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Abstract

As the number of couples using In Vitro Fertilization (IVF) treatment to give birth in-
creases, so too does the need for robust tools to assist embryologists in selecting the high-
est quality embryos for implantation. Quality scores assigned to embryonic structures are
critical markers for predicting implantation potential of human blastocyst-stage embryos.
Timing at which embryos reach certain cell and development stages in vitro also provides
valuable information about their development progress and potential to become a positive
pregnancy. The current workflow of grading blastocysts by visual assessment is susceptible
to subjectivity between embryologists. Visually verifying when embryo cell stage increases
is tedious and confirming onset of later development stages is also prone to subjective as-
sessment. This thesis proposes methods to automate embryo image and time-lapse sequence
assessment to provide objective evaluation of blastocyst structure quality, cell counting, and
timing of development stages.
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Chapter 1

Introduction

1.1 IVF Treatment

In vitro fertilization (IVF) treatment is a commonly performed medical procedure for cou-
ples suffering from infertility. In 2016, 31,274 IVF treatment cycles were performed in
Canada [72]. Despite its popularity, the treatment still has a relatively low success rate,
with only 29.4% embryo transfers leading to a live birth [72]. Since it takes nearly 3.5 em-
bryo transfers to successfully give birth, there is a large financial and emotional burden
imposed on couples attempting to conceive using IVF treatment.

In IVF treatment, eggs and sperm are extracted from patients and combined in a lab
environment. Multiple fertilized eggs (i.e. embryos) are developed outside the patient’s body,
and the most promising embryo(s), according to morphological characteristics, is transferred
into the patient’s uterus. Multiple embryos (2-3) may be transferred at once to increase the
likelihood of success. This, in turn, increases the chances of multiple pregnancy, which poses
additional health risks to both the patient and fetuses/babies.

To increase the success rate of IVF treatment, the mechanisms and effects of different
incubation conditions affecting embryo development are highly sought after. Preimplanta-
tion genetic screening (PGS), performed by embryo biopsy and genetic testing, is a great
indicator for negative implantation outcomes. However, it is not a good indicator for positive
implantation outcome. It is also performed infrequently due to added treatment cost [72].
Morphological assessment of human embryos is still used in the majority of IVF cycles. This
thesis focuses on two key aspects of embryo assessment:

1. morphology (i.e. structural appearance) of embryo components using single images,
and

2. morphokinetics (i.e. timing of changes) of embryo development using time-lapse se-
quences.
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These new approaches set the future path for developing intelligent systems that can assist
embryologists with assessing embryo quality in IVF treatment and understanding which
embryos have the highest likelihood of leading to a successful pregnancy.

1.2 Embryo Development In Vitro

During IVF treatment, a female’s ovaries are hyper-stimulated to produce multiple eggs for
external fertilization. The fertilized eggs (embryos) are incubated in controlled environmen-
tal conditions until they reach the blastocyst stage (usually on the 5th day post-fertilization).
The blastocyst with the best development progress is selected for implantation into the pa-
tient’s uterus. Many embryos are developed in every IVF cycle to increase the likelihood
of getting high quality candidates. Embryos are evaluated throughout the incubation pro-
cess and scored at multiple stages to assess their quality as they develop. The development
process is shown in Fig. 1.1.

Figure 1.1: Timeline of blastocyst development (pronuclear formation is considered day 0):
fertilization (a), pronuclear formation (b), zygote (c), 2-cell embryo (d), 4-cell embryo (e),
8-cell embryo (f), morula (g), early blastocyst (h), and late blastocyst (i) [61].

When a fertilized egg divides into two cells, it enters the cleavage stage of its develop-
ment. The cells of a normal two-cell embryo will later divide and create a four-cell embryo.
Each cell in the four-cell embryo will divide again to form an eight-cell embryo, etc. Embry-
ologists have investigated some attributes at this stage that may indicate which embryos
will advance further. These attributes include similarity in size, little or no fragmentation,
division time and synchronicity. Healthy embryos have a fairly strict rate of progression
starting at the time of their fertilization. Some studies suggest that embryos with optimal
cleavage speed defined by: 2 cells at 25-27h, 4 or 5 cells at 44-46h, and at least 7 cells at
66-68h post insemination might have higher implantation and/or clinical pregnancy rates.
Slow progression in cell division usually is an indicator of a low quality embryo [11].

A protective glycoprotein layer called zona pellucida (ZP) encapsulates the inner em-
bryos structures and ensures close cell proximity between blastomeres as the embryo de-
velops. The ZP has several functions including restricting penetration of other sperm cells
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once an egg is fertilized, protection of pre-implantation embryos, and preventing premature
implantation.

As the embryo develops, denser clusters of blastomeres (i.e. embryonic cells) form. In
normal embryonic development, and embryo reaches morula stage at day 4. This is charac-
terized by increased blastomere adhesion (i.e. cells becoming more attached). Blastomeres
then develop into 2 structures: trophectoderm (TE) - a mass of cell lining the inner ZP
which later develops into the placenta, and inner cell mass (ICM) - a mass of cells near the
centre of the embryo that later develops into the fetus. Concurrently, the embryo absorbs
fluid from the surrounding media to create the blastocoel - a fluid-filled cavity providing
structural support and nutrients. Typical blastocyst structures are shown in Fig. 1.2.

Figure 1.2: Blastocyst ZP (red), TE (green), ICM (dark blue), and blastocoel (light blue).

An embryo typically reaches blastocyst stage at day 5. By this point, the trophoblast
(outer membrane), ICM, and blastocoel are clearly visible. The ICM is well-defined and
its many cells are compact. There are few fragments from cleavage stage in the blastocoel
or perivitelline space (PVS - space between inner ZP and outer TE). As the blastocyst
develops, the blastocoel volume becomes > 50% of the embryo volume and the ZP becomes
thinner.

1.3 Embryo Imaging

Assessing embryo quality is limited by image acquisition capability: a) Dyes are often added
to specimens in microscopy images to accentuate structures of interest. These dyes cannot
be used on embryos as they could cause adverse affects for development. b) High resolution
microscopy devices that can potentially damage the embryo must also be excluded. There-
fore, optical imaging methods remain the only safe imaging technique. Since transparent
specimens like embryos do not absorb light, the imaging technique must exploit differences
in refractive index between embryo structures and also surrounding medium.
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Phase Contrast microscopy [2] accentuates the difference between light passing around
and light that is diffracted by a specimen. The light passing through a specimen has the
same amplitude of light passing around it, by lags by approximately 1/4 wavelength. This
phase difference varies by specimen structure, and is used to construct an image. However,
it suffers from a characteristic halo artifact at object boundaries (bright outer areas and
dark inner areas), which makes it difficult to distinguish boundaries between objects. Images
taken with phase contrast microscopy also have a flat 2D appearance. Hoffman Modulation
Contrast (HMC) microscopy in Fig. 1.3 also relies on differences in the phase portion of light
passing through specimens to construct an image. It has a light amplitude filter (shown in
Fig. 1.4) that produces different shades based on specimen surface structure. This technique
eliminates the halo artifact at object boundaries and gives objects a 3D appearance. HMC
microscopy has therefore become the most commonly used imaging technique for embryos.

Figure 1.3: Embryo structures with changing optical densities diffract light into a dark,
gray, or bright zone with HMC microscopy. Offsetting the modulator and slit plate increases
resolution [1].

Embryo images taken with HMC microscopes suffer from object depth ambiguity and
weak borders along structures. Peaks can be confused for valleys when viewing object edges,
making it difficult to visually assess embryos. Unlike most other medical imaging techniques,
the background pixels of HMC microscopy embryo images are a mid-range (gray) value
instead of black. Image processing algorithms for locating embryo structure boundaries
must rely on increasing and decreasing pixel intensity, instead of one or the other.

Embryos used to be developed in incubators where they had to be transferred for imag-
ing. Now, many clinics are adopting incubators with time-lapse imaging systems that have
a built-in microscope for continual embryo monitoring. Embryo images taken from a tradi-
tional incubator and time-lapse imaging incubator HMC microscope are shown in Fig. 1.5.
Some work has shown embryos developed in these time-lapse incubators have greater preg-
nancy outcome [46]. Continual embryo imaging throughout development enables another
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Figure 1.4: Imaging Phase Gradients for negative gradients (a), zero gradient (b), and
positive gradients (c) [1].

set of measurable parameters that can be correlated with embryo quality. These additional
morphokinetic (time-based) parameters can be used to assess embryo quality with little
added cost.

Figure 1.5: Microscopic embryo image from traditional incubator (left) and time-lapse imag-
ing incubator (right).

The embryo images used in this thesis were collected at the Pacific Centre for Reproduc-
tive Medicine (PCRM) in Burnaby, BC. The images and time-lapse sequences were taken
at a single focal plane.

In traditional incubators, removing the embryo for imaging could potentially damage
the embryo. Embryos are imaged only as often as necessary, and are not repeated if the focal
plane or focus is off. Acquiring 3 images of each blastocyst focused on different structures
was explored previously but no improvement was found. Therefore only a single blastocyst
image focused on all the structures was taken for each sample.
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In time-lapse sequences, the focal plane is set across the sequence and cannot easily
be changed to get a better view of certain structures. Each sequence is 380 frames with
15-minute acquisition interval. Although acquiring images at multiple focal planes could
provide a better view of different structures, it significantly increases the memory and
processing required at the clinic.

1.4 Embryo Quality Assessment

While live birth is the ultimate measure of success in IVF treatment, several biological, pro-
cedural, and environmental factors other than embryo quality can prevent such outcome.
Therefore, implantation and clinical pregnancy outcomes can be better suited for evaluat-
ing embryo quality. Implantation outcome is confirmed with a biochemical pregnancy test
following the embryo transfer. A clinical pregnancy is confirmed by ultrasound detection of
a gestational sac or fetal heartbeat during gestation.

Non-invasive embryo imaging is used to assess embryo morphology (visual attributes)
for quality markers correlated to higher pregnancy outcome. With more widespread avail-
ability of incubators containing time-lapse imaging systems, monitoring changes in embryo
development enables use of morphokinetic (time-based) parameters for providing insight
into its implantation potential.

1.4.1 Blastocyst Morphology

The most common method for ranking viability of blastocysts (i.e. embryos around day-5
post-fertilization) for transfer is using non-invasive visual inspection based on morpholog-
ical characteristics [21]. However, this is a challenging task as living embryos can only be
imaged using non-invasive techniques. Assessing blastocyst quality from images is there-
fore susceptible to subjectivity. There are blastocyst morphology factors that have shown
to correlate with higher implantation potential [22], [39], which were used to develop the
Gardner grading system [24].

Three main structures are used to assess blastocyst quality according to the Gardner
grading system, summarized in Table 1.1. ICM grade varies with amount of cells and how
densely they clump together. TE grade assesses the tissue lining of the ZP for amount of
cells and whether they form a cohesive ring. Blastocyst expansion (BE) indicates metabolic
competency and is evaluated based on the ZP thickness and blastocoel volume [24]. Exam-
ples of each grade are shown in Fig. 1.6.

Higher blastocyst morphology score was shown to increase implantation and ongoing
pregnancy rates [23]. Having more high quality blastocysts in an embryo transfer cycle led
to higher likelihood of ongoing pregnancy and live birth [81]. However, grading criteria
are vague and embryologists show inconsistency due to subjectivity and expert level when
performing morphological embryo grading [12]. Automatic grading is therefore desirable

6



Table 1.1: Blastocyst grading description according to Gardner grading system [24]. Each
grade is listed from highest to lowest quality.

ICM Grade
A Numerous and tightly packed cells
B Several and loosely packed cells
C Few cells

TE Grade
A Many cells organized in epithelium
B Several cells organized in loose epithelium
C Few cells

BE Grade
4 Blastocoel volume larger than early embryo, ZP is thin
3 Blastocoel fills the blastocyst, ZP is thick
2 Blastocoel fills greater than half of the blastocyst

(a) ICM - A (b) ICM - B (c) ICM - C

(d) TE - A (e) TE - B (f) TE - C

(g) BE - 4 (h) BE - 3 (i) BE - 2

Figure 1.6: Examples of blastocyst image with different ICM grades (top), TE grades (mid-
dle), and BE (bottom).
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for generating unbiased, consistent decisions about blastocyst quality to help embryologists
make the best possible transfers to lead to positive implantation and ultimately live birth.

In addition to the challenging biological variation present in embryos of each grade,
automating blastocyst grading can be challenging due to image artifacts. Certain embryo
structures can be more or less in focus based on the microscope image acquisition. Images
can contain parts of multiple embryos that neighbour the blastocyst of interest, and the
surrounding embryo culture media can contain embryo fragments.

