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Abstract

By harvesting online workers’ knowledge, crowdsourcing has become an efficient and cost-
effective way to obtain a large amount of labeled data for solving human intelligent tasks
(HITs), such as entity resolution and sentiment analysis. Due to the open nature of crowd-
sourcing, online workers with different knowledge backgrounds may provide conflicting la-
bels to tasks. Therefore, it is a common practice to perform a pre-determined number of
assignments, either per task or for all tasks, and aggregate collected labels to infer the true
label of tasks. This model could suffer from poor accuracy in case of under-budget or a
waste of resource in case of over-budget. In addition, as worker labels are usually aggre-
gated in a voting manner, crowdsourcing systems are vulnerable to strategic Sybil attack,
where the attacker may manipulate several robot Sybil workers to share randomized labels
for outvoting independent workers and apply various strategies to evade Sybil detection.
In this thesis, we are specifically interested in providing a guaranteed aggregation accuracy

with minimum worker cost and defending against strategic Sybil attack.

In our first work, we assume that workers are independent and honest. By enforcing a
specified accuracy threshold on aggregated labels and minimizing the worker cost under
this requirement, we formulate the dual requirements for quality and cost as a Guaranteed
Accuracy Problem (GAP) and present an efficient task assignment algorithm for solving

the problem.

In our second work, we assume that strategic Sybil attackers may coordinate Sybil workers
to obtain rewards without honestly labeling tasks and apply different strategies to evade de-
tection. By camouflaging golden tasks (i.e., tasks with known true labels) from the attacker
and suppressing the impact of Sybil workers and low-quality independent workers, we extend

the principled truth discovery to defend against strategic Sybil attack in crowdsorucing.

For both works, we conduct comprehensive empirical evaluations on real and synthetic

datasets to demonstrate the effectiveness and efficiency of our methods.

Keywords: Crowdsourcing; Quality Control; Cost Management; Sybil Attack
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Chapter 1

Introduction

The concept of crowdsourcing was first brought up by Jeff Howe and Mark Robinson in
2006 as a whole new paradigm for outsourcing tasks to the crowd by means of an open call
via the Internet. It allows enterprises to quickly benefit from crowd engagement at a low
cost by aggregating the knowledge and ideas from the general public. Taking the mobile
crowdsourcing for example, we may collect the traffic/accident (or any other event) data at a
chosen location from the flow of passing drivers. Compared to the alternative of outsourcing
the task to a dedicated third party, crowdscouring could mobilize the entire driver pool and
offer an anytime/anywhere solution. Recently, the phenomenon of crowdsourcing grows
at a more surprising speed. According to a report released in Business Insider !, global
crowdsourcing market is expected to reach about 155 billion US dollars by 2027, which was
already valued over 9.5 billion US dollars in 2018. In this thesis, we will discuss some major

issues in crowdsourcing and provide our solutions.

1.1 Background

What is crowdsourcing? Crowdsourcing is the online operation of asking an undefined large
group of people to perform human intelligent tasks (HITs) [37]. As shown in Figure 1.1,
crowdsourcing allows the client to issue an open call on a public platform so that cheap
and dynamic online workers can flexibly contribute at anytime and from anywhere. Such a
cost-effective, decentralized and parallel fashion of performing tasks is the main advantage
of crowdsourcing over the traditional way of outsourcing, where the client contracts with a
specific organizational entity that provide services by its internal employees.

Although the flexibity of crowdsourcing would greatly accelerate the business cycle and
encourage creativity, it may also lead to unreliable quality of collected results, due to the
diverse knowledge backgrounds of online workers. Also, as the participation of online workers

is unpredictable, it is hard to estimate the latency for the completion of tasks.

"https://markets.businessinsider.com/
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Figure 1.1: Crowdsourcing vs outsourcing

1.1.1 Human Intelligent Tasks

As a problem-solving model, crowdsourcing handles human intelligent tasks (HITs) that
require a large computational cost for computer programs but are relatively easy for human
beings to solve. Based on the way for workers to complete tasks, HITs in crowdsourcing

systems could be classified into the following three types:

o Single-Choice Task. A single-choice task asks workers to select a single label out
of several optional labels. For example, a task may ask workers to select a sentiment
(“positive”, “neutral”, “negative”) of a given sentence. Binary task is a special case of

single-choice task with only two optional labels T' (“true”) and F' (“false”).

e Multiple-Choice Task. Multiple-choice task extends single-choice task by allowing
workers to select multiple labels for a task, e.g., labeling a movie with “action” and
“comedy” tags. However, as addressed in [69, 111], a multiple-choice task can be easily
transformed into a set of binary tasks, e.g., taking each optional tag of a movie as a

task and asking workers whether or not the movie should be labeled with the tag.

e Open-Answer Task. An open-answer task does not provide any optional answer and
relies on workers to input their answers (e.g., a numeric value [74, 53], a translation
sentence [13, 104] and worker collected data [87, 30]). While the inherent orderings
between numeric values can be studied, it is hard to evaluate the worker quality and

the aggregation accuracy for tasks that involves translation and data collection.

1.1.2 Procedure of Crowdsourcing

Modern crowdsourcing platforms, such as Amazon Mechanical Turk (AMT) 2, Flickr  and

Innocentive 4, allow an HIT requester to recruit online workers for completing a group of

*https://www.mturk.com/
Shttps://www.flickr.com/

“https://www.innocentive.com/



human intelligent tasks. Let W = {w} denote the set of online workers and 7' = {t} denote

single-choice tasks in the task group. The procedure involves the following four steps:

1. Task Publication. The HIT requester creates a task group 7' = {t} on a crowd-
sourcing platform, with the instructions about how to complete tasks in 7' = {t}, the
prerequisite for online workers to participate and the budget that would be used to
reward workers for their participation. To estimate the quality of online workers, the
HIT requester is often required to provide a small set of golden tasks with known true

answer, as denoted by T" = {t'}.

2. Task Assignment. In the online setting of crowdsourcing, the active worker set W is
dynamic in that workers may join or leave the system at any time. Usually, a worker
in W must first make a request, indicating that he is ready for the next task, then
the system chooses one or more uncompleted tasks from 7' for the requesting worker.
A task is completed once no more workers are needed for the task. For simplicity, we
assume the task assignment to be non-preemptive, as applied in other crowdsourcing
methods, e.g., iCrowd [26], meaning a worker must provide an answer for an assigned

task before requesting for the next one.

3. Answer Aggregation. The answers collected from online workers are represented
by £ = {ltw}, where l;,, = null if worker w does not provide an answer on task ¢. As
workers with diverse knowledge background may provide conflicting answers to a task,
collected worker answers are often aggregated in a voting manner, such as majority
voting [102], weighted voting [36] and Bayesian voting [111]. The purpose is to infer
the unknown true answer of tasks, as denoted by £* = {l}}, using the aggregated

answers of tasks, as denoted by £* = {I¢}.

4. Reward Distribution. With no ground truth for evaluating worker performance, on-
line workers could be rewarded based on the aggregation result, i.e., a worker would
have more award (e.g., reputation or money) if more of his answers agree with the ag-
gregated ones, or simply the number of provided answers. Some works, e.g., FairPlay
[28], may allow online workers to set up their expected payment based on their exper-
tise. In this thesis, we assume each worker would be equally paid for each provided

answer.

As the application of multiple-choice tasks and open-answer tasks is relatively limited,
this thesis focuses on single-choice tasks that have been widely studied in many crowd-
sourcing works [19, 61, 53, 85, 26, 62, 65], where each worker assigned to a task needs to
choose one label from several optional labels. The frequently used symbols are summarized
in Table 1.1.



Table 1.1: Frequently used notations

Symbol Description

T = {t} single-choice tasks

W = {w} | online workers

T' = {t'} | golden tasks with known true label
L = {li} | labels provided by workers on tasks
L* = {lf} | true label of tasks in T’

L= {I?} | aggregated label of tasks in T’

1.1.3 Evaluation Measures

Despite the flexible workforce and tremendous profit potential, crowdsourcing faces many
challenges due to its open nature. On one hand, workers with unknown quality may provide
conflicting labels to the same task, so it is hard to guarantee the correctness of the aggre-
gation results. On the other hand, the cost on hiring online workers could easily become
unaffordable with a large size of task group T, even if a much smaller amount of money is
paid for each collected worker label, as compared to the traditional outsourcing. By applying
various methodologies for task assignment and label aggregation (the second and third steps
mentioned above), most crowdsourcing works aim to achieve two goals: (1) maintaining a
high aggregation accuracy, i.e., the percentage of tasks whose aggregated label is identical
to the true label, and (2) minimizing the cost on hiring online workers. We refer to these
two goals as quality control and cost management.

Let 1(z,y) be an indicator function such that 1(z,y) = 1 if x = y and 1(z,y) = 0 if
x # y. We formally quantify the measurement of quality control and cost management by
aggregation accuracy and worker cost, respectively.

118,105
Aggregation Accuracy = ZtETTﬁt’t) (1.1)

Sty wer (1= L(ltw, null))
7|

Worker Cost = (1.2)

Note that the true labels £* are normally unavailable in practice, so the aggregation
accuracy would be estimated by conducting experiments on tasks with known true label.
Also, the worker cost is measured by the number of workers hired for a task on average
because the HIT requester usually pays the same amount of money for each label provided

by workers within a task group.

1.2 Research Topics and Contributions

In this thesis, we focus on two research topics raised by the goals of quality control and

cost management, which have become the major research directions in crowdsourcing for
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Figure 1.2: The entities in a typical crowdsourcing system

academic and industrial communities. The first topic falls into guaranteeing an expected
aggregation accuracy with minimized worker cost, while the second topic focuses on the

security issue about defending against Sybil attack in crowdsourcing.

1.2.1 Research topic about accuracy guarantee with cost minimization

As being confirmed by some early studies [8, 80, 81], asking several non-expert online workers
to perform a task and aggregating their responses could generate a similar result as hiring
experts. Usually, a crowdsourcing method conducts quality control and cost management
through two components — task assignment controller and worker label aggregator, as shown
in Figure 1.2. The former one determines the set of online workers assigned to each task,
while the later one infers the unknown true label of each task from collected worker labels.
Note that for some specific crowdsourcing applications, such as Yelp and MovieLens, the
task assignment controller may be omitted because online workers are allowed to choose
the restaurants or movies they want to comment.

In the literature, a common approach for quality control is to pre-determine a fixed
number of task assignments, either per task [26, 62] or for all tasks [15, 34, 109], and then
perform task assignment and label aggregation based on workers’ estimated quality for
tasks. However, this approach could not provide a specific guarantee for the aggregation

accuracy or minimize the worker cost.

Example 1. Suppose an HIT requester expects at least 0.9 aggregation accuracy for a
task group T, and the worker set W contains seven workers {wl, w2, w3, w4, w5, w6, w7},
where each worker has 0.75 probability to provide the true label of a task. If each task is

assigned to only three workers and majority voting is used for label aggregation, the expected



aggregation accuracy would be 0.84 according to Poisson binomial distribution [14], which
means the expectation of the HIT requester cannot be satisfied. If all the seven workers
are hired for each task, the aggregation accuracy would pass 0.9, but the worker cost is
not minimized because any five of these workers are good enough for meeting the expected
aggregation accuracy. If each worker has at least 0.9 probability to provide the true label of

a task, then the minimum worker cost per task should be 1.

As indicated in this example, heuristically pre-determined worker cost may lead to a
waste of money or provide no guarantee for the aggregation accuracy. More importantly, the
unknown aggregation errors would propagate to downstream applications of crowdsourcing,
e.g., learning a prediction model based on the aggregation result. In most cases, allowing a
large unknown error in training data is not acceptable, especially for high stake applications
in the medical and financial domains, e.g., a system for real-time patient assessment [7] which
uses mobile electronic triaging accomplished via crowdsourced information.

To solve this problem, we consider a scenario that the HIT requester expects a threshold
for the aggregation accuracy to be satisfied with minimum worker cost. A natural conse-
quence of guaranteeing the aggregation accuracy is that some tasks may not be completed if
there is a lack of high-quality online workers in the system. Therefore, instead of completing
all tasks without any accuracy guarantee, we want to complete as many tasks as possible
with the guaranteed aggregation accuracy and minimum worker cost. Providing the infor-
mation on the quality of such tasks is important for high stake downstream applications.
Note that the remaining tasks could be completed later using a traditional algorithm, but
importantly, the HIT requester is informed of whether a task is completed with the accuracy
guarantee or not.

Given the above motivation, we formulate the dual requirements for quality control
and cost management with the online setting of crowdsourcing as a Guaranteed Accuracy
Problem (GAP) in Chapter 3. Parameterized by a quality threshold § and a cost threshold
A, GAP requires its solution to meet three requirements: (i) the probability to infer the true
label of a task should be at least d; (ii) the worker number (cost) for each task should be
minimized under (i) but not exceeding A; (iii) the number of tasks that can be completed
is as large as possible under (i) and (ii). We present a solution to GAP, called Guaranteed
Accuracy Algorithm (GAA), that assigns tasks to candidate workers who are as good as
the top workers in minimizing worker cost with the § threshold satisfied, and present an
iterative GAA (IGAA) that completes additional tasks under the accuracy guarantee by

iteratively relaxing the minimum cost requirement.



We empirically evaluate the proposed GAA and IGAA on a movie ranking dataset
from MovieLens® and a semantic analysis dataset from Figure Eight®. Experimental results
confirmed the accuracy guarantee and worker cost minimization of GAA and IGAA in

solving GAP, as compared to the state-of-the-art algorithms.

1.2.2 Research topic about quality control under Sybil attack

The voting based label aggregation of crowdsourcing has an underlying assumption that all
workers provide labels to tasks independently and honestly, which may fail in the presence
of Sybil attack [23]. To earn the reward while spending minimum effort, a Sybil attacker
could manipulate several Sybil worker accounts to share a randomized label on each task
so that the independent workers on the same task could be outvoted. Consequently, the
reputation/weight of Sybil worker accounts would be mistakenly increased because their
labels agree with the aggregated labels more often. In this case, the randomized labels of
Sybil workers would be weighted more in the label aggregation, which definitely decreases
the quality of aggregated labels.

In fact, without requiring a distinct bank account for each worker, the bar for creating
Sybil worker accounts could be further reduced. For example, ChinaCrowds” allows different
workers to use the same bank account for receiving momentary rewards, and AMT provides
the alternative of redeeming rewards as a gift card, so the attacker can easily create multiple
worker accounts for his attacking purposes.

Sybil attack becomes strategic and is harder to defend if the attacker attempts to evade
detection [68]. For example, online workers are often required to label golden tasks with
known true label in a cold-start phase as a qualification test. A strategic Sybil attacker can
first label golden tasks honestly to improve the trustworthiness of Sybil workers but attack
later on normal tasks. Even if a hidden test is applied to randomly assign workers to golden
tasks, the attacker can identify a golden task when more than K Sybil workers are assigned
to the same golden task because a normal task is usually assigned to a fixed number K of
workers. To hide the coordination among Sybil workers, the attacker may also allow them
to occasionally deviate from the label sharing to make Sybil detection more difficult.

To defend against strategic Sybil attack in crowdsourcing, we propose a framework,
called TDSSA (Truth Discovery against Strategic Sybil Attack), that extends the principled
truth discovery to the scenario that several online workers might be Sybil workers controlled

by a strategic Sybil attacker, with the strategic assignment and camouflage of golden tasks.

Shttp://grouplens.org/datasets/movielens/
Shttps://data.world/crowdflower /narrativity-in-scientific-pub

"http://www.chinacrowds.com/



We conduct experiments on two public real crowdsourcing datasets, named NLP [110]
and DOG [112, 102], and synthetic datasets through attack injection recommended in the
literature. Under various data characteristics and attack settings, TDSSA can achieve a

much higher aggregation accuracy than baseline methods.

1.2.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we present some background
knowledge on crowdsourcing, including the modeling of tasks and workers, online task as-
signment techniques and adversarial attacks. In Chapter 3, we describe GAP in details,
including proposed GAA and IGAA methodology, as well as some experimental results on
two real world data sets. In Chapter 4, we study the problem of strategic Sybil attack and
propose a defense framework T'DSS A with the verification of its effectiveness under differ-
ent attacking environments. We conclude this thesis in Chapter 5 with a summary of our

contributions and some future directions that are worth exploring.



Chapter 2

Related Work

Nowadays, our lives have been filled with data, such as text, music, pictures and videos,
and the explosive growth of data does not seem to slow down a bit. As a cost-effective way
for collecting data from the general public, crowdsourcing has been widely used to advance
researches that require humans to provide the initial data, such as information retrieval [51],
machine learning [84], recommendation system [2] and natural language processing [77].
For example, with the help of machine learning, we are able to derive the meaning hidden
in all kinds of data by discovering important patterns from observations and experience.
Despite many different methods have been proposed for machine learning, such as supervised
learning, unsupervised learning and reinforcement learning, the basic idea is to build a model
from sample data (i.e., training data) for prediction and decision making.

