Analyzing the particle trajectories, we find that such excursions occur only during 0.003%
of the total time of the experiment.

4.10.2 Calculation of equilibration time

We define the equilibration time teq to be the time when the distance curve D(t) reaches the
noise level σD. By equating the terms on the right hand side of Eq. 4.16, we can determine
the time when the slow decay of the distance curve intersects the noise floor, thus reaching
equilibrium. The condition implies

σD = |a2(α, T0)| e−λ2teq V = ∆D e−λ2teq . (4.37)

Solving for teq gives

teq = 1
λ2

ln
[∆D
σD

]
. (4.38)

With normally distributed uncertainties for λ2 and ∆D, the variance of teq is

σ2
teq ≈

(
∂teq
∂λ2

)2
σ2
λ2 +

(
∂teq
∂∆D

)2
σ2

∆D + 2
(
∂teq
∂λ2

∂f

∂∆D

)
σλ2∆D , (4.39)

where σλ2 is the standard deviation of λ2, σ∆D the standard deviation of ∆D, and σλ2∆D

the covariance between λ2 and ∆D. Using Eqs. 4.38 and 4.39, we can write the fractional
uncertainty in the equilibration time as

σteq

teq
=
[(

σλ2

λ2

)2
+ 1
t2eqλ

2
2

(
σ∆D
∆D

)2
+ 2
teqλ2

(
σλ2∆D
λ2∆D

)]1/2

. (4.40)

The typical fractional uncertainties in these variables are (σλ2/λ2) ≈ 0.04, (σ∆D/∆D) ≈
0.05, and σλ2∆D/(λ2∆D) ≈ −0.0001, where λ2 ≈ 0.3 ms−1 and teq varies within the range
1–20 ms. From Eq. 4.40, the fractional uncertainty in a typical data for the equilibration time
is (σteq/teq) ≈ 0.04–0.13. Although these are typical numbers, the calculation in Eq. 4.40
is repeated for each data point in Fig. 4.7. A separate fit is performed in each case, with
separate fit parameters and parameter uncertainties.

Finally, because the uncertainty of the noise level σD is determined from a long baseline,
its fractional value (≈ 0.006) is nearly ten times smaller than other fractional uncertainties
and does not appreciably alter the uncertainty estimate. We thus neglect it in our analysis.
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4.10.3 Equilibration time versus the a2 coefficient

To explicitly relate the equilibration time to a2(α, T0) for the hot and warm cases, we
rewrite Eq. 4.16 at times th and tw as

D[p(x, tw);π(x; Tb)] = |a2(α, Tw)| e−λ2tw V + σD, (4.41a)

D[p(x, th);π(x; Tb)] = |a2(α, Th)| e−λ2th V + σD , (4.41b)

where tw and th are the equilibration times for the warm and hot systems, respectively.
After both systems have reached equilibrium, the instantaneous value of their L1 distances
from the equilibrium value fluctuates at a typical noise level of σD (Eq. 4.8). Equating the
two identical average values and simplifying gives

tw − th = 1
λ2

ln |a2(α, Tw)|
|a2(α, Th)| . (4.42)

Although tw and th both increase as the noise level of the distance measure is reduced,
their difference is independent of the noise level (Fig. 4.16). Thus, no matter what the noise
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Figure 4.16: Different noise levels do not affect the difference in equilibration time. The hot
(red) and warm (blue) systems have the same slope at large times (set by the potential
energy). The signal decreases until it hits one of two different noise levels, n1 or n2 (indi-
cated by thick red lines and horizontal dashes). The difference in the equilibration time is
independent of the noise levels: ∆t1 = ∆t2 = tw − th.

level in the estimates of probability densities, assuming a2 6= 0, we will always reach an
unambiguous conclusion concerning the presence of the Mpemba effect. For |a2(α, Tw)| >
|a2(α, Th)|, the warm system lags the hot, and the Mpemba effect is observed.
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4.10.4 Barrier height vs. discontinuity in local equilibrium

The local-equilibrium distribution as defined in Eq. 4.24 has a jump discontinuity at x = 0.
Here, we show that higher barriers of the potential will reduce the discontinuity of the
local-equilibrium distribution.

We begin by computing the limit of pleq(x;T0, Tb) as x approaches 0. For x approaching
0 from the left, we have

pleq(0−) = lim
h→0

pleq(−h;T0, Tb) = lim
h→0

∫ 0

−∞
dx′ π(x′;T0)

(
π(−h;Tb)∫ 0

−∞ dx′ π(x′;Tb)

)
. (4.43)

For x approaching 0 from the right, we have

pleq(0+) = lim
h→0

pleq(h;T0, Tb) = lim
h→0

∫ ∞
0

dx′ π(x′;T0)
(

π(h;Tb)∫∞
0 dx′ π(x′;Tb)

)
. (4.44)

To find the discontinuity of pleq(x;T0, Tb) at x = 0, we compute the difference between
pleq(h−) and pleq(h+),

pleq(0−)− pleq(0+) = lim
h→0

∫ 0

−∞
dx′ π(x′;T0)

