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Abstract 

This thesis presents the development of a person-portable exoskeleton prototype which 

is designed to be controlled with Inertial Measurement Units (IMUs). It utilizes Euler 

angles calculated by the IMUs to track the rotation of the user’s forearm and then 

performs the same rotation, mimicking the user. Special care is taken with the 

prototype’s control algorithm to ignore changes in Euler angles caused by non-forearm 

rotations, which can otherwise cause erroneous prototype movements. The prototype is 

successful in demonstrating this method of control but does require the user to follow 

some specific guidelines to work at maximum effectiveness. Future iterations of the 

prototype can be easily improved by replacing some of the commercially available 

materials with more specialized ad-hoc products. 

Keywords:  Inertial Measurement Unit; IMU; Exoskeleton; Euler Angle; Control 

Methodology 
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Chapter 1.  
 
Introduction 

Over the last 30 years, development and research into devices designed to assist 

human movement have increased significantly [1]. Chief among this research is the 

creation and testing of powered exoskeletons, as they have shown significant promise 

as not only human power amplifiers [2] but also as rehabilitative tools [3]. Depending on 

the application, different control methodologies are used to control the exoskeleton. 

Rehabilitative exoskeletons mostly use impedance control to either resist or assist the 

motion of the limb they are donned upon, but occasionally also follow pre-programmed 

or fixed motions depending on the therapy and device used [4]. In contrast, amplifying-

type exoskeletons detect the user’s movement intentions and then moves in tandem with 

them or provides a proportional response based on the user’s input. This movement 

detection is a critical factor for these exoskeletons, so they do not interfere with the 

natural movement of the limb or limbs they are attached to. Movement detection is most 

often acquired with direct torque/force measurements of the relevant limb or limbs [5]-[6] 

but research has been conducted into using alternative methods, such as using 

electromyography to detect muscle activity [7].  

These alternative methods of detecting movement allow for more freedom in how the 

exoskeletons can be designed, such as allowing for teleoperation or allowing the 

exoskeleton manipulators to be free floating and not directly attached to the user. One 

such alternative method of movement detection that is has shown promise is the use of 

Inertial Measurement Units (IMUs). IMUs are devices combining accelerometers, 

gyroscopes, magnetometers and occasionally data fusion software into a single 

integrated package. Originally quite large and expensive devices, advances in 

microelectromechanical systems (MEMS) sensor technology have significantly reduced 

their size and cost, making them extremely portable and purchasable to the general 

population. They have been shown to be a convenient and cost-effective way to track an 

object’s motion and position compared to more costly and cumbersome optical-based 

methods [8]. IMUs have also been successfully used to teleoperate a stationary robotic 

manipulator [9] and integrated into a person-portable exoskeleton prototype to assist its 
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other systems [10]. However, despite these demonstrations, they have never been used 

as the sole method of controlling an exoskeleton. 

In this thesis, we introduce a person-portable exoskeleton prototype that focuses on 

showcasing using IMUs as its control methodology and describe its design and 

capabilities. This prototype would be controlled through monitoring and reacting to 

changes in an IMU’s angular position and not through direct force measurements or 

extracting the movement from velocity/acceleration data. While this prototype’s 

performance lacks power amplification or rehabilitative ability, it succeeds in 

demonstrating this control methodology and its potential. 
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Chapter 2.  
 
Prototype Design 

2.1. Hardware 

The initial concept of a device to demonstrate IMUs as a control methodology was rather 

straightforward. An IMU would be attached to the end of a limb, and as the IMU and limb 

were moved, the device would mimic this movement based on the readings from the 

IMU. The prototype realizes this by attaching the IMU to the user’s hand to track the 

motion of the forearm about the elbow. This motion was chosen to minimize the 

complexity of the prototype; as it is limited to one degree of freedom (DOF) and thus can 

be replicated using a single source of motion, as opposed to other joints that would 

require multiple sources. The overall hardware design of the prototype remained very 

consistent with this initial concept; and as such, most of this stage of the design was 

simply acquiring the necessary materials to realize it. Following that, the only iteration 

from the original concept was determining how to make all the hardware person 

portable. 

The prototype, shown in Figure 1, accomplishes this by utilizing a custom-made 3D 

printed ABS plastic frame (which is worn on the upper arm) and a glove. Three belts with 

ladder locks are used to secure the frame to the upper arm such that the prototype’s 

actuator (a 1.8° step 12 V stepper motor) sits parallel to the elbow joint (see Figure 2). 

The frame was designed to accommodate this positioning first and foremost, and then 

simply made large enough to hold most of the other hardware comfortably. An Arduino 

Uno microcontroller board running its native software is used to control the prototype. 

The microcontroller is connected to three devices: an Adafruit BNO055 Absolute 

Orientation Sensor attached to the glove, a Sparkfun ICM-20948 9 DOF IMU attached to 

the frame, and a Sparkfun Big Easy Driver motor driver, which controls the motor. The 

prototype is powered by a 12 V battery pack, which provides power to the driver, which 

distributes power to the other components. 



2 

 

Figure 1: The prototype, with the BNO055 and glove on the left and the frame with the Arduino 
Uno, ICM-20948, and motor driver and motor attached to it on the right. 