In contrast to traditional data collection of outsourcing tasks to some employers or con-
tractors, crowdsourcing enables the HIT requester to pay a small amount of money per task
assignment and outputs labeled data with good quality when an appropriate aggregation
method is applied, where the aggregation results of crowdsourcing could be used in machine
learning as the training set and the verification set. However, the use of crowdsourcing has
also raised many challenges because the data provided by dynamic online workers with
various knowledge backgrounds or even malicious purposes could have a low quality, which
would not only result in a waste of money for collecting data but also lead to a failure
in the subsequent use of the data. For example, the performance of machine learning ap-
plications highly depends on the quality of input data (i.e., training set). In this section,
we systematically review the state-of-the-art methods and potential threats related to the

quality control and cost management of crowdsourcing.

2.1 Quality Control

Effective quality control is critical to the success of data collection through crowdsourcing. In
the literature, many different approaches, such as enhancing the model of tasks and workers,

applying golden tasks to estimate worker expertise, adaptively assigning online workers to



tasks and aggregating worker labels based on worker quality, have been proposed to ensure

a high quality of the aggregation result.

2.1.1 Model Enhancement

Model enhancement mechanism attempts to improve the aggregation quality by accurately
modeling tasks and workers. The fundamental factor is to ensure a good mapping between
worker expertise and task requirement, which allows us to perform online task assignment
(Section 2.1.3) by selecting workers with highest chance to provide the true label for each

task and aggregate worker labels (Section 2.1.4) by assigning appropriate weights to workers.

Task Modeling

Some early works [98, 62] model the task difficulty as a single value, with the assumption
that the labels provided by a worker have different quality w.r.t. the various difficulty of
tasks. Intuitively, the more difficult a task is, the less chance a worker has to correctly label
the task.

GLAD [98] uses a logistic sigmoid function to estimate the probability Pr(l:, = [})

that the label l; ,, given by a worker w on a task ¢ is the true label [}:

Prsw =) = T (2.1)
where d; indicates the difficulty level of task ¢ and p,, represents the quality of worker w.
With a probabilistic graphical model (introduced later) that samples d; and p,, respectively
from two prior distribution parameters o and 3, the true label of tasks can be inferred
simultaneously with d; and p,,.

FaitCrowd [62] extends GLAD [98] by introducing task bias in the probabilistic graphical
model to capture the difficulty of each task. The idea is that the decreasing of bias would lead
to less task difficulty and thus a higher probability to provide the true label. By assuming
that the difficulty level of most tasks is moderate while only a small portion of tasks are
relatively easy or hard, the bias of a task is recommended to be drawn from a Gaussian
distribution.

Task difficulty provides a simple representation for the modeling of tasks, but the fact
that a task may require knowledge across different topic domains is ignored. To address this
issue, recent works [76, 26, 109] connect task content with explicit features or latent topics
by modeling each task ¢ as a vector ©; = {6; q}4=1.p, where D indicates the size of features
or topics.

SmartCrowd [76] represents 6; q as a quality threshold for solving knowledge-intensive

tasks, where collaborative knowledge content could be created through crowdsourcing. For

10



example, Wikipedia! relies on online workers to gradually increase the content and quality of
each knowledge piece, where each worker has certain expertise to contribute. SmartCrowd
[76] ensures that the additive quality of online workers on each task ¢ would pass the
quality threshold 6; 4 for each topic d, but the solutions for knowledge-intensive tasks usually
require prior knowledge about online workers, such as the expected wage, expertise and/or
acceptance ratio.

Both iCrowd [26] and Docs [109] treat ©; as a topic distribution with > ;_;.p6rq = 1,
which is modeled based on the text description of tasks. For each topic d, 0; 4 indicates the
relevance of task t to the topic, so a worker w is more likely to provide the true label to a
task t if the worker has higher expertise on the task’s related topics, i.e., topics with larger
0; 4. The main difference between iCrowd [26] and Docs [109] is that the former constructs
a task similarity graph (i.e., tasks with similar topic distribution will be topologically close
to each other in the graph) using latent topic modeling techniques, while the later relies on

external knowledge base to capture explicit topic domains of tasks.

Worker Modeling

The purpose of modeling task difficulty or topic distribution is to better understand and
evaluate the quality of online workers on tasks so that the collection and/or aggregation of
worker labels can be improved accordingly.

Many works [45, 19, 60, 6] associate each worker w with a single worker accuracy a,, =
Pr(ly, = 1) € [0,1] for all tasks, i.e., a,, represents the probability for w to provide the
true label of any task ¢. This approach allows us to integrate worker quality into worker
label aggregation by assigning different weights to the labels provided by different online
workers. For example, a,, = 1 indicates an expert who always label tasks correctly, while
a, = 0.5 reveals a spammer who gives random labels for binary classification tasks with
two optional labels. GLAD [98] and CRH [54] extend worker quality to a wider range of
(—00,4+00), with the same idea that a worker with higher quality has a higher chance to
label tasks correctly.

Corresponding to the topic distribution in task modeling, a worker could have diverse
expertise on different topics. For example, a worker who is familiar with computer science
may provide a high quality label to a task about information technology, but fail to correctly
label a task related to geography if the worker is not interested in this field. Based on this
observation, many works [96, 62, 109] map the quality of each worker w into the topic
domains using a vector W, = {¥wd}d=1:p, where 1, 4 € [0,1] indicates the quality of
worker w on topic d.

When tasks in a task group have a fixed optional label set £° = {{|¢ = 1,...,L}, e.g.,

image annotation, some works [18, 74, 48, 85, 65] use an L x L confusion matrix, denoted by

"https://en.wikipedia.org/wiki/Main_ Page
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I, = [Wg:w]&e/:LL, to represent a worker w’s quality, where Trf:w =Pr(li, =0 |1f =10)is
the probability for worker w to provide label #' on any task ¢t with true label £. For example,
suppose L% = {True, False} and I, = [J9 9:]. Then, 0.9 and 0.8 are the accuracies of
worker w on a task t, given the true label is True and False respectively. Compared to
modeling worker quality using a single value, confusion matrix captures more information

and thus usually leads to a better aggregation accuracy.

2.1.2 Golden Task

The dynamic flow of online workers in crowdsourcing makes it hard to evaluate worker
quality, especially when the ground truth is unknown a priori. To address this issue, many
works [61, 63, 26, 1, 109, 102] rely on the HIT requester to provide a small number of golden
tasks with known true label, denoted by T".

There are two ways to utilize golden tasks — qualification test and hidden test. In a
qualification test, workers are asked to first label golden tasks in 7" at a cold-start phase
before being assigned to any normal task in 7. This introduces a potential risk that spam-
mers may carefully label these golden tasks in order to improve their reputation or weight
in worker label aggregation. To solve this problem, the assignment of golden tasks can be
mixed with that of normal tasks in a hidden test, so workers cannot distinguish golden tasks
in T from normal tasks in 7.

Golden tasks make the estimation of worker quality easier, but they usually incur more
costs for two reasons: 1. Hiring experts to give the true label of golden tasks could be
very expensive. 2. It is a waste to pay workers for their labels on golden tasks with known
true label. In addition, how to choose a sufficient amount of golden tasks for revealing the
different domain knowledge of workers is another burden leveraged to the HIT requester.
iCrowd [26] selects tasks that have the maximum “influence” to other tasks in a similarity
graph as golden tasks, while Docs [109] intuitively ensures that all topic domains and the

aggregated topic distribution of all tasks will be captured by the selected golden tasks.

2.1.3 Online Task Assignment

Many early works [92, 30, 61, 62, 19] of crowdsourcing do not distinguish the various quality
of workers on different tasks during online task assignment, so online workers are assigned
to tasks in a random manner.

To improve the quality of collected worker labels on binary classification tasks, AskIt! [10]
applies entropy theorem to estimate the uncertainty of the aggregation result and assigns
each requesting worker to a fixed number of tasks with highest uncertainty. By associating
each worker w with a skill level a;,, on each task, ATA [36] perform task assignment based
on a quantity g, = (2a,, — 1)? evaluated for each pair of task ¢ and worker w. Intuitively,
an informative label will be collected if ¢, is close to 1, while the label is considered to be

random noise when ¢, is close to 0. QASCA [111] considers different evaluation metrics
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(e.g., Accuracy or F-score) for online task assignment, where a fixed number of tasks that can
lead to the maximum improvement in aggregation accuracy are selected for each requesting
worker. Both iCrowd [26] and Docs [109] map workers and tasks into topic domains and
assign a worker to a task if the domains of the task is within the worker’s expertise (e.g.,

the worker has a high probability to provide the true label).

2.1.4 Aggregation Methods

Aggregation method plays a very important role in the quality control of crowdsourcing,
where noisy labels provided by online workers are aggregated to infer the unknown true
label. As online workers may have diverse knowledge backgrounds, it is important to assign

appropriate weights to their labels in the aggregation.

Direct Computation

The simplest aggregation method is Majority Voting (MV) [30, 26] that regards the label
voted by most workers as the aggregated label. Since it ignores different levels of worker
expertise and task difficulty, the aggregation accuracy is usually be low. Weighted Voting
(WV) [36] distinguish the weight assigned to each worker’s labels to improve the aggregation
accuracy, where the optional label receives highest weight becomes the aggregated label. For
tasks that require workers to provide a numeric value [74, 53], e.g., ranking, the aggregation

result could be determined by the mean or median value of all collected values for a task.

Iterative Learning

Without using golden tasks, several works [54, 53, 112, 109, 22, 21, 31, 110, 57, 41] apply
Expectation-Maximization (EM) algorithm [20] to automatically estimate worker quality
and infer the true label of tasks in an iterative manner. Although different mechanisms
have been proposed to deal with various scenarios, a general principle of iterative learning
is followed: the label provided by high-quality workers should be weighted more in the
label aggregation, and the workers who provide labels more accurately (i.e., match the
aggregated label more often) should be assigned higher weights. Based on this principle,
the aggregation of worker labels and the estimation of worker weights are tightly coupled
through the following two steps in each iteration until convergence:

Step 1: Worker Label Aggregation. The aggregated label for each task is determined by
a weighted voting, assuming the weight of each worker is fixed.

Step 2: Worker Weight Estimation. The weight of each worker is estimated by comparing
the worker’s labels with the aggregated ones computed in Step 1.

The differences among various iterative learning methods can be found in the modeling
of workers and optimization functions. For exampl, CRH [54] models each worker’s quality

as a single accuracy, while CATD [53] considers both worker accuracy and confidence in an
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Figure 2.1: A simple probabilistic graphical model (PGM)

objective function such that a worker who often provides the aggregated label (i.e., high
accuracy) and labels a plenty of tasks (i.e., high confident) should have a high weight.
Minimax [112] associates each worker with a probability distribution that specifies the
probability for the worker to provide each optional label and leverages the mini-max entropy
theorem into the iterative learning. Docs [109] models each worker as a vector of expertise

w.r.t. the topic domains and applies Bayesian voting in Step 1.

Probabilistic Graphical Model

A probabilistic graphical model (PGM) is a graph illustrating the conditional dependency
relationships between random variables. Figure 2.1 shows a simple PGM, where each node
represents a variable and the two plates contain variables related to m workers and n tasks,
respectively.  denotes the prior variable for p, that represents the quality of workers,
while y denotes the prior variable for I} that indicates the true label of tasks. The directed
edges model the conditional dependence between two variables, so the child node follows
a probabilistic distribution conditioned on the values taken by the parent node. The basic
idea of PGM is to infer the unknown variables p,, and [} based on z, y and observed worker
labels [ ,, through the maximization of the join probability of random variables.

There are many existing works [19, 98, 45, 60, 18, 74, 48, 85, 96, 62] that apply PGM
with different modelings of tasks and workers. ZenCrowd [19], GLAD [98], KOS[45] and VI
[60] represent each worker as a single quality. DS [18], LFC [74], BCC [48] and CBCC [85]
apply a confusion matrix to model the quality of each worker. Multi [96] and FaitCrowd
[62] project tasks into topics and capture worker quality over the topic domain. The prior
distributions of PGM act as our knowledge or assumption about workers and tasks, which
make the presentation easy to understand. However, the introduction of prior distribution
and join probability also complicates the inference problem and increase the computational
cost. Besides, the inference process normally starts after the collection of worker labels, so
the assignment of tasks is usually conducted in a random manner without considering the

knowledge requirement of tasks or the various quality of workers.
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2.2 Cost Management

There are many different ways to manage the cost on hiring online workers in crowdsourcing,
including fixing the number of workers per task, pruning unnecessary tasks, varying the

payment for workers and allocating the budget among tasks.

2.2.1 Fixed Assignments

The most widely used cost management [26, 62, 98, 45, 60, 74, 85, 96, 62], is to fix the
number of workers per task based on the HIT requester’s budget. Such a heuristic decision
may lead to a waste of money or inadequate redundancy as the quality of online workers is
unknown a priori. For example, if the worker number per task is large while most workers
happen to be knowledgeable for providing the true label of tasks, we may hire too many
workers for each task. On the contrary, if the worker number per task is small when tasks

are relatively difficult for most workers, the aggregation accuracy would be low.

2.2.2 Task Pruning

Many existing works [19, 92, 44, 93, 97, 5, 86, 95, 100] limit the cost of crowdsourcing by
removing unnecessary tasks and focusing on the remaining tasks. ZenCrowd [19] proposes
a probabilistic reasoning model to identify uncertain entity matching pairs. Crowder [92],
GCERI[97] and ACD [95] evaluate the similarity between each pair of entities and cluster
entities into groups for reducing the number of comparison. LTR [93] and CAER [86] mini-
mize the number of crowdsourced entity pairs by identifying the optimal labeling order from
transitive relations. CrowdPlanr [44] and OASSIS [5] use the labels collected for a subset
of tasks to infer the true label of other tasks. CrowdGame [100] applies a game-based rule
generation method to select candidate rules with large coverage for cost reduction. The
main drawback of task pruning is that it only considers the relationship between tasks but
ignores the bound between task difficulty and worker quality. Therefore, the reduction of
cost cannot be done in a per-task level. In addition, the application of the above works
is restricted to certain types of tasks due to the necessity to exploit the domain-specific

properties and structures, such as entity resolution and queries with sequential outputs.

2.2.3 Payment Variation

Fairly paying online workers does not only encourage them to make a better contribution,
but also attracts more potential workers to participate, as indicated in [29]. Several works
[101, 38, 78, 71, 28, 4, 49, 103, 32] have been proposed to match the payment with the
quality or expectation of workers in crowdsourcing. FairPlay [28] explores how the fair
payment will affect workers’ intentions to the labeling of tasks as well as their loyalty towards
the crowdsourcing platform. BonusMDP [101] uses worker-centric Markov Decision Process

to decide whether and when to place a bonus for improving worker quality or retention.
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PostedPrice [38] exploits the features of tasks to derive an optimal payment scheme that
requires fewer inputs compared with many existing approaches. By considering from the
perspective of online workers, many works [78, 71, 49, 4, 103, 32] also aim to improve online

workers’ benefits, such as utilities, efficiency and privacy.

2.2.4 Budget Allocation

Cost management can also be conducted through the allocation of the budget to different
tasks. SmartCrowd [76] pre-computes an optimal task assignment and adaptively modifies
it to handle worker profile updates, but each worker’s expertise on different topics and each
task’s topic-based requirement are assumed to be available before hand. BTSK [34] analyzes
the hypernym or hyponym relations among the optional labels of each task to determine
which tasks should be assigned in each iteration to gather more worker labels. Docs [109]
selects a most beneficial task for a requesting worker based on how much ambiguity in
the label aggregation can be reduced if assigning the worker to the task. CDAS [61] and
CQTO [1] evaluate a confidence score for each task and terminate hiring more workers for
a task once the confidence is high enough to satisfy the HIT requester’s expectation on the

accuracy of the aggregation result.

2.3 Potential Threats

The main potential threats in crowdsourcing come from dishonest labels, which could be
provided by online workers either in a random manner [89], through duplication [22] or
from an artificial generator [65]. In addition, the online nature of crowdsourcing makes
it untrusted for the privacy issue, where sensitive information of the HIT requester and
online workers might be leaked or deduced. With different levels of worker collaboration,
attack purpose and knowledge about the system, some major attacks against crowdsourcing

systems are listed as follows.

2.3.1 Individual Attack.

An individual attacker is defined as an online worker whose labels significantly deviate from
the true label, mainly due to the lack of knowledge for performing the tasks. In order to
obtain monetary or reputation rewards as quickly as possible, the attacker typically provides
his labels in a random manner [73], i.e., randomly choose one of the optional labels, or
alter his own behavior to mimic normal workers [22], e.g., copy and modify other workers’

reviews and comments in a recommendation system like Tripadvisor? and Yelp?. Individual

Zhttps:/ /www.tripadvisor.com/Hotels

3https://www.yelp.com/
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attackers are assumed to have no exact information about the mechanism of the system,
e.g., how workers are assigned to tasks and how worker labels are aggregated. Although
the redundancy for worker label collection, i.e., assigning several workers to a task, could
reduce the influence of an individual attacker, the aggregation accuracy may be low if there

are many such attackers in the system.