(
π(−h;Tb)∫ 0

−∞ dx′ π(x′;Tb)

)

− lim
h→0

∫ ∞
0

dx′ π(x′;T0)
(

π(h;Tb)∫∞
0 dx′ π(x′;Tb)

)
,

=
∫ 0
−∞ dx′ π(x′;T0)∫ 0
−∞ dx′ π(x′;Tb)

× lim
h→0

π(−h;Tb)

−
∫∞

0 dx′ π(x′;T0)∫∞
0 dx′ π(x′;Tb) × lim

h→0
π(h;Tb) . (4.45)

Since π(x, Tb) is continuous at x = 0, limh→0 π(−h;Tb) = limh→0 π(h;Tb) = π(0;Tb) .
Thus,

pleq(0−)− pleq(0+) = π(0;Tb)
[∫ 0
−∞ dx′ π(x′;T0)∫ 0
−∞ dx′ π(x′;Tb)

−
∫∞

0 dx′ π(x′;T0)∫∞
0 dx′ π(x′;Tb)

]
. (4.46)

The terms within the square brackets vanish when T0 = Tb, which gives a trivial solution:
pleq = π, and there is no discontinuity at x = 0. When T0 6= Tb, the bracket is a constant
that can be either positive or negative. Thus,

|pleq(0−)− pleq(0+)| ∝ π(0;Tb) = e−
Eb
kBTb . (4.47)

We conclude that increasing the barrier height Eb reduces the discontinuity at x = 0.
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Chapter 5

Inverse Mpemba effect

In Chapter 4, we demonstrated how the Mpemba effect could be observed in a controlled
setting in colloidal systems. In this chapter, we ask whether it is possible to observe a com-
plementary “inverse” effect where an initially cold system heats up faster than an initially
warm system, when coupled to a bath at high temperature. Recently, Lu and Raz first
predicted the inverse Mpemba effect in the Ising model [186]. It was then also predicted in
numerical studies of granular systems [43], spin glasses [45], inertial suspensions [47, 48],
and molecular gases [46]. Analogous to the strong Mpemba effect discussed in Chapter 4
for the usual “forward” Mpemba effect, a strong inverse Mpemba effect was predicted by
Klich et al. [253].

Although, to our knowledge, there has been no experimental evidence for the inverse
Mpemba effect in any system, there does exist a well-known heating phenomenon, known
as the Leidenfrost effect, that dates back to the 18th century [259]. The effect is charac-
terized by a significant reduction in heat transfer from a heated body to liquids when the
temperature of the body crosses a threshold temperature, known as the Leidenfrost Point
(LP). This phenomenon occurs when liquid droplets are deposited on hot solid surfaces
and a layer of vapor is formed in between the droplet and substrate. The high-pressure
vapor layer prevents contact between the hot surface and the droplet. The layer thus re-
duces the heat transfer between them, allowing the droplets to survive much longer than
normally expected. When the surface temperature is lower than the boiling point of the
liquid, the droplets spread over the substrate to form a thin layer and evaporate slowly.
Upon further increase in temperature, a maximum rate of evaporation is achieved at a
critical temperature (also known as the Nukiyama temperature, TN) corresponding to the
minimum survival time of the droplets [260]. Beyond TN, the survival time rapidly increases
and reaches a maximum value at the LP temperature. Thus, the survival times of the liquid
droplets are non-monotonic with the temperature of the surface [261, 262].

Although the effect is not the same as the inverse Mpemba effect, it is superficially
similar: it shares the counterintuitive, non-monotonic temperature dependence on the time
to reach the final state—a high-temperature bath for the Mpemba effect and a gas phase in
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Leidenfrost effect Inverse Mpemba effect
Initial state nonequilibrium state at a

lower chemical potential
equilibrium state at a lower
temperature

Reservoir temperature and chemical
potential reservoirs

temperature reservoir

Initial temperature Tb (reservoir temperature) T0(< Tb)
Final temperature Tb Tb
Mechanism local heating of droplets relaxation to equilibrium
Final state equilibrium state at a

higher chemical potential
equilibrium state at a
higher temperature

Table 5.1: Comparison between the Leidenfrost and inverse Mpemba effects.

equilibrium with a low-temperature bath for the Leidenfrost effect. Both effects also involve
anomalous heating. Differences between the two effects are listed in Table 5.1. Although the
underlying mechanism for the Leidenfrost effect is well understood, the inverse Mpemba
effect has only recently been predicted. In this chapter, based on the understanding gained
from the usual forward Mpemba effect, we design an experiment that gives the first evidence
for the inverse Mpemba effect.

The content of this chapter is available on arxiv.org [263].