 

Figure 2: The active prototype being worn by a user, in which the prototype arm has rotated to 
align itself with the user’s forearm. 
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2.1.1. Hardware Selection 

An underlying requirement for most of the materials used in the prototype’s construction 

was that they had to be commercially available products. This was necessary for two 

reasons; the first was for convenience, as it ensured that every part could be quickly 

acquired through local vendors. The second reason was for redundancy. If any part of 

the prototype became damaged or malfunctioned; the offending part could simply be 

replaced without affecting any other part of the prototype. The only exception to this rule 

is the prototype’s frame, for which no commercially available equivalent exists. As such, 

it was necessary to have the frame be custom made. 

In order to move the prototype’s arm in the same manner as the forearm, an actuation 

system that can rotate the arm in a similar way would be necessary. While any DC motor 

could perform this rotation (if it were attached at the end of the prototype arm), only a 

stepper motor could provide precise control over the rotation while also preventing the 

arm from rotating freely whenever it is at rest. Of the potential stepper motors that could 

be used in this project, a Mercury Motor SM-42BYG011-25 was chosen as the 

prototype’s actuator. This stepper motor was chosen as its size and weight (occupying 

approximately 60 cm3 and weighing about 200 g) ensured it would not be too heavy or 

cumbersome to be supported by a single limb while providing enough torque to 

manipulate the prototype arm. As well, the motor’s operating voltage of 12V was more 

convenient than other motor’s operating voltages, which were either too high to be 

powered by commercially available battery packs or were at lower voltages and thus 

would not be able to easily interface with other components. With the motor chosen, a 

motor driver was also necessary to act as an interface between the motor and 

prototype’s controller. The Big Easy Driver was chosen over other drivers for having the 

capability to provide power to both the motor and the microcontroller, despite them 

operating at different voltage levels. This feature eliminated the need to have two 

separate power sources, greatly simplifying the prototype’s design. 

Due to the prototype needing to work in-sync with the user’s movements, a 

microcontroller with as little overhead as possible was a necessity. Otherwise, the 

overhead would propagate timing delays across the entire prototype; potentially causing 

it to consistently lag behind the user’s movements. This issue would make the prototype 

much harder to control and less intuitive to use. Although there are many microcontroller 



4 

boards that have such low overhead, the Arduino Uno was ultimately chosen to be used 

as the prototype’s main controller. This was due to two features that were unique to Uno. 

The first being its larger array of I/O pins, which not only allowed for multiple sensors 

and components to be connected to a single microcontroller; but also provided extra 

power pathways to those components, simplifying the overall design of the prototype. 

The second feature is the ubiquitous nature of Arduino products. Due to their 

prevalence, most if not all commercially available sensor and component boards are 

designed to easily interface with Arduino boards. Furthermore, these products also often 

offer support materials to aid in the interfacing process. This support could range 

anywhere from simply providing the code that initializes the sensor to the Arduino, all the 

way to fully detailed initialization and troubleshooting guides with detailed example 

projects. Thus, Arduino boards are much more convenient to work with compared to 

other boards that would not have these considerations and/or levels of support.  

Since the prototype’s whole concept would rely upon an IMU, the choice of which sensor 

board to use to track the forearm’s motion was one of the more critical design decisions 

that had to be made. The BNO055 was eventually chosen to act as this tracking sensor 

due to it having built-in data fusion software, which simplified the software design (this 

will be elaborated on in the next section of this thesis). Originally, the BNO055 was the 

only IMU being used in the prototype; but during testing it became clear that movement 

data from an IMU placed elsewhere on the prototype would be needed to reduce 

potential errors. The ICM-20948, which was being considered as the forearm tracking 

sensor before the BNO055 was chosen, could provide this data and thus was selected 

to perform that function. Although it was implemented after the prototype was already 

built, the extra I/O provided by the Arduino Uno allowed it to be implemented 

seamlessly, without requiring any changes to prototype’s design. 

2.2. Software 

2.2.1. The Role of the BNO055 and Euler Angles 

The BNO055 acts as the linchpin of the prototype’s control algorithm due to its built-in 

data fusion software, which is absent in the ICM-20948. This software allows the 

BNO055 to determine its orientation from the data acquired by its sensors. Specifically, 

the BNO055 can calculate what its documentation refers to as its “X, Y, and Z Euler 
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angles”. These correspond to the BNO055’s orientation with respect to its yaw, roll, and 

pitch axes respectively [11], which are determined when the BNO055 is turned on (i.e., 

at power-on all the Euler angles will read zero). These angles are measured from the 

BNO055’s frame of reference, which has the effect of making a rotation about one of its 

principal axes and the same rotation about an axis parallel to its principal axes 

indistinguishable to itself (see Figure 3). 

 

Figure 3: Rotation about a principal axis (red circle) and a parallel axis (green triangle). While the 
end position is different between rotations, from the body's perspective, its end orientation is the 

same.  