1.4.2 Embryo Morphokinetics

The timing of early cell stage onset and duration can give insight into whether an embryo
will develop into a fully formed blastocyst as well as its implantation potential. The onset of
later morula and blastocyst stages can be used to monitor embryo development and predict
implantation potential.

Cell Cleavage Timing and Stage Duration

An embryo starts with one cell (a.k.a. zygote stage) that divides repeatedly throughout
incubation in vitro. Individual cells (i.e. blastomeres) can be identified and counted in
early stages, and used to track embryo development. The beginning and duration of each
embryonic cell stage provide valuable insight into embryo quality, including 2-cell stage onset
[30], 2-cell stage duration [6], [45], [13], 3-cell stage onset [6], 3-cell stage duration [45], [13],
4-cell stage onset [30], and 5-cell stage onset [6], [45], [13]. Detecting at which frame these cell
cleavage events occur can be associated with treatment time to track development progress
and rank embryos for implantation potential.

Monitoring the embryo through in vitro development to determine morphokinetic pa-
rameters is tedious, and susceptible to differences of opinion between embryologists. Au-
tomating embryo development monitoring for objective morphokinetic analysis has therefore
become of interest to embryologists.

Embryonic cell stage images pose multiple challenges for analysis. Embryos can have
irregular-shaped cells, cells with occluded boundaries, severely overlapped cells, and cell
fragmentation (see Fig. 1.7). In some cases, two cells of similar size and shape overlap by
nearly 100% of their area, so they can be easily mistaken as one cell. Small cell fragments
can occlude cell boundaries, while other fragments have similar size, shape, and appearance
as actual cells.

Analyzing time-lapse sequences requires more computing power as there are more frames
to process and can have some additional issues with image quality. Consecutive frames can
have very little change in embryo development (e.g. most frames between cell cleavage) or
significant movement of cells (e.g. during cell cleavage). Some changes (like 3-cell stage)
cannot always be captured in the 15 minute acquisition interval. Frames are occasionally
captured while a cell is almost finished dividing, sharing more similar appearance to frames
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(a) (b) (c)

Figure 1.7: Embryos with irregular-shaped cell (a), severe cell overlap at 4-cell stage (b),
and large cell-like fragment (c) from time-lapse sequence frames.

of the next higher cell stage. Cleavage frames have motion artifacts that blur cell boundaries.
Occasionally, a cell begins to divide or fragment, then is reabsorbed in a later frame.

1.4.3 Morula and Blastocyst Stage Onset

Onset of certain embryo development stages has shown to be correlated with blastocyst
quality and likelihood of implantation, including morula [16, 48, 60] and blastocyst [16, 30]
stages. Examples of embryo sequence frames at pre-morula (a.k.a. cleavage), morula, and
blatocyst stages are shown in Fig. 1.8. Detecting at which frame these development stage
onsets occur can be used to predict whether an embryo shows normal development progress
and its likelihood of leading to positive pregnancy outcome.

(a) (b) (c)

Figure 1.8: Typical cleavage (pre-morula) (a), morula (b), and blastocyst (c) stage embryo
time-lapse sequence frames.

Automating development stage detection of day 4-5 embryos is difficult due to small
variation between stages, as shown in Fig. 1.9. Predicting onset of morula stage is even more
challenging because cell adhesion of an embryo throughout morula stage often increases and
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decreases, sometimes reverting in appearance to cleavage stage. Similarly, blastocyst stage
embryos can contract such that they appear more like a cleavage or morula stage embryos.

(a) (b) (c) (d)

Figure 1.9: Example of frames directly before (a) and after (b) morula stage onset (92.9
hr post-fertilization), and before (c) and after (d) blastocyst stage onset (109.2 hr post-
fertilization). Differences are small between consecutive frames at stage onsets.

1.5 Automating Embryo Quality Assessment

Automating embryo quality assessment can provide robust, objective, and standardized
predictions of embryo quality and potential pregnancy outcome. Using traditional image
processing techniques to extract high-level information from embryos is challenging because
the images are grayscale with weak structure borders. Artifacts from overlapping objects,
motion, or neighbouring structures can complicate analysis. Differences between embryos
and image acquisition adds further variation to account for. Deep learning methods can be
trained on examples of embryo images with desired outputs to perform automated assess-
ment while learning to overcome these challenges.

Deep learning techniques are at the forefront of many image analysis tasks, includ-
ing classifying images into classes, detecting objects of interest, and segmenting specific
structures. These techniques rely on having sufficient examples of images and their desired
outputs to learn through an iterative process of how to perform the desired task.

In particular, convolutional neural networks (CNNs) [38], [74], [69], [27] were hugely
successful at the ImageNet Large Scale Visual Recognition Challenge [63] and have since
been used extensively in visual recognition tasks. An example CNN architecture (VGG16)
is shown in Fig. 1.10. They contain a series of 2D convolution filters, non-linear activations
(e.g. rectified linear unit or ReLU), and spatial pooling/downsampling operations to encode
spatial features from the input image. 1D fully connected layers use these featuresto assign
probabilities of the input image belonging to different classes. All layers have randomly
initialized parameters (i.e. weights) that are adjusted by backpropagating an output error
between predicted and manually annotated outputs.

For classification, it is straightforward to leverage information from CNNs pre-trained
on a large-scale database (e.g. ImageNet) and transfer the knowledge to a different dataset
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Figure 1.10: VGG16 architecture consisting of convolution, spatial pooling (downsampling),
and fully connected layers with non-linear ReLU activation [8]. Numbers indicate height×
width× depth of the spatial features at each layer of the network.

(e.g. medical image classification). Model weights can be fine-tuned for a medical image
classification task with a shorter training period (fine-tuning) on the desired dataset. By
starting with parameters already optimized for a different image classification task, training
time is greatly reduced. Additionally, reasonable classification performance can often be
obtained on datasets where the lack of training data prevents model convergence when
training from randomly initialized weights.

CNNs can also predict outputs of the same size as the input image, which is common
for image segmentation and registration tasks. These networks encode the input image
into a latent space representation then decode these features into a high-resolution a map
corresponding to where structures of interest are located. CNNs have been successfully
trained for various medical image analysis tasks including classification via transfer learning
[77], 2D image segmentation [62] and 3D volume segmentation [47], landmark localization
[25], [85], and image registration [5], [4].

Although deep learning methods show promise for many medical image analysis tasks,
their application for automating embryo image assessment poses several challenges. Datasets
often have a small number of samples since individual clinics perform relatively few pro-
cedures per year and sharing data between facilities is restricted. Embryo image quality
is limited by acquisition capability. Embryo images are a single 2D focal plane of a 3D
structure, potentially missing relevant information from adjacent depths or different angles.

Despite the challenges for automated embryo image assessment, deep learning-based
techniques are utilized in this thesis to extract morphology scores from blastocyst images
and morphokinetic parameters from embryo time-lapse sequences. Images and time-lapse
sequences were acquired and annotated at PCRM and the algorithms were developed ret-
rospectively. Blastocyst morphology grades were predicted for ICM, TE, and BE and can
be directly used to assess blastocyst quality. Cell centroid coordinates and cell counts were
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predicted in 1- to 4-cell time-lapse sequence frames and can be used to extract cell stage
onset and duration as well as cell tracking. Morula and blastocyst stage onset frames were
predicted in time-lapse sequences and can be used to assess if an embryo’s development
time is within normal range.

1.6 Thesis Outline

The remainder of this thesis is organized by embryo assessment task. Each task aims at
extracting different morphological or morphokinetic parameters that can be used to assess
embryo development progress or quality. Strategies are proposed to address issues of limited
training data, dataset class imbalance, and image and annotation quality.

1.6.1 Blastocyst Grading

Quality of embryos’ ICM, TE, and expansion progress measured with the Gardner grading
system are morphological parameters associated with implantation potential. In Chapter 2,
an image classification network is proposed to assign ICM, TE, and BE grades to blastocyst
images. A multi-label multi-class classification network simultaneously performs all three
grading tasks, compared to previous work that simplifies the task to binary good versus
poor quality classification or uses three separate networks. The network base is pre-trained
on a large image classification database then fine-tuned on blastocyst images. Severe class
distribution imbalance in ICM grade is addressed by leveraging information from classifica-
tion of other grades. This was the first (known) attempt at assigning scores for ICM, TE,
and BE quality simultaneously by a single CNN. The grades predicted by this algorithm
could be used to assess likelihood of leading to positive implantation outcome.

1.6.2 Cell Centroid Localization and Cell Counting

Onset and duration of early embryo cell stages are morphokinetic parameters that are
predictive of embryonic development and implantation potential. In Chapter 3, a structured
regression network is proposed to detect embryonic cell centroids in embryo time-lapse
sequences. A convolutional regression network is trained on Gaussian-annotated centroid
maps to localize embryonic cell centroids. Different from previous works, spatio-temporal
relationship between sequence frames is incorporated through additional inputs to exploit
natural cell stage development and spatial constraints during training. The detected cell
centroids are counted for each frame to determine embryo cell stage. The embryonic cell
centroids predicted by this algorithm could be used for tracking cell movement and cell
count for each frame could be used to determine cell stage onset and duration.
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1.6.3 Embryo Stage Classification and Onset Detection

Onset of morula and blastocyst development stages are morphokinetic parameters that are
predictive of an embryo’s implantation potential. Automating development stage detection
of day 4-5 embryos is especially difficult due to small variation between stages. In Chapter
4, an image classification network is proposed to detect embryo development stage with new
learning strategies that explicitly address challenges of this task. Synergic loss encourages
the network to recognize and utilize stage similarities between different embryos. Short-
range temporal learning incorporates chronological order to embryo sequence predictions.
Image and sequence augmentations complement both approaches to increase generalization
to unseen sequences. Embryo stage classification predictions across each sequence are re-
structured to follow monotonic non-decreasing order. The minimum index at which each
stage occurs is then chosen as the stage onset. The morula and blastocyst onset times pre-
dicted by this algorithm could be used to assess embryo development progress and likelihood
of leading to positive implantation outcome.

1.7 Scholarly Contributions

Throughout this program, two peer-reviewed conference papers were published. Another
peer-reviewed conference papers was submitted and is currently under review. They are
listed below in chronological order, corresponding to work described in Chapters 2, 3, and
4, respectively.

1. Lockhart, Lisette and Saeedi, Parvaneh and Au, Jason and Havelock, Jon. Multi-Label
Classification for Automatic Human Blastocyst Grading with Severely Imbalanced
Data. In 21st International Workshop on Multimedia Signal Processing, pages 1-6.
IEEE, 2019.

2. Lockhart, Lisette and Saeedi, Parvaneh and Au, Jason and Havelock, Jon. Human
Embryo Cell Centroid Localization and Counting in Time-Lapse Sequences. In 25th

International Conference on Pattern Recognition, pages 8306-8311. IEEE, 2021.

3. Lockhart, Lisette and Saeedi, Parvaneh and Au, Jason and Havelock, Jon. Embryo
Development Stage Onset Prediction from Time-Lapse Imaging with Synergic Loss
and Temporal Learning. Submitted to 24th International Conference on Medical Image
Computing & Computer-Assisted Intervention, 2021.
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Chapter 2

Blastocyst Grading

2.1 Problem Description

Assessing the development progress and quality of blastocyst ICM and TE structures, and
expansion can be used to rank embryos for implantation in an IVF treatment cycle. This
is currently performed by visual assessment, with grades commonly assigned according
to the Gardner grading system. Manual grading is prone to subjectivity between expert
embryologists due to large biological variation and interpretation of the grading criteria.
The goal of this project is to develop an automated algorithm for assigning quality scores
to embryo ICM, TE, and BE from single images. The algorithm must be able to distinguish
biological variation between multiple grades using a small, severely imbalanced training set.

2.2 Related Work

A pre-trained deep CNN was fine-tuned to classify blastocyst images into good or poor
quality with high accuracy achieved by aggregating predictions over several focal depths [35].
Blastocysts were partitioned into three categories (good, fair, and poor quality), but the
middle (fair quality) class was disregarded. In practice, there can be multiple good quality
blastocysts per cycle and multiple-grade blastocyst scoring can determine those with highest
implantation potential. A similar method predicted blastocyst quality according to the
Gardner grading system, assigning scores for ICM, TE, and BE [10]. A separate network
was optimised for each grade, requiring three models and three training periods to perform
the blastocyst grading.

Blastocyst TE has been semi-automatically segmented using ellipse fitting by direct
least squares and variational level set algorithm [66]. TE segmentation was fully automated
using Retinex algorithm and level set segmentation [70], and texture analysis with watershed
segmentation [64]. The ICM component has been segmented using image processing methods
including variational level set algorithm [65] and texture analysis [64], [52]. Deep CNNs have
also been used to segment blastocyst ICM, including fully convolutional networks [34] and
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stacked dilated U-Net [55]. These later works show promise that deep learning can be
extended to the small blastocyst image dataset in this thesis.