5.1 Energy landscape for the inverse Mpemba effect

We place a one-dimensional potential asymmetrically in the domain [xmin, xmax] as

U(x) ≡



−Fmaxx x < xmin

U0(x) xmin ≤ x ≤ xmax

Fmaxx x > xmax ,

(5.1)

where U0(x) is given by

U0(x) = Eb

[
1− 2

(
x

xm

)2
+
(
x

xm

)4
− 1

2

(
x

xm

)]
, (5.2)

with a very low barrier Eb = 0.0002 and xm = 40 nm (Fig. 5.1). The steep walls at the do-
main boundaries corresponding to the maximum force Fmax applied by the optical tweezers
define a box in which a particle relaxes. To create an instantaneous “heating quench”, we
sample initial positions from the Boltzmann distribution π(x;T0) ∝ exp[−U(x)/kBT0]. The
initial positions are sampled assuming U(x) to have infinite potential walls at the domain
boundaries.
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Figure 5.1: Schematic of the energy landscape U(x) used to explore the inverse Mpemba
effect, set asymmetrically (α = 2) within a box [xmin, xmax] with potential walls with finite
slope at the domain boundaries.

5.2 Inverse Mpemba effect in an asymmetric potential

To determine how the inverse Mpemba effect depends on the initial temperature of the
system, we perform a “heating quench” in a bath of fixed temperature and described by
Eq. 5.1. After a particle is released in the bath at t = 0 at a low temperature T0, it
explores all the possible macrostates and finally equilibrates with the bath, which is at
temperature Tb > T0. Figure 5.2A–C shows example time traces of evolution in the
potential U(x). Frequency estimates of the probability density function p(x, t) that records
the system states between the initial state π(x;T0) and π(x;Tb) are calculated from the time
traces. Figure 5.3A shows the measured times to reach equilibrium for systems that start
at different initial temperatures. For T0/Tb > 1 × 10−3, the equilibration time decreases
monotonically as the initial temperature of the system approaches the bath temperature
Tb, and follows normal heating (tc > tw). However, at a lower initial temperature range
1× 10−5 < T0/Tb < 10−3, the equilibration time decreases as the initial state of the system
gets colder and thus corresponds to anomalous heating (tc < tw). For lower temperatures
(T0/Tb < 1×10−5), the equilibration time increases again, exhibiting normal heating. Thus,
we observe a sequence of normal, anomalous, and normal relaxations to thermal equilibrium.
Figure 5.3B shows the measured ∆D values as a function of initial temperature T0. The
∆D values correlate with the measured equilibration times.
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As described by Eq. 5.3, the variations in U0(x) across the domains are � kBT , and
the dynamics at the bath temperature are approximated by simple diffusion (Eq. 2.37). To
make the experiment even simpler to analyze, we can consider a bath that has an effectively
infinite temperature. The equilibrium state is then a uniform density between xmin and
xmax, and the dynamics of the system are governed by the diffusion equation (Sec. 2.2.3).
Although the approximation to infinite temperature is impractical for real objects, we use
it to simplify the dynamical equation governing thermal relaxation. We will see later in this
chapter that we can then calculate the eigenvalues and eigenfunctions of the FP operator
analytically. Using the eigenfunction, we can then easily find an analytical expression for
the a2 coefficient as a function of initial temperature of the system.

 !"

"

 !"

"

"#" "#   "

$%&'()&*+

 !"

"

,
-
*
%.
%-
/
()
/
&
+

 

!

"

Figure 5.2: Dynamic trajectories relaxing to equilibrium at a hot temperature. Ten trajecto-
ries of a particle released from the equilibrium distribution at temperatures T0 = 4×10−4Tb
(black, A), 4× 10−3Tb (blue, B) and Tb = 1 (red, C) into the hot bath, with the evolving
probability density p(x, t) shown for three times (estimated based on 5000 trajectories) on a
logarithmic time scale. The shaded gray region corresponds to a box size of xmax−xmin = 240
nm.

Figure 5.4A shows the distance curves D(t) for systems at different initial temperatures
(red curves) relaxing to thermal equilibrium (black curve) in a flat potential bounded by
very steep walls. For the region in Fig. 5.4B with a negative slope, an initially cold system
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Figure 5.3: Equilibration time and D(t) as a function of initial system temperature for a
quench in a bath at finite temperature. A. The equilibration times for systems at different
initial temperatures. B.Markers are ∆D measurements based on distance plots for different
initial temperatures. The solid red line is based on |∆D| values calculated using the FPE.

starts at a larger distance from equilibrium than a warm system but eventually equilibrates
first, illustrating again the inverse Mpemba effect.