2.3.2 Group Attack.

Group attack involves the manipulation of several online workers to collaboratively provide
a shared label to the same task.

Sybil Attack. Sybil attack [102] in crowdsourcing occurs when an attacker recruit or
create a group of online workers to carry out malicious campaigns by sharing the same label
on a task. Different from individual copiers, Sybil workers under the centralized control of
the attacker would take advantage of voting-based aggregation methods to collaboratively
outvote independent normal workers. Since the purpose of the attacker is not to decrease the
aggregation accuracy but to dominate the aggregation result for more rewards, the shared
labels are usually randomized. Defending Sybil attack is not a new topic in online social
networks, but we may not simply adopt the solutions for crowdsourcing because the social
structure of dynamic online workers is usually unavailable. A general approach of Sybil
defense in crowdsourcing should mainly rely on the analysis of labels provided by online
workers.

Data Poisoning Attack. Data poisoning attack aims to inject manipulated training
data for corrupt a learning model, such as recommendation system [52], machine learning
[40] and crowdsourcing [65]. Usually, a worst-case attacking scenario is assumed for data poi-
soning, where the attacker may have full knowledge about the system, e.g., the aggregation
method and the labels provided by normal workers, so that the error in the aggregation re-
sult could be maximized. In a more sophisticated data poisoning attack, the attacker would
attempt to hide the identity of malicious workers by agreeing with the majority when the
aggregation result is unlikely to be overturned, instead of deviating from the majority on

every task.

2.3.3 Privacy Attack.

The online nature of crowdsourcing makes it untrusted for the privacy issue, where sensi-
tive information of the HIT requester and online workers might be leaked or deduced. For
example, in spatial crowdsourcing [3], an HIT requester posts a task to the server along
with the location for performing the task, and an online worker also needs to disclose his
location to the server and travels to the task location after being assigned to the task. Such
partial knowledge about workers and tasks could reveal privacy information, such as per-
sonal interests, behavior patterns and home/work locations. Privacy issue does not directly

influence the quality of aggregated labels but may discourage online workers to participate.
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As a special interest in spatial crowdsourcing, protecting the location information related to
tasks and workers has become an important research direction. There are three major tech-
niques for privacy protection in spatial crowdsourcing, including spatiotemporal cloaking,

differential privacy and encryption.

Spatiotemporal Cloaking

In spatiotemporal cloaking, the locations of tasks and workers are hided inside a cloaked
region. By creating an intermediate trusted server that constructs a cloak region for each
worker based on locality-sensitive hashing (LSH) and then searches the K-nearest tasks,
K-anonymous location privacy is achieved in [88] where each worker’s location is indistin-
guishable from at least K — 1 other workers. PiRi [47, 46] also guarantees K-anonymous
location privacy with a voting mechanism such that neighboring workers select a set of rep-
resentatives to send out their cloaked region for querying the nearest tasks. In [70], workers
are allowed to query tasks by a cloaked region with certain probability distribution, instead

of an exact location.

Differential Privacy

Differential privacy [25] is a privacy protection that releases patterns of a group without
substantially disclosing any individual. In [82], a sanitized spatial index is constructed by a
noisy count of workers at each index node, and the information of a task will be sent to index
nodes that contain sufficient workers to complete the task with high probability. PriCSS [42]
provides differential location privacy along with the minimization of payment or social cost
for spectrum sensing tasks. With worker locations transformed into an obfuscation matrix
that encodes the probability of obfuscating any two regions, a data adjustment function is

designed in [94] to fit the original sensing data to the obfuscated location.

Encryption

Encryption techniques could be used to transform the locations of tasks and workers into
encrypted data and then calculate the distance between two encrypted positions [59, 58]. In
[75, 105], workers are asked to provide their travel costs for different tasks, instead of their
locations, where the costs will be encrypted into perturbed data and considered for task
assignment. A drawback of encryption-based privacy protection is that the computational

overhead is very high.
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Chapter 3

GAP: Guaranteed Accuracy
Problem for Crowdsourcing

The open nature of crowdsourcing makes it hard to deal with the dilemma of quality control
and cost management. As online workers with diverse knowledge backgrounds might provide
conflicting labels to the same task, the unknown true label of a task is inferred by aggregat-
ing labels collected from several workers. With unpredictable quality and arrival of online
workers, it is hard to guarantee the aggregation accuracy. This challenge is compounded if
we want to also minimize the cost of hiring online workers for each task. In this chapter,
we formulate the Guaranteed Accuracy Problem (GAP) to capture the duel requirement
on guaranteed aggregation accuracy and minimum worker cost, and we present an online
algorithm to solve the problem. We evaluate these goals with respect to state-of-the-art
methods.

3.1 Background and Overview

By harvesting knowledge and information from random online workers, crowdsourcing pro-
vides an efficient problem-solving model for human intelligent tasks (HITs), such as entity
resolution [92, 86], sentiment analysis [11] and image classification [67, 61]. In general, the
HIT requester hires several online workers for each task (by rewarding them with money or
gifts) and aggregates the labels of these workers to infer the unknown true label.

As dynamic online workers may provide noisy and conflicting labels, maintaining a high
aggregation accuracy, i.e., the probability for the aggregated label to be identical to the
unknown true label, has become the primary goal of crowdsourcing. A common approach is
to fix the number of task assignments, either per task [26, 62, 111] or for all tasks [15, 34, 109],
and leverage domain knowledge to estimate the quality of workers for task assignment. While
the quality based task assignment helps improve the aggregation accuracy, it provides no
specific guarantee, e.g., the aggregated label of each task having at least 95% probability

to match the ground truth. Subsequently, the unknown aggregation errors would propagate
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to downstream applications of crowdsourcing. Another major issue needs to be addressed
is worker cost, i.e., the cost for hiring online workers to label tasks. Though the payment
for online workers in crowdsourcing is fairly cheap, as compared to the traditional way of
outsourcing, it may still become unaffordable under a huge task number because multiple
workers are normally hired for each task. In this case, heuristically choosing the budget
without knowing the quality of online workers in advance may lead to an unnecessarily
high cost, especially when fewer workers are already good enough for a desired accuracy on
aggregated labels.

In this work, we consider three goals in the design of a crowdsourcing system. 1) The
first goal is to guarantee a given aggregation accuracy o for all completed tasks, i.e., the
probability that the aggregated label agrees with the ground truth label is at least 4. 2)
The second goal is to minimize the worker cost (i.e. number of workers assigned) under the
d guarantee. 3) Our third goal is to complete as many tasks as possible under the above
two requirements, while the remaining tasks can be completed by any traditional algorithm
without accuracy guarantee and cost minimization. Therefore, instead of completing all
tasks with possibly unknown bad outcomes as in traditional methods, our approach ensures
accuracy guarantee and cost minimization for as many tasks as possible.

If all workers and their quality are available in advance, we may estimate the probability
for any set of workers to infer the true label based on worker quality and formulate the
task assignment as a constrained optimization problem. Unfortunately, the online nature
of crowdsourcing allows workers with unknown quality to become active (by joining the
system) and inactive (by leaving the system) at any time, which makes it hard to determine
the minimum worker cost for each task. In addition, many real crowdsourcing systems,
such as Amazon Mechanical Turk (AMT) ! and Figure Eight?, and research works, such as
iCrowd [26] and Docs [109], adopt the “request-then-assign” model where an active worker
must first make a request, to indicate the readiness to work on the next task, before the
system selects and assigns a task to the worker. In this case, when a worker will request is
unknown in advance. Such practical natures of online settings pose the following challenges
for solving our problem.

Challenges. While assigning a task to top workers, i.e., most qualified workers, can
minimize the worker cost, we do not know when top workers will become active, so our
cost minimization can only be defined w.r.t the top workers who are currently active. Even
with active top workers, we do not know when they will request, therefore, we may need
to assign a task to non-top workers who make a request earlier. This makes it hard to
minimize the worker cost because in general more non-top workers are required than top

workers to guarantee the aggregation accuracy. Therefore, how to meet a specified accuracy

"https://www.mturk.com/

https://appen.com/figure-eight-is-now-appen,/
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guarantee 0 with minimized worker cost w.r.t active top workers in the online setting is a
challenging problem. This challenge is further compounded by the fact that active workers
are dynamically changing.

Contributions. Our contributions are listed as follows:

1. We formalize a Guaranteed Accuracy Problem (GAP) (Section 3.3) to capture the
requirement of completing as many tasks as possible with a guaranteed aggregation

accuracy and minimized worker cost for the online setting described above.

2. As a key to complete more tasks for GAP, we formalize the notion of “candidate
workers” (Section 3.5) who are as good as the top workers in providing a specified

accuracy guarantee (Section 3.4) with minimized worker cost.

3. We present two solutions (Section 3.6), called Guaranteed Accuracy Algorithm (GAA)
and iterative GAA (IGAA), to solve GAP by assigning tasks to candidate workers
and completing additional tasks under the accuracy guarantee through the iterative

relaxation of the minimum cost requirement.

4. We conducted empirical evaluation (Section 3.7) using real datasets to show that GAA
and IGAA can solve GAP efficiently.

3.2 Related Work

Our work aims to guarantee a given aggregation accuracy of completed tasks for the HIT
requestor, and achieving this with the minimum worker cost. We review existing methods
along this line by grouping them into three categories: accuracy improvement, cost reduc-

tion, and accuracy guarantee withminimized cost.

3.2.1 Accuracy Improvement

Most works in the literature focused on improving aggregation accuracy. For example,
[19, 18, 98, 74, 60, 62, 96] first collect a fixed number of worker labels by random task
assignment and then iteratively estimate worker quality with the inference of true labels
using probabilistic graphical models. The difference lies on the modeling of worker accuracy
[19, 98, 60], task difficulty [96, 62] and confusion matrix [18, 74] (i.e., the probability for
a worker to provide a specific label on a task). The aggregation result can be further im-
proved by assigning tasks according to each worker’s accuracy on tasks, such as iCrowd [26]
and Docs [109]. However, all these works do not address the issue of meeting an accuracy

guarantee for label aggregation or minimizing the worker cost.
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3.2.2 Cost Reduction

Research work also has been done on reducing worker cost [19, 92, 44, 93, 5, 86, 100] by
removing unnecessary tasks whose aggregated labels can be inferred from other tasks. Such
cost reduction considers the relationship between tasks, not the matching between workers
and tasks like ours, so no aggregation accuracy can be guaranteed. Moreover, these methods
consider specific types of tasks, e.g., entity resolution, to exploit domain-specific properties

and structures.

3.2.3 Accuracy Guarantee with Cost Minimization

CDAS [61] and CQTO [1] reduce the worker cost by terminating the assignment of a task
once a given confidence threshold on the aggregated label is satisfied. In both works, each
worker is modeled by a single average accuracy for all tasks, which could be over-estimated
for “harder” tasks, leading to the failure of meeting the threshold. In addition, the early
termination of task assignment depends on the order of worker requests: if low-quality
workers request early, more worker labels will be needed to strengthen the confidence score,
so the cost will be high.

AT A [36] enforces a € threshold on the aggregation error for binary classification tasks.
Each task t is assigned to a minimum set of workers W; with highest quality g;., such that
the quality sum >, ey, 1w Passes a lower bound, i.e., 2In(1/¢), where gt = (2az, — 1)2
and a; ., denotes worker w’s accuracy for task t. Since this lower bound, based on Hoeffding’s
inequality, is loose, it can lead to an unnecessarily large worker cost. For example, while a
single worker w with a;,, = 1, i.e., 100% accuracy, is sufficient to achieve less than € = 0.1
error, the above inequality requires at least 5 such workers. In the online setting, even more
worker cost would be needed because we cannot make sure each task is only assigned to
workers with highest quality.

As we can see, existing works fail to provide a guarantee on aggregation accuracy due to
modeling a single average accuracy for each worker, and fail to minimize the worker cost as
it pertains to a specific worker request order (e.g., CDAS [61] and CQTO [1]) or a specific
quality lower bound (e.g., AT A [36]). Our approach provides a guarantee for the aggregation
accuracy by modeling the task-specific inference probability and our minimization of worker

cost pertains to the set of active workers, not a particular worker request sequence.

3.3 Problem Definition

Task Group. A task group T' = {t} published by an HIT requester contains a number of
human intelligent tasks (HITs), which are usually in an identical format but may require the
knowledge in different domains. For example, a product labeling task group 7" may include
300 tasks about Apple iphones and 200 tasks about Samsung Galaxy tabs. Each task t is

represented by a set of terms or a vector of features, and has L optional labels, one of which
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is the true label but is unknown. To estimate worker quality, the HIT requester will provide
a small set of golden tasks with known true labels, as denoted by 7" = {t'}.

Online Workers. In the online setting, the active worker set W = {w} is dynamic in
that workers may join and leave the system at any time. To be assigned a task, a worker in
W must first make a request, indicating that he is ready for the next task, then the system
chooses an uncompleted task from T for the requesting worker. A task is completed once no
more workers are needed for the task. For simplicity, we assume that the task assignment
is non-preemptive, as applied in other crowdsourcing methods, e.g., iCrowd [26], meaning
a worker must provide a label for an assigned task before requesting for the next one.

Table 3.1 summarizes the frequently used notations.

Table 3.1: Frequently used notations

Symbol | Description

T = {t} | normal tasks with unknown true labels

W = {w} | dynamic online workers
T = {t'} | golden tasks with known true labels

L | the number of optional labels for a task

¢ | the minimum aggregation accuracy expected by the HIT requester

A | the maximum number of workers allowed on a task

W | the set of all workers assigned to a task ¢
A(W4) | the probability for W; to infer task ¢’s true label

A = [at ] | a matrix of worker accuracy at,, for each pair of worker w and task ¢

5

¢} | the minimum worker cost for a task ¢

af | the minimum worker accuracy for a task ¢

Definition 1 (Worker Accuracy). For each task t and each worker w, the worker accuracy

atq € [0,1] denotes the probability for w to provide the true label of task t.

Definition 2 (Inference Probability). Let W, be the set of workers hired for a task t. The
inference probability A(Wy) € [0, 1] denotes the probability for the label aggregated from those
provided by workers in Wy to match the true label of t, where A(W;) could be estimated based

on worker accuracy.

With the online and dynamic nature of active workers, it may happen that some workers
having higher accuracy for a task ¢ join W after the task has been assigned to some other
workers. Clearly, existing assignments cannot be undone in order to switch to the new
workers. The best we can do is to ensure that each following assignment of the task is done
to minimize the worker cost given the already assigned workers and the worker set W at

the assignment time. In other words, the notion of cost minimization is time dependent
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because already assigned workers and active workers are time dependent. This motivates

the following problem definition.

Problem 1 (Guaranteed Accuracy Problem). Given parameters (5, ), we aim to assign

requesting workers from the dynamic worker pool W to the tasks from T such that

(i) For every task t € T that is completed, A(Wy) > 6 and |Wy| < A, where each task
assignment is done to minimize the worker cost |Wy| given the already assigned workers

and the active worker set W at the assignment time.

(i) The number of tasks completed under (i) is maximized for a given crowdsourcing time

window. O

(i) ensures the quality guarantee for the aggregated label and the minimum worker cost
for each completed task, where A is the constant budget specified by the HIT requester to
prevent from hiring too many workers for a task. Due to the (J,\) constraint in (i), it is
possible that some tasks cannot be completed when the quality of workers in W is poor,
so (ii) aims to maximize the number of completed tasks for a time window of processing
specified by the HIT requester. Uncompleted tasks can always be completed by running an
existing algorithm without quality guarantee or cost minimization.

The cost minimization for a task ¢, as indicated in (i), is dynamic in that it depends
on the workers already assigned and the current set of active workers; however, it is inde-
pendent of the requesting order of workers not assigned to the task yet. The latter is the
major difference from the early termination in CDAS [61] and CQTO [1], where the cost

minimization highly depends on the requesting order of online workers.

Example 2. To explain the above points, consider an active worker set W = {w1, wa, w3, wya}
and a task t that can be completed jointly by {w1,wa, w3}, but not any other subset of W,
under the (3, \) requirement. Initially, no worker is assigned to t and the size of the subset
{wy, we, w3} is the minimum cost for t. Now, suppose that after wy has been assigned to tm
denoted by WtaSSigned = {w1}, a new worker ws with at least § accuracy for t joins the sys-
tem, i.e., the active worker set becomes W = {w1, wa, w3, wq, ws}. Note that ws alone could
complete t with the (0, \) requirement satisfied. However, given that the existing assignment
WtaSSignEd = {w1} cannot be undone, the minimum cost of t with respect to the new W will

be 2 instead of 1, because {wi,ws} can complete t under the (0, \) requirement.

