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Abstract 

The development of mathematical models and numerical simulations is crucial to design 

improvement, optimization, and control of solid oxide fuel cells (SOFCs). The current study 

introduces a novel and computationally efficient pseudo-two-dimensional (pseudo-2D) 

model for simulating a single cell of a high-temperature hydrogen-fueled SOFC. The 

simplified pseudo-2D model can evaluate the cell polarization curve, species 

concentrations along the channel, cell temperature, and the current density distribution. 

The model takes the cell voltage as an input and computes the total current as an output. 

A full-physics three-dimensional model is then developed in ANSYS Fluent, with a 

complete step-by-step modeling approach being explained, to study the same cell with the 

identical operating conditions. The 3D model is validated against the other numerical and 

experimental studies available in the literature. It is shown that although the pseudo-2D 

solution converges significantly faster in comparison with the 3D case, the results of both 

models thoroughly match especially for the case of species distributions. The simplified 

model was then used to conduct sensitivity analysis of the effects of multi-physiochemical 

properties of porous electrodes on the polarization curve of the cell. A systematic inverse 

approach was then used to estimate the mentioned properties by applying the pattern 

search optimization algorithm to the polarization curve found by the pseudo-2D model. 

Finally, nine different input parameters of the model were changed to find the hydrogen 

distribution for each case, and a huge dataset of nearly half a million operating points was 

generated. The data was successfully employed to design a novel classifier-regressor pair 

as a virtual hydrogen sensor for online tracking of hydrogen concentration along the cell 

to avoid fuel starvation. 

Keywords:  SOFC; pseudo-2D; 3D; parameter estimation; diagnosis; machine learning 
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation 

The International Energy Outlook (IEA) report anticipates that by 2040, the global 

energy demand will increase by more than 25% from current (2018) levels, necessitating 

investments up to $2 trillion [1]. The predicted growth in the energy demand would further 

deplete the energy sources from fossil fuels, entailing the increased utilization of 

alternative energy sources [2]. Fuel cells (FCs) are one of the most promising technologies 

for this endeavor as they offer the use of clean and abundant fuel such as hydrogen and 

higher system efficiency when compared to conventional energy conversion systems [3], 

[4]. One should note that the terms “clean” and “abundant” used in the literature should be 

treated carefully. Although burning hydrogen does not come with any harmful biproducts, 

producing hydrogen might be conducted by utilizing technologies that are not fully clean. 

Also, hydrogen is fairly abundant on