5.3 Analysis based on eigenfunction expansion

When the bath temperature is effectively infinite, the quenched dynamics for p(x, t) obey
the ordinary diffusion equation. For free diffusion (U = 0), the evolution of the probability
density p(x, t) of particle positions is described by the Fokker-Planck equation as

∂p

∂t
= kBTb

γ

∂2p

∂x2 ≡ Lfree p , (5.3)

where Lfree is the Fokker-Planck operator for a freely diffusing particle. Unlike the Fokker-
Planck operator LFP in Eq. 4.10, Lfree is Hermitian, implying that the left eigenfunction
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Figure 5.4: Equilibration time and distance D(t) as a function of initial system temperature
for a quench in a bath at infinite temperature. A. L1 distances for systems with initial
temperature Tc = 1× 10−5, 4× 10−5, 1× 10−4, 1× 10−3, 3× 10−2 that heat up in a bath at
temperature Tb = 1. The thin vertical lines represent the times when systems starting with
different initial temperatures reach the equilibrium. B. The equilibration times for systems
at different initial temperatures. The red markers represent the temperatures for which D(t)
has been plotted in A.

u2 and the right eigenfunction v2 are identical. Following the argument in Sec. 4.6, we can
approximate the underlying probability density p(x, t), at long times, as

p(x, t) ≈ π(x;Tb) + a2(α, T0) e−λ2t v2(x;α, Tb) . (5.4)

Equation 5.3 has the same form as the heat equation discussed in Sec. 2.3 and can be solved
analytically for its eigenfunctions. The boundary conditions discussed in Eqs. 2.29 and 2.33
are identical for a flat potential (U = 0):

∂p

∂x

∣∣∣∣
x=xmin

= ∂p

∂x

∣∣∣∣
x=xmax

= 0 . (5.5)

Imposing the boundary condition described in Eq. 5.5, we find the eigenfunctions of Lfree

as

uk = vk = 1
Z ′

cos
[(k − 1)π

L
(x− xmin)

]
, (5.6)
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Figure 5.5: The second eigenfunction, which corresponds to the smallest non-zero eigenvalue
of the Fokker-Planck operator.

where Z ′ is the normalization constant, defined such that 〈ukvk〉 = 1, and where L =
xmax−xmin and k = 2, 3, · · · . Following the analysis done in Sec. 4.6.2, we measure ∆D as a
function of initial temperature from D(t). Figure 5.6 shows the non-monotonic temperature
dependence of ∆D. To see the agreement of the measured values of ∆D with theoretical
predictions, we explicitly calculate a2 coefficients using Eqs. 4.14 and 5.6. We fit the data
with the predicted a2 curve to measure the scaling factor V , as described in Eq. 4.17. The
scaling factor from the fit, 1.561±0.001, agrees to ≈ 0.1% with the numerical value ≈ 1.559
calculated using the numerically determined eigenfunctions.
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Figure 5.6: Measurements of ∆D for a bath at an effectively infinite temperature. Markers
are ∆D measurements based on distance plots for different initial temperatures. The solid
red line is based on the calculated |∆D| values using FPE. The error bars represent one
standard deviation and are calculated from the fits.

For cases where |a2(T0) ≈ 0|, the decay is dominated by λ3 and represents an exponential
speed-up of the heating process compared to decays at temperatures where |a2(T0)| 6= 0.
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Such a situation corresponds to the strong inverse Mpemba effect. The transient decay at
the time scale set by the eigenvalue λ−1

2 ≈ 16.66 ms disappears, and the system quickly
reaches equilibrium. To summarize our results, for |a2(α, Tw)| > |a2(α, Tc)|, the initially
warm system lags the initially cold system, and the inverse Mpemba effect is observed. A
similar conclusion can be drawn from the relationship between the difference in equilibration
time of the cold and warm systems and the associated a2 coefficients using Eq. 4.42.

5.4 Discussion

Our results give the first experimental evidence for the inverse Mpemba effect. The non-
monotonic dependence of the equilibration time on the initial temperature of the system can
be understood through the non-monotonicity of a2 coefficients. We first observed the inverse
Mpemba effect for a quench in a heat bath at finite temperature. To gain more insight and
understand the underlying mechanism, we also showed that there is an anomalous heating
effect for a bath at an effectively infinite temperature. The heating of a system to a heat
bath at infinite temperature has the same qualitative features as the heating of a system
to a bath at finite temperature. In this temperature limit, the relaxation dynamics are
governed by a simple diffusion equation, and we calculated the analytical expression for
the eigenfunctions and determined the a2 coefficients as a function of initial temperature.
For both finite- and infinite-temperature cases, we found evidence for the strong inverse
Mpemba effect, where the systems heated up exponentially faster than those under typical
conditions.

We can offer some insight as to why it was easier for us (and perhaps others) to observe
the forward Mpemba effect compared to the inverse effect. When a system relaxes to a
bath at temperature Tb, the time-scale separation between the decay curves corresponding
to λ3 and λ2 depends on the ratio Λ = λ3/λ2. Consequently, the greater the value of Λ,
the stronger will be the time-scale separation of the corresponding decay curves, and thus,
easier to observe experimentally. Particularly, in order to measure the ∆D (∝ a2) values,
we fit the part of the decay curve that corresponds to λ2. Thus, a clear separation between
λ2 and λ3 is necessary to accurately measure the ∆D values.

For the forward Mpemba effect, studied in Chapter 4, the system cools from a hot
temperature to a cold temperature in a double-well potential, and the ratio Λ of eigenvalues
λ3 to λ2 (i.e., Λ∗for ≡ λ3/λ2) is ≈ 16.1. However, for the inverse Mpemba effect, the ratio of
eigenvalues is Λ∗inv ≈ 4.03. Thus, Λ∗inv is about four times smaller in the case of heating.