Transfer learning has been applied in many medical image classification tasks thanks to
publicly available network weights from pre-training on ImageNet [63] database. Training
networks with transfer learning versus random weight initialization were shown to improve
trained convolution kernels for thoraco-abdominal lymph node detection and interstitial
lung disease classification [68] and be more robust to amount of data available for train-
ing [76]. Transfer learning was used for skin cancer detection from skin lesion images [18]
and pneumonia detection from chest x-rays [58]. Following these popular implementations,
transfer learning was used for embryo image analysis with classification of blastocyst image
quality [35], [10] and classification of embryonic cell stage [50]. Due to previous success of
transfer learning and the limited number of blastocyst images for training, transfer learning
was used as the foundation of blastocyst grading in this work.

Multi-class classification on imbalanced datasets has been approached for deep neural
networks using cost sensitive learning [32], [78] and majority to minority class knowledge
transfer [79]. Cost sensitive learning is suitable single-label classification, but cannot directly
translate to multi-label classification problems with varying class distributions for each label
and combinations of classes for each sample. Transferring class knowledge from majority to
minority classes can be used for large-scale classification problems with sufficient variation
between classes, but blastocyst classification typically involves small datasets with a small
spatial variation between classes. Stratified sampling is used in this work to address class
imbalance to ensure an appropriate amount of class sample representation during training.

2.3 Proposed Methods

To assign quality scores to blastocyst images, image pre-processing is first performed to re-
move artifacts and improve data quality for analysis. Baseline image classification networks
are trained for single-grade blastocyst scoring. A single multi-grade blastocyst image scor-
ing network is proposed to improve classification performance and the training pipeline.
Stratified sampling is performed to ensure representation of minority classes for training
and testing.

2.3.1 Image Pre-processing

Image pre-processing is used throughout this thesis to isolate the most important image
information for embryo assessment (i.e. the embryo) and eliminate artifacts. This is a par-
ticularly important step for embryo image assessment tasks since datasets are small and so
low quality samples cannot be omitted from or compensated for in training.
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Most images in the dataset (those collected from PCRM) were 3-channel images with
image height and width of 479 and 720 pixels, respectively. The remaining images collected
from online sources were either 3-channel or 1-channel and their height and width varied.

Figure 2.1: Typical blastocyst image with labeled morphological components (ICM, TE,
and ZP), and common artifacts (image borders, scale bar, and neighbouring embryos).

Every unprocessed blastocyst image (from PCRM) contained rows and columns of black
pixels along their border. This was a sharp intensity change from the adjacent gray values
and could influence segmentation techniques. They were therefore removed by cropping the
image borders by a fixed number of pixels.

A green scale bar in the bottom right corner of each image is used by embryologists
to identify the size of blastocysts. Again exhibiting a sharp intensity change compared to
surrounding pixels, these extraneous pixels were replaced with more representative values.
Scale bar pixels were found by scanning all the pixels in the bottom 7/8 rows and left 1/2
columns. They were identified when red and blue channels had a pixel intensity value of 0,
and the green channel had a value of 255. Green scale bar pixels were replaced with the
mean intensity value in a 5x5 window, excluding neighbouring green pixels. All images were
converted to grayscale for consistency across the dataset.

To segment the relevant embryo image area, sobel edge filtering followed by morpholog-
ical operations were applied to create a binary segmentation mask of blastocyst inner ZP
area. To remove small sections that disrupted the elliptical shape along the outer contour,
the mask was subtracted from its convex hull and the remaining pieces were dilated. The
inverse of this mask was multiplied by the largest connected component, thereby removing
sections with sharp orientation change from the elliptical contour tangent lines. The largest
connected component was again isolated and filled.
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The binary segmentation mask of the inner blastocyst was dilated by 20% of the total
blastocyst area to ensure any ZP classified as background was included in the cropped
image. An ellipse was constructed using the eccentricity, orientation, minor axis length, and
major axis length of the dilated mask using Eq. (2.1), where a and b are major and minor
axis lengths, respectively, h and k are shifts in the x and y directions, respectively, and α is
orientation angle measured from x axis. This eliminated commonly occurring conical edges
the convex hull was susceptible to.

1 = ((x− h) cosα+ (y − k) sinα)2

a2 + ((x− h) sinα− (y − k) cosα)2

b2
(2.1)

The elliptical mask was multiplied by the grayscale image and cropped to the smallest
bounding square. Zero padding was added to the image wherever the ellipse exceeded image
dimensions. A square crop shape was chosen over rectangular as image inputs are square
in CNN-based image classification tasks. Pixels surrounding the blastocyst mask were set
to zero (black) rather than using actual image values. This ensured all cell fragments and
neighboring embryos were excluded. Image pre-processing steps are shown in Fig. 2.2.

(a) (b)

(c) (d)

Figure 2.2: Image pre-processing steps: original image (a), borders and scale bar removed
and converted to grayscale (b), blastocyst segmentation map with red box indicating crop
region (c), and final centred and cropped image (d).

Images were resized to height and width of 320×320 pixels when used as network input.
This standardized the network input size and was found to be large enough to capture fine-
grained details necessary for classification. Single-channel grayscale images were repeated
to create 3-channel images to match the pre-trained CNN input dimensions.
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2.3.2 Single-label Multi-Class Networks

A baseline was established using separate networks for ICM, TE, and BE grading (i.e. single
category, multiple scores). Three state-of-the-art deep CNNs pre-trained on the ImageNet
database were compared for this task: VGG16 [69], ResNet50 [27], and InceptionV3 [75].
VGG16 is comprised of stacks of layers each with 3× 3 convolution kernels that increase in
number of feature maps with increasing network depth. ResNet50 utilizes identity connec-
tions in parallel with residual blocks to facilitate information travel through the network.
InceptionV3 is a set of stacked modules comprised of different sized convolution filters in
parallel to incorporate additional context at each stage. The amount of trainable weight pa-
rameters excluding final fully connected layers is 14.7 million, 23.6 million, and 21.8 million
for VGG16, ResNet50, and InceptionV3, respectively.

Pre-trained weights in convolution layers form the base of each network. Final feature
maps, obtained by passing the input images through the base, are pooled to a scalar value
for each channel by assigning the maximum value of each feature. These pooled nodes are
connected to a 32-node ReLU-activated fully connected layer with 50% dropout [73] rate.
In each training iteration (forward pass of input data and backward pass of output error),
16 nodes are randomly chosen to be disconnected from the network. At test time, the 32
nodes’ weights are halved since there are twice as many nodes. This strategy prevents the
network to rely on relationships between nodes and avoid learning weights too specific to
the training data.

The 32-node layer is connected to a 3-node softmax-activated output layer, correspond-
ing to three quality scores in a blastocyst grade. Only the last three convolution layers were
fine-tuned so the network would avoid learning combinations of features specific to training
data. When training the larger ResNet50 and InceptionV3 model bases, there were no layers
left as trainable since they were much more prone to overfitting.

2.3.3 Multi-label Multi-Class Network

Training separate networks for the different blastocyst grading tasks was inconvenient as
models were trained individually and experimental results and analysis were computed
separately. There was also redundancy as features were encoded from the exact same set
of images multiple times. Ideally, a single network should perform all three grading tasks
simultaneously to make better use of encoded network features, reduce training time, and
streamline experimental analysis.

A single network, shown in Fig. 2.3, was proposed to classify all grades concurrently
(i.e. multiple categories with multiple scores). Similar to the baseline network, pre-trained
VGG16 convolution and pooling layers encoded image features. However, a multi-branch
classifier used the pooled feature maps to predict quality scores for all grades in one pass.
Each branch had its own set of layers and could therefore be optimized separately. Each
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classifier branch was similar to the single-label network fully connected classifier, except
an 8-node layer was added between the 32-node and output layers. This facilitated a more
specific mapping of the shared convolutional features to the individual grade outputs.

Each output layer had an individual error function with respect to the ground truth
annotation for its respective grade. Parameter weight updates in the fully connected portion
were based solely on the error backpropagated from their respective blastocyst grade label.
Parameter weights from the trainable portion of the convolution layers were updated as
average backpropagated error from all three labels. This was also a form of regularization
to convolution layer weights to prevent overfitting to the training data.

Figure 2.3: Blastocyst grading network diagram with size and number of convolution layer
feature maps and fully connected layer nodes. Input images are fed through a series of
convolution and pooling layers shared between grading labels. Extracted feature maps are
used by separate fully connected classifier branches to assign ICM, TE, and ZP grades
simultaneously.
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Training a single multi-label classification network required approximately 1
3 the num-

ber of network parameters and training time compared to three single-label classification
baseline networks.

2.3.4 Network Training Details

All networks were trained using categorical cross-entropy loss with scalar grading labels
converted to one-hot encoded binary arrays. RMSprop optimizer [15] was used to update
parameters using an initial learning rate of 1× 10−6, scheduled to decrease if no improve-
ment to 0.3× its current value. Training was done for 500 epochs with early stopping.

During training, random data augmentations were performed each epoch to add sample
variation. Images were rotated between angle of 0-360°, shifted horizontally and vertically
between image width and height of 0-15%, zoomed between image size of 0-15%, and lin-
early mapped by shear transformation between image size of 0-5%. These augmentations
add variation to each sample to artificially increase the amount of data for better model
generalisation. During training and testing, each sample was subtracted by its mean and
divided by its standard deviation to reduce the effect of illumination differences.

2.3.5 Stratified Sampling

Ideally, classification datasets should have the same amount of samples per class during
training to ensure equal likelihood of each sample belonging to any class. Unfortunately,
ICM grade exhibits severe class distribution imbalance, with only 1.0% of image samples
belonging to the minority class. Classification networks trained with imbalanced data receive
more samples from the majority class and often use class probability rather than data
features to make predictions. It is possible to achieve high ICM classification performance
by simply predicting all samples as majority class A.

To ensure that samples from the minority ICM class were represented throughout ex-
periments, the data was stratified by partitioning samples according to their ICM grade.
Samples in majority and middle ICM classes ’A’ and ’B’ were split into sample sets accord-
ing to a set percentage of the total data. However, the 7 available samples in minority ICM
class ’C’ were fixed to 3, 2, and 2 for training, validation, and test sets, respectively. Samples
assigned to each set were chosen randomly by data shuffling before each experiment. Al-
though this technique was not required for the single-label baseline models performing TE
and ZP grading, the same stratification of ICM sample distribution was used to compare
results with less bias across models.

2.4 Experimental Results

MATLAB R2018b was used for blastocyst grading image pre-processing. Deep neural net-
works were trained using Keras 2.2.4 framework with TensorFlow 1.11 backend.
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2.4.1 Dataset

Images for automatic blastocyst grading were collected and labeled by two embryologists
at PCRM. Of the 704 total images, 674 were collected at from the clinic between 2012
and 2018, and the remaining 30 images were gathered from online sources. Images were
acquired using an Olympus IX71 inverted microscope. The sample distribution for each
grade is shown in Table 2.1. Since the images collected from PCRM were from embryos
that were implanted, the majority of blastocyst images had high ICM and TE grades and
very few had ICM or TE grade C.

Table 2.1: Blastocyst grade distribution for 704 images. Each image has 3 grades. Majority
classes are in bold.

ICM TE BE
A 507 (72.0%) A 382 (54.3%) 4 248 (35.2%)
B 190 (27.0%) B 268 (38.1%) 3 300 (42.6%)
C 7 (1.0%) C 54 (7.6%) 2 156 (22.2%)

2.4.2 Setup

The classification performance was measured using 3-fold cross-validation. The dataset was
randomly split into training (70%), validation (15%), and test (15%) sets within the strat-
ified sampling constraints. Training and evaluation was performed three times per experi-
ment with a different combination of samples across the sets in each fold.

Confusion matrices show how images were classified, with correct predictions along
the diagonal. Accuracy, precision, and recall averaged over each grade label show overall
performance. Accuracy was calculated by globally dividing true positive predictions in all
classes by the total number of samples, thereby weighing all predictions identically. Precision
and recall were computed for each class individually, then each were averaged each across
the three classes. The equation for accuracy is given in Eq. (2.2), and equations for precision
and recall are given in Eq. (2.3). TPi, FPi, and FNi are the numbers of true positive, false
positive, and false negative predictions, respectively, belonging to class i, and Nsamples is
the total number of samples in the set.