Therefore, if the BNO055 is affixed to the end of an object whose axis of rotation is 

parallel to a principal axis, the rotation of that object can be tracked using the relevant 

Euler angle. The elbow, being a joint with only 1 DOF, allows the forearm to rotate about 

one axis. The BNO055’s yaw axis can be oriented parallel to the elbow by affixing it to 

the hand or wrist. As the forearm rotates, the BNO055’s orientation about its yaw axis 

changes. Therefore, the rotation of the forearm can be tracked by tracking the change in 

the X Euler angle value. 
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2.2.2. The Prototype Control Algorithm in Detail 

Once the prototype is donned but before turning it on, the user must align their forearm 

with the arm of the prototype, as this alignment is required for the algorithm to work 

properly. Once the prototype is powered on, a moment is taken by the programming to 

initialize the IMUs so they can communicate with the microcontroller. During this 

initialization, the X Euler angle is set to zero as well as setting the stepper motor to half 

step mode (so the motor moves approximately 1° per step). This limits how fast the 

motor is able to rotate, but the smaller step size allows for greater precision. Once this 

initialization is complete, the algorithm activates. The core of the algorithm is rather 

simple in its operation: it continuously retrieves the X Euler angle reading of the BNO055 

and then sets this value as the target position. It then checks if this target position is 

different from the previously read target position (i.e., its current position); and if it is, 

finds the integer difference between the two, stepping the motor that many times (with 

the direction determined by the difference’s sign). If the target position changes while the 

stepper motor is running, the algorithm can update the number of steps such that the 

motor will reach the new position. Once the target position is reached, it is then set as 

the current position, and this cycle repeats. Due to the motor’s step size and the 

alignment done earlier, this causes the arm attached to the motor shaft to rotate with the 

rotations of the BNO055, effectively mimicking the motion of the forearm when rotated 

by the elbow. This forms the core of the control algorithm, with the rest of the algorithm 

designed to support this core.  

The first of these supports is to deal with how the BNO055 reports the X Euler angle, 

which is as an angle ranging from 0° to 360° [11]. This means if the BNO055 is rotated 

past its initial position, the X Euler angle value will wrap-around from 0 to 360 (and vice 

versa if it is moved back). This wrap-around and other similar discontinuities can cause 

erroneous rotations as the target position is suddenly up to several hundred degrees 

away from the current position. However, such large sudden changes in orientation are 

physically impossible for the elbow to perform, and therefore are anomalous and easy to 

identify amongst the angle data. The algorithm handles this by actively looking for these 

discontinuities, checking to see if the current position and target position differ by an 

impossible amount. If they do, the algorithm simply overrides the value of the current 

position and sets it equal to the value of the current target position. This prevents the 
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discontinuity from being seen by any other parts of the algorithm, while doing so quickly 

and precisely enough that minimal angle data is lost in the transition.  

Another support to the core of the algorithm is to manage non-elbow rotations. Since any 

rotation about an axis that is parallel to the BNO055’s yaw axis can affect the X Euler 

angle, certain rotations about the shoulder will cause erroneous changes in the angle 

data. Indeed, even the slight change in position from the user rotating their wrist is 

enough to shift the X Euler angle by a few degrees. The algorithm handles these rogue 

rotations by using the gyroscopes of the BNO055 and ICM-20948 (which is attached to 

the upper-arm) to detect rotations of the wrist and rotations about the shoulder 

respectively. If the gyroscopes read an angular velocity beyond a threshold value 

(indicating they are being rotated), the algorithm continuously sets the current position 

equal to the target position until the rotation stops. This allows the algorithm to effectively 

ignore any changes to the X Euler angle caused by these rotations and resume normal 

operations once the rotations have stopped.  

The last support for the core involves handling a particular edge case. Specifically, while 

the X Euler angle is quite robust in tracking the forearm’s position when used with the 

algorithm, certain rotations combined with certain hand orientations make the X Euler 

angle less effective at this task. One such combination is the basic bicep curl: rotation 

about the elbow while the arm is against the side of the body with a supinated hand. This 

movement is not about the yaw axis of the BNO055 and thus cannot be tracked by the X 

Euler angle. However, it can be tracked using the Z Euler angle, as the rotation is 

parallel to the BNO055’s pitch axis. Therefore, if the algorithm knows that the user is 

about to begin a bicep curl, it can simply change which Euler angle it is reading to 

maintain tracking of the forearm. The algorithm handles this by using the BNO055’s 

accelerometers to detect when the hand is oriented for a bicep curl, as the supination of 

the hand creates accelerometer readings unique to that orientation. If the hand is in that 

position, the algorithm sets the current and target positions to the current Z Euler angle 

value. So long as hand remains supinated, the algorithm behaves exactly as it did for 

non-bicep curl movements, only now using the Z Euler angle readings instead of the X 

Euler angle. When the BNO055 detects that the hand is no longer supinated, the current 

and target position are set to the current X Euler angle value and the algorithm goes 

back to reading the X Euler angle data.  
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Together, these supports and the core they underpin make up the control algorithm 

which the prototype uses. The code which implements the control algorithm on the 

microcontroller can be found in Appendix A. 

2.2.3. Algorithm Design 

While the idea of using differences in an IMU’s angular position to control a stepper 

motor was a constant throughout the software development; how that idea was 

implemented had to be adjusted between iterations. Originally, once the difference 

between positions was determined, the motor would be controlled using a simple loop 

mechanism. The loop would simply move the motor in the specified direction by a single 

step every time the loop was ran, repeating a number of times equal to the positional 

difference. While this method worked for small differences (in the range of 1-2 degrees), 

larger differences would cause the loop to run much longer; and while the loop was 

running, positional data could not to be updated. This led to issues where if the forearm 

were moved during one of these longer loops, the prototype would not be able adjust for 

this change and thus cause the prototype arm to end up at the wrong position. This 

issue was solved by having the movement be handled by specialized stepper motor 

code libraries. These libraries allow the algorithm to perform as explained in the previous 

section, which includes giving the prototype the ability to update positional data while the 

motor is running. 