A natural question arises whether these are general expectations for Λfor and Λinv or
are they just a feature of our potential. In Chapter 4, we observed that the dynamics of
a2(t) correspond to hops over the barrier. We thus expect that the ratio of eigenvalues λ3

to λ2 depends on the barrier height Eb as Λfor ∼ exp[Eb/kBTb]. As a result, for a bath
at low temperature, Λfor is controlled by the barrier-height of the potential and may be
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even greater for a higher barrier (Fig. 5.7, red curve). However, for a bath at an effectively
infinite temperature, Λinv ≈ 4 and is independent of the shape of the potential, including
its barrier-height (Fig. 5.7, blue curve). Thus, all systems at high temperature will have
an approximately flat energy landscape, and one may expect low values of Λ for all such
systems. Even at high temperatures where Eb � 1, we expect similarly small values of
Λfor. Thus, we generally expect Λfor/Λinv > 1 for situations where the forward and inverse
Mpemba effects are each observed.
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Figure 5.7: Ratio Λ of eigenvalues λ3 to λ2 of the Fokker-Planck operator as a function
of barrier height Eb at the bath temperature Tb = 1. The red curve is for the double-well
potential used in Chapter 4 for the forward Mpemba experiments, and the blue curve is for
the flat potential used in the inverse Mpemba experiments. The hollow red marker denotes
the ratio Λ∗for used in the forward Mpemba experiments, that corresponds to Eb ≈ 2. The
hollow blue marker denotes the ratio Λ∗inv for the flat potential (Eb ≈ 0) used in the inverse
Mpemba experiments.

The asymmetry of Λfor vs. Λinv has experimental consequences. In general, as our ex-
perimental results confirm, it is easier to resolve the contribution of sums of exponentials
when the exponents have significantly different values. Thus Λfor/Λinv > 1 implies that a
forward Mpemba effect will be easier to observe than an inverse effect. This asymmetry
will be particularly important for potentials with metastable states separated by high bar-
riers. Although we used Eb ≈ 2 in our forward Mpemba experiments, larger barrier heights
would further increase the separation in time scales. However, increasing the barrier height
would increase the equilibration time exponentially and make large number of trials of the
experiment inconvenient to obtain. Finally, note that for the forward Mpemba experiments,
we used different initial temperatures and barrier-height of the potential. The red curve in
Fig. 5.7 shows that a large value of Λ∗for ≈ 16 is obtained for the barrier Eb ≈ 2. If the
experiment were done in the potential U(x) as described in Chapter 4 with a very small
Eb ≈ 0.0002, Λfor would have been small, and it would have been difficult to observe the
Mpemba effect.
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Chapter 6

Higher-order Mpemba effect

In Chapters 4 and 5, we presented experimental evidence for anomalous cooling and heating
in colloidal systems. Specifically, in Chapter 4, we gave an explanation as to why it was
reasonable to see the Mpemba effect in a system with a tilted double-well potential. More
fundamentally, one can ask what shapes of potentials and choices of temperatures can lead
to the Mpemba effect. Based on the results shown in Chapter 4, one may speculate that
asymmetry of the potential plays a role. In our experiment, the symmetry was broken by
both the tilt in the double-well potential and the asymmetric placement of the potential
in a domain. We showed explicitly in Chapter 4 that the Mpemba effect was not observed
when the potential was placed symmetrically in a given domain. Thus, the results shown in
Fig. 4.7 suggest that symmetry plays a key role for the effect. However, in this chapter, we
will show that asymmetry is not necessary and that it is possible to observe the Mpemba
effect in a symmetric potential in a symmetric domain, i.e., one where U(x) = U(−x). Since
the symmetry of the potential enforces a2 coefficients to zero, we observe, as a consequence,
a higher-order Mpemba effect.

6.1 Experiment

We construct a one-dimensional, symmetric, virtual, double-well potential using our feed-
back trap setup. The potential U(x) is piecewise continuous: a double well joined by linear
regions at the extremes. The symmetric double-well potential is given as

U0(x) = Eb

[
1− 2

(
x

xm

)2
+
(
x

xm

)4
]
, (6.1)

with Eb = 2.5 and xm = 40 nm. Note that the tilt term ∼ ∆E (c.f. Eq. 4.1) is not
present. With a symmetric double-well potential U0 in the middle, the overall potential
energy landscape U(x) within a box [−xmax, xmax] is described by Eq. 4.2 (Fig. 6.1). To
create an instantaneous quench, we sample initial positions from the Boltzmann distribu-
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Figure 6.1: Schematic of the energy landscape for the Mpemba effect in a symmetric double-
well potential. The gray markers denote positions |xl| = xr ≈ 56 nm, where the slope of the
potential corresponds to the maximum force exerted by the optical tweezers.