In general, the minimum cost for a task ¢ is [W/**9"°* U S|, where S is a subset of
W C Wtamg"ed with the minimum size such that Wta%wmd U S can complete ¢ while

satisfying (0, A) the requirement. This notion of cost minimization for ¢ is dynamic because it

Wassigned

depends on W, and the active worker set W, both of which are dynamic. However, this

notion does not depend on the requesting order of not assigned workers in W C W9,
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Figure 3.1: Latent Dirichlet Allocation (LDA)

3.4 Inference Probability Evaluation

In this section, we estimate the inference probability A(W;) in Problem 1, but before that,
we first estimate the worker accuracy as,y, i.e., the probability for a worker w to provide the
true label on a task ¢. In particular, with the assumption of D latent topics, we project tasks
and workers into a topic domain, where each task t is represented by a topic distribution
O; = {9,5,1, Oy Gt,D} while each worker w is represented by a topic-wise accuracy
Uy = {%uwi1, s Yuwds Yw.p}-

Topic Distribution ©;. Recall that each task is represented by a set of terms or a
vector of features. As suggested in iCrowd [26], a topic modeling technique called Latent
Dirichlet Allocation (LDA) [9] can be applied to derive a D-dimension topic distribution
Oy ={041, - ,044, -0 p} for each task t, where ZdDzl Ora = 1.

LDA is a topic modeling technique for uncovering hidden topics from text document.
In our case, the text description of each task ¢ could be treated as a document because the
words used in the description usually reveal the topics of the task, provide a hint for workers
to understand the topics, and help workers decide whether to work on the task or not. By
encoding the probability of each particular word r w.r.t. each topic d into a R-dimension
word distribution ®4, LDA algorithm first draws the prior Dirichlet distributions o and
for T'heta; and ®4 respectively, as shown in Figure 3.1. Let d; s and r; s denote the topic
assignment and word assignment for the s word position in task t’s text description. In
each iteration, a topic d; s is randomly chosen for a word position s based on T'hetay, followed
by a word 7 s drawn from the corresponding ®4, where d = d; s. The posterior distribution
could be inferred by Gibbs sampling [33]. After several iterations, the topic distribution ©,
for each task ¢ will be refined. Note that LDA can be performed offline before tasks are
published. Topic modeling also makes it easy to handle a new task drawn from the same
keyword distribution as the existing task collection, because the topic distribution can be

derived on-the-fly from the current model.
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Algorithm 1: Acc_ Estimate(w,T,T', A)
Input: a new worker w, normal tasks T', golden tasks T”, worker accuracy matrix A
Output: updated worker accuracy matrix A
test w using golden tasks in T";
compute V¥, using Equation 3.1;
for each task uncompleted task t € T do
compute a;,, based on ©; and ¥,, using Equation 3.2;
L update A with worker w’s accuracy a;,, on task ¢;

(S, SNV N

(=]

return A;

Topic-Wise Accuracy V¥,,. When a new worker w arrives, we ask the worker to label
a set of golden tasks 7" = {t'} with known true label before assigning normal tasks to the
worker. The purpose is to estimate the topic-wise accuracy ¥,, of the worker. Typically, the
use of golden tasks is to filter out workers that can not pass an overall accuracy rate, but
we believe a worker should not be required to be good on all topics. Our method allows
a worker to be incorrect in some topics but good at others. Then we can only assign the
worker to those tasks that he may perform well.

Let Iy ,, indicate whether a worker w’s label agrees (I ,, = 1) or disagrees (I, = 0)
with the true label of a task ¢’ € T". For each topic d, 1, 4 can be estimated based on the
weighed sum of 6y 4 for the golden tasks correctly labeled by worker w:

ww,d - Zt/eT/ (Gt’,d X ]It’,w)/ Zt’eT’ Ht’,d (31)

where 1, 4 € [0,1]. Since both the golden task size |T’| and the topic size D are small
constants, the running time for evaluating ¥,, is O(1).

Worker Accuracy a;,,. With the topic distribution ©; of a task ¢ and the topic-wise
accuracy ¥, of a worker w, the accuracy a;,, of worker w on task t can be computed by

the dot product of ©; and ¥,, in a constant time:

atw = OV, = Zc?zl Ht,d X ww,d (32)

at . ranges from 0 to 1, and a¢,, = 1 only if worker w has 100% accuracy for each related
topic d, i.e., ¥y q = 1.

Algorithm 1 updates the worker accuracy matrix A for a new worker w by estimating the
worker’s accuracy ag,, on each uncompleted task ¢ € T. With ¥,, computed in a constant
time, the complexity of Algorithm 1 is O(|T).

Inference Probability A(W;). The estimated worker accuracy a;,, allows us to evalu-
ate the inference probability A(W;) for a set of workers W; on a task ¢. For example, under
majority voting, A(W;) is the probability that the majority label of workers in W; gives the

true label of ¢ (a tie is broken arbitrarily). Alternatively, we can consider the accuracy ay
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as the weight of worker ¢, and define the aggregated label as the label that receives highest
total worker weight. For simplicity, we consider majority voting below.

Given any subset S of Wy, let Pr(S) be the probability that the workers in S provide
the true label of t and the workers in S = W; \ S provide a wrong label. From the Poisson

binomial distribution,
Pr(S) = Hwes taw H — Q) (3.3)

Let m(S) be the probability that none of the L — 1 wrong labels provided by workers in
Wi\ S receives at least | S| votes, i.e., the true label provided by the workers in S is indeed
a relative majority vote. Then A(W}) can be computed by

AWy =™ Y ses. . Pr(S)m(S), (3.4)

I_‘WHJ"’I

where S; . denotes all possible subsets S of W; with |S| = z, and [|W;|/L]+1 is the smallest
majority size. We note that A(W;) depends on a,, for workers w in W;, but not on the
actual labels provided by the workers on t.

Let us compute m(.S). For any subset S of W} with |S| = z, consider two cases:

Case 1: If |Wy| — z < z (i.e., fewer workers provide the wrong labels than those providing
the true label), we have m(S) = 1. Note that L = 2 falls into this case because z > L%j +1
implies [W| — z < z.

Case 2: If |Wy| — z > z, m(S) = 1 — a/b, where a/b computes the probability that at
least |S| = z workers in W \ S provide the same wrong label. Let’s consider distributing
the |W;| — z votes over the L — 1 wrong labels. There are b = (L — 1)I"#=% possible
distributions in total. a is the number of distributions in which one of the L — 1 wrong
labels receives votes from at least z workers from W; \ S (i.e., those who provide a wrong

label). a = C} _; Y™ Cr, . So we have

! if (Wi — 2 <
)= TR 3.5
(L—1)IWtl==) otherwise

Complexity Analysis. For L = 2, we have m(S) = 1, and A(W}) can be evaluated by
a recursive computation [16] in O(|W;|?) time, which is a constant as |W;| is bounded by
the constant A. For L > 2, m(S) depends on |W;| and |S| = z, but not on S itself. With
|[Wi < X and L'Wtu +1 < z < |W,], we can pre-compute m(S) offline for z and |W;| in
these ranges, and the complexity depends on the (usually small) constant A. However, we
still need to compute Pr(S) for each subset S with |S| = z in the above range, and there are
|[Wi|!/(]W|/2)! such subsets in total. In this case, the computation of A(W}) is less efficient,

but since |W;| < X and A is usually a small constant, the computation time is a constant.
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As the foundation for the concept of candidate workers defined in the next section, the
following lemma indicates that replacing a worker in W; with a better one would increase
the inference probability A(W;).

Lemma 1 (Monotonicity of A(W;)). Let W[ be obtained from Wy by replacing a worker
w € Wy with another worker w' such that ay .y > a¢w. Then A(WY) > A(Wy). O

Proof. Without loss of generality, we prove that increasing the accuracy a; ., of a worker
wy € W, will increase A(W;). Recall that in Equation 3.3 and 3.4, Pr(S) denotes the
probability that all workers in a subset S of W; provide the true label and all workers in
Wi \ S provide a wrong label, and m(S) denotes the probability that none of the wrong
labels receive at least |S| votes from the workers in W; \ S (i.e., the true label wins by
receiving more votes than any wrong label). Depending on whether w; provides a true or
wrong label, we have two cases:

Case 1: wy provides a true label, i.e., w; € S. Increasing at,, will increase Pr(S) in
Equation 3.3, which increases Pr(S)m(S) and thus A(W;) in Equation 3.4.

Case 2: w; provides a wrong label, i.e., w; € W;\ S. Increasing a; , will decrease Pr(\S)
in Equation 3.3, but we show that the subset S’ = S U {w;} will compensate the decrease,
that is, the total contribution of Pr(S)m(S) and Pr(S")m(S’) to A(W;) in Equation 3.4 will

not decrease by increasing ag ., -

Pr(S)m(S) + Pr(S" )ym(S")
=m(S) H at H (1—atw) + m(S) H at H (1 —atw)

weS weW\S wes’ weW\S’
=m(S) 1 —atw) [ ot [ (0 —aw) + m(atw, [[ atw [[ 1 —arw)
weS weW\S’ weS weW\S’

= (m(8) + (m(8') = m(S))arw,) [] acw JI (- arw).

wesS weW\S’

Increasing a ,,,, only affects (m(S") —m(S))a¢w, . We show m(S’) —m(S) > 0, thus, increas-
ing at ., increases Pr(S)m(S) + Pr(S")m(S’), and thus A(W;).

Let ng denote all the distributions of votes for workers in W;\ S such that none of the L—1
wrong labels receive at least |S| = z labels. From Equation 3.5, m(S) = |ng|/(L —1)(W¢l=2)
and m(S") = |ng/|/(L — 1)IWel===1) = (L — 1)|ng|/(L — 1){(Wtl=2) For each distribution
in ng, we can form a corresponding distribution in ng: by removing w;’s vote from the

distribution, which means |ng/| > |ng| and m(S’) — m(S) > 0, as claimed. O

3.5 Candidate Worker Identification

According to Lemma 1, assigning a task to its top workers with highest accuracy can

minimize the worker cost. However, in the online setting we do not know when top workers
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will make a request. To address this issue, our approach is identifying “candidate workers”,
for each task t, that are as good as top workers in the sense that if k top workers can satisfy
the (0, A) requirement with the minimum worker cost, so do any k candidate workers. For
example, suppose {wy, wa, w3} is the minimum set of top workers on a task ¢ for achieving at
least § inference probability, so k = 3. We could define all workers in {wy, wa, w3, wy, ws, we}
as candidate workers if any 3 of them can pass the § threshold for ¢ and complete the task
whenever any 3 of them make a request, without waiting for the top workers {w1, wa, ws}.

In this section, we define and identify candidate workers for a task ¢ by two parameters
(cf,af). ¢f is the minimum worker cost for meeting the accuracy threshold 6 on t. af is the
minimum worker accuracy such that for any set W; of ¢f workers w with a; ., > aj, we have
A(W;) > 6. We first consider a simpler case of static W in Section 3.5.1 and then extend
to dynamic W in Section 3.5.2.

3.5.1 Candidate Workers under Static Worker Set W

To compute ¢f with a static W, we need to find the minimum set W/™ of workers w in
W with highest accuracy ag,, such that A(W/™) > ¢ and |[W/"| < A\. Based on Lemma 1,
|W/"| is the smallest number of workers required to meet these conditions, so ¢; = |W/™|.
Since A(-) is computed in a constant time (Section 3.4), the complexity of computing ¢ is
O(|W]). If this W™ does not exist, let ¢; = oo.

Example 3. Assume 6 = 0.9, A = 5, and the current active workers in W = {wy, ..., w7}
have 0.88, 0.86, 0.84, 0.83, 0.82, 0.81 and 0.75 accuracy on a task t, respectively. For sim-
plicity, consider L = 2. W™ = {w1, w2, w3} is the minimum set of top workers for meeting
the & requirement because Equation 3.4 gives A({w1}) = 0.88 < §, A({wi,w2}) =0.76 < §
and A({wi, w2, w3}) = 0.946 > 6. Thus, we have c; = 3.

To compute af, we can construct an “virtual” worker set W (not actual workers in W)
containing ¢; workers having the same accuracy a on task ¢. Based on Lemma 1, af is equal
to the minimum value a such that A(W;*) > §. To find this minimum value a, we can apply
a binary search over the interval (0, 1] and, according to Lemma 1, prune the half that fails
the condition A(W*) > ¢ in each iteration. For example, with the precision of 0.01, there
are 100 discrete points in the interval. With O((cf)?) time required for evaluating A(W2)
(Section 3.4), the complexity of the binary search is O((c})3log, 100), which is constant as

cf <A If ¢f =00, let af = oo.

Example 4. With the minimum cost c¢; = 3 in Example 3, we can create a size-3 virtual
worker set W, where all workers in W have the same accuracy a on task t. Then, a
binary search of a is performed over (0,1]. In each iteration, a is set to the mid value of
the remaining interval, e.g., 0.5 in iteration 1, and the larger half interval is pruned if
A(WE) > 6 or the smaller half interval is pruned otherwise. When the precision reaches
0.01, we have aj = a = 0.81. [
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Algorithm 2: Cand_Worker(t, W, 6, \, A)
Input: a task t, current active worker set W, minimum aggregation accuracy ¢,
maximum worker cost A, worker accuracy matrix A
Output: (¢}, af): minimum worker cost and minimum worker accuracy of task ¢
1 ¢f ¢ 00,a} + 0, Wassigned _ workers assigned for task t;
2 Find shortest prefix W™ of top workers w € W \ Wesi9ned with highest accuracy
arw € A such that A(Wassigned ) > § and |Wassioned g wm| < \;
if W™ can be found then
CI — ‘Wassigned U th|;
W§ < c¢f — |[Wassigned| yirtual workers with accuracy a;
Binary search the minimum a over (0.5,1] such that A(Wassigned y Wga) > §
until the precision reaches 0.01;
7 ay < a;

[=2 3L B N

8 return (¢}, aj)

Definition 3 (Candidate Workers). For an uncompleted task t, a worker w from W is a

candidate worker if t has not been assigned to w and as,, > ay. O

Following the definitions of ¢; and aj, the next theorem states that candidate workers

are as good as top workers in guaranteeing the § accuracy with the minimum worker cost.

Theorem 1. Assume c; < \. Let Wy be any set of ¢* candidate workers of t (i.e., aw > aj ).
Then A(Wy) > 0.

Example 5. Continue with Example 8 and 4. All workers in W except for wr are candidate
workers for t as they have at least af = 0.81 accuracy. Therefore, any c; = 3 of {w1, ..., we}
can achieve at least § inference probability and 3 is minimum. In particular, even if none
of the top three workers {w1,ws,ws} requests, we can assign t to any 3 candidate workers
who request, say {w4,ws,we}, and this still guarantees the 6 = 0.9 aggregation quality and

the minimum cost. [

3.5.2 Handling Dynamic Worker Set W

Now we consider the case that W changes to W’ after some workers W**9"*? have been

assigned to an uncompleted task ¢. In this case, (¢f,a;) computed based on W will be
out-dated and should be recomputed based on W', under the constraint that the workers
in Wtamg"ed are already assigned to ¢. In particular, in the computation of ¢, W™ would
become W9 JWm with W™ being selected from W\ W9 and ¢f = |Wwssiomed
W/™|. Similarly, in the computation of af, W would become WtaSSigned U W with W
containing ¢f — |W**"9"*| virtual workers with the same accuracy a, and a is the minimum
value a found by the binary search such that A(W 9"y wa) > §.

Algorithm 2 shows the function Candworker for updating the parameters (cf, af) that

define candidate workers of a task ¢, which takes O(|W]) time as discussed in Section 3.5.1.
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Algorithm 3: GAA(T,T',0,\)
Input: normal tasks 7', golden tasks 7, minimum inference probability §, maximum
worker cost A
Output: aggregated labels of completed tasks
L TC 0, W « 0, Wrew « (), Wheave (A + ()
2: while |T| # |T'| and within specified time window do
3:  switch (worker activity)
case 1. Worker w requests:
Assign a task ¢ € T'\ T with highest a;,, € A such that w ¢ W; and a;,, > af
Add ¢ to the completed task set T if |W;| = ¢f
case 2. a new worker w arrives:
A <+ Acc_ Estimate(w,T,T', A)
Add w to Wnew
10: case 3. a worker w becomes inactive:
11: Add w to Wieave
12:  case 4. W™ or W'ee is non-empty for a specified time interval:
13: W« (W U Wnew) \ Jyleave
14: Wnew q)’ Wle(we — 0
15: (cf,af) « Cand_Workers(t, W, d, A, A) for each task t € T'\ T
16: Aggregate collected labels for completed tasks T¢ by majority voting;
17: return aggregated labels of completed tasks T¢;

With the update of (¢}, a;) on a dynamic worker set W, Definition 3 remains the same if

W refers to the current active worker set, and Theorem 1 now is generalized as follows.

Theorem 2 (Dynamic W). Assume ¢f < \. Let WtaSSignEd be the workers already assigned
tot, let WE be any set of ¢; —|W**"9"| candidate workers of t, and let Wy = tas‘gignEdUWtc.
Then A(Wy) > 0.