Accuracy =
∑3

i=1 TPi

Nsamples
(2.2)

Precision = 1
3

3∑
i=1

TPi

TPi + FPi
Recall = 1

3

3∑
i=1

TPi

TPi + FNi
(2.3)
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2.4.3 Quantitative Results

Confusion matrices of outputs from baseline and proposed networks are presented in Table
2.2. The proposed multi-label classification network with VGG16 base had the most cor-
rectly predicted samples in all BE grade classes and two TE grade classes. It was the only
network to correctly assign TE grade C class samples. VGG16 baseline network classified
all samples to the ICM majority class, and had the most correctly predicted samples in TE
grade B class. ResNet50 was the only network to correctly classify an ICM grade C class
sample and also correctly classified the most ICM grade B class samples. In all networks,
majority class samples were correctly classified more often and minority class samples of
ICM and TE grades were almost entirely misclassified.

Table 2.2: Confusion matrices of 318 images across 3 test folds. Correctly predicted samples
are in blue and highest number of correctly predicted samples per class are bold.

Model
Actual Classes

Label ICM TE BE
Class A B C A B C Class 4 3 2

Pr
ed

ic
te
d
C
la
ss
es

ResNet50 [27]
3×Single-Label

A 116 50 2 121 82 20 4 18 58 44
B 83 24 3 40 28 9 3 11 21 35
C 29 10 1 12 6 0 2 33 61 37

InceptionV3 [75]
3×Single-Label

A 203 79 6 89 93 10 4 6 7 11
B 18 2 0 60 53 13 3 25 60 54
C 7 3 0 0 0 0 2 36 76 43

VGG16 [69]
3×Single-Label

A 228 84 6 103 46 2 4 29 11 0
B 0 0 0 66 78 23 3 45 103 18
C 0 0 0 0 0 0 2 0 24 88

VGG16 - Multi-Label
(Proposed)

A 214 63 4 151 57 0 4 57 9 0
B 14 21 2 21 59 19 3 17 113 11
C 0 0 0 0 7 4 2 0 21 90

Overall classification accuracy, precision, and recall are summarised in Table 2.3. Pre-
trained ResNet50 and InceptionV3 baseline models did not adapt well to the task of blas-
tocyst grading. Scoring higher accuracy in ICM and TE grading than BE grading suggests
that performance was improved by assigning more samples to the majority class, which also
caused lower precision and recall scores.

For ICM grading, single-label VGG16 simply assigned all samples to the majority class
for all three folds, indicating the data distribution was the primary prediction factor. How-
ever, TE grading accuracy was higher than assigning all samples to the majority class.
Grading performance of VGG16 was considerably higher on average compared to ResNet50
and InceptionV3 networks, and it was therefore used in multi-label classification.
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Table 2.3: Blastocyst grading performance averaged across grade classes. Accuracy, pre-
cision, and recall are expressed in percentage with standard deviation (SD) across three
folds.

Model ICM TE BE
Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

ResNet50 [27]
3×Single-Label

44.3
±26.9

37.7
±27.2

32.0
±17.4

46.9
±14.8

30.2
±27.6

31.4
±35.5

23.9
±8.1

24.9
±8.7

25.3
±9.0

InceptionV3 [75]
3×Single-Label

64.5
±12.6

26.8
±38.1

30.5
±50.7

44.6
±3.0

29.5
±25.6

32.0
±30.1

34.3
±7.2

32.0
±9.8

30.2
±18.5

VGG16 [69]
3×Single-Label

71.7
±0.0

23.9
±41.4

33.3
±57.7

56.9
±11.5

38.3
±34.9

41.3
±35.8

69.2
±12.0

71.0
±8.4

65.6
±23.3

VGG16 - Multi-Label
(Proposed)

73.9
±2.0

44.3
±39.6

39.6
±48.6

67.3
±4.7

56.1
±18.4

51.0
±35.3

81.8
±3.9

82.5
±3.4

81.7
±6.5

The proposed multi-label classification network achieved the greatest blastocyst grading
performance for all metrics. With imbalanced data in ICM and TE grades, accuracy was
significantly higher than precision and recall, indicating sample distribution influenced pre-
dictions. However, accuracy for these grades were higher than assigning all samples to the
majority class (71.7% and 54.7% accuracy, respectively), demonstrating blastocyst image
features were learned to distinguish between classes.

Precision and recall scores in respective grades were similar, showing a proportional
amount of misclassifications in minority and majority classes. Higher BE grading metrics
show better classification performance was achieved with less bias towards a particular class
when sample distribution is more balanced. Standard deviations for ICM and TE grades
show the train/test split was highly influential in performance of minority classes.

Comparison to Related Work

In [35], the problem of blastocyst grading was greatly simplified by assigning blastocysts into
good, fair, or poor quality classes then disregarding the middle (fair) class. They fine-tuned
an InceptionV1 classification network to assign blastocyst images (with 7 focal planes) as
good or poor quality and reported classification accuracy of 96.94% for a single fold. Their
study included 10,148 embryos with 50,392 images (14× the number of embryos available
for this thesis), with some poor quality embryos omitted to achieve a balanced number of
good and poor quality embryos.

In [10], separate networks were trained for blastocyst grading using Gardner grading
system. They fine-tuned three ResNet50 classification networks to assign ICM, TE, and BE
grades to blastocyst images. They reported classification accuracy of 89.63%, 82.84%, and
95.73% for ICM, TE, and BE, respectively, for a single fold. Their study included 16,201
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embryos with 171,239 images (23× the number of embryos available for this thesis), with
imbalanced distribution of samples across scores.

The classification accuracy achieved in this thesis was 73.9%, 67.3%, and 81.8% for ICM,
TE, and BE, respectively, averaged across 3 folds. Although these results are significantly
lower than in [10], this can be largely attributed to having only 704 embryos (704 blastocyst
images) available for fine-tuning the classifier and cross-validation. The methods proposed
in this thesis performed fine-grained blastocyst grading to enable comprehensive ranking of
blastocysts while also addressing the redundancy of and data distribution imbalance with
fine-tuning three networks to assign different grades to the same images.

2.4.4 Visual Results

Class Activation Maps (CAMs) computed from the network weights show the region(s) in
the input image that contributed towards the final grade prediction. They are computed
by tracing the predicted class node activation back through the network, resulting in a
continuous-valued single channel 2D map with the same height and width as the input image.
These maps can be plotted with a colormap and overlaid on the input image, highlighting
how important each pixel was for classification. CAMs are overlaid on input images from
ICM, TE, and BE grading in Fig. 2.4, where red pixels indicate highest contribution towards
grading prediction and no colour represents no contribution towards grading prediction.

Correct classifications occurred when the corresponding anatomical structure was the
primary focus of the network (i.e. ICM region was red for ICM grading, TE region was red
for TE grading, and ZP or blastocoel region was red for BE grading). Incorrect classifications
occurred when a different structure or small part of a structure not representative of the
whole contributed to the final prediction. Even though images were fed through the same
feature extractor, the grading branches were specialized enough to focus on different regions
of the image for classification.

2.5 Conclusions

An image classification network was trained for assigning scores to single blastocyst images
for ICM and TE quality, and BE. Classification performance of ICM, TE, and BE grading
was improved by combining the three labels into separate network output branches with a
shared feature encoder. Training time and memory footprint were reduced by using a single
network for analysis. As most model parameters were shared for all grades, the bias inherent
to skewed data distribution was reduced by jointly optimizing the three grading tasks.

This algorithm can be used to automatically predict the ICM, TE, and BE grade of
blastocysts according to the Gardner grading system. These scores are morphological pa-
rameters that could be used to assess embryo quality in IVF treatment.
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(a) BE - correct (b) ICM - correct (c) TE - correct

(d) BE - incorrect (e) ICM - incorrect (f) TE - incorrect

Figure 2.4: Input images with overlaid CAMs are shown for correct (top row) and incorrect
(bottom row) examples of ICM, TE, and BE grading from respective network branches.
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Chapter 3

Cell Centroid Localization and Cell
Counting

3.1 Problem Description

Ability to measure at what time (hours posts-fertilization) embryos reach cells stages 2-5
gives insight into their development progress and implantation potential. Time-lapse imag-
ing systems built into incubators enable determination cell stage by visual assessment to
the nearest 15-minute increment. Visually assessing cell stage onset and duration is tedious
and can be prone to error due to biological variation that impedes visibility of cells. The
goal of this project is to develop an automated algorithm for localizing cell centroids in early
embryo time-lapse sequences and extracting the cell count for each frame. The algorithm
must detect cells with varying shapes and levels of boundary occlusion and overlap.

3.2 Related Work

Automated cell counting has been performed via image classification and structured re-
gression methods. These families of methods are compared in Fig. 3.1. While classification
approaches require only image-level annotations, they fail to capture the variation in cell
orientations and mechanics of cell movement throughout development. With pixel-level
annotations, a structured regression approach localizes cell centroids and can be used to
monitor cell movement and orientation.

Semi-automatic embryonic cell detection was performed in [26] and [54], providing valu-
able information on cell size, shape, and symmetry as well as cell stage duration and cleavage
times. In both these works, human annotations (cell centroid locations in [26] and number of
cells in [54]) were required as input to generate cell boundaries. Automatically locating cell
centroids could fully automate multi-instance cell segmentation when combined with either
of these two cell detection approaches. Automatic ellipse-fitting approaches for blastomere
detection were developed in [71] up to 4-cell stage and [33] up to 8-cell stage.
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Figure 3.1: Cell counting in embryo time-lapse sequences via cell classification (middle row)
and cell centroid localization (bottom row).

Embryonic cell stage was first classified using a CNN in dark-field microscopy image
sequences [31]. More recently, embryonic cell stage has been classified in HMC microscopy
time-lapse sequences. Temporal fusion combined extracted features of multiple frames for
single-frame cell stage classification [50]. A single or multiple frames were used as input
for multi-frame cell stage classification with temporal ensembling [43]. Confidence-based
majority voting between two single-frame CNN classifiers improved cell stage classification
over a single CNN [17]. Embryos were localized by combining Haar feature-based cascade
classifier and their radiating lines, then used as input for cell stage classification [59]. A two-
stage network was trained for simultaneous embryo localization and embryonic cell stage
classification with weakly-supervised segmentation [40]. Most recently, a global optimiza-
tion method was used to restructure predicted embryo cell stage classification [44]. While
classification-based embryo staging provides useful information for cleavage time and stage
duration, more insight into embryo quality can be gained by localizing each cell in a given
frame.

In blood cell counting tasks, cells have been represented in microscopy images as den-
sity maps centred at their centroids. Semantic segmentation networks were converted to
regression networks by changing the final network layer to have continuous output val-
ues conducive to density maps. Counting is performed as the summation of detected cell
centroids from thresholded density maps [82], [51], [80], [3]. A similar regression network sep-
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arated overlapping cells using their density maps for nuclei segmentation in histopathology
images [49].

Embryonic cell counting via centroid localization using a convolutional regression net-
work was introduced in [53] and extended in [56]. This network utilized a ResNet50 feature
encoder with Atrous Spatial Pyramid Pooling [9] to generate a rich set of low resolution
features. Encoded features were reconstructed into a high resolution density map by Pro-
gressive Upsampling Convolution. The cell centroid localization method was validated on a
small dataset of selected frames with clear cell distinction and lacked challenging frames near
cell cleavages that occur frequently in time-lapse sequences. Cell centroid masks were com-
puted by Gaussian-fitting to cell segmentation masks. The cell centroid annotation shape,
size, and orientation varied proportionally with each cell, providing extra information in the
loss during cell centroid localization training.

Explicitly adding spatial context through attention blocks [28] has proven successful
in several visual recognition tasks, including classification [28], semantic segmentation [20],
and super-resolution [88]. In convolution layers with many channels, attention blocks guide
contribution of local features by weighting each channel by a scalar value determined by
higher resolution features. In this work, attention blocks incorporate spatio-temporal infor-
mation from current frame and secondary input images into encoder layers. Low resolution
features are emphasized or muted based on their association to cell centroid locations at
the previous frame and cell movement between frames.

The work in this thesis builds off the method in [56] with the following differences:

• The fully convolutional regression network architecture was scaled down in depth
(number of layers) and width (number of channels).

• Dilated convolution layers were implemented in parallel instead of cascaded.

• Additional inputs (previous frame prediction and optical flow diagram between frames)
were incorporated into attention blocks in the regression network.

• A data sampling strategy was developed for the additional inputs.

• Cell centroid masks were generated from dot-annotations instead of cell segmentation
masks.

3.3 Proposed Methods

To detect embryonic cell centroids, image pre-processing is first performed to remove highly
salient embryo well regions and improve data quality for analysis. A fully convolutional
regression network is trained to localize cell centroids from density map representations of
cell centroid pixel coordinates. Temporal relationship between adjacent sequence frames is
encoded by adding the previous frame’s predicted centroid map and optical flow diagram
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pre-computed between consecutive frames as network input. These additional inputs are in-
corporated into squeeze-excitation blocks, providing attention for convolution layer channels
that should be most relevant for analyzing the current frame.