tion π(x;T0) ∝ exp[−U/kBT0] (Fig. 6.2A), assuming infinite potential walls at the domain
boundaries (Fig. 6.1).
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Figure 6.2: Equilibration in a symmetric potential.A. The solid blue and red lines represent
the probability density p(x, 0) = π(x;T0) of systems initially at temperatures T0 = 3.5 and
13.5, respectively. The dashed gray line represents the equilibrium probability density at the
bath temperature. B. The L1 distances calculated for systems at two different temperatures
(Th = 13.5 and Tw = 3.5). The cold distance plot is a control experiment where the system
prepared at the bath temperature Tb relaxes to the same temperature. The domain size is
240 nm.
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After an instantaneous quench at t = 0, the particle relaxes (cools) in the imposed
virtual potential U(x) for 60 ms. We repeat this protocol 30,000 times to create a statistical
ensemble from which the state of the system at each time step is estimated to measure the L1

distance. Figure 6.2B shows the L1 distances for systems initially prepared at temperatures
T0 = {1, 3.5, 13.5}. Although the initially hot system starts with a greater magnitude of D(t)
than that of the initially warm system, the former reaches equilibrium first. The crossing
between the corresponding D(t) curves and the monotonic decrease of the L1 distance with
time confirm the presence of the Mpemba effect in the symmetric potential.

6.2 Eigenfunction analysis

To understand the underlying mechanism behind anomalous cooling in a symmetric po-
tential, we again look at the left and right eigenfunctions of the FPE. For a symmetric
potential in a domain, the eigenfunctions alternate in index between having even and odd
symmetry, with the ground state (Boltzmann distribution) being even, since π(x;Tb) =
Z−1exp[−U(x)/kBTb] = π(−x;Tb), given that U(x) = U(−x) [264]. Thus, by symmetry,
the even terms in the eigenfunction expansion of p(x, t) should be odd functions. As a con-
sequence, the calculation of all the even coefficients (i.e., ak, where k = 2, 4, 6, · · · ) of the
Fokker-Planck involves integrating an even function π(x;Tb) against odd eigenfunctions.
Then, without doing any calculation, we can say that the a2 coefficients should be zero in a
symmetric double-well potential. To test this argument based on symmetry, we numerically
calculated the second and third right eigenfunctions for the potential U(x) (Fig. 6.3). We
then explicitly confirmed that the a2 coefficients are indeed zero in this case (Fig. 6.4, blue
curve). As a result, at long times, the probability density is dominated by the first and third
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Figure 6.3: Eigenfunctions of the FP operator for a symmetric potential.A. u2(x) and v2(x)
are the left and right eigenfunctions, respectively, and correspond to the second eigenvalue of
the FP operator. B. u3(x) and v3(x) are the third left and right eigenfunctions, respectively
for the same FP operator.
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terms of Eq. 4.11:

p(x, t) ≈ π(x;Tb) + a3(α, T0) e−λ3t v3(x;α, Tb) . (6.2)

Thus, we consider the next higher-order eigenfunction to check for non-monotonicity with
respect to the initial temperature. The third left and right eigenfunctions are shown in
Fig. 6.3B. The a3 coefficients calculated numerically based on u3 and v3 indeed have a non-
monotonic dependence on the initial temperature. Recalling that the Mpemba effect exists
if |a3(Th)| < |a3(Tw)|, we thus predict that the hotter system at Th will reach equilibrium
faster than the initially warm system at Tw = 3.5 for Th = [3.5, 60]. We refer to anomalous
relaxation where the decay rate is dominated by λ3 as a higher-order Mpemba effect. For
T0 ≈ 13.5, the system will relax to equilibrium as a single exponential as |a3(T0)| ≈ 0. Thus,
the decay rate will be dominated by λ4, illustrating the strong higher-order Mpemba effect
in the symmetric double-well potential.
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Figure 6.4: Relaxation in a symmetric potential. Solid red and blue lines are the numerically
calculated |a2| and |a3| coefficients for different initial temperatures using the FPE.

6.3 Mpemba effect in a potential with one local minimum

The experimental observation and the predicted numerical results shown in Figs. 6.2 and
6.4 indicate that the Mpemba effect is present in the case of a symmetric potential. One can
ask a closely related question: whether a double-well structure is necessary for the effect.
The results based on the a2 coefficients suggest that one should expect the Mpemba effect in
the half domain [0, xmax] of the potential shown in Fig. 6.1. Note that this potential shape
has only one local minimum (Fig. 6.5A). The a2 coefficients are then non-zero, in general,
as there is no longer a reflection symmetry in the shape of this potential. A numerical
calculation based on the FP equation suggests that relaxation in this single-well potential
is dominated by the |a2| values and indeed has non-monotonic dependence on the initial
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Figure 6.5: Mpemba effect in a potential with one local minimum. A. Schematic of the
energy landscape. B. Decay coefficients |a2| as a function of initial temperature T0 > Tb.

temperature of the system (Fig. 6.5B). Interestingly, for T0 ≈ 14, we predict a strong
Mpemba effect corresponding to |a2| = 0.