According to Theorem 2, given the assigned workers, considering candidate workers for
the remaining assignment will minimize the worker cost (because the cost ¢} is minimized

for the remaining assignment).

3.6 Online Assignment Algorithms

We now present the Guaranteed Accuracy Algorithm (GAA) and the iterative GAA

(IGAA) for assigning candidate workers to tasks in the online setting.

3.6.1 Guaranteed Accuracy Algorithm (GAA)

GAA(T,T',6,)\) in Algorithm 3 takes normal tasks T, golden tasks 7", and (4, A) as input,
and outputs the aggregated labels for completed tasks in L. It repeatedly responds to the
worker activity in four cases until either all tasks are completed (i.e., £L = |T|) or the

specified time window for processing has passed.
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Case 1 assigns a task ¢ to a requesting candidate worker w, checked by the conditions
w ¢ Wy and a, > af. Theorem 2 implies that Case 1 ensures tasks are completed by
satisfying the accuracy threshold ¢ with minimized worker cost c¢;. Case 2 tests new workers
using golden tasks 7" and update at,, for uncompleted tasks ¢ € T \ T, while Case 3
handles workers leaving the system. To prevent updating candidate workers too frequently,
new workers and leaving workers are held up in W% and W' until a specified time
interval has passed before W and (¢, af) for candidate workers are updated in Case 4. The
time interval serves as a trade-off between the update timeliness of W and the frequency of
calling Cand_Worker(t, W, 0, A, A).

Note that the task assignment is assumed to be non-preemptive for simplicity in Sec-
tion 3.3, where a worker must provide a label for an assigned task before requesting for the
next one. But in reality, a worker may leave the system at any time, even without labeling
the assigned task. To cope with this situation, we could suspend the assignment of a task ¢
when the number of workers in W; who are assigned to the task reaches ¢} and add the task
to the completed task set T in Algorithm 3 only when all these c; workers have provided
their labels. If a worker in W; fails to provide a label within a predefined time limit, we can
remove the worker from W; and resume the assignment of the task.

Complexity Analysis. With recorded ¢}, a; and a;,,, Case 1 takes O(|T'|) time. Case
2 requires O(|T']) time to estimate at,, for all uncompleted tasks. The complexity of Case
3 is O(1). For Case 4, Cand_Worker(t,W,d, A\, A) can be done in O(|W]|) time for each
uncompleted task ¢ (see Section 3.5.1), so the update cost for Case 4 is O(|T'||W]). This
cost is smaller than the update cost O(|T|?> + |T||W|) of iCrowd [26] that is incurred for
each change of W and each submission of worker labels.

We note that a high-quality worker is likely candidate workers for many tasks in GAA,
but it would not overload such workers in terms of assigning the worker too many tasks.
This is because under the “request-then-assign” model, a task is assigned to a worker only if
the worker makes a request, which indicates that the worker is ready to take the next task.
Actually, making more use of high-quality workers is the key to improve the aggregation

accuracy.

3.6.2 Iterative GAA (IGAA)

With Algorithm 3, it is possible that some tasks may be left uncompleted after the specified
processing time window expires. This happens if the § threshold is set unrealistically high
relative to the quality of the workers in W, or the top workers for a task ¢ have such a high
accuracy that it causes a very small ¢; and a very high a}, so not many requesting workers
qualify to be a candidate worker for the task.

We can address the above issue by running GAA in multiple iterations. In iteration i,
initially ¢ = 0, the minimum worker cost ¢} (i) is set to min(c; +1, A) for uncompleted tasks ¢

in iteration ¢, where ¢} # co. In other words, the minimum worker cost is gradually relaxed
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by 1 in each next iteration. This iterative process terminates in three cases: all tasks are
completed, or the HIT requester decides to terminate, or ¢; (i) > A for every uncompleted
task t at the end of iteration i. The last case indicates that the minimum worker cost cannot
be further relaxed because |W;| < A is required. We call this algorithm Iterative GAA or
simply IGAA. Note that GAA is IGAA with only the initial iteration. The complexity of
each iteration for IGAA is similar to that of GAA, except that the number of uncompleted
tasks shrinks after each iteration.

Like GAA, IGAA ensures at least § accuracy for all completed tasks. The difference
is that the minimum worker cost requirement is relaxed by one in each next iteration to
complete more tasks. If there are still uncompleted tasks left when the algorithm terminates,
a traditional algorithm, such as hiring a fixed number of workers per task, can be applied

to complete the remaining tasks without quality guarantee.

3.7 Experiment

We explain experiment settings (Section 3.7.1), study the benefits of candidate workers
(Section 3.7.2), compare GAA and IGAA with state-of-the-art methods (Section 3.7.3 and
3.7.4). All experiments were implemented in Java on a computer with CPU 3.60GHz and
32GB memory.

3.7.1 Experiment Settings

Evaluation Criteria. We consider three evaluation criteria for solving GAP. Accuracy:
the percentage of completed tasks whose aggregated labels match true labels, which is the
empirical inference probability. An algorithm produces a valid solution if Accuracy is at least
6. Cost: the average worker number per completed task. Completion: the percentage of
tasks that are completed by an algorithm.

Experiments on a real platform like AMT will collect the data only with a particular
worker requesting order, which may not lead to a conclusive performance study as we want to
evaluate how different methods perform with respect to different worker requesting orders.
For this reason, we decided to employ the following two crowdsourcing datasets previously
collected so that we can test 50 randomly permuted orders of worker requests.

MovieLens® (ML). This dataset contains user ratings on movies and was used in
previous crowdsourcing methods [83, 107]. Following the practice in [17], we view rating
movies as binary labeled tasks, Yes for rating > 3 and No for rating < 3. We removed
movies with less than 7 ratings due to insufficient labels for testing. The resulting data has
3025 movies (tasks) and 668 users (workers). The rating recommended by the website was

treated as the true label. The dataset also provides genre tags (19 genres in total) for each

3http://grouplens.org/datasets /movielens,/
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movie. A movie could have several genre tags. Since genres reflect the topics of a move,
we directly derive the topic distribution of tasks from the genre information by equally
weighting each related genre tag, instead of applying the LDA algorithm. For example, a
movie with “Action”, “Animation”, “Children” and “Mystery” tags will have 0.25 weight
for each of these 4 tags and 0 weight for all other tags.

Narrativity? (NR). This dataset collected by [35] asks 155 workers to review the
abstracts of 802 scientific papers (tasks) and provide a Yes or No label to indicate whether
the narrator refers to the author himself in the abstract (e.g., through use of pronouns such
as I, we, and our). For each task, exactly 7 worker labels were collected from AMT. The true
label for each task was manually obtained. As the abstract usually reveals the topics of a
paper, the latent topic distribution of tasks is calculated using LDA. We set the number of
latent topics to 10 and take the keywords in the abstract as the input for the topic modeling
algorithm.

Both ML and NR datasets provide the < t,w,l > tuples for the label [ given by a
worker w on a task t. For each dataset, we report the average of 50 runs. For each run, we
generated the worker requesting sequence wi, -+ ,w, from a random order of the tuples,
< tp,wy,ly >, < tp,wn, l, >. Each algorithm assigns a task ¢ to a requesting worker
w according to its assignment strategy, with the constraint that the tuple < ¢,w,l > for
some label [ is contained in the dataset. For each run, the golden tasks T” are created by
sampling 20 <t,w, > tuples (with replacement) for each worker w for testing the worker.
A worker on his first request is treated as a new worker and a worker after submitting his
last label with no more requests is treated as leaving the system.

Baseline Methods. We compare the performance of our GAA and IGAA algorithms
for solving GAP under the (6, \) constraint with five state-of-the-arts baseline methods:

(1) iCrowd [26]: This work greedily schedules the assignment of each task to a fixed
number of top workers and each worker can be scheduled for at most one task at a time.
The schedule is updated whenever W changes or a worker becomes available after submit-
ting a label. After collecting worker labels, weighted majority voting is used to derive the
aggregated labels. We set the fixed worker cost to A (similarly, for Docs and FaitCrowd
below).

(2) Docs [109]: This algorithm fixes the total worker cost for all tasks and assigns each
task to a different number of workers according to the ambiguity of aggregated labels and
the quality of requesting workers, which are iteratively updated using the EM algorithm.
We set the total worker cost to A x |T'|, where |T'| is the number of tasks (so that each task

is labeled by A workers on average).

“https://data.world /crowdflower /narrativity-in-scientific-pub
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Figure 3.2: Accuracy and Completion (mean and standard error) by top workers vs candi-
date workers.

(3) FaitCrowd [62]: FaitCrowd randomly assigns each task to A workers and then applies
a probabilistic graphical model to iteratively estimate worker expertise and task difficulty
on the topic domain with the inference of true labels.

(4) CDAS [61]: CDAS associates each worker with a single accuracy for all tasks, so
an arbitrary task is assigned to requesting workers. The aggregated label is determined by
a confidence value evaluated based on worker accuracy, and the assignment of a task is
terminated when the confidence on the current best aggregated label passes a threshold
derived from a given aggregation accuracy. We set this aggregation accuracy to 4.

(5) ATA [36]: This is the offline solution of AT'A, which optimally assigns a minimum
set of workers with highest quality to each task until the 21n(1/¢€) threshold on the quality
sum is met, where € is a specified aggregation error and we set ¢ = 1 — §. The aggregated
labels are determined by weighted majority voting. Note that this offline solution provides
an upper bound on aggregation accuracy and a lower bound on worker cost for their online
ATA.

Note that iCrowd, Docs and FaitCrowd do not enforce § and assign each task to A

workers on averages.

3.7.2 Benefits of Candidate Workers

We first study the benefits of candidate workers relative to top workers in terms of boosting

of task completion rate. In Figure 3.2, we compare Accuracy and Completion of GAA
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Figure 3.3: Accuracy, Cost and Completion for ¢ € {0.8,0.85,0.9,0.95} and A € {3,7} on
ML dataset.

algorithm with two options. CandidateW orkers(CW) denotes the option of assigning a
task to its candidate workers exactly in Algorithm 3, and TopWorkers(TW) denotes the
option of assigning a task to its top workers instead. Cost is the same in the two cases.
While TW has higher Accuracy than CW, both algorithms satisfied Accuracy > §, by
staying above the diagonal line. However, CW helps complete 5% to 15% more tasks, which

confirms the benefits of replacing top workers with candidate workers.

3.7.3 Comparison with Baselines

We first compare GAA and IGAA with the baselines. In Case 4 of Algorithm 3, W and
candidate workers are updated whenever a new worker arrives or an existing worker leaves.
The processing time window is set to cover all worker requests. In Figure 3.3 and 3.4, we
report the Accuracy, Cost and Completion of each algorithm on ML and NR, respectively,
where A\ € {3,7} ((a) and (b)) and § € {0.8,0.85,0.9,0.95} with the default settings of
0=09and A =7.
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Figure 3.4: Accuracy, Cost and Completion for 6 € {0.8,0.85,0.9,0.95} and A € {3,7} on
NR dataset.

Accuracy. A violation of the § accuracy requirement is indicated by falling below the
diagonal line. For a large § threshold, iCrowd, Docs and FaitCrowd could violate the §
requirement, especially when A is small, e.g., A = 3. CDAS responds to the change of §, but
since a single average accuracy is used to model each worker, which may be over-estimated
for difficult tasks, the method fails to pass most § thresholds. For A = 7, we cannot find a
solution for AT A on the NR dataset when § = 0.95 because no task can satisfy its lower
bound on the quality sum. If we reduce A to 3, AT'A will fail for all ¢ settings tested. In
contrast, our GAA and IGAA methods satisfy all (J, ) requirements on both datasets. All
algorithms have a standard error ranging from 0.01 to 0.03.

Cost. Our GAA and IGAA algorithms hire much fewer workers per completed task than
the baselines. In most cases, less than 2 workers per completed task are needed, and many
tasks were completed with only 1 worker. Cost is reduced by 28% to 57% as compared to
CDAS, by 63% to 78% as compared to AT A, and by 55% to 80% as compared to iCrowd,
Docs and FaitCrowd. AT A requires even more Cost than CDAS. AT A compared here is
the offline version. The online AT A will have lower Accuracy and higher Cost. Also, the
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Figure 3.5: Average time per task assignment (a) and average time per update (b).

standard error of CDAS (0.27) is much higher than other methods (0.00 to 0.05) because
the cost minimization of CDAS highly depends on the requesting order of workers.
Completion. iCrowd, Docs, FaitCrowd, CDAS and AT A completes all tasks but as
discussed above this is at the expense of no quality guarantee. GAA completes at least
88% tasks on the ML dataset and at least 76% tasks on the NR dataset when A = 7, and
all completed tasks satisfy the § accuracy requirement. /G AA increases Completion by 3%
to 5% on the ML dataset and 5% to 9% on the NR dataset. When the smaller A = 3 is
applied, Completion of GAA/IGAA on both datasets drops by only 4% to 7% as compared
to GAA/IGAA with A = 7, because reducing A from 7 to 3 only affects the completion of
tasks that require more than 3 workers, which are very few. Note that the remaining tasks
can be completed by applying a traditional method with no guarantee on the quality of
aggregation results. The standard error of GAA/IGAA ranges from 0.02 to 0.04.

3.7.4 Execution Time

We compare the efficiency of GAA with the online task assignment baselines, i.e., iCrowd,
Docs, FaitCrowd and CDAS, w.r.t. the task size |T| from 10,000 to 100,000 and the
worker size |W| from 1,000 to 10,000. The default sizes of |T'| and |W| are 50,000 and 5,000,
respectively. By varying one of |T'| and |W| while holding the other at the default size, we
generated several synthetic datasets as follows: Each task is associated with a randomized

topic distribution of length 5 and a randomized binary true label. For each worker w, a
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random accuracy a,, € [0, 1] is associated so that the worker has a,, probability to provide
the true label. The requesting order of workers is also randomized. As before, the golden
task size |T”| is set to 20.

First, we focus on the average task assignment time to respond to each worker request.
For GAA, this is the time for each execution of Case 4 of Algorithm 3. Figure 3.5(a)
shows the average task assignment time. iCrowd schedules the task assignment before
worker requests, while FaitCrowd and CDAS randomly choose a task to assign, so they
all take little time for task assignment. Docs’s and GAA’s task assignment time linearly
increases with the task size | T|. Overall, all methods respond to each worker request in a few
milliseconds, even for the task size of 100,000. The time for task assignment is independent
of the worker size.

Next, we consider the average time per update required to maintain the information
used by task assignment. Note that FaitCrowd, CDAS, and Docs have little or no update
time because they assign a randomly chosen task or the most benefit task. For GAA, this
is the time for each execution of Case 4 of Algorithm 3 update the parameters of candidate
workers when W changes. For iCrowd, this is the time on updating the task assignment
schedule for each worker when a worker joins/leaves the system or submits a label.

As shown in Figure 3.5(b), iCrowd has a much larger average update time than GAA.
This is because the time of updating the task assignment schedule is O(|T|? + |T||W]) [26],
compared to O(|T'||W]) for updating candidate workers in GAA. In addition, iCrowd has
more frequent update than GAA because its update is triggered by each label submission
of workers and the change of W, whereas GAA’s update is triggered only by the change of
w.

3.8 Summary

In this chapter, we analyze the drawbacks of existing works related to quality control and
cost management in crowdsourcing. Previous works either do not address a specified aggre-
gation accuracy, which is not acceptable to high stake downstream applications, or fail to
minimize the cost of hiring online workers. We address this issue by presenting a new prob-
lem statement, called Guaranteed Accuracy Problem (GAP), with the dual requirements of
accuracy guarantee and cost minimization.

To solve the problem under the online setting, where the set of active online workers
is dynamically changing, we present a GAA framework to adaptively identify and update
candidate workers who are as good as the top workers in providing a specified accuracy
guarantee with minimized worker cost. An iterative version of GAA, named IGAA, is also
proposed to complete more tasks by relaxing the cost minimization in each iteration.

Empirical evaluation on real crowdsourcing datasets confirm that GAA/IGAA algo-

rithms meet the design goals on accuracy guarantee and minimized cost. More specific,
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GAA/IGAA algorithms pass all the different thresholds for aggregation accuracy and re-
quire much less cost than the state-of-the-art methods. We also create synthetic datasets
with varying task number and worker number to show that our methods can effectively
perform task assignment and update candidate workers w.r.t. the change of active online

workers.
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Chapter 4

TDSSA: Truth Discovery against
Strategic Sybil Attack

Typical crowdsourcing methods aggregate worker labels in a voting manner, with the as-
sumption that workers provide their labels independently. However, such aggregation is
vulnerable to Sybil attack where the attacker earns easy rewards by coordinating several
Sybil worker accounts to share a randomized label on each task for dominating the ag-
gregation result. A strategic Sybil attacker may also attempt to evade Sybil detection. In
this chapter, we propose a model called TDSSA to defend against strategic Sybil attack by
integrating the Sybil behavior and label reliability of workers into truth discovery and well

camouflaging tasks that are used to discover these worker properties.