3.3.1 Image Pre-processing

Embryo time-lapse sequence frames are a single-channel images with height and width of
500 pixels. An example embryo time-lapse sequence frame from the dataset is shown in Fig.
3.2. Every embryo time-lapse sequence contains a circular well where the embryo is located.
There is also a light-saturated patch along the upper-half of the inner perimeter of the well.

Figure 3.2: An embryo sequence frame with observations used to develop the image pre-
processing pipeline.

With pre-processing, the embryo and culture media were isolated and the remaining
pixels were cropped out (i.e. set to zero). The cell centroid localization algorithm could
therefore process only the relevant pixels and ignore potentially unfair cues like the times-
tamp in the bottom-right corner. The sequence frame pre-processing steps are shown in Fig.
3.3 and were as follows:

1. The 2 largest connected components of brightest and darkest pixels (corresponding to
upper and lower well boundaries) were isolated. Pixel intensity values were thresholded
and connected components were refined with morphological operations.

2. Connected components were joined along the minimum distance line between compo-
nents on the left and right sides. The top component bottom perimeter was linked to
the bottom component top perimeter using geometric constraints.

3. The embryo frame was multiplied element-wise to the segmentation mask, thereby
eliminating image patterns from the microscope as well as well number and timestamp.
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Lastly, the microscope well containing the embryo was centred by cropping to its
smallest bounding rectangle.

(a) (b) (c) (d)

Figure 3.3: Image pre-processing steps for cell centroid localization: original image (a),
largest bright and dark components (b), embryo area mask (c), and final centred image (d).

Even with image pre-processing, the task of cell centroid localization remains challenging
due to irregular-shaped cells, cells with occluded boundaries, severely overlapped cells, and
large cell-like fragments.

3.3.2 Fully Convolutional Regression Network

Convolutional structured regression networks encode input images into high-channel low
resolution features through convolution operations and non-linear activation. These fea-
tures are decoded by an inversely proportional set of upsampling operations to construct
a high resolution output map. A single linearly-activated output layer assigns pixel values
that correspond to centroid proximity. The trained network predicts cell centroid location
probabilities, which are thresholded for cell counting.

The embryonic cell centroid localization regression network utilizes a ResNet18 [27]
feature encoder. This is a shallower and narrower encoder than that used in [56], making it
quicker to train on the larger time-lapse sequence dataset and less prone to overfitting to
the many nearly identical frames between cell cleavages.

Since cells naturally change (decrease) in size throughout embryo development, dilated
convolution inception modules [57] are added to encode features at multiple resolutions
without adding more parameters. These modules contained convolution layers with dilation
rates of 1×, 2×, 4×, and 8×, each with 1

4 the number of filters of the previous layer. The
dilated convolutions were performed in parallel instead of in cascade as in [56] due to better
performance seen in [57].

Progressive Upsampling Convolution [56] transforms features from low to high resolu-
tion with explicit emphasize on each network feature size. Multiple pairs of sub-pixel con-
volution - pixel shuffle upsampling operations of inversely proportional upsampling rates
are performed in parallel. Pixel shuffling [67] increases feature resolution while minimising
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information loss of upsampling. The set of high resolution feature maps create a continuous-
valued output density map for structured regression.

As cell centroid annotations are sparse binary maps, they are smoothed with a Gaussian
kernel to increase the amount of non-background pixels. This increases informative feedback
to the network weights during training. These density maps encode background and cell
centroid as low and high pixel values, respectively. The Gaussian kernel size was chosen to
provide maximum nonzero pixels while maintaining separation between cells in the image.

Previously used loss functions for cell counting regression - L2 loss [82], [80], [49] and L1
loss [51], [3] - are ill-suited for embryo cell segmentation where there are few cells (i.e. non-
zero regions) in the image. When the output masks are dominated by the background class,
the network tends to optimize for the trivial solution of predicting all pixels as background.
To address the imbalanced ratio of background pixels, spatially-weighted MSE [56] was
used to penalize incorrect predictions near cell centroids more harshly. The loss, for pixel
coordinates (m,n), is

L(y, ŷ) =
N∑

n=1

M∑
m=1

((ym,n − ŷm,n)2 · ((α0 · ym,n

max y ) + α1))
M ·N

(3.1)

where M is the image height, N is the image width, y is the ground truth smoothed
centroid map, ŷ is the predicted centroid map, and α0 and α1 control the weighting of each
pixel according to their proximity to the nearest ground truth centroid.

3.3.3 Temporal Context Prior

Embryo cell stage is a monotonically non-decreasing phenomenon, which restricts the cell
count at any frame. Spatial location of cells are constrained by their enclosure within the
zona pellucida (a membrane separating inner embryo from outer environment), and embryo
position in the incubator microwell. Knowing an embryo’s cell stage and centroid location(s)
at the previous frame is therefore highly relevant to analyze the current frame. Predicted
cell centroid maps at the previous frame X̂2 were added as a secondary input and incorpo-
rated into encoder attention blocks for cell centroid localization. Compared to [28] where
attention blocks take only features from previous residual block, this module also utilizes
global features from X̂2. Features are concatenated in the squeeze operation. This method
is referred to as Multi-Input I.

Iterating through batches of sequences in parallel will group together samples of similar
cell stage and background appearance. This could bias network gradient updates towards
ideal kernel weights specific to each batch, and not the best weights for the entire dataset.
Diverse batches of images from different cell stages and sequences were selected by sampling
image and predicted map pairs in random order. This was possible by storing the entire
training set of predicted maps after each epoch. This secondary input training strategy is
shown in Algorithm 1. The strategy was similarly applied to validation set sequences. For
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testing, predictions were performed sequentially one frame at a time, using each prediction
as secondary input to the following frame of each sequence.

Algorithm 1: Training with predicted outputs from previous frame
Input: sequence frames X1, predicted centroid masks from previous frame X̂2
Output: centroid masks Y, predicted centroid masks Ŷ
while loss not plateaued do

1 Train on ([x(i)
1 , x̂(i)

2 ],y(i)), i ∈ {2, 3, ..., N} on all sequences in training set for one
epoch

2 Predict on ([x(i)
1 , x̂(i)

2 ],y(i)), i ∈ {1, 2, ..., (N − 1)}
3 Store ŷ(i), i ∈ {1, 2, ..., (N − 1)} as x̂(i)

2 , i ∈ {2, 3, ..., N}

Cell centroid localization maps can have the same values whether they precede frames
with no cell movement or full cell division. They can be misleading as a prediction prior
without indication of cell movement between frames. Optical flow diagrams can contextual-
ize cell movement between frames by approximating cell velocity from changes in brightness
patterns. Object velocity is encoded in 2-channel images with same height and width as the
sequence frames. The 1st and 2nd channels represent movement in the horizontal and ver-
tical directions, respectively. An examples of optical flow diagrams through cell division is
shown in Fig. 3.4 in RGB image format.

Figure 3.4: Optical flow diagrams (converted to RGB images) between consecutive above-
left and above sequence frames. Black borders were added to flow diagrams for clarity. White
pixels indicate no movement and bright pixels indicate large movement between frames.

Optical flow diagrams were added as another secondary input to indicate temporal re-
lationship to the previous frame predicted mask. These inputs were calculated using [14]
between each consecutive pair of frames using TV-L1 algorithm [83] prior to training. The
flow magnitude was clipped to the range [-20, 20]. Flow magnitude normalization was omit-
ted so the network could utilize large changes in cell movement. Global temporal features
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from optical flow diagrams were also concatenated in the squeeze operation of encoder
attention blocks. This is referred to as Multi-Input II.

Cell centroid location predictions at the previous frame and optical flow diagrams were
incorporated into channel attention blocks. Local spatial features from the current frame,
global features from previous frame predictions, and temporal context of optical flow dia-
grams were squeezed into scalar channel descriptors to emphasize relevant features. Network
training procedure is unchanged by adding attention blocks. The network architecture for
Multi-Input II is shown in Fig. 3.5. Multi-Input I has the same network architecture without
optical flow input.

Figure 3.5: Proposed network diagram for Multi-Input II. Spatial features are extracted in
a single encoder branch and are decoded by multiple parallel branches. Secondary inputs
are incorporated into high-channel encoder attention blocks.

3.3.4 Network Training Details

The baseline state-of-the-art medical image semantic segmentation network, U-Net [62],
was converted to a regression network by replacing the output layer with linearly-activated
convolution as performed for cell counting in [80]. In the proposed network, attention block
locations were chosen empirically on high-channel convolution layers (encoder modules 5 and
6) where the number of channels was large enough to incorporate previous frame context
without sacrificing feature encoding capacity. The proposed networks were trained with
Adam optimizer [36] with initial learning rate of 3 × 10−5. The learning rate was reduced
by 0.3 after 15 epochs of non-decreasing loss to a minimum rate of 1× 10−7. Training was
terminated after plateau of non-decreasing loss of 30 epochs. All networks were trained with
spatially-weighted mean squared error (MSE) with coefficients α0 and α1 set to 2 and 0.15,
respectively, for all experiments.
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3.3.5 Cell Counting

Cell centroid regions were found by applying Otsu thresholding to the predicted cell centroid
maps. Connected components in the binary thresholded map were analyzed and any com-
ponents with major axis length greater than double minor axis length were divided into two
regions. These were assumed to be two closely located cells and were separated at midway
along the region’s morphological skeleton (i.e. controlled erosion resulting in a single pixel
representation of the shape). This process is shown in Fig. 3.6. The centre pixel of each
connected component was considered cell centroid. Connected components were summed
for cell count.

(a) (b) (c) (d)

Figure 3.6: Process for dividing closely cell centroids: unprocessed centroid localization
regression map prediction (a), skeleton of Otsu thresholded regression map (b), divided
skeleton (c), post-processed centroid prediction (d).

3.4 Experiments

Embryo time-lapse sequence frames were pre-processed using MATLAB R2018b. Deep neu-
ral networks were trained using Keras 2.2.4 framework with TensorFlow 1.11 backend.

3.4.1 Cell Centroid Localization

Dataset

The dataset contains 108 human embryo time-lapse sequences at 1-4 cell stage collected at
the Pacific Centre for Reproductive Medicine from 2017-2018. A frame was captured every
15 minutes beginning from the start of pronuclear phase to end of 4-cell stage. Cell centroids
were manually annotated following cell stage annotations by expert embryologists. 36,035
cell centroids were annotated, with cell count distribution across dataset and sequences given
in Fig. 3.7 and Fig. 3.8. 3-cell stage in embryo development is much shorter on average than
other stages and was not captured in the imaging interval for some sequences.
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Figure 3.7: Cell count distribution across the dataset. The number of frames at each cell
stage is imbalanced, with significant minority of samples at 3-cell stage.

Figure 3.8: Cell count distribution for each embryo sequence. The number of frames at each
cell stage varies greatly between sequences.
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Cell Centroid Annotation

Unlike [56], no cell segmentation masks were available to generate cell centroid annotations.
Since the number of time-lapse sequence images was much larger than the number of single
frames in [56], only cell centroids were manually annotated to reduce annotation time. To
annotate cell centroids, a image annotation tool (labelImg [42]) was modified for annotating
landmarks in embryo time-lapse sequences. This python graphical user interface (GUI) uses
PyQt5 library to assign image-level labels for classification or bounding boxes for object
detection. Modifications for embryo cell centroid localization included:

• Changing bounding box annotations and outputs to a single point with centroid num-
ber classes

• Changing XML annotation file output format to point coordinates and cell count

• Automatically copying the previous frame’s centroids when moving to the next frame
(if unannotated)

• Adding gridlines to precisely locate cell centroids

The interface automatically saves x,y coordinates to XML file for each frame, automatically
loads any previously saved landmarks from XML files, and enables moving forward and
backward between frames with keyboard shortcuts.

All 36,035 embryo time-lapse sequence frames at 1-4 cell stage were annotated using this
image annotation tool. Since cells have small amount of motion between most non-cleavage
frames, copying centroid annotations from the previous frame when moving to the next
frame greatly reduced annotation time.

Centroid coordinates were converted from the GUI XML output files to binary 2D
masks, where centroid pixels were set to one. Since the number of background pixels vastly
outweighed the number of foreground pixels, the binary centroid maps were converted to
density maps to increase the ratio of foreground to background pixels during training.
Otherwise, the network could get nearly perfect segmentation performance by the trivial
solution of predicting every pixel as background. Convolutional filtering with a Gaussian
kernel of σ = 1.5 was applied to the dot centroid maps and saved prior to training.