Initially, the prototype’s software was evaluated using a simple testing setup, which was 

effectively a deconstructed version of the prototype. This setup was used to test the core 

of the control algorithm; both to ensure that it worked with the selected hardware and to 

determine how certain parameters (such as step resolution and motor speed) affected 

the core’s performance. Once it was determined that the core was functioning optimally, 

the testing setup was dismantled, and its parts used to construct the prototype. With the 

prototype built, testing could now be performed while it was being worn and operated by 

a user. This testing revealed the issues discussed in the previous section (i.e. the X 

Euler angle wrap-around, non-forearm movement causing rotations, and the curl edge 

case). The supports to the control algorithm which either eliminate or minimize these 

issues were implemented in the order they were described earlier. 
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This control algorithm allows the prototype to be controlled entirely through the 

monitoring of an IMU’s angular position. While it is true that angular velocity and linear 

acceleration are also used in the algorithm, this data is used entirely for error checking. If 

the algorithm were to simply ignore this data, the prototype could still be operated but 

with errors being more likely to occur. Technically, the BNO055 does also use angular 

velocity and acceleration data to determine its angular position via its data-fusion 

software. However, since the algorithm is only reliant on the resultant position data, the 

velocity and angular acceleration are not considered necessary variables to the 

prototype’s control algorithm. This is because, from the algorithm’s perspective, it does 

not care how the BNO055 determines its position, just that is able to do so. Since the 

control algorithm uses only angular positioning, other control methods found on currently 

existing exoskeletons (such as directly measuring torque and forces created by the limb) 

are also not used.  
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Chapter 3.  
 
Prototype Evaluation 

The prototype is successfully capable of mimicking the user’s forearm motion in most 

circumstances. It is comfortable to wear for extended periods of time, requires very little 

training to use effectively, is inexpensive to produce, and can be made entirely from 

commercially available products. However, the limitations to the prototype’s motion 

tracking ability do limit its robustness, and its current battery limits usage of the device to 

only a few hours of continuous use. 

3.1. Movement Tracking and Mimicry 

When dealing with movements just about the elbow, the prototype performs 

marvellously. When properly aligned, the prototype can track and follow the rotations of 

the forearm, keeping its arm aligned to the BNO055 on the user’s hand through a variety 

of different orientations. This tracking is effective at forearm rotations up to 

approximately 90° per second, with faster rotations increasing the potential for 

misalignment. This is because the more sudden deceleration needed to stop a faster 

rotation is more likely to trigger the wrist rotation detection by accident, which has the 

effect of stopping any prototype arm movements in progress. However, even if this was 

not the case, the motor being driven in half step mode creates a limit to how fast the 

motor is able to turn; and thus faster forearm rotations could still potentially cause issues 

due to the user being able to “outrun” the prototype arm. 

The prototype can also maintain alignment during complex arm movements (i.e., 

movements involving elbow, shoulder and/or wrist rotations) but this requires a caveat. 

Due to the way the algorithm handles rotations of the wrist and about the shoulder, any 

forearm movement while the wrist or shoulder is rotating is not tracked by the prototype’s 

arm. Therefore, wrist and shoulder rotations must be done before or after rotating the 

forearm, which has the effect of requiring the user to perform any complex arm 

movement as a series of individual steps (e.g., rotate about shoulder, then rotate about 

elbow, then rotate the wrist) to maintain alignment. 
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Since there is no mechanism to provide positional feedback to the control algorithm, if 

the prototype arm becomes unaligned it is incapable of re-aligning itself without user 

input. The most common way the arm can be unaligned is due to detecting X Euler 

angle changes from wrist and shoulder rotations that do not exceed their angular velocity 

detection thresholds. These occur most often if the shoulder is rotated horizontally by 

less than approximately 15° or the wrist is rotated less than approximately 45° per 

second. However, there are methods to realign the arm with the forearm without fully 

resetting the prototype. Abduction or adduction of the wrist can be used to adjust the 

prototype arm’s position by up to approximately 5° in either direction, which can be used 

to make small adjustments. If a larger positional adjustment is needed, the user can 

adjust their forearm to realign it to the prototype arm while rotating their wrist, as the 

prototype arm will not move while sufficient wrist rotations are detected.  

While the bicep curl edge case is mentioned specifically, there are other edge cases that 

exist where the Z Euler angle would be a more effective at tracking the forearm’s 

position. These include a bicep curl with a pronated hand, forearm rotations involving a 

supinated hand with the arm parallel to the ground, and forearm rotations towards the 

body’s midline while the arm is held vertically above the head with the palm also facing 

the midline. However, these edge cases are not handled by the algorithm in the same 

way as the basic bicep curl; and as such if the user performs any of these specific 

motions, it will cause the prototype to become unaligned. The primary reason they are 

not handled is that these configurations create no data values that are unique to them 

over their full range of motion. Thus, there would be no way for the prototype to reliably 

identify that it is in one of those configurations. Therefore, even if there was something 

that handled these edge cases, there would very likely still be loss of positional data 

which would cause the prototype to become misaligned. There would even be a 

possibility that, due to the lack of any unique identifiers, any handling protocol built for 

these edge cases could trigger and interfere with routine operations.  As such, the 

prototype does not handle these edge cases to minimize any potential disruptions to its 

other processes.  

Although the prototype is portable, it operates at maximum effectiveness when the user 

is stationary. If the user walks around while operating it, there is a significant chance that 

the prototype will become misaligned as the motion of walking can change the Euler 

angle value even if the user’s arm is held stationary. As with the edge cases mentioned 
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previously, there is no data that can uniquely identify walking against other movements. 