4.1 Background and Overview

Crowdsourcing is often used as a tool for social efforts, e.g., the collection and analysis of
data relating to the natural world by members of the general public, typically as part of a
collaborative project with professionals. As workers with diverse knowledge background may
provide conflicting labels to the same task, some number K of workers are hired for each
task and their labels are aggregated to infer the unknown true label in a voting manner, such
as by majority voting [26], weighted voting [36] and Bayesian voting [111]. An underlying
assumption is that all workers provide labels independently and honestly, which fails in the
presence of Sybil attack [23].

In crowdsourcing, a Sybil attacker could manipulate several Sybil worker accounts to
share a randomized label on each task so that the independent workers on the same task
could be outvoted. Sybil attack becomes strategic and is harder to defend if the attacker
attempts to evade detection [68]. For example, if golden tasks are leveraged to each new
worker in a cold-start phase for estimating worker quality, a strategic Sybil attacker can
first label golden tasks honestly to improve the trustworthiness of Sybil workers but attack

later on normal tasks. Even if we mix the assignment of golden tasks and normal tasks, the
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Task | True Label Worker Label Aggregated Label
wi | w2 | w3 | w4 | Wp
ty 1 1 1 2 2 2 2
to 3 3 1 3 3 1 3
t3 3 3 3 2 2 2 2
ty 2 2 2 2 3 3 2
ts 2 2 2 1 1 1 1

Table 4.1: Aggregated labels derived from majority voting, where w; and ws are independent
workers and ws, w4 and ws are Sybil workers who occasionally deviate from the label sharing.

attacker may still identify a golden task when more than K Sybil workers are assigned to
the task because a normal task is usually assigned to a fixed number K of workers. To hide
the coordination among Sybil workers, the attacker may also allow them to occasionally

deviate from the label sharing to make Sybil detection more difficult.

Example 6. Suppose we have five tasks {t1,...,t5} labeled by two independent workers
{wy,wa} and three Sybil workers {ws,wq,ws}, as shown in Table 4.1. The two independent
workers provide the true label in most cases, while the three Sybil workers share a randomized
but probably wrong label on each task with occasional deviation from the sharing. If majority
voting is used for aggregating worker labels, i.e., assigning the same weight to each worker’s
labels, the aggregation result could be dominated by Sybil workers with a low aggregation

accuracy. In this example, only 40% of aggregated labels match the true labels. O]

The main drawback of majority voting is that each worker is equally weighted when
aggregating their labels. With the principle that the label provided by high-quality workers
should be weighted more in the label aggregation, and the workers who provide labels
more accurately should be assigned higher weights, truth discovery [54, 109] iteratively
estimates the weight of workers and the true label of tasks by applying the EM algorithm
[20]. However, online workers are still assumed to be independent and honest, which makes
the method vulnerable to Sybil attack. For example, without prior knowledge of worker
quality, the same weight is usually initialized for each worker, which may cause the same
problem as majority voting.

Contributions. We make the following contributions toward defending strategic Sybil

attacks in crowdsorucing:

1. We formalize the attack model of strategic Sybil attacks (Section 4.3) where the
attacker attempts to evade detection through the identification of golden tasks and

deviation of label sharing.

2. We propose an extended truth discovery (Section 4.4) to consider workers’ Sybil be-

havior and labeling reliability in truth discovery using golden tasks.
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3. We apply a probabilistic task assignment to strategically assign golden tasks while

camouflaging them from the attacker.

4. To address the shortage of golden tasks caused by our camouflage, we design an
online framework called Truth Discovery against Strategic Sybil Attack (T'DSSA)
(Section 4.6), where the extended truth discovery and probabilistic task assignment are
performed in a batch mode to periodically promote tasks completed by high-quality

workers as new golden tasks.

5. We conduct experiments (Section 4.7) using real and synthetic datasets with attack
injection recommended in the literature to show that TDSSA can achieve a much
higher aggregation accuracy than baseline methods under various attack settings and

data characteristics.

4.2 Related Work

Improving the aggregation accuracy is one of the most studied topics in crowdsourcing.
Towards this goal, many algorithms have been proposed, such as majority voting [64], truth
discovery [54, 109] and probabilistic graphical models [98, 62] derived from the EM algorithm
[20], and modeling the heterogeneity of worker quality [26, 61], worker community [85], task
difficulty [112, 96], and task hierarchy [12, 24]. While these works advanced the state-of-
the-art substantially, they all assume that workers independently provide their labels, which
does not hold in the presence of Sybil attack.

To our knowledge, SADU [102] is the first work addressing Sybil attack in a general
crowdsourcing setting. The idea is to cluster workers based on their label similarity and
then classifies each cluster as Sybil or non-Sybil by assigning the same set of golden tasks
with known true label to each worker in a cluster. As the clustering requires each pair
of workers to label an adequate amount of same tasks, the separation of the two types
of workers can be weakened by insufficient common tasks between workers. Also, when
dealing with strategic Sybil attack, the method may assign a golden task to more than K
Sybil workers in some cluster, where K is the number of workers hired for each normal task.
Then, the identity of the golden task may be exposed, and the attacker could adaptively
provide an honest label for Sybil workers to share, leading to the relatively low precision and
recall of Sybil detection. Note that limiting each golden task to at most K workers requires
restricting the cluster size to no more than K, which will affect the clustering function of
SADU.

Copy detection [21, 55, 106] considers integrating data from many data sources on
the Web where some sources may copy data from others. To explore an inter-dependence
between source dependency and true values, and learn the two iteratively, these methods

rely on most of the aggregated values in the first iteration to be correct. We may treat Sybil
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workers as copiers from the same source for Sybil detection. However, without the ground
truth of tasks, this initial dependency cannot distinguish the label sharing of Sybil workers
from the label convergence of high-quality independent workers. Applying golden tasks in
a cold start phase may not help because a strategic Sybil attacker can identify such golden
tasks.

Other attacks that could subvert a crowdsourcing system were also studied in the liter-
ature. In a spam attack [39], a spammer may provide randomized or even malicious labels.
Since spammers do not share labels, it is hard for them to dominate the aggregation result.
Data poisoning attack [65, 66, 27] aims to maximize the number of tasks whose aggregated
labels are different from the true ones, by assuming that the attacker has full knowledge
about other workers’ labels on the same task. Unlike these attacks, the goal of Sybil attack
is to get rewards with minimum effort and is less concerned with whether the provided label
differs from the true label.

In online social networks (OSNs), a Sybil attacker may coordinate “Sybil users" to un-
fairly increase the reputation of targeted users or items. Detecting such users in OSNs often
relies on analyzing their social structures or other features. In some specific crowdsourcing
applications such as mobile mapping service [90, 91] and fake-review detection [108, 43], this
technique could be applied. However, in most cases of crowdscouring, the interconnection

and features of dynamic online workers are not available.

4.3 Problem Definition

We consider a set of N tasks, denoted by T' = {t}, and a set of M workers, denoted by
W = {w}. Each task has L optional labels, only one of which is the true label. Each worker
can request for one task at a time and must provide a label once a task is assigned. To
complete a task, K workers are hired to provide their labels on the task, where K is usually
a small constant determined by the budget. Let I;,, be a worker w’s label on a task ¢. The
true labels are approximated by the aggregated labels £* = {I?} derived from the worker
label matrix £ = [l;,,]. The aggregation accuracy is the probability for the aggregated label
to be identical to the true label. A small set of golden tasks T' = {t'} with known true
labels £ = {l}} can be used to test worker quality. Table 4.2 summarizes the frequently

used notations, referred as the GLOBAL variables used by our algorithms.

Problem 2. Given a normal task set T and a (small) golden task set T', we aim to achieve
a high aggregation accuracy for the tasks in T by assigning tasks in T and T' to requesting
workers from an online worker set W, where W may contain Sybil workers controlled by

strategic Sybil attackers.

Attack Model. We assume that a strategic Sybil attacker may coordinate several Sybil

worker accounts to share a randomized label on each task. We stress that the attacker’s goal
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Table 4.2: The set of global variables referred as GLOBAL for TDSSA

Symbol | Description
T = {t} | N normal tasks with unknown true labels
W = {w} | M online workers (may contain Sybil workers)
T" = {t'} | golden tasks with known true labels
L = [lt4] | a matrix of worker label l;,, for each pair of worker w and task ¢
L= {l?} | aggregated label of completed tasks
L* ={l}} | true label of golden tasks in 7"
S = {sw} | Sybil score that measures workers’ Sybil behavior
R = {ry} | reliability score that indicates workers’ labeling reliability
A ={ay} | estimated accuracy of workers

the number of workers hired for each normal task in T’

the number of optional labels for a task

Sybil threshold for banning workers

reliability threshold for marking reliable workers

probability to assign a golden task to a new worker

W oo | ==

condition for terminating a batch

is not to mislead the aggregation to a wrong result, but to make easy money by dominating
the aggregation without knowing independent workers’ labels. Therefore, the solutions to
many other attacks discussed in Section 4.2 cannot be applied to solve Problem 2, and our
TDSSA framework is not designed for other attacks either. The public knowledge on K and
the assignment of golden tasks would be utilized by the attacker to evade detection. For
example, golden tasks could be identified if they are assigned in a cold-start phase or, in
the case of random assignment, assigned to more than K Sybil workers under the attacker’s
control. The attacker may also allow each Sybil worker to occasionally deviate from the

sharing behavior by providing a randomized label different from the shared one.

4.4 Extended Truth Discovery

In this section, we first show the vulnerability of truth discovery [54, 109] under Sybil attack
(Section 4.4.1). Then, we apply golden tasks to associate each worker with two parameters,
called Sybil score and reliability score, which would reveal the worker’s Sybil behavior
and labeling quality (Section 4.4.2). Finally, we extend truth discovery using these two
parameters to suppress the impact of Sybil workers and low-quality independent workers
(Section 4.4.3).

4.4.1 Truth Discovery

Truth discovery is a learning algorithm that iteratively estimates the weight of workers and
the true label of tasks. Let W; denote the set of workers on task ¢, T;, denote the set of

tasks labeled by worker w, and 1(z,y) denote the indicator function that returns 1 if z =y
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or 0 otherwise. Truth discovery conducts the following two steps to estimate the aggregated
label If(i) of each task ¢ and update the weight h, (i) of each worker w at each iteration i
until convergence:

Label Aggregation updates the aggregated label (i) for each task t based on the weight

hy(i — 1) of each worker w estimated in the previous iteration i — 1:
If (i) = argrlnax ZweWt ho (i — 1) - L(l 0, ). (4.1)

In words, the aggregated label I (7) is the label that receives the highest total weight from
workers in W; who label task ¢, which allows workers with a higher weight to contribute
more in the aggregation.
Weight Estimation updates the weight h,, (i) for each worker w based on how often w
agrees with the aggregated label:
_ e Llw, 1 (1))

hao(i) = o . (4.2)

By treating the aggregated label [{'(i) as the true label, h,(i) is worker w’s estimated
accuracy on the tasks in Ty,.

Without prior knowledge of worker quality, the weight of each worker is usually initial-
ized to 1 before the first iteration. The next example shows that such a uniform initialization
of worker weight may cause the same problem as majority voting in the presence of Sybil
attack.

Example 7. Recall the five workers in Table 4.1. With h,(0) = 1 of each worker w,
Equation 4.1 would produce the same aggregation result as majority voting. Subsequently,
based on Equation 4.2, we have hy, (1) = 0.4, hyy (1) = 0.2, hyy (1) = 1.0, by, (1) = 0.8 and
huws (1) = 0.6, so Sybil workers would exert more influence than independent workers in the

next iteration. OJ

4.4.2 Sybil Score and Reliability Score

The vulnerability of truth discovery under Sybil attack mainly comes from the assumption
that workers may have diverse expertise but label tasks independently. Since Sybil workers
share labels randomized by the attacker, the chance for them to provide a false majority
label on a golden task would be high. Based on this intuition, we evaluate a Sybil score for
each worker using golden tasks.

Sybil Score (s,) captures a worker w’s Sybil behavior of providing a false majority

label on golden tasks, defined as

2
_ _, 4.3
S 1 + 6_ Et/ET/ ﬂ(lt/,lezr/l)'(l_]l(lt’,w7l:/)) ( )
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where [}, is the known true label of a golden task ¢’ and [} is a label voted by the majority
of workers on t'. L(ly 4, 177) - (1 — L(ly ., 17)) = 1 if and only if Iy, is a majority but
false label, which is an evidence of sharing a randomized label. By rescaling the logistic
sigmoid function, s,, ranges between 0 and 1 and monotonically increases with more of such
evidences.

Unlike the cold-start phase of requiring each new worker to label the same golden tasks
in our GAA/IGAA algorithms (Chapter 3), we intend to strategically distribute golden
tasks for camouflaging them from the attacker. In this case, our trust on a worker w cannot

be simply measured by the worker’s accuracy p,,, computed by

: i |7} = 0

pw = *
¥ 1y ,05)
’ T/ thwot .
re UTT’ i vt otherwise
w

(4.4)

where |T)| may vary for different workers. For example, a worker w who has correctly
labeled a single golden task will have 100% accuracy, but we should trust another worker w’
more if the worker has labeled 10 golden tasks with 90% accuracy. Therefore, we evaluate
a reliability score for each worker by considering how many golden tasks the worker has
labeled.

Reliability Score (r,) measures the labeling reliability of a worker w using golden tasks,

defined as
2

1+ e Tl = 1) pu, (4.5)

Tw = (

where the first multiplicative term factors in the number of golden tasks T, labeled by w.
rw ranges between 0 and 1 and would be high only if worker w has labeled several golden
tasks with a high accuracy. This requirement is more than having a low Sybil score because
the latter could come from providing false but non-majority labels, which fails to ensure a
high reliability score. However, a high Sybil score usually implies a low accuracy on golden
tasks, and thus, a low reliability score.

Given a Sybil threshold T and a reliability threshold &, each worker w can be marked as
one of “banned” (s,, > 1), “reliable” (r,, > 0), or “undetermined” (s,, < 7 and 7y, < 9).
Initially, a worker w not tested by any golden task is “undetermined" with s,, = r,, = 0. As
being tested by more golden tasks, workers may become “banned" or “reliable". “Reliable”
workers are trusted and will not be tested by more golden tasks, while “banned” workers
will have their labels on normal tasks removed to improve the aggregation accuracy and are
not allowed to request for more tasks. However, “banned” workers’ labels on golden tasks

will be kept for detecting more Sybil workers.

Example 8. A larger Sybil threshold T enhances our confidence to ban a worker. With
7 = 0.7, a worker w who mistakenly provides a false majority label on 2 golden tasks

has sy = 0.76 and thus is “banned” If T is increased to 0.8, worker w will be banned after
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Algorithm 4: Extended Truth Discovery ET D
Global: GLOBAL
Output: £ aggregated label of tasks

1 Set hy(0) to p,, for each worker w € W,

21=1;

3 while L% is not converged do

4 for each taskt € T do

5 L Update the aggregated label [#(i) by Equation 4.6;
6 for each worker w € W do

7 L Update the worker weight h,, (i) by Equation 4.7;
8 | i=1i+1

9 Return £%;

providing a false majority label on 3 golden tasks. A larger optional label size L may increase
the Sybil score of Sybil workers because the randomized label shared by these workers on a
golden task have a higher chance to be a false label. A larger reliability threshold § enhances
our confidence to trust a worker. With § = 0.7, a worker w who provides 8 true labels on 4
golden tasks (i.e., |T, | =4) has r, = 0.72 and thus is marked as “reliable”. If 0 is increased

to 0.8, worker w is “reliable” only if all the 4 golden tasks are correctly labeled. [

4.4.3 Extending Truth Discovery by s, and r,

Our extended truth discovery (ET D) in Algorithm 4 integrates the Sybil scores S = {s,}
and reliability scores R = {ry,} into truth discovery, as described below.

Extended Label Aggregation extends Equation 4.1 to update the aggregated label [£(7)
for each task t by

I{(i) = argmax Z [(1—=sy) hyw(i—1)+ sy - %] 1l 1), (4.6)
weWy

where hy,(0) = py. In other words, each worker w € W, has 1 — s,, probability of being

an independent worker with h,, (i — 1) accuracy, and s,, probability of being a Sybil worker
1

T
whereas a small Sybil score renders the label aggregation to the standard one. In particular,

with % accuracy. A large Sybil score renders the weight of a worker to the random guess

Equation 4.1 is the special case of Equation 4.6 with s,, = 0 for each worker w.
Extended Weight Estimation extends Equation 4.2 to update the weight h,, (i) for each

worker w by
_ ter, & Llhw, 1E(9))
ZtGTw Ct

ha (7) (4.7)
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where ¢; is the average reliability score of workers W; who label a task ¢, computed by

ZwEWt Tw
| Wi

Ct = (48)
We weigh each task t by the average reliability score of workers on the task. Note that the
reliability score 7, and the weight h, (i) serve different purposes: the former is the trust
on worker w gained by labeling golden tasks, and the latter is the accuracy of worker w
estimated based on the aggregated labels. Equation 4.2 is the special case of Equation 4.7

with r, = 1 for each worker w.