Setup

Training, validation, and test sets were established by randomly selecting 70%, 15%, and
15% of sequences, respectively, so that all frames in a sequence were contained in one
set. 5-fold cross-validation was performed to reduce any bias from the selection of test
set sequences. Dataset rolling and network training were repeated 5× for cross-validation.
Results reported are the average across 5 test sets. Inputs and output ground truth masks
were resized to 256× 256 pixels. Previous mask inputs were initialised as zero matrices.
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Figure 3.9: Cell centroid annotation GUI for label embryonic cell centroid pixels.

Cell centroid localization performance was first evaluated by measuring Euclidean dis-
tance (in pixels) to the nearest ground truth centroid on a per-cell basis. Lower distance
error indicates predicted cell centroids are closer to their associated ground truth centroids.

Quantitative Results

Cell centroid distance error at each cell stage and sample-weighted average are presented in
Table 3.1.

Table 3.1: Embryo cell centroid localization performance - distance error.

Model Distance to nearest centroid (in pixels)
1-cell 2-cell 3-cell 4-cell Total

U-Net [62] 2.88 4.25 4.72 4.43 4.24
Cell-Net [56] 2.97 4.14 4.94 4.68 4.38
Multi-Input I (Proposed) 2.51 3.98 4.73 4.28 4.05
Multi-Input II (Proposed) 2.57 3.95 4.35 4.20 3.98

Cell centroid localization performance was also evaluated by measuring the rate of cell
detection on a per-cell basis. Embryonic cell centroids were considered detected if they were
< 5 pixels from the nearest ground truth centroid. A near miss or total miss was assigned if
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predicted centroids were ≥ 5 and < 8 pixels or >= 8 pixels, respectively, from the nearest
ground truth centroid. Cell centroid detection rates at each cell stage and sample-weighted
average are presented in Table 3.2.

Table 3.2: Embryo cell centroid localization performance - detection rate.

Model Cell detection rate (in %)
Detection Near Miss Total Miss

U-Net [62] 80.0 11.7 8.3
Cell-Net [56] 77.1 11.9 11.0
Multi-Input I (Proposed) 80.1 11.0 8.9
Multi-Input II (Proposed) 80.9 11.3 7.8

Cell-Net, the previous state-of-the-art embryonic cell centroid localization and counting
network, achieved lower scores than U-Net architecture in several categories. This was likely
caused by having far more trainable parameters, and therefore overfitting to the training
set. Empirically, training U-Net with unweighted MSE loss [80] could not produce Gaussian-
shaped density maps, emphasising the importance of spatially-weighted loss function in [56].

Centroid localization distance error was smallest and cell counting accuracy was highest
for all networks at the 1-cell stage, where samples had little or no cell overlap or fragmen-
tation. Although 4-cell stage had the most samples, centroid localization performance was
lower for some methods due to the complexity of cell orientations, cell overlap, fragmenta-
tion, and error propagated from previous frames.

Secondary network inputs reduced how far predicted cell centroids were from correspond-
ing ground truth centroids. Adding previous frame predicted centroid masks (Multi-Input
I) reduced centroid localization distance error at 1-, 2-, and 4-cell stages over baseline net-
works. Additionally incorporating flow diagrams (Multi-Input II) further improved distance
error at 2-, 3-, and 4-cell stages. While Multi-Input I showed comparable cell detection rate
to U-Net, the rate of correct detections increased and rate of total misses decreased with
added cell movement context in Multi-Input II.

Visual Results

Qualitative results in Fig. 3.10 compare algorithm performance on samples with challenging
textures and cell orientations. Overall, cell centroid distance to ground truth are closer in
proposed methods, with fewer falsely identified cells. Since the network is predicting a
Gaussian distribution for each cell centroid, predicted centroid regions smaller than the
ground truth size indicate less confidence that a cell is present and those larger indicate less
confidence in cell boundary.
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(a) (b) (c) (d) (e)

Figure 3.10: Qualitative cell centroid localization performance with ground truth (a), U-Net
(b), Cell-Net (c) Multi-Input I (d), and Multi-Input II (e). Sequence frames are overlaid with
predicted centroids, where red pixels indicate highest probability of cell centroid location.
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Comparison to Related Work

The cell centroid localization methods in [56] and [80] were trained and tested on the dataset
created for this thesis work. In blood cell counting tasks, there are many more cells in each
input image, so the ratio of foreground to background pixels is more balanced. The U-Net
proposed for cell centroid regression in [80] performed best at the 4-cell stage, when there
was the highest amount of foreground pixels.

The embryonic cell centroid network in [56] was trained on a small dataset (176 images
taken from traditional incubator) that lacked the many nearly identical frames between
cleavages contained in time-lapse sequences. It was also trained on Gaussian-fitted segmen-
tation mask annotations, which contain more information about the cell size and shape
than Gaussian-filtered dot annotations used in this thesis. It therefore did not perform as
well on the dataset used in this thesis.

The methods proposed herein aimed to address the challenges of training with time-lapse
sequences while making use of the temporal relationship between consecutive frames.

3.4.2 Cell Counting

Setup

Since the cell centroid map predictions from cell centroid localization experiments were used
for cell counting, the same dataset partitioning from Section 3.4.1 were used here. The cell
count for each frame was determined from the sum of centroids in the annotation XML file.

Cell counting performance was measured with classification accuracy:

Cell Stage Acc. = TPi + TNi∑S
s=1Ns

, i ∈ {1, 2, 3, 4}

Total Acc. =
∑4

i=1 TPi∑S
s=1Ns

(3.2)

where TPi and TNi are true positive and true negative predictions for cell stage i, respec-
tively, S is the number of sequences in the test set, and Ns is the number of frames in
sequence s.

Results

Cell counting accuracy is presented for each cell stage in Table 3.3. The total accuracy is
averaged across all the samples in the test set.

The baseline U-Net tended to over-detect cells at 2- and 3-cell stage. U-Net therefore
showed higher cell counting accuracy at the 4-cell stage, and lower accuracy at the 2- and
3-cell stage. Conversely, the baseline Cell-Net tended to under-detect cells at 3- and 4-cell
stages. Cell-Net therefore showed higher cell counting accuracy at the 2-cell stage, and lower
accuracy at the 3- and 4-cell stage. Multi-Input I had a milder tendency to under-detect
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Table 3.3: Embryo cell counting performance per cell stage.

Model Cell Stage Prediction Accuracy (in %)
1-cell 2-cell 3-cell 4-cell Total±SD

U-Net [62] 92.8 67.4 61.6 78.4 77.7±8.6
Cell-Net [56] 96.2 81.8 67.5 62.3 77.5±6.8
Multi-Input I (Proposed) 97.7 78.8 69.2 68.6 79.3±6.6
Multi-Input II (Proposed) 95.7 74.7 69.0 75.8 80.2±3.5

cells at 4-cell stage, but scored the highest counting accuracy at 1- and 3-cell stages. While
Multi-Input II did not score the highest counting accuracy at any single cell stage, its
balanced performance across all stages led to highest overall accuracy.

Lower cell counting results with Cell-Net were likely due to overfitting to certain cell
orientations during training. It is easier for a network with a greater number of parameters
to fit better to nearly repeated frames where there is little cell movement, thereby reducing
generalization to new sequences during testing. The standard deviation across folds was
reduced with Multi-Input II.

Effect of Artifacts

The presence of artifacts had a significant effect on performance. The actual 4-cell stage
frames that were mis-counted as an earlier cell stage by Multi-Input I were investigated in
more detail. As seen in Fig. 3.11, there were a small number of sequences that contributed to
the majority of incorrectly counted cells. This is an indication that the network was sensitive
to image quality since sequences with artifacts had many incorrect cell counts throughout
4-cell stage.

Comparison to Related Work

Early automated embryonic cell counting was performed by blastomere detection using
ellipse-fitting approaches from cell boundary annotations in [71] and [33]. The method in [71]
was evaluated on only 40 images from a single source. The method in [33] was evaluated
on 468 images from three sources. Their time-lapse sequence dataset portion was restricted
to no more than one image per cell stage per sequence (thereby omitting multiple difficult
samples occurring in the same sequence). However, they reported an average overall quality
of 83% for 1-8 cell stage, higher than the overall accuracy of 80.2% for 1-4 cell stage achieved
in this thesis. This shows the value of using more time-consuming cell boundary annotations
over cell centroid annotations.

Classification-based cell counting approaches often show very weak performance for 3-
cell stage (e.g. 55.15% accuracy in [44] and 23.91% accuracy in [31]). The small amount
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Figure 3.11: Summary of 4-cell stage frames mis-counted per sequence. The median number
of frames incorrectly classified per sequence (indicated by horizontal line) was 7 frames
while the mean (indicated by an x) was 14.59 frames. A small amount of sequences had a
high number of mis-counted 4-cell frames.

of training samples for 3-cell stage (3.4% in this dataset) makes it extremely difficult for a
classifier to properly learn discernible features unique to that stage. Since the centroid local-
ization approach learns to detect individual cells, the performance for 3-cell stage counting
(69.0% accuracy) was much higher compared to these classification approaches.

3.5 Conclusions

A structured regression network was trained to localize embryonic cell centroids in time-
lapse sequences. Imbalance between the number of foreground and background pixels was
addressed using the temporal relationship of cell location and movement between consecu-
tive sequence frames. A proposed training strategy incorporated predicted cell centroid(s)
at the previous frame and expected cell movement from optical flow diagrams. Cell cen-
troid localization performance were improved by using spatio-temporal network attention
for each frame. Image post-processing applied to cell centroid prediction masks extracted
cell count for each frame.

This algorithm can be used to automatically predict the location of cells and cell count
for each frame in embryo time-lapse sequences up to 4-cell stage. The frame at which
embryos reach 2-4 cell stage and duration in frames embryos spend at 1-3 stages can be
computed from the cell count predictions. Using the time-stamp on each frame, the stage
onset and duration can be expressed in hours post-fertilization and compared to normal
ranges for embryo development in vitro. Furthermore, predicted cell centroid locations in
each time-lapse sequence frame could be used for cell tracking.
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Chapter 4

Embryo Stage Classification and
Onset Detection

4.1 Problem Description

Knowing at what time (hours post-fertilization) embryos reach morula and blastocyst stage
gives insight into their development progress and implantation potential. Time-lapse imag-
ing systems built into incubators enable determination morula and blastocyst onset by
visual assessment to the nearest 15-minute increment. Visually assessing morula or blasto-
cyst stage onset is prone to subjectivity since the changes between morula and blastocyst
stage embryos near their onset are subtle. The goal of this project is to develop an auto-
mated algorithm for detecting morula and blastocyst stage onset. The algorithm must be
sensitive enough to detect the exact onset frame while also generalizing to new sequences
with different biological variability not seen during training.

4.2 Related Work

Embryo staging of embryonic cleavage times and morula through expanded blastocyst stage
was first performed using traditional image processing techniques [19]. A deep learning
approach was later proposed employing a fine-tuned CNN classifier took as input multiple
focal planes of each time-lapse imaging frame to classify embryos as 1-9 cell, morula, or
blastocyst stage [41].

CNN-based embryo stage and embryonic cell stage classification methods analyze image
frames individually then perform post-processing by considering all frames in an embryo
sequence. Dynamic programming used in [41], [44] is a family of methods that iterates
through each sequence frame, restructuring windows of sequential predictions around each
frame. Another strategy is numerical optimization for the entire sequence with negative label
likelihood (NLL) loss [40], [43], [50] or mean absolute error (MAE) [44] of raw predictions
or Earth Mover’s Distance (EMD) of predicted stage histograms [40], [43], [50].
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Medical image classification tasks facing intra-class variation and inter-class similar-
ity have been improved using synergic loss. Facial expression recognition utilized pairwise
learning between with synergic loss two identical models in [87]. A similar pairwise learning
approach with synergic loss was used for brain MR and skin lesion classification in [86].
Given challenging variation between embryo stages (especially near stage onsets) synergic
loss is explored in this work for embryo stage classification.

Embryo time-lapse sequences have also been analysed to perform quality scoring of blas-
tocysts [37], [7] and to predict likelihood of implantation [7]. In these works, spatial features
are extracted with CNNs then fed to a recurrent neural network (RNN) that incorporates
temporal context [37] or genetic algorithm [7] to aggregate sequence information for predict-
ing a single quality score per sequence. While the output of the network in [37] is a single
score for each sequence, an RNN is adapted in this work to incorporate temporal context
learning for stage classification predictions at every frame.

While image classification networks have shown to be successful at embryo early cell
stage classification, there are biological challenges that reduce the efficacy of these methods
for later morula and blastocyst stage onset detection. The differences between morula and
blastocyst stage embryos near their onset are more subtle than the presence of a new cell.
Also, development through morula and blastocyst stages is not monotonic non-decreasing
like cell stage development. Cell compaction increases and decreases repeatedly through
morula stage, as shown in Fig. 4.1. Blastocyst stage embryos can contract, as shown in Fig.
4.2. These challenges are explicitly addressed in this work using synergic loss and temporal
learning.