6.4 Discussion

In this chapter, we have explored relaxation in a symmetric potential. Intuitions based on the
results in Chapter 4 suggested that the Mpemba effect could not be observed in a symmetric
potential. Nonetheless, we did observe anomalous relaxations in this case. We realized that,
for a symmetric potential, the a2 coefficient always vanishes. Consequently, when released
from a cold temperature to a bath at a high temperature, the particle dynamics are governed
by a3 coefficients. For these reasons, the Mpemba effect that we observe experimentally in
a symmetric, double-well potential is necessarily a higher-order effect, linked to the a3

coefficients. Thus, we can say that asymmetry is not a necessary condition for the Mpemba
effect.

Based on our observation in a symmetric potential, we further predict that the Mpemba
effect can also be present in a domain that is half the symmetric potential. Although we
did not have time to test this prediction experimentally, we performed simulations of the
Fokker-Planck equation that support the existence of the Mpemba effect in this potential,
which has but one well. The effect, in this case, is particularly interesting because there is
no coarse-grained second state. Thus, the predicted result dissociates the Mpemba effect
from metastability and emphasizes that the effect is not limited to systems undergoing
phase transitions. A more detailed analysis of the particle dynamics would be required to
accurately explain the anomalous relaxation in this case. More experiments will need to be
done to search for the predicted non-monotonicity in ∆D values with initial temperature of
the system and to test the detailed numerical predictions.
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Chapter 7

Conclusions

The Mpemba effect refers to systems whose thermal relaxation time is a non-monotonic
function of the initial temperature. Thus, a system that is initially hot cools to a bath tem-
perature more quickly than the same system, initially warm. Originally observed in water,
the Mpemba effect has also been studied both experimentally and numerically in a wide va-
riety of systems. However, all of these systems—water especially—remain mysterious, as no
consensus exists as to the underlying cause. The major drawbacks in previous experiments
in water are that the results were hard to reproduce and were based on a small number of
trials, which led to large scatter in the freezing times. Freezing is indeed a stochastic pro-
cess and may depend on the details of the sample preparation. Thus, the definition of the
Mpemba effect based on freezing times is ambiguous. In this thesis, we began by defining
the Mpemba effect in terms of equilibration times—time elapsed between initial and final
equilibrium states. Our definition remains independent of whether a system undergoes a
phase transition or not. We have experimentally shown evidence for the Mpemba effect, the
inverse Mpemba effect, and the higher-order Mpemba effect in systems that lacked phase
transitions. Our study gives insight into a long-standing problem and represents the first
case of this kind of anomalous relaxation where quantitative agreement between a predictive
theory and experiment is observed.

7.1 Summary of the results obtained

I began my thesis work by building a feedback-based optical tweezers setup. Feedback traps
are versatile tools that can create arbitrary energy landscapes. Although my focus was
mainly to create one-dimensional potentials in this thesis, feedback traps can be extended in
three dimensions to create more complex energy landscapes. I constructed virtual potential
landscapes such as harmonic and double-well potentials to benchmark the performance and
accuracy of the setup. These potentials were constructed on ≈ 100 nm length scales.

In the study of the Mpemba effect, I used the feedback traps to create a tilted double-well
potential on nanometer length scales, with dynamical time scales on the order of millisec-
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onds. The advantage of creating a potential on such a small scale with faster characteristic
time was twofold. First, the system could equilibrate faster with the bath; and second, the
fast equilibration times allowed the repetition of the cooling/heating protocol thousands of
times. A direct way to observe the evolution of a system between two states at different
temperatures is to measure the temperature at each time step. However, cooling/heating
by quenching is a nonequilibrium process. As a result, the intermediate states of the system
are not well described by a single temperature. Thus, we adopted the notion of distance
functions that measure a dynamical state’s distance from the state at thermal equilibrium.
In our work, we used primarily the L1 distance and occasionally the Kullback-Leibler diver-
gence as proxies for temperature. We showed that the observation of the Mpemba effect was
independent of the choice of distance functions, provided they obeyed certain temperature-
like properties [186].

A key feature of the potential used in the Mpemba experiment is its asymmetry. The
asymmetry was present in the form of tilt in the potential and its placement in an asymmet-
ric domain. The two wells of the potential at different energy constituted two coarse-grained
states. We referred to the well corresponding to the higher energy level as a metastable state
and the well corresponding to the lower energy level as a stable state. After a system was
quenched to the double well at the bath temperature, dynamics occurred in two stages: a
fast relaxation to local equilibrium, followed by a slow equilibration of populations in each
coarse-grained state. The time scales of the fast and slow relaxation stages were controlled
by the slope of the potential near boundaries and the energy-barrier height, respectively,
for a given domain size. The relaxation dynamics were understood through the eigenfunc-
tion expansion of the Fokker-Planck operator. Lu and Raz proposed that the projection
of the initial state of system onto the slowest eigenfunction of the Fokker-Planck operator
a2 could be non-monotonic in temperature and thus might lead to the Mpemba effect. We
experimentally measured the non-monotonic temperature dependence of the a2 coefficient.
We also found the condition for the strong Mpemba effect predicted by Klich et al., where
|a2| = 0 [253]. At such a point, the slowest relaxation dynamics is ∼ e−λ3t, implying an
exponential speed-up over the generic relaxation dynamics, ∼ e−λ2t.