Therefore, the prototype does not handle any angle change caused by walking, as any 

attempt to do so could negatively affect its overall performance. However, while walking 

there is very little to no movement about the elbow. Therefore, if there was a way to 

uniquely identify walking, the Euler angle changes it creates could be managed in a very 

similar way to how the prototype handles shoulder and wrist rotations (i.e., ignoring any 

Euler angle change while walking is detected). 

3.2. Comfort and Ease of Use 

The prototype is capable of being entirely donned, doffed, and activated with the user’s 

opposite arm (i.e., the arm not wearing the prototype). The harness consists of three 

straps with ladder locks which allow the prototype frame to be securely fastened to the 

upper arm, while spreading the constrictive pressure between them such that they do 

not cut off the user’s circulation. The stepper motor is also well insulated to prevent the 

user from being burned by the motor heating up during prolonged use. These factors, 

combined with the fact the prototype weighs only approximately 650 grams, allows it to 

be worn for extended periods of time without causing significant discomfort or fatiguing 

the user. However, the harness may occasionally need to be retightened over time, as 

the straps may shift in the ladder locks. 

Since the prototype is entirely controlled by the user’s forearm movement, learning how 

to use the prototype requires no special training beyond learning how to break down 

complex arm movements into individual steps and how to re-align in the event of the arm 

falling out of alignment. This allows for the prototype to be learned quickly, and thus 

easy to use for a variety of users. 

3.3. Battery Life 

In a worst-case scenario, the prototype draws approximately 360 mA of current during 

operation. Although the actual current draw of the prototype may be less than this, it is a 

fair assumption that the prototype’s typical current draw is approximately this value; as 

the stepper motor draws an effectively constant 330 mA of current while the prototype is 

active, and thus the difference between any typical scenario and the worst-case scenario 

is at most a few tens of milliamps. Considering the prototype’s power source (Eight 1.5 V 
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AA Duracell alkaline batteries) and assuming that each of the battery cells are used 

equally, the prototype is estimated to be able to run continuously for up to three to five 

hours [12]. This range is because the prototype can work at voltages lower than its 

power source’s typical output. The electrical components of the prototype require only 5 

V to operate, and the stepper motor can run at voltages lower than 12 V but drives with 

less torque if it does so. Thus, the range of voltages that would still allow the prototype to 

be functional is potentially quite wide, as very little torque is required to rotate the 

prototype’s arm.  

3.4. Cost 

In terms of material cost, the prototype costs just under $360 to build (see Appendix B 

for a full cost breakdown). This makes the prototype relatively inexpensive to build, 

owing to the fact that it is made entirely with commercially available sensors and 

materials. The material costs can be broken down into seven categories: the electronics 

(which includes the motor, motor driver, IMUs, and microcontroller), the textiles, the 

power source, the frame, the arm, the connecting materials (such as wires), and the 

assembly materials (such as solder, glue, Velcro, etc.). Figure 4 shows the percentage 

of the material costs that each category represents. 

 

Figure 4: Percentage of Material Cost per Category 
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The electrical components being responsible for a majority of the material costs is 

expected, as they are critical to the prototype’s function. However, the frame being 

responsible for nearly a quarter of these costs is unusual. This is due to the frame being 

a 3D printed item, which means unlike the prototype’s other materials, it is not mass-

produced, making it significantly more expensive than if it were.  
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Chapter 4.  
 
Future Work 

While the prototype being made entirely of mass-produced products makes it very 

replicable and inexpensive, utilizing more bespoke products in future iterations would 

significantly increase the prototype’s functionality. Two areas where this is most 

apparent are in the prototype’s harness and battery. The current harness, while 

functional, does suffer from needing to be occasionally retightened or readjusted. 

Furthermore, it concentrates most of the weight of the prototype onto one limb. This 

limits the weight of the prototype to weights that can be comfortably managed with just 

that limb. An improvement would be for the prototype to utilize a harness system like 

those found in upper-arm prosthetics (see Figure 5 for an example). These would still 

allow the user don, doff, and activate the prototype with only one arm, but also spread 

the prototype’s weight across the body. Depending on how this harness is implemented, 

the prototype could even be rearranged such that parts of it could be distributed across 

the harness, to further reduce the amount of weight acting solely on the limb.  

 

Figure 5: A Below-Elbow Chest-Strap Harness for an Upper-Extremity Prosthetic. Adapted from [13] 

Likewise, the current battery is only guaranteed to power the prototype for a few hours 

and is quite heavy, being responsible for nearly a third of the prototype’s weight. A high-

capacity Lithium-based battery would not only allow the prototype to run for longer, but 
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possibly be even lighter than the current battery. The battery could also be positioned 

such that it is attached to the user’s belt or elsewhere on an improved harness, to further 

reduce any discomfort caused by its weight or size. 