Figure 4.1: Progression of an embryo through morula stage. The adhesion or compaction of
cells increases and decreases, changing the texture of the cell mass.

Figure 4.2: Blastocyst contraction event shown in two consecutive sequence frames. The
PVS (between inner ZP and outer TE) increases drastically after contraction.
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4.3 Proposed Methods

For embryo stage classification, image pre-processing techniques are used to isolate the em-
bryo in time-lapse sequence frames. An image classification network is trained with synergic
loss and temporal learning to assign each frame as either cleavage, morula, or blastocyst
stage. The predicted stage classifications across each sequence are restructured to be mono-
tonic non-decreasing. Morula and blastocyst stage onsets are inferred from the minimum
index where each of these stages occurred.

4.3.1 Image Pre-processing

Although the same time-lapse sequences from cell centroid localization were used for embryo
staging, the image pre-processing technique from cell centroid localization failed for later
development stages when the embryo took up more of the embryo well area (see Fig. 4.3).
For most experiments, the only image pre-processing step was removing (i.e. setting to zero)
pixels corresponding to embryo well and time stamp located along the bottom rows of the
image. These 1-channel images were 500 × 500 pixels before being resized for the network
input.

(a) (b) (c) (d)

Figure 4.3: Image pre-processing from cell centroid localization failure on blastocyst image:
original image with well number and time stamp removed (a), largest bright and dark
components with upper well bright region not fully captured (b), embryo area mask (c),
and final centred image with part of blastocyst cut-off (d).

For the experiments employing pre-processed images, a circle was cropped around the
centered embryo, as shown in Fig. 4.4. The circle centroid was computed as the centroid of
dilated Canny-detected edges from the inner embryo well, estimated by empirical spatial
constraint. The circle radius was set to be the same across each sequence since embryo
size changes throughout development and this feature can help classify development stage.
Circle radius was set as 190 pixels. The resulting image size of 380 × 380 pixels was large
enough to always contain the largest expanded blastocysts.
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(a) (b) (c) (d)

Figure 4.4: Image pre-processing steps for embryo staging: original image with well number
and time stamp removed (a), inner embryo well dilated edges (b), embryo area mask (c),
and final centred image (d).

4.3.2 Classification Labels

Embryo stage onsets were manually annotated in time (hours post-fertilization). The frames
associated with stage onsets were determined by cropping the image to the time stamp box
in the bottom right corner of each sequence frame, as shown in Fig. 4.5. Characters were read
from the time stamp crop using MATLAB’s built-in optical character recognition (OCR)
function. The "h" was disregarded and the remaining 4 or 5 characters were concatenated
to form a number in the range of tens to hundreds with one decimal place. Whenever the
annotation time did not exactly correspond to a sequence frame, the onset frame for that
stage was set as the nearest frame following the annotation time.

Figure 4.5: Sequence frame with time stamp shown inside the red box. The time stamp was
present at the same coordinates for every frame in the dataset.

All frames following the morula and blastocyst stage onset were labeled as morula
and blastocyst stage for classification, respectively. This approach requires minimal expert
labeling, but is susceptible to noisy labels when cell adhesion (attachment) decreases or
blastocysts contract.
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4.3.3 Development Stage Classification

Timing of development stage onset is a structured regression problem, solving it using deep
learning techniques is highly unsuitable due to inadequate number of embryo sequences
available. However, image classification algorithms have been widely studied and shown
great success in recent years. Predicting development stage onset was therefore performed
by first classifying sequence frames into development stage categories then applying signal
processing techniques to infer stage onset timing.

The baseline network is a pre-trained VGG16 [69] model convolutional feature extractor
with only the last convolutional layer trainable during fine-tuning. This is topped with a
32-node ReLU-activated fully-connected layer and a softmax-activated output layer. This
network architecture was chosen to reduce overfitting to the training set sequences. The
full dataset (45,209 frames) is much smaller than the 14 million ImageNet database images
used to pre-train VGG16. Since there are only 117 uniques embryos in the dataset with
minor differences between output classes (stages), a CNN of VGG16’s size would easily
extract features that are too specific to for classifying the training set sequences without
generalizing to new sequences. Using a pre-trained model enables the network to train with
a much small number of images and hyperparameter search with less risk of overfitting.

Larger architectures (e.g. ResNet50) have the advantage of increased field of view, utilis-
ing more embryo area for classification. However, they are more prone to overfitting, which
was a concern in this task. These newer architectures also use batch normalization [29] in
the initial training - a technique that regularizes convolutional kernel weights based on the
kernel’s mean and variance for each batch. Microscopic embryo images share very different
batch statistics than natural ImageNet images. The outputs of every convolutional layer
could be less relevant since the inputs are out of initial training distribution.

4.3.4 Synergic Network

There is often more variation between frames at the same stage in different sequences than
frames at different stages in the same sequence. To encourage the network to learn embryo-
independent features that are similar between stages, pairwise learning was implemented us-
ing two identical baseline networks with unshared weights [86]. An additional mini-network
concatenated nodes from the 2nd last (fully-connected) layer of each branch. This tensor
was fed through a 32-node fully-connected layer followed by a single-node sigmoid-activated
output layer. For inference, predictions from the two network branches were averaged. Syn-
ergic loss penalized incorrect prediction of whether the images fed to each branch were at
the same stage using binary cross-entropy between the actual (ys) and predicted (ŷs) stage
similarity.

L(ys, ŷs) = −yslog(ŷs) + (1− ys)log(1− ŷs) (4.1)
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Despite the relatively small number of trainable parameters, the network continued to
overfit to the training set. Since embryos show little change before and after stage onset,
many image augmentations could change the stage label. To challenge the network during
training without adding unwanted label noise, mixup augmentation [84] was used to blend
image samples and smooth the corresponding ground truth labels by the same factor. A
portion of images and labels from one synergic network branch were blended with a random
selection from those fed to the other branch.

4.3.5 Temporal Learning

As mentioned, an embryo’s appearance while progressing through morula and blastocyst
stages can revert to that of a previous stage. Instead of sampling random images in each
batch, images were analyzed in sequences to incorporate short-range temporal dependency
during training. An LSTM layer was added after each synergic CNN branch output layer.
Classification loss (categorical cross-entropy) was measured between the actual (yt) and
predicted (ŷy) stages and backpropagated both before and after the LSTM layer for each
frame.

L(yt, ŷt) = −ytlog(ŷt) (4.2)

The convolutional feature extractors, stage classifiers, and LSTM layers were trained
together in an end-to-end manner. The starting index (between zero and batch size) for
each full embryo sequence was randomly chosen every epoch to sample different batches.
The final network diagram in Fig. 4.6 shows how embryo stage is predicted for each image
individually with the CNN-based classifier and is then refined using temporal context in
the LSTM layer.

Since each stage onset was only sampled once per sequence, only 2 batches per sequence
contained stage transitions. To train on more complex sequences containing transitions,
extra sequence batches near stage onsets were added. This stage onset oversampling added
up to 4 extra batches per stage onset or 8 extra batches per embryo sequence. 4 batches
cannot always be sampled before reaching the end of sequence for blastocyst stage, which
can have as few as one frame at that stage.

For onset oversampling, the 1st extra sequence batch starting SI index was randomly
chosen as SIs ∈ [24, 32) frames before stage onset SOs, for stage s. This index was increased
by 8 frames up to three times, creating up to 4 batches containing the stage transition. The
extra four batches have indices [SOs − SIs + 8× 0, SOs − SIs + 8× 0 + 32), [SOs − SIs +
8× 1, SOs − SIs + 8× 1 + 32), [SOs − SIs + 8× 2, SOs − SIs + 8× 2 + 32), [SOs − SIs +
8× 3, SOs − SIs + 8× 3 + 32). An example is shown in Fig. 4.7.
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Figure 4.6: Proposed network diagram for embryo staging. Two image sequence batches
are fed in parallel through separate convolutional feature extractors and then classified
into stages. Staging predictions are refined with an LSTM. Classification error in Eq. (4.2)
is computed at both input and output to LSTM layer. Fully-connected layers from each
classifier are concatenated and used to predict whether the input image fed through each
branch belong to the same stage. Synergic loss in Eq. (4.1) from this binary output is
backpropagated through both classifier branches.

Figure 4.7: Example of onset oversampling with stage onset SOs = 32 (blue) and extra
sequence starting index SIs = 30. The sequence frame indices for the 4 extra batches are
shown.
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4.3.6 Network Training Details

Images were resized to 320×320 pixels. Standard images augmentations were used including
horizontal and vertical flipping, rotation up to 360°, horizontal and vertical translation by
up to 10% of the image height/width. Network training used Adam optimizer with initial
learning rate chosen empirically as 1 × 10−4 for networks containing LSTM layers and
3× 10−5 otherwise. The learning rate was reduced on plateau of 8 epochs by a factor of 0.9
and early stopping was applied after validation loss had no longer decreased for 15 epochs.

Image and label blending with mixup augmentation used scaling factor sampled from
beta distribution with α = 0.2 for each instance. A batch consisted of two 32-frame image
sequences (one for each synergic branch) for LSTM networks or 32 random frames otherwise.
Image sequences for LSTM network batches were sampled by iterating through embryo
sequences with stride 32. When embryo sequence length was not divisible by 32, another
batch was sampled containing the final (N −32, N ] frames of that sequence, where N is the
number of sequence frames.

4.3.7 Embryo Stage Onset Detection

Stage onset is retrieved from the minimum sequence index at which that stage was predicted.
Embryo sequences have monotonic non-decreasing development stages, though this property
is not guaranteed in predictions without temporal post-processing. Predicted time-lapse
sequence stage predictions can oscillate between stages, as shown in Fig. 4.8. The long-range
(sequence-wide) temporal dependency of staging predictions is addressed by restructuring
predicted stage labels across sequences.

Figure 4.8: Actual (gray), predicted (blue), and restructured (orange) embryo stage predic-
tions for a test sequence. Morula and blastocyst stage onset error were reduced from 19 to
4 frames and 21 to 2 frames, respectively, for this sequence using MAE minimization.

Stage predictions for each embryo sequence were optimized by minimizing error between
unprocessed stage predictions and all possible series of monotonic non-decreasing predic-
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tions. NLL loss as used in [43,50] and MAE (Global) as used in [44] were implemented. For
both optimizations, all possible sets of monotonic non-decreasing predictions are considered
and that which gives the lowest (NLL or MAE) loss is chosen.

4.4 Experiments

Embryo time-lapse sequence frames were pre-processed using Python 3.6 scikit-image li-
brary. Deep neural networks were trained using Keras 2.2.4 framework with TensorFlow
1.11 backend.

4.4.1 Embryo Stage Classification

Dataset

Experiments were performed on 117 human embryo time-lapse imaging sequences collected
at the PCRM from 2017-2019. Frames were acquired every 15 minutes, capturing embryo
development from zygote stage (approx. 18 hours post-fertilization) to blastocyst stage (ap-
prox. 5 days post-fertilization). The morula and blastocyst stage onset times were annotated
by an embryologist at PCRM. The overall image and sequence distributions for embryo
staging are shown in Fig. 4.9 and Fig. 4.10, and overview of stage onset and duration is
summarized in Table 4.1.

Figure 4.9: Embryo stage distribution across the dataset. Cleavage stage frames make up
the majority of samples while morula and blastocyst stage have fewer samples.

Setup

Embryo sequences were randomly partitioned into training, validation, and test sets using
ratio 70/15/15%, respectively. To reduce performance bias in chosen training/test splits, 5-
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Figure 4.10: Embryo stage distribution for each sequence. The number of frames at blasto-
cyst stage varies greatly between sequences.

Table 4.1: Dataset overview of embryo stage onset and duration.

Stage Onset Timing (frame)
Stage Min. Max. Average ± SD
Cleavage - - -
Morula 210 348 279.00± 28.82
Blastocyst 281 392 353.88± 24.24

Stage Duration (frames)
Stage Min. Max. Average ± SD
Cleavage 209 347 278.00± 28.82
Morula 34 133 74.88± 19.71
Blastocyst 1 95 33.52± 21.89
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fold cross-validation was performed by rolling the sequences in each set. Results presented
were averaged across the 5 folds.

Embryo stage classification performance is presented for the baseline VGG16 with 3 final
convolution layers fine-tuned and fully-connected classifier. These results are compared with
adding of synergic learning, mixup augmentation, LSTM layer, onset oversampling, and
image pre-processing. Classification performance was measured with precision and recall in
Eq. (4.3), and F1-Score in Eq. (4.4), where TPi, FPi, and FNi are the numbers of true
positive, false positive, and false negative predictions, respectively, belonging to class i.