Perhaps the spectacular observation was the inverse Mpemba effect. This anomalous
heating effect had been predicted by theory but never observed [43, 45–48, 186]. We showed
the first experimental evidence for the inverse Mpemba effect in a colloidal system. Analo-
gous to the forward Mpemba effect, the non-monotonic temperature dependence of the a2

coefficients led to the anomalous heating effect. For heating in a bath at effectively infinite
temperature, we could simplify the Fokker-Planck equation and derive simple analytical
expressions for the eigenfunctions. We then calculated the a2 coefficients as a function of
temperature and observed agreement within 0.01% with the experimentally measured ∆D
(∝ |a2|) values. We also found the strong inverse Mpemba effect where |a2| ≈ 0. Although
our measurements were well aligned with predictions based on the Fokker-Planck equation,
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we do not have a simple, geometric interpretation of the effect. However, one may look
at the dynamic probability densities as the system evolves in the bath to understand the
heating process.

Having observed the forward and the inverse Mpemba effects, one question that naturally
arises is what kind of potentials can lead to a Mpemba effect. Is asymmetry a necessary
condition for anomalous relaxation? To investigate this question, I designed a double-well
potential (with no tilt) placed in a symmetric domain. Surprisingly, we could still observe
the Mpemba effect. Since the a2 coefficients vanish for symmetric potentials, the relaxation
dynamics were controlled by a3, the projection of the initial state on the next (third) slowest
eigenfunction. The non-monotonicity of a3 coefficients with temperature, as predicted by
the FP equation, were identified with a higher-order Mpemba effect. Inspired by the results
for the symmetric potential, we predicted that the Mpemba effect could be observed in
a potential with one local minimum only. The breaking of symmetry again restored the
non-monotonicity of a2 coefficients. We also predicted the existence of the strong Mpemba
effect in this case. But we did not have time to complete experiments to test these last
predictions.

7.2 Final remarks

The results presented in this thesis give insight into a long-standing problem of anomalous
cooling. The significance of observing the Mpemba effect in a colloidal system is twofold:
First, simplicity brings clarity. The agreement shown with a simple theory based on eigen-
function expansions of the FPE contrasts with the more complicated, yet inconclusive anal-
yses of the ice-water system [19, 20, 23, 25–27, 29, 33, 34, 242, 243, 265, 266]. More con-
structively, the physical insights gained from the study of a simple system may guide future
investigations of more complicated systems. For example, while many authors have asserted
that freezing plays an essential role in the water experiments [243], there is no phase transi-
tion in the experiments reported here. Although the tilted double-well potential used in the
forward Mpemba experiments may serve as a toy-model for water-ice phase transition, the
predictions based on potential with no coarse-grained metastable state indicate that phase
transition may not be a key requirement for the effect. It will be interesting to see such
effects in an experiment, as it will add further evidence that the Mpemba effect need not
be associated with a phase transition.

The second significant point of the colloidal experiments is to show that the ice-water
system is not unique. The analysis used here constitutes a general mechanism for anoma-
lous relaxation phenomena. The situation is analogous to that of phase transitions, where
general physical theories (mean-field and Landau theories, renormalization group) [267]
contrast with theories for specific cases such as the ice-water transition. Detailed theories
for specific systems can account for important phenomena in a given system, for exam-
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ple, how additives increase the attainable supercooling in water and help insects survive
sub-freezing temperatures [268], while general theories such as we have applied suggest how
similar behavior can arise in a wide variety of settings and materials. More broadly, thermal
relaxation and heat removal remain important technological challenges. For example, they
limit the performance of microprocessors and other integrated circuits [269]. Engineering
Mpemba-like effects into technologically relevant materials might offer new and important
strategies to rapidly remove heat from localized sources.

More sophisticated time-dependent protocols can also be envisioned that steer dynamical
trajectories to desired outcome states. A recent theory by Gal and Raz along these lines
shows that an initial cooling can actually speed up heating times exponentially [270]. Their
theory predicts that such exponential heating can also be achieved in systems that do
not exhibit the inverse Mpemba effect. The theory should be relevant for a wide range of
systems. It will be an interesting project to see whether such a scenario can be observed
using our setup.

Finally, while the findings of our study provide some insight into the anomalous behavior
associated with both cooling and heating, they do not immediately explain the Mpemba
effect in water. Whether due to supercooling of water below 0 ◦C, dissolved minerals or
gases, or H-bond interaction, understanding the Mpemba effect in water still stands as an
open problem. Philip Ball once wrote, “And even if the Mpemba effect is real—if hot water
can sometimes freeze more quickly than cold—it is not clear whether the explanation would
be trivial or illuminating” [271]. On this front, whatever the eventual explanation for the
behavior in water, I am confident that it will belong to the classes of mechanisms explored
in this thesis.
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