One of the biggest limitations the current prototype has is the inability to reliably identify 

certain movements and configurations of the hand and arm. Future iterations can solve 

these issues by using additional sensors to provide greater data resolution. One 

example is adding an accelerometer which would sit over the user’s pectoral area. This 

would detect whether the user is walking (from lateral acceleration readings), without 

accidentally detecting motion from the user just moving their arm. This would provide 

unique data for walking, and thus allow the prototype to handle any Euler angle changes 

caused by walking without potentially interfering with anything else. Another example 

would be adding a gyroscope to the user’s hand specifically designed to track the hand’s 

orientation. This, along with data about the position of the arm (from an IMU such as 

ICM-20948), would allow the prototype to know the exact orientation of both the user’s 

hand and arm. This in turn would allow the prototype to easily identify when the user is in 

an orientation that corresponds to an edge case, which would allow for the prototype to 

be handle those cases more effectively. Of course, these sorts of changes cannot be 

made in a vacuum and would require other modifications to be implemented for them to 

work properly. The pectoral accelerometer would require a change to the harness such 

that a sensor could be placed there, and the addition of more sensors would require a 

microcontroller with more data inputs and power pathways to handle them.  

Although misalignments caused by shoulder and wrist movements can still happen, the 

difference between the user’s forearm and the prototype arm are small, usually no larger 

than approximately 15°. While the user can manually adjust their forearm to re-align 

themselves following these misalignments, an improvement that future iterations could 

implement is a way for the prototype to automatically correct these small positional 

discrepancies. This would not only reduce the instances of the user having to manually 

re-align the prototype but could also be used to ensure proper initial alignment during the 

prototype’s start-up. One way this could be implemented is with some form of intensity 

detection. The idea would be that a detector of some specific stimuli (e.g., a certain 

frequency of light or sound) would be attached to the prototype’s arm, while an emitter of 

that stimuli is attached to the glove of the prototype. After every movement of the 

prototype arm, the detector would check if the intensity it is reading is within a range that 
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indicates it is aligned (i.e., within a certain distance of the emitter). If it is not, the 

prototype would automatically move the arm towards the emitter until values in the 

alignment range are detected. This method would require that whatever stimulus is 

chosen is not present in the environment the prototype is being used in, otherwise the 

detection would be vulnerable to confused false positive readings. Another method could 

be to attach an IMU to the prototype’s arm and compare the Euler angle readings from it 

and the IMU on the user’s hand to determine if a misalignment has occurred. If the 

readings do not match then the prototype can rotate the arm back into alignment, 

rotating to minimize the difference between the two angle readings until alignment is 

maintained (i.e., the angle reading from both IMUs match or are within a certain 

tolerance). However, this method would require that both IMUs be precisely 

synchronized with each other and remain that way for as long as the prototype is being 

used. These are just two of potentially many different methods that could implement this 

automatic correction feature; because of this, further research would need to be 

performed to determine which method would work the best for this particular purpose. 

The actuation system is an obvious area in which future iterations of the prototype could 

be improved. While the current method of actuation does effectively demonstrate an IMU 

based control system, it lacks the power necessary to rotate any arm that was not built 

specifically to weigh as little as possible. Naturally, this design constraint limits the 

construction of the prototype arm: both in what materials can be used to build the arm 

itself and what (if any) sensors and accessories can be attached to it. Future iterations 

could implement stronger actuation systems, which in turn would allow the prototype arm 

to be heavier. This extra weight allowance could allow sensors to be attached to the arm 

to provide more positional data to the control algorithm; or potentially even allow for the 

addition of some form of manipulator to the arm, to give it some form of functionality. 

Although this change could be as simple as using a stepper motor capable of driving 

more torque, this could also include implementing a completely different style of 

actuation. Since any actuation method that can perform rotations as small as ±1° could 

technically work as a potential replacement, further research would be needed to 

determine which methods would provide more power while minimizing any increases in 

weight and maintaining similar levels of precision as the current method.  
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Chapter 5.  
 
Conclusion 

In this thesis, we developed a person-portable exoskeleton prototype that demonstrates 

an IMU-based control system. This prototype uses the Euler angles generated by the 

IMU to track the motion of the forearm. This is possible because the Euler angles can 

detect rotations not only of the IMU itself, but also rotations about a parallel axis (such as 

about the elbow when the IMU is attached to the hand). The prototype detects these 

forearm rotations, and then has its own arm perform the same rotation, essentially 

mimicking the motion of the forearm. The prototype is successful in demonstrating this 

control methodology; being capable of mimicking rotations of the forearm in a variety of 

different orientations while being relatively inexpensive to build. However, the inability to 

reliably identify and handle certain movements and a lack of power in the actuation 

system does significantly limit the prototype’s overall functionality; but these problems do 

have potential solutions which could be implemented in future iterations of this 

exoskeleton. Despite these issues, the prototype still demonstrates how IMUs can be 

used to control an exoskeleton with a minimal apparatus; in the hope that with future 

research building on this idea, powered exoskeletons can be built lighter and smaller 

than ever before. A live demonstration of the prototype will be performed during the 

thesis defense as a compliment to this thesis. 
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Appendix A. 
 
Code for Prototype Control Algorithm 

/**************************************************************** 

 * ugthesis3.0.ino 

 * Arduino code for undergraduate thesis project "A Novel 

Exoskeleton Prototype Based on the Use of IMUs to Track and Mimic 

Motion" 

 * For use with Arduino IDE ver. 1.8.13 and the following Arduino 

libraries: 

 * -AccelStepper ver. 1.61.0 by Mike McCauley  

 * -Adafruit Unified Sensor ver. 1.1.4 by Adafruit 

 * -Adafruit BNO055 ver. 1.4.2 by Adafruit  

 * -Sparkfun 9DoF IMU Breakout - ICM 20948 ver 1.1.2 by Sparkfun 

Electronics 

 *  

 * Code includes code taken from the following sources: 

 * -"Arduino Code | Adafruit BNO055 Absolute Orientation Sensor" 

by Kevin Townsend (Accessed: Feb. 02, 2021, 

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-

sensor/arduino-code) 

 * -"ProportionalControl.pde" by Mike McCauley (Accessed: Feb. 