Precisioni = TPi

TPi + FPi
Recalli = TPi

TPi + FNi
(4.3)

F1-Scorei = TPi

TPi + 1
2(FPi + FNi)

(4.4)

Results

The quantitative results of embryo stage classification for each stage and network or training
strategy modification are summarized in Table 4.2.

Table 4.2: Embryo stage classification performance.

Syn.
Loss

mixup
Aug. LSTM Onset

Overspl.
Image

Pre-proc. Stage Prec. Rec. F1-Score
±SD

Cleavage 96.91 95.63 96.27±0.4
Baseline Morula 81.17 85.37 83.22±0.8

Blastocyst 92.05 91.38 91.71±1.7

X
Cleavage 96.78 96.12 96.45±0.3
Morula 83.13 84.34 83.73±1.6

Blastocyst 91.32 93.43 92.36±1.8

X X
Cleavage 97.15 95.89 96.52±0.4
Morula 82.48 86.63 84.50±0.6

Blastocyst 92.86 92.37 92.62±1.6

X X X
Cleavage 97.01 98.13 97.57±0.6
Morula 87.85 86.79 87.31±2.0

Blastocyst 94.86 88.41 91.52±4.0

X X X X
Cleavage 97.72 97.03 97.37±0.4
Morula 85.68 89.57 87.58±1.1

Blastocyst 94.58 90.46 92.47±2.1

X X X X X
Cleavage 97.85 97.28 97.57±0.6
Morula 87.12 88.85 87.97±1.8

Blastocyst 92.56 92.90 92.73±1.4
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The baseline network was particularly susceptible to incorrectly classifying embryos as
morula stage and mis-classified many blastocyst stage embryos as morula stage.

Synergic learning reduced the number of embryos incorrectly classified as morula stage
and increased the number of embryos correctly classified as blastocyst. Averaging predictions
from the two synergic network branches slightly improved the results over each branch indi-
vidually. Adding mixup augmentation increased the number of embryos correctly classified
as morula stage.

Incorporating temporal learning with an LSTM layer significantly improved morula
stage classification, achieving the fewest falsely predicted morula stage embryo classifica-
tions. However, the highest amount of blastocyst stage classification were incorrectly missed.
Although short-range temporal classification consistency was improved, morula stage mis-
classifications often continued far before or after the onset frame. Adding stage onset over-
sampling correctly predicted more embryos as blastocyst stage. This sampling strategy com-
pensated for the LSTM performance drop at the blastocyst stage. While correctly predicting
the highest number of embryos as morula stage, this included more incorrectly predicted
morula stage embryos.

Image pre-processing ensured maximal embryo area was visible as input to the network,
reducing pixel information loss during image resizing. The subtle cell adhesion (texture)
differences could be better extracted and used for predicting morula stage. The F1-score
SD was lowest for synergic loss with mixup and highest when LSTM was added.

Choice of Architecture

Convolutional feature encoders for embryo stage classification were investigated by training
different models on a single dataset fold. VGG16 and ResNet50 architectures with various
trainable layers were compared. Staging F1-scores for each stage are shown in Table 4.3.

The experiment shows that pre-trained features in ResNet50 did not transfer as well
as VGG16 for embryo image staging. Only when the all the ResNet50 layers (including
batch normalization) were re-computed could it make use of convolutional features. Since
the networks were trained on a single NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
memory, the fully trainable ResNet50 could only be trained with batch size of 8. The GPU
memory constraints limited the use of synergic or temporal learning for larger architectures.

Setting all layers as trainable for fine-tuning gave the worst VGG16 performance as
the network could overfit heavily to the training set. Freezing all layers did not allow the
discriminative final convolution layers to adapt to embryo images. Having the final 3 layers
trainable enabled the network to learn features relevant for embryo stage classification
without overfitting severely to the training data. VGG16 with final 3 layers trainable was
used for all embryo stage classification experiments.
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Table 4.3: Embryo stage classification performance on single fold for architecture selection.

Model Layers Trainable Stage F1-Score

VGG16 All
Cleavage 82.12
Morula 0.0

Blastocyst 0.0

VGG16 Final 3
Cleavage 96.70
Morula 84.20

Blastocyst 91.70

VGG16 None
Cleavage 92.65
Morula 70.61

Blastocyst 90.24

ResNet50 Final 5
Cleavage 83.30
Morula 0.0

Blastocyst 0.28

ResNet50 None
Cleavage 96.20
Morula 77.10

Blastocyst 88.32

Weak Blastocoel Segmentation

Segmenting the blastocoel is challenging due to weaker boundaries with surrounding struc-
tures, varying texture from structures underneath, and looser geometric characteristics than
the ZP. Therefore previous methods for detecting blastocyst stage onset do so by segment-
ing the ZP and using its width for blastocyst stage classification [19]. Embryologists rely on
ZP thickness and blastocoel volume for assessing blastocyst onset.

Class activation maps were used to visualize which regions in the image were most
relevant for correctly classified blastocyst stage images. As seen in Fig. 4.11, the network
relied mainly on blastocoel region for blastocyst stage prediction. This indicates the blas-
tocoel could be a better structure for predicting blastocyst stage onset than ZP for image
classification networks. This also demonstrates blastocyst stage classification requiring only
image-level annotations could be used for weakly-supervised blastocoel segmentation.

Comparison to Related Work

In [41], a large CNN backbone (ResNeXt101) taking as input 3 focal planes for each frame
was proposed for embryo stage classification. Their overall stage classification accuracy (for
13 classes after prediction restructuring) was reported as 87.9%. They also reported human
labelling development stage classification accuracy (by comparing the ground truths from
2 annotators) was 94.6%. Due to the overfitting issues observed during training with larger
ResNet50 classification backbone, training strategy improvements with a smaller VGG16
backbone were investigated to improve morula and blastocyst stage classification. In this
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Figure 4.11: Class activation maps overlaid on embryo time-lapse images correctly classified
as blastocyst stage. Red regions show that blastocoel region structure contributed the most
for stage prediction.

thesis work, the overall stage classification accuracy (for 3 classes after global prediction
restructuring and single focal plane) was 95.9%.

4.4.2 Embryo Stage Onset Detection

Since the raw embryo stage classification predictions from embryo stage classification ex-
periments were used for stage onset detection, the same dataset and test set partitioning
from Section 4.4.1 were used here.

Setup

Stage onset performance was measured as the mean absolute error in frames between pre-
dicted and actual stage onset in Eq. (4.5), where M is the number of embryo sequences in
the test set, n is the frame number in an embryo sequence, and yi,nm and ŷi,nm are the true
and predicted stage i cell counts for sequence m at frame n.

MAEi = 1
M

M∑
m=1
|min

nm
yi,nm −min

nm
ŷi,nm | (4.5)

Results

Morula and blastocyst stage onset detection results on unprocessed sequences, and NLL
loss and Global MAE optimized sequences are summarized in Table 4.4.

Unprocessed sequences contained many incorrect morula stage predictions in frames
far from the actual onset. Both temporal post-processing strategies significantly improved
morula stage onset. Global MAE occasionally optimized to slightly better stage onsets,
though both losses gave nearly identical solutions.

Minimizing NLL loss and Global MAE for prediction restructuring is optimal only when
the number of mis-classifications before and after the actual onset are relatively balanced
and therefore cancel out. In the experiments, incorrect stage predictions were often bi-
ased such that the majority of mis-classifications occurred before or after the actual onset.
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Table 4.4: Mean absolute stage onset error with restructured predictions.

Syn.
Loss

mixup
Aug. LSTM Onset

Overspl.
Image

Pre-proc. Stage Unproc. NLL MAE

Morula 46.32 13.96 13.64
Baseline Blastocyst 5.21 5.17 5.17

X
Morula 39.86 12.37 12.18

Blastocyst 5.76 4.77 4.77

X X
Morula 41.51 12.60 12.50

Blastocyst 4.76 4.32 4.32

X X X
Morula 20.23 11.98 11.98

Blastocyst 5.67 5.12 5.12

X X X X
Morula 24.40 11.94 11.94

Blastocyst 5.04 4.47 4.47

X X X X X
Morula 20.16 11.04 11.04

Blastocyst 5.26 4.77 4.72

Higher classification performance therefore did not guarantee lower stage onset error after
restructuring.

Comparison to Related Work

In [19], image processing techniques were used to detect embryo stage onsets. They reported
stage onset error as a median of times between predicted and actual onset. However, they
did not take the absolute value so both positive and negative errors were computed in the
mean. They reported morula and blastocyst stage onset median error of -0.38 and -0.91
hours, respectively. In this thesis, the morula and blastocyst stage onset median errors are
-1 frame (0.25 hours) and 0 frames (0 hours), respectively. This metric fails to capture the
magnitude of stage onset errors, but shows the proposed algorithm is not biased towards
predicting morula or blastocyst onset early or late.

4.5 Conclusions

An image classification network was trained for classifying embryo time-lapse sequence
frames into cleavage, morula, and blastocyst stages. Embryo stage classification predictions
were improved by incorporating synergic learning to directly compare features of pairs of
input images. Adding a temporal LSTM layer after the classifier output provided short-range
temporal dependency to improve morula stage classification and downstream stage onset
performance. Extra image and sequence augmentations during training further improved
each method by reducing generalization gap on the test set. Sequence post-processing was
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applied to restructure embryo stage classifications to be monotonic non-decreasing then
stage onset was extracted from the restructured sequence predictions.

This algorithm can be used to automatically predict the frame at which embryos reach
morula and blastocyst stage onset from time-lapse sequences. Using the time-stamp on each
frame, the stage onset could be expressed in hours post-fertilization and compared to normal
ranges for embryo development in vitro.
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Chapter 5

Conclusions

For couples suffering from infertility issues, IVF treatment is a way to conceive their own
child. The success rate remains low, and the financial and emotional cost is high. During
this procedure, embryos are inspected visually to inspect quality of embryo structures and
their timings to reach important cell and development stages. These morphological and
morphokinetic parameters are used to assess their quality and predict their likelihood of
leading to positive implantation outcome. Developing robust and objective automated em-
bryo quality assessment tools could help embryologists select the highest quality embryo for
transfer.

In this thesis, three methods were proposed to automate embryo quality assessment:

1. A multi-label multi-class CNN was developed to automatically assign ICM, TE and
BE grades to blastocyst images simultaneously.

2. A structured regression CNN was used to localize cell centroids for counting cell stage
in early embryo time-lapse sequences.

3. An image classification CNN with synergic loss and temporal learning was trained
to classify embryo stage and detect morula and blastocyst stage onset in embryo
time-lapse sequences.

Previous work for blastocyst grading simplified quality scores into two classes or required
multiple networks for different grades. The proposed approach combined three grading tasks
into a single network, leveraging a shared convolutional encoder to extract image features
relevant to all grades. Since the experiments were performed using a small dataset from
a single fertility clinic, the algorithm suffered from lack of available samples from lower
quality ICM and TE grades. It could be made more robust by training on a larger dataset
with more balanced distribution of samples from different grades.

Previous approaches for embryonic cell centroid and border localization were devel-
oped for analyzing single images. The proposed approach exploited temporal relationship
of frames in embryo time-lapse sequences, using cell centroid information from the pre-
vious frame and cell movement between frames to localize cell centroids in the current

59



frame. Related classification-based approaches for cell counting struggled to achieve good
cell counting performance on the short 3-cell stage. Counting localized cell centroids mini-
mized the performance drop at 3-cell stage since the system detected individual cells. The
cell centroid localization network still faced challenges with embryo sequences containing
significant artifacts (e.g. large, cell-like fragments and severe cell overlap). The algorithm
can predict centroid locations for embryonic cell tracking and cell counts for extracting cell
stage onset and duration.

Previous methods for classifying morula and blastocyst stage onset consider only a
single image or rely on texture and embryo structure properties that may not transfer well
to different datasets. The proposed approach extracts more robust convolutional features
with pairwise learning and utilizes temporal context from embryo time-lapse sequences to
predict embryo stages with subtle differences. It can be expanded to classify sequence frames
into more embryo development classes (e.g. cell stages, cavitation, expanded blastocyst) for
fine-grained development progress evaluation.

The methods developed in this thesis can be used to extract certain morphological pa-
rameters from blastocyst images and morphokinetic parameters from embryo time-lapse se-
quences. These two classes of parameters can give insight into embryo development progress
and implantation potential. There are many opportunities to improve the performance and
breadth of automatic morphological and morphokinetic parameter extraction. Furthermore,
the use of information extracted from embryo images and time-lapse sequences for predicting
implantation outcome and live birth rate remains a significant challenge.
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