Example 9. Let’s reconsider Example 7, assuming that the Sybil workers ws, ws and ws
provide the true label on 3 golden tasks and share a false label on 2 golden tasks (thus,
Pws = Pw, = Pws = 0.6), and the independent workers wy and wy label all the 5 golden
tasks correctly (thus, pw, = pw, = 1). From Equation 4.3, Sy, = Sw, = 0 and Sy, = Sw, =
Sws = 0.76. Then, based on Equation 4.6, the total weight of w1 and wy is 2, while the total
weight of the 3 Sybil workers would be lowered to 3-(0.76- 5+ (1—0.76) - 0.6) = 1.185. Sybil

workers’ weight is correctly suppressed in label aggregation. [

In each iteration of Algorithm 4, the extended label aggregation runs in O(N) time
because each task is labeled by a constant number K of workers. The weight estimation
updates the weight of M workers, but each worker labels % tasks on average, so the run-
ning time is also O(NN). The iteration number is constant if the iterative learning terminates
when the change of the aggregated labels is smaller than a pre-defined threshold [56], e.g.,
1% in our experiment. Therefore, the complexity of Algorithm 4 is O(N).

4.5 Probabilistic Task Assignment

We now present our probabilistic task assignment with the camouflage of golden tasks.

4.5.1 Assigning Tasks to Requesting Workers

The design of our online task assignment is motivated by strategically assigning golden tasks
while camouflaging them from the attacker. To achieve this, we probabilistically assign a
golden task ¢’ € T” or a normal task t € T to each requesting worker w based on the worker’s
Sybil score s, and reliability score ry,. A “banned” worker cannot request for more tasks
and a “reliable” worker would not be tested by more golden tasks (see Section 4.4.2), so
golden tasks are only assigned to “undetermined” workers.
Our probabilistic task assignment PT'A is shown in Algorithm 5. If a requesting worker
w is in the “undetermined” status, we assign a valid golden task with g, («) probability
(Step 2) defined by
gu(a) =a- (1 —ry)+ (1 —a)-sy. (4.9)
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Algorithm 5: Probabilistic Task Assignment PT A(w)

Input: w: a requesting worker
Global: GLOBAL

1 if worker w is in the “undetermined” status (sy < T and ry, < 6) then

2 Assign worker w to a valid golden task ¢’ € T' with g, (a) probability computed
by Equation 4.9;

3 if worker w is not assigned to any golden task then
L Assign worker w to an uncompleted normal task t € T,

5 else
6 L Assign worker w to an uncompleted normal task t € T

This ensures that a worker with a higher Sybil score and/or a lower reliability score is more
likely to be tested by golden tasks. o € (0, 1] is the probability for assigning a golden task
to a new worker w with s, and r,, both initialized to 0. « also serves as a trade-off for
the influence of s,, and 7, on g, (). If no golden task is assigned or if worker w is in the
“reliable" status, we assign an uncompleted normal task ¢t € T' (Step 3-6). The restriction
for assigning a valid golden task (Step 2) will be discussed in Section 4.5.2. Algorithm 5 can
be run in O(1) time by tracking the validity of golden tasks in T".

In the following, we analyze the risk of exposing a golden task to the attacker by g, (),
assuming the attacker has the knowledge about the task assignment algorithm, the param-
eter «, and the thresholds 7 and ¢. First, learning g,,(«) in Equation 4.9 requires knowing
the values of r, and s,,, thus, identifying the type of each task assigned, which goes back to
learning g,, (). Hence, the attacker does not learn the exact value of g, (c). However, since
a golden task is assigned only to an “undetermined" worker w with s, < 7 and r,, < §, we
have a- (1 —0)+ (1 — ) - sy < guw(a) < a-(1=7y) + (1 — @) - 7. For example, with o = 0.5
and 0 =7 = 0.8, we have 0.1 + 0.5 - s, < gy(a) < 0.9 — 0.5 7y,. For a Sybil worker w that
is not “banned”, we have s,, < 0.8, r,, > 0 and 0.5 < g, () < 0.9. Therefore, the attacker
learns that an assigned task is a golden task with a probability in the interval (0.5,0.9), but
the exact probability is unknown. This disclosure is expected because we want to test more
frequently a worker with a large s,, and a small r,,. While the equal probability g,,(a)) = 0.5
provides the maximum uncertainty for learning the task type, it could leave insufficient
golden tasks for workers that need more tests because of the restriction on valid golden

tasks discussed below.

4.5.2 Risk Analysis of “Reliable” Workers

In Step 2 of Algorithm 5, a golden task is valid if it has been previously assigned to less
than K workers with the “banned" or “undetermined" status. As these workers are potential
Sybil workers, the restriction prevents a golden task from being identified by a strategic Sybil

attacker. Note that “reliable" workers ate not counted in the restriction, so there is a risk
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Figure 4.1: P(syb|ry, > §) vs L and 0, with p = 0.3, |T,,| =5, L = 2 and 6 = 0.8 by default.

for a golden task to be assigned to more than K Sybil workers if a “reliable" worker w (i.e.,
Tw > 0) on the task is indeed a Sybil worker. Let P(syb|r,, > ¢) denote the probability that
a “reliable" worker w is actually a Sybil worker. Below we estimate P(syb|r, > J).

Let P(r, > J) be the probability for a worker w to pass the reliability threshold 4,
P(ry > 0|syb) be the probability to have r,, > ¢ given w is a Sybil worker, and P(r,, > d|ind)
be the probability to have r,, > § given w is an independent worker. If the proportion of
Sybil workers in W is u, we have

e P(Tw > 5|Syb)
S — .
P(syblr; > 9) (- P(ry > 8|syb) 4+ (1 — ) - P(ry, > 8]ind)

(4.10)

By Equation 4.5, a worker w is “reliable” only if w provides the true label on at least
d=1[0- ]TM/(ﬁ —1)] golden tasks because

2 )
_ . >0 = > .
1+ e 1Tl 1) pw 20 Pw = 75— 1

1+€7|TT/U‘ N

Tw = (

(4.11)

Then P(r, > §) is equal to the probability of providing at least d true labels on |T},| golden
tasks. Let 6, be the probability for a worker w to provide the true label on any task, which
is actually a Bernoulli trial with the success probability 6,,. So we have

P(r, > 6) =Y <|T1/U> (B)" - (1 — 0,)/Tl=2 (4.12)

X

Theorem 3. Given the optional label size L and the average accuracy 6 of independent
workers, P(syb|ry, > §) is computed by Equation 4.10, where P(ry > 0|syb) is P(ry > 9)
with 0, = 1 and P(ry, > 8lind) is P(ry, > 6) with 6, = 6.

Assume the Sybil proportion u is 0.3 and each worker w labels |T},| = 5 golden tasks.
Figure 4.1 shows P(syb|r, > ¢) vs the optional label size L and the average worker accuracy

0 for different 0. As L or 6 increases, fewer Sybil workers or more independent workers are

51



Algorithm 6: TDSSA
Global: GLOBAL
Output: £ aggregated label of tasks

1 while not all tasks in T are completed do

2 while batch condition B is not met do

3 switch a worker w € W requests or labels a task do

4 case 1. w sends a request do

5 L Assign w to a task by PTA(w);

6 case 2. w labels a golden task t' € T' do

7 Update Sy, Tw, pw (Equation 4.3, 4.5, 4.4);

8 Update ¢; for all tasks ¢ labeled by w (Equation 4.8);
9 if sy passes the Sybil threshold T then

10 L ban w with her labels on normal tasks in T removed from L;
11 case 3. w submits a label l;,, on a normal taskt €T do
12 L Add the label l;,, to L;
13 Update L% by ETD;
14 | Promote completed tasks ¢ € 7'\ 7" with ¢; > d to T";

15 Return L%

“reliable”, so P(syb|r, > 0) decreases quickly. A larger § requires a worker w to provide more
true labels on |T},| golden tasks in order to become “reliable”. This is more difficult for Sybil
workers than for independent workers because the former has only % accuracy, therefore,
P(syb|ry > 6) drops. The HIT requester can use 6 to control the risk P(syb|ry, > 9).

4.6 TDSSA Framework

Now we present the overall TDSSA as Algorithm 6. The idea is to run ET D and PT A in
a batch mode to periodically update the worker parameters, i.e., S = {sy}, R = {ru}, P =
{pw}, and promote completed tasks as new golden tasks.

TDSSA responds to each action of a worker w differently. A task will be assigned by
PTA(w) when w makes a request (case 1). If w labels a golden task in 7" (case 2), the
worker parameters will be updated, and w may be banned with her labels on normal tasks
in T removed once s,, passes the Sybil threshold 7. If w labels a normal task in T' (case
3), the worker label matrix £ will be updated. Upon the satisfaction of the batch condition
B (Step 2), ETD updates L£* based on collected worker labels £, and the completed tasks
t € T\T' with ¢; > 0 are promoted as new golden tasks (Step 12-13), where the aggregated
label of a promoted task will be treated as the true label and will not be further updated.
A promoted task will not be used to test any worker who completed the task because the

related label is already known.
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The batch condition B serves as a trade-off between the efficiency of TDSSA and the
freshness of golden tasks 77 and worker quality {S, R, P}. For example, B can be specified
in terms of the number of “promotable” tasks in T', which affects the changes of T’ and
{S, R, P}. If most workers are high-quality independent workers, many completed tasks
could be promoted to continuously update {S, R, P}. If many workers are Sybil workers or
low-quality independent workers, valid golden tasks may be run out with few promotion and
{S, R, P} cannot be further updated. However, the {S, R, P} obtained in early batches will
continue suppressing the impact of Sybil and low-quality workers in subsequent batches.

The complexity of TDSSA mainly comes from ETD (Algorithm 4) and PTA (Algo-
rithm 5). Since the number of batches is bounded by the task number N and Algorithm 4
converging in O(N) time in each batch, the total running time of ETD is O(N?). The total
running time of PT'A is O(K N) because exactly K workers are hired for each of the N tasks
in T and Algorithm 5 takes O(1) time to assign a task to a requesting worker. Therefore, the
complexity of TDSSA is O(N?). When dealing with a large N, we may terminate a batch
based on the percentage of tasks in T being completed, which would lead to a constant
number of batches and drop the complexity of TDSSA to O(N).

4.7 Experiment

This section evaluates TDSSA in the presence of strategic Sybil attack. On a real crowd-
soucing platform, strategic Sybil attack is not guaranteed to be present in a particular
experiment and, even when present, it is hard to know which workers are actually Sybil
workers for evaluating the performance. So we used previously collected crowdsourcing
data and adopted the Sybil injection recommended by SADU [102]. All experiments were
implemented in Java on a computer with CPU 3.60GHz and 32GB memory.

4.7.1 Experiment Settings

Real Datasets. We used two public real crowdsourcing datasets, named NLP [110] and
DOG [112, 102], both of which were collected from AMT. The NLP dataset was used in a
crowdsourcing survey, where M = 85 workers label N = 1000 tweets (tasks) as positive or
negative sentiments and each tweet is labeled by K = 20 workers. The DOG dataset was
used to evaluate several crowdsourcing models, such as D&S [112] and SADU [102], where
M = 109 workers label N = 807 dog images (tasks) as one of four types and each image
is labeled by K = 10 workers. Both datasets are represented by a set of (¢, w, ;) tuples,
indicating worker w provides label l; ,, on task ¢t. The true labels of all tasks are also given
by these two datasets.

Synthetic Datasets. As data properties are fixed for real datasets, we also created
several synthetic datasets, denoted by SYN, in order to test the performance of different

algorithms under various task number N, worker number M, worker number K per task,
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Table 4.3: Data characteristics

Properties NLP | DOG | SYN (default value)
Task Number N 1000 | 807 1000~9000 (5000)
Worker Number M 85 109 100~900 (500)
Workers per Task K 20 10 5~20 (10)
Optional Label Size L 2 4 2~5 (4)
Worker Accuracy 0 0.8 0.7 0.7~1 (0.8)

Table 4.4: Attack characteristics

Symbol Description Settings (default value)
1 Percentage of Sybil workers 0~0.8 (0.5)
Probability for Sybil workers
¢ to deviate from sharing 0~0.3(0.1)
A Number of attackers 1~4 (1)

optional label size L, and average worker accuracy 6. The (t,w,;,,) tuples were generated
based on the average worker accuracy 6. For example, with § = 0.8, a worker will have 0.8
probability to provide the true label and 0.2 probability to provide a false label.

We summarize the statistics of real and synthetic datasets in Table 4.3. The default
setting is used if no specification is given.

Golden Task Simulation. NLP comes with a pool 7" of 20 golden tasks and the tuples
(t',w,ly ) for each worker w and each golden task ¢ € 7. For DOG and SYN, we created
20 golden tasks T and used the worker accuracy of the original data to generate the tuples
(t',w,ly ) for each worker w and each golden task ¢’ € 7", through the same procedure for
creating the synthetic datasets.

Sybil Injection. We adopted the Sybil injection of SADU [102] using three parameters
(i, €,\). A proportion p of independent workers were replaced with Sybil workers evenly
distributed among A attackers. On each task, the Sybil workers controlled by the same
attacker will share a randomized label with probability 1 — e and independently randomize
a label with probability €. The attacker adaptively switches from randomization to an honest
label once a golden task is identified. The settings of (i, €, ) are summarized in Table 4.4.

Evaluation Metrics. We examined three performance metrics: (1) Aggregation ac-
curacy (A-accuracy) is the percentage of tasks whose aggregated label computed by an
algorithm is identical to the true label. (2) Ezposure number (E-number) is the number of
golden tasks assigned to more than K Sybil workers under the same attacker’s control. The
attacker will identify such golden tasks and will switch from randomization to an honest

label (derived from the average worker accuracy) to evade detection. This behavior only
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Figure 4.2: A-accuracy of T'DSSA vs batch condition B, initial golden task assignment
probability «, Sybil threshold 7 and reliability threshold § on NLP and DOG

affects algorithms that use golden tasks. (3) Testing cost (T-cost) is the average number

of golden tasks assigned to each worker, representing the overhead due to the testing.

4.7.2 Settings of Parameters for TDSSA

Our TDSSA framework is parameterized by the batch condition B, the initial golden task
assignment probability «, the Sybil threshold 7, and the reliability threshold §. Figure 4.2
shows the A-accuracy of TDSSA vs these parameters on the NLP and DOG datasets under
the default setting of attack parameters in Table 4.4.

We consider the batch condition B defined by the number of “promotable” tasks. A
tighter B allows a slightly higher A-accuracy at a higher computational overhead for running
the extended truth discovery. A single batch, indicated by B = 0o, only suffers from a small
drop in A-accuracy. This shows that, even without promoting completed tasks into new
golden tasks, the worker parameters obtained from the initial set of golden tasks can still
improve the aggregation result.

The parameter a not only initially defines the probability of assigning golden tasks to a
worker not tested by any golden task yet, but also acts as the trade-off between Sybil score
and reliability score when we compute this probability later on. As we can see, TDSSA
reaches the highest A-accuracy if we equally weight both scores.

The A-accuracy of TDSSA is reduced when the Sybil threshold 7 is too small, e.g.,
7 = 0.6, because independent workers may be mistakenly banned. If 7 is too high, e.g.,

7 =1, no Sybil worker would be banned, and the A-accuracy also drops. For the reliability
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threshold 6, there is a similar trend of reduction in the A-accuracy, where more Sybil workers
could be mistakenly marked as “reliable” with a too small § or few completed tasks can be
promoted with a too large 6.

In our experiments, we choose B = 10, a = 0.5, 7 = 0.8, § = 0.8 for T'DSSA.

Competing Algorithms.

We compare TDSSA with the following three baseline methods.

1. TD is the standard truth discovery method that iteratively estimates the weight of

workers and the true label of tasks.

2. TD-DEP is the ACCU model for copy detection [21]. By applying this method to strategic
Sybil attack, the label sharing of Sybil workers is treated as copying labels from the same

source. The same parameter settings as specified in the paper were applied.

3. SADU [102] is a clustering-based algorithm that groups workers based on their label
similarity and uses golden tasks to detect the groups mainly containing Sybil workers.
We applied the parameter settings and used a subset of 10 golden tasks for testing workers

in a cluster, as recommended by the paper.

For truth discovery in 7D, TD-DEP and our TDSSA, we set a convergence thresh-
old of 0.001, i.e., the iterative learning terminates when the change in aggregated answers,
compared to those in the previous iteration, is less than 0.1%. We also set the maximum
number of iterations to 1000 to prevent non-convergence, but we found that all these meth-
ods quickly converge with a few iterations in our experiments.

Each algorithm is run for 50 times with the averaged result reported. In each run, we
apply a randomized sequence of worker requests with a randomized Sybil injection. To
preserve the labels given by the original datasets, a worker w is assigned to a task ¢ only
if the dataset contains the tuple (¢, w, ;). Sybil workers’ labels on an assigned task were

generated on the fly as described above.