02, 2021, 

https://www.airspayce.com/mikem/arduino/AccelStepper/Proportional

Control_8pde-example.html) 

 * -"Example1_Basics.ino" by Owen Lyke (Accessed: Feb. 02, 2021, 

https://github.com/sparkfun/SparkFun_ICM-

20948_ArduinoLibrary/blob/master/examples/Arduino/Example1_Basics

/Example1_Basics.ino) 

 *  

 * Author: Harry Draaisma 

 * Original Creation Date: January 18, 2020 

 *  

 * Distributed as-is, for use with project hardware.  

 ***************************************************************/ 

//include relevant libraries 

#include <Wire.h> 

#include <Adafruit_Sensor.h> 

#include <Adafruit_BNO055.h> 

#include <utility/imumaths.h> //included with BNO055 library 

#include <AccelStepper.h> 

#include "ICM_20948.h" 

 

//define variables for pins related to indicator LED and step 

resolution selection 

#define MS1 4 

#define MS2 5 

#define MS3 6 
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#define LED 10 

 

//setup upper arm sensor (the ICM-20948) to communicate via SPI 

(Serial Peripheral Interface) 

#define USE_SPI 

#define SERIAL_PORT Serial 

#define SPI_PORT SPI    // Your desired SPI port. 

#define CS_PIN    2     // Which Arduino pin you connect CS pin 

to. 

 

//construct object representing hand sensor (the BNO055) 

Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x29); 

#ifdef USE_SPI 

  ICM_20948_SPI myICM;  // If using SPI create an ICM_20948_SPI 

object 

#else 

  ICM_20948_I2C myICM;  // Otherwise create an ICM_20948_I2C 

object. Not actually used in this code 

#endif 

 

/* initialize global variables */ 

char curl = 'n'; //flag for if hand sensor is in "curl" position, 

intialized to 'no' 

float wrot; //wrist rotation 

float sroty; //horizontal shoulder rotation 

float srotz; //vertical shoulder rotation 

float eXpres = 0; 

float eXpast = eXpres; 

float eZpres = 0; 

float eZpast = eZpres; 

float diffx; 

float diffz; 

//construct AccelStepper object to interface with stepper motor 

connected via a motor driver 

//8 refers to the Arduino pin which activates the motor driver, 9 

is the Arduino pin which determines motor direction 

AccelStepper stepper(AccelStepper::DRIVER, 8, 9); 

 

void setup(void) { 

//put your setup code here, to run once: 

  //set LED and step resolution pins to be outputs, and turn off 

indicator LED 

  pinMode(LED, OUTPUT); 

  pinMode(MS1, OUTPUT); 

  pinMode(MS2, OUTPUT); 

  pinMode(MS3, OUTPUT); 

  digitalWrite(LED, LOW); 

  

  //set baud rate for serial monitor (for debugging purposes) 

  Serial.begin(115200); 

 

  //initialize SPI port for upper arm sensor 
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  #ifdef USE_SPI 

      SPI_PORT.begin(); 

  #else 

      //initialize I2C bus for upper arm sensor. Not actually 

used in this code. 

      WIRE_PORT.begin(); 

      WIRE_PORT.setClock(400000);   

  #endif 

 

  //boot-up upper arm sensor, and verify it is both sending and 

receiving data 

  bool initialized = false; 

  while( !initialized ){ 

 

  #ifdef USE_SPI 

      myICM.begin( CS_PIN, SPI_PORT );  

  #else 

      myICM.begin( WIRE_PORT, AD0_VAL ); 

  #endif 

 

  SERIAL_PORT.print( F("Initialization of the sensor returned: ") 

); 

  SERIAL_PORT.print( myICM.statusString() ); 

    if( myICM.status != ICM_20948_Stat_Ok ){ 

      SERIAL_PORT.println( "Trying again..." ); 

      delay(500); 

    }else{ 

      initialized = true; 

    } 

  } 

   

  //boot-up glove sensor, and verify it is sending and receiving 

data 

  if(!bno.begin()) 

  { 

    /* There was a problem detecting the BNO055 ... check your 

connections */ 

    Serial.print("Ooops, no BNO055 detected ... Check your wiring 

or I2C ADDR!"); 

    while(1); 

  } 

   

  delay(1000); 

 

  //finish hand sensor initialization  

  bno.setExtCrystalUse(true); 

  //set speed and acceleration limits for stepper motor 

  stepper.setMaxSpeed(3000); 

  stepper.setAcceleration(1000); 

  //Set motor to half step mode and then turn on indicator LED to 

alert user system is active 

  digitalWrite(MS1, HIGH); 
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  digitalWrite(MS2, LOW); 

  digitalWrite(MS3, LOW); 

  digitalWrite(LED, HIGH); 

} 

 

void loop() { 

  // put your main code here, to run repeatedly: 

 

  //Read accelerometer, gyroscope, and euler angle position data 

from hand and upper arm sensor 

  imu::Vector<3> accel = 

bno.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER); 

  imu::Vector<3> gyro = 

bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE); 

  imu::Vector<3> euler = 

bno.getVector(Adafruit_BNO055::VECTOR_EULER); 

  myICM.getAGMT(); 

 

  //debug(diffx, diffz, curl); //Test function used for 

debugging. Uncomment to see data via Serial Monitor 

 

  //record gyroscope readings that detect wrist rotations or 

rotations about the shoulder 

  wrot = gyro.y(); 

  sroty = myICM.gyrY(); 

  srotz = myICM.gyrZ(); 

 

  //if wrist rotations or rotations about the shoulder are 

detected, ignore change in Euler angle as a result 

  //then check to see if rotation has stopped 

  while(abs(wrot)>60 || abs(sroty)>15 || abs(srotz)>15){ 

    switch (curl){ 

      case 'n': 

       stepper.setCurrentPosition(eXpres); 

       break; 

      case 'y': 

       stepper.setCurrentPosition(eZpres); 

       break; 

    } 

    imu::Vector<3> gyro = 

bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE); 

    myICM.getAGMT(); 

    wrot = gyro.y(); 

    sroty = myICM.gyrY();  

    srotz = myICM.gyrZ(); 

  } 

 

  //if hand sensor is in "curl" position, set "curl" flag to true 

  //and change position tracking to use Z Euler angle 

  if(accel.y() > 6.0 && accel.z() < 0){ 

    if(curl == 'n'){ 

      stepper.setCurrentPosition(eZpres); 
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    } 

    curl = 'y'; 

  } 

   

  //record current X and Z Euler angle positions 

  eXpres = euler.x(); 

  eZpres = euler.z(); 

 

  //record difference between current and previous euler angle 

readings 

  diffx = round(eXpres - eXpast); 

  diffz = round(eZpres - eZpast); 

 

  //Main control section of code 

  switch (curl){ 

    //if hand sensor is in curl position 

    case 'y': 

      //check to see if hand sensor is out of "curl" position 

      //if it is, reset "curl" flag and change position tracking 

to use X Euler angle 

      if(accel.z() > 0){ 

        curl = 'n'; 

        stepper.setCurrentPosition(eXpres); 

        break; 

      } 

      //if statement to ignore discontinuties in Z Euler angle 

readings 

      if(abs(diffz) > 15){ 

        stepper.setCurrentPosition(eZpres); 

      }else{ 

      //move motor arm to new position dictated by Z Euler angle 

reading 

      stepper.moveTo(eZpres); 

      stepper.setSpeed(100); 

      stepper.runSpeedToPosition(); 

      } 

      break; 

    //if had sensor is not in "curl" position 

    case 'n': 

      //if statement to ignore discontinuties in X Euler angle 

readings 

      if(abs(diffx) > 50){ 

        stepper.setCurrentPosition(eXpres); 

      }else{ 

      //move motor arm to new position dictated by X Euler angle 

reading 

      stepper.moveTo(eXpres); 

      stepper.setSpeed(100); 

      stepper.runSpeedToPosition(); 

      } 

      break; 

  } 
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  //set the current Euler angle reading to be the previous Euler 

angle readings 

  eXpast = eXpres; 

  eZpast = eZpres; 

   

} 

 

void debug(int diffx, int diffz, char curl){ 

  //This function acts as a way to visually see the data via the 

serial monitor 

  //It is intended to be used as a way to debug the code during 

the developent 

  imu::Vector<3> euler = 

bno.getVector(Adafruit_BNO055::VECTOR_EULER); 

  imu::Vector<3> accel = 

bno.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);  

  Serial.print(" X:"); 

  Serial.print(euler.x()); 

  Serial.print(" Z:"); 

  Serial.print(euler.z()); 

  Serial.print(" Curl:"); 

  Serial.print(curl); 

  Serial.print(" Diffx:"); 

  Serial.print(diffx); 

  Serial.print(" Diffz:"); 

  Serial.print(diffz); 

  Serial.println(""); 

 

  delay(1); 

} 
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Appendix B. 
 
Material Costs of the Prototype 

8 AA Battery Enclosure ……………………………………………………………… $3.50 

8 AA Batteries ………………………………………………………………………… $10.99 

2.1 mm DC Barrel Jack ……………………………………………………………… $3.50 

Arduino Uno Rev3 Microcontroller …………………………………………………. $33.00 

Big Easy Driver Motor Driver ……………………………………………………….. $25.00 

1.8°/12V 2 Phase Stepper Motor …………………………………………………… $31.80 

Adafruit BNO055 9-DOF Absolute Orientation IMU Fusion Breakout Board…… $50.41 

SparkFun 9DOF IMU Breakout - ICM-20948 ……………………………………… $24.45 

ABS-M30 3D Printed Frame ………………………………………………………… $83.49 

Solderless 54 x 83 mm Breadboard ………………………………………………... $5.80 

Second-hand Glove ………………………………………………………………….. $3.99 

6” x 4” Sticky Back Velcro for Fabrics ……………………………………………… $8.99 

¾” x 48” Round Wooden Dowel ……………………………………………………. $5.19 

3 ¼” Rubber Grommets ……………………………………………………………… $2.91 

12’ x ¾” Velcro Roll …………………………………………………………………... $15.99 

3 Ladder Locks ……………………………………………………………………….. $2.98 

80 Jumper Wires ……………………………………………………………………… $12.16 

2 4” x 2” Velcro Strips ………………………………………………………………… $5.99 

2 1.875” Radius Velcro Coins ……………………………………………………….. $5.99 

Miscellaneous (Solder, Glue, etc.) ………………………………………………….. $20.00 

Total …………………………………………………………………………………… $356.13 
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