4.7.3 Experiment on Real Datasets

Figure 4.3 shows A-accuracy (left) and E-number (right) vs varying attack parameters (pu,
€, A\) on the NLP dataset.

A-Accuracy. TDSSA has the highest A-accuracy across all tested u, € and X. The A-
accuracy of TDSSA drops only slightly when the Sybil proportion u increases up to 0.6,
thanks to suppressing the impact of Sybil workers and low-quality independent workers and
camouflaging golden tasks. TD and SADU have a much lower A-accuracy than TDSSA
for a larger p. For SADU, this is because the attacker evades the testing of the golden
tasks that were identified by the attacker. See the discussion on E-number below. TD-DEP
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Figure 4.3: A-accuracy and E-number vs attack parameters (u, €, A) on the NLP dataset.
We vary one parameter at a time with © = 0.5, ¢ = 0.1 and A = 1 by default.

has a lower A-accuracy than TD on NLP for a small y. Without using golden tasks, the
dependency analysis of T'D-DEP failed to distinguish the sharing behavior of Sybil workers
and the label convergence of high-quality independent workers.

A larger € weakens the Sybil behavior of sharing labels and leads to an increase in
A-accuracy for all algorithms because Sybil workers have a lower chance to dominate the
aggregation result. The A-accuracy of TD-DEP starts to drop when € > 0.15 where it is
hard to distinguish the weakened dependency of Sybil workers and the label convergence of
high-quality independent workers.

With the default p = 0.5, a larger attacker number A implies that each attacker controls
fewer Sybil workers, making it harder to dominate the aggregation result. For TD-DEP,
this means it is harder to detect the dependency between Sybil workers, therefore, the
A-accuracy of TD-DEP does not improve like TD.

E-Number. A higher E-number indicates more exposures of golden tasks to the at-

tacker. For TDSSA, a golden task may be exposed when some “reliable" workers are actually
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Figure 4.4: A-accuracy and E-number vs attack parameters (u, e, \) on the DOG dataset.
We vary one parameter at a time with © = 0.5, ¢ = 0.1 and A = 1 by default.

Sybil workers (see Section 4.5.2). This was observed for a large p for NLP where the small
optional label size . = 2 makes it easier to mark a Sybil worker as a “reliable” worker.
For DOG with L = 4, the E-number of TDSSA remains 0. For many settings of SADU,
one cluster contains more than K Sybil workers controlled by the same attacker, so the 10
golden tasks assigned to the cluster were identified, therefore, the E-number is 10. With the
high E-number, we observed only precision and recall between 60% and 80% on our real
datasets, which contribute to the low A-accuracy of SADU.

T-Cost. SADU has a fixed T-cost of 10 because each worker is tested by 10 golden tasks.
The T-cost of TDSSA is 5.05 (with 0.19 variance) for NLP and 1.83 (with 0.08 variance) for
DOG. The lower T-cost benefits from TDSSA’s strategic assignment of golden tasks based
on Sybil score and reliability score.

Figure 4.4 shows A-accuracy (left) and E-number (right) vs varying attack parameters
(1, €, A) on the DOG dataset.
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Figure 4.5: A-accuracy and E-number vs data parameters (K, L,0) on the Synthetic
datasets. We vary one parameter at a time with K = 10, L = 4 and 6 = 0.8 by default.

We also examined TDSSA’s failure rate of finding a valid golden task in Algorithm 5.
Under the default settings, this rate is close to 0 for NLP and 0.92 for DOG, respectively.
NLP contains more high-quality independent workers and there is more task promotion than
DOG. Despite the high failure rating with DOG, TDSSA’s A-accuracy is still high because
the Sybil scores and reliability scores obtained in early batches continue suppressing the
impact of Sybil workers in subsequent batches after golden tasks were run out.

In summary, TDSSA is robust to Sybil attack with a consistently high A-accuracy and a
small drop for up to 0.6 Sybil proportion. The low E-number and T-cost of TDSSA indicate

that our probabilistic task assignment efficiently utilizes and well camouflages golden tasks.

4.7.4 Experiment on Synthetic Datasets

Figure 4.5 shows the A-accuracy and E-number vs varying data parameters (K, L, 0). Figure

4.6 reported the running time vs the task number N and worker number M.
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A-Accuracy. TDSSA achieves the highest A-accuracy among all algorithms. When K
increases, Sybil workers have a higher chance to form a false majority on golden tasks, thus,
a higher chance to be caught through their Sybil scores, which improves TDSSA’s accuracy.
A larger K allows more Sybil workers to work on a task and dominate the aggregation result,
so the A-accuracy of T'D decreases. Assigning more workers to a task provides more data
for the similarity /dependency based SADU and T'D-DEP, so their A-accuracy is improved.

When L increases, the A-accuracy of TDSSA is improved because Sybil workers have
a higher probability % to provide a false label on golden tasks, thus, easier to capture
the Sybil behavior. For T'D and SADU, A-accuracy decreases because Sybil workers have
a higher chance to dominate the aggregation with a false label. For T'D-DEP, a larger L
reduces the chance for independent workers to provide the same false label on a task, which
lowers their dependency. Therefore, the A-accuracy is improved.

In general, a larger worker accuracy 6 will increase all algorithms’ A-accuracy. At the
maximum 6 = 1, independent workers agreed on the true label of each task and T'D achieves
almost the same A-accuracy as TDSSA. With the default p = 0.5, Sybil workers and
independent workers have the same probability to dominate the aggregation result, but due
to the e = 0.1 deviation probability, more tasks would be dominated by independent workers
in the first iteration, which enables independent workers to gain more weight and exert more
influence subsequently. At 0§ = 1, TD-DEP fails to distinguish the label convergence of
independent workers from the label sharing of Sybil workers, so its A-accuracy significantly
drops.

E-Number. SADU has the E-number of 10 because most Sybil workers are clustered
into the same group, exposing the 10 golden tasks used for evaluating the group qual-
ity. TDSSA has the zero E-number thanks to the camouflage of golden tasks through the
restriction on the number of assignments for each golden task.

T-Cost. SADU has the fixed T-cost of 10 because each cluster is tested by 10 golden
tasks. The T-cost of TDSSA is less than 1. In fact, 65% percent workers were not tested by
any golden task in TDSSA after the initial 20 golden tasks were run out and no completed
task could be promoted. In this case, the weight estimation of untested workers will still
be affected by those tested workers through commonly labeled tasks in the extended truth
discovery.

Runtime. TDSSA has a longer running time compared to TD because of executing
multiple batches, but its complexity is bounded by O(N?) for the task number N and could
become O(N) if we apply a constant number of batches, e.g., terminating a batch based
on the percentage of normal tasks in T' being completed. SADU and TD-DEP have their
running time linearly increased as N becomes larger, but due to the computation of the
similarity or dependency between workers, both methods take much more running time than
TDSSA. For the same reason, the running time of SADU and TD-DEP is very sensitive to
the worker number M, while the complexity of TDSSA is independent of M.
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Figure 4.6: Running time vs task number N and worker number M on the Synthetic
datasets. We vary one parameter at a time with N = 5000 and M = 500 by default.

Again, TDSSA maintains a consistently higher A-accuracy on synthetic datasets with
varying characteristics. TDSSA is more efficient than the other methods. While TDSSA has

a longer running time than TD, this pay is justified by the big improvement on A-accuracy.

4.8 Summary

In this chapter, we consider Sybil attack in crowdsourcing, where Sybil workers are coordi-
nated to earn easy rewards by sharing randomized labels to outvote independent workers.
With the assumption that a strategic Sybil attacker may attempt to evade detection by
adaptively switching from a randomized label to an honest one when a golden task is iden-
tified and allowing Sybil workers to occasionally deviate from sharing a label, we formulate
a more challenging problem of Sybil defense.

To solve the problem, we propose a TDSSA framework that gracefully incorporates
Sybil behavior and labeling reliability of workers into truth discovery, instead of relying on
a black-and-white detection of Sybil workers that suffers from the dilemma of having both
high precision and high recall. We also addressed two related issues in this approach, i.e.,
camouflaging golden tasks from the attacker and the possible shortage of golden tasks.

Experiments on real datasets shows that TDSSA achieved consistently higher aggrega-
tion accuracy than state-of-the-art methods under different attack scenarios as we vary the
percentage of Sybil workers in the system, the probability for Sybil workers to deviate from
sharing labels and the number of strategic Sybil workers. We also create synthetic datasets
with varying characteristics, such as task number, worker number, assignments per task,
optional label size and average accuracy of online workers, to demonstrate the robustness

and computational effectiveness of TDSSA against Sybil attack.
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Chapter 5

Conclusion

5.1 Summary

Crowdsourcing has become a popular method for the crowd to collectively contribute their
expertise to help solve human intelligent tasks (HITs). Despite the flexible workforce and
tremendous profit potential, crowdsourcing faces many challenges due to its open nature.
In this thesis, we proposed some new frameworks that help the HIT requester better handle
the quality control and cost management in crowdsourcing, which are two major research
directions for academic and industrial communities. The contributions of this thesis can be

summarized as follows:

o In Chapter 3, we proposed an online framework GAA and an iterative version JGAA
to guarantee a specific accuracy for the aggregated labels while minimizing the worker
cost. With the identification of candidate workers, our approach passes all the different
thresholds of aggregation accuracy in the experiment and requires much less worker
cost than the baseline methods. Importantly, our performance only depends on the
quality of active workers, instead of their requesting order. To deal with the online
setting, the parameters used for defining candidate workers should be updated w.r.t.
the change of active workers, but our update has much less computational cost than
other methods that also require periodic updates, e.g., iCrowd [26]. For simplicity,
we only define candidate workers based on majority voting in this thesis and plan to

apply the concept in other aggregation methods later.

e In Chapter 4, we proposed a Sybil defense framework T'DSSA that learns workers’
Sybil behavior and labeling reliability from a well-camouflaged distribution of golden
tasks. Experiments on real and synthetic datasets indicate that T DSS A achieves zero
exposure of golden tasks to the strategic Sybil attacker in most cases and provides
much higher aggregation accuracy than baseline methods when the percentage of Sybil
workers in the system becomes larger. Compared to other frameworks that analyze
the label similarity between workers, e.g., TD — DEP [21] and SADU [102], TDSS A
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requires lower computational cost to maintain stably high aggregation accuracy. A
future improvement for TDSSA is to consider worse attacking scenarios, where the
attacker may have more knowledge about the system so that more strategies could be

applied to evade detection.

5.2 Future Directions

Several future directions of deployment and research could be derived from this thesis. We

list some interesting ones as follows.

5.2.1 Implementation of GAA/IGAA and TDSSA Frameworks

Most crowdsourcing platforms, e.g., Amazon Mechanical Turk (AMT)!, do not allow the
HIT requester to control over the online task assignment. Instead, when a worker requests,
one or more tasks are randomly assigned to the worker, as long as the worker passes the
qualification test. However, both of our GAA/IGAA and TDSSA frameworks require the
selection of proper tasks assigned to each requesting worker to improve the aggregation
accuracy. Fortunately, AMT also provides a feature called External Question [79], which
displays an URL that links an requesting worker to the external website of the HIT requester.
The web page will show a task as a form for the worker to fill out and submit. Then the
form will send the answer back to AMT. In this way, the HIT requester will be able to
decide which task to assign and how to collect worker answers.

To integrate the GAA/IGAA and TDSS A frameworks into our external web server, we
will create a database to hold tasks, worker ID and worker answers. When a worker links
to our website from AMT, we check the ID of the worker and evaluate his historical perfor-
mance on golden tasks to estimate worker quality. Then, we run the proposed algorithms
to decide which task the requesting worker will be assigned to and display it to the worker.
Different aggregation methods could also be applied on the server to infer the true answer
of tasks.

In addition to the implementation of GAA/IGAA and TDSSA frameworks, we can add
other features on our web server to improve the performance. First, a better user interface
could be designed to increase the efficiency for workers to answer tasks. Second, an IP check
would be provided to detect workers from the same IP address, which increases the cost
for a Sybil attacker to manipulate several robot Sybil workers. Last, we should also look
into security issues as the attacker might try to hack our web server to copy answers given
by independent workers, instead of providing randomized but probably wrong answers for

Sybil workers to share.

"https://www.mturk.com/
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5.2.2 Accuracy Guarantee and Cost Minimization under Group Attack

In Chapter 3, we mainly focus on the quality control and cost management under individual
attack, where workers provide their labels independently. One interesting future work is
whether we could also perform task assignment based on worker quality to guarantee a
specific aggregation accuracy with minimum worker cost under group attack, such as Sybil
attack and data poisoning attack.

Providing an accuracy guarantee with minimized worker cost under Sybil attack is chal-
lenging. Since the worker accuracy estimated by golden tasks does not reflect the real exper-
tise of Sybil workers, we cannot simply adopt the evaluation of inference probability and the
definition of candidate workers in our GAA/IGAA frameworks. Second, both GAA/IGAA
and TDSSA we proposed in Chapter 3 and 4 use golden tasks to reveal workers’ quality
and/or Sybil behavior due to the absence of a priori information about dynamic online
workers, but the golden task assignment is applied in different ways. Unlike GAA/IGAA
that apply a cold-start phase to estimate each new worker’s task-specific accuracy using
golden tasks when the worker arrives, T'DSS A performs the distribution and camouflage of
golden tasks as a hidden test to gradually reveal worker quality.

For data poisoning attack, guaranteeing the aggregation accuracy with the minimum
worker cost is even harder to achieve as the attacker may have full or partial knowledge about
the system, e.g., the labels provided by normal workers and the algorithm for aggregating
worker labels, to maximize the errors in the aggregation result. Similar to our TDSSA
framework, a possible solution is to evaluate the influence of each worker on the aggregation
result and apply golden tasks to test workers with the maximum influence. In this case, the
chance for the exposure of golden tasks to the attacker would be reduced.

The use of golden tasks for estimating worker quality does not only incur more cost but
also introduces the risk of being manipulated by the group attacker to purposely improve
the reputation of malicious workers. Recently, Multi-armed bandit methods [72] have been
recommended for eliminating golden tasks. The idea is to apply a reinforcement learning
model that exemplifies the exploration—exploitation trade-off dilemma, where new infor-
mation about online workers is acquired (exploration) and the task assignment based on
existing information is optimized (exploitation). Multi-armed bandit algorithms provide a

potential solution for integrating the two problems we studied in this thesis.

5.2.3 Neural Network for Sybil Defense in Crowdsourcing

We mentioned in Chapter 4 that most works conduct a similarity-based approach for copy
detection [21, 55, 106] or Sybil detection [102]. According to the labels provided by workers
on their common tasks, the similarity between each pair of workers is measured. Then,
different methods are applied to reduce the contribution of similar workers with low quality.

However, if a strategic Sybil attacker purposely limits the number of common tasks labeled
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Figure 5.1: An example of Self Organizing Map

by each pair of Sybil workers, their explicit similarity would be weaken. One interesting
future work is whether we could also reveal the latent correlation between online workers
for Sybil defense when such a strategy of controlling common tasks is applied.

As the goal of Sybil attack is to outvote independent workers through the sharing of
randomized labels among several Sybil workers, it is impossible for the labels provided by
Sybil workers to deviate from correlation, which could be well revealed by neural network.
Neural Network has shown its great power in image recognition, speech recognition, and
natural language processing. Recently, a heterogeneous graph neural network model [99]
was proposed to take into account the latent worker correlation and task correlation. A
drawback of this model is that the learning procedure is conducted by building a worker-
task assignment graph after collecting worker labels, so we cannot identify or ban Sybil
workers as early as possible to save budget for collecting labels from independent workers.

To utilize the latent worker correlation for improving the online task assignment, an
unsupervised neural network learning algorithm called Self-Organizing Map (SOM) [50]
may be applied to capture the correlation of Sybil workers during online task assignment.
An SOM model is a feature map with a set of interconnected neurons, as shown in Figure 5.1.
Let yj, denote a neuron on the map, N denote the task size, {wy 1, ..., wy, n} denote a weight
vector associated to neuron yi, and x,, = {Zm 1, ..., Tm N} denote the labels provided by a
worker m. Each time a worker submits a label, the input vector x,, is updated and presented
to the model. By comparing with the weight vector of each neuron, we can locate the Best
Matching Unit (BMU) having its weight vector closest to z,,. Then, the weight vectors of
the BMU and its neighboring neurons are updated towards the input vector.

The SOM model aims to achieve a topological mapping between the input data and the
neurons. By gradually mapping Sybil workers into the same or topologically close neurons
on the map, the weight vector of these neurons will become close to the attacker’s randomly
generated labels from which Sybil workers sample their labels on tasks. It allows us to reveal

the correlation between Sybil workers during online task assignment, without explicitly

65



evaluating their pairwise similarity. In addition, the SOM model can handle the presence
of multiple Sybil attackers because Sybil workers under different attackers’ control would
be mapped into neurons with diverse weight vectors, which are topologically grouped in

different areas on the feature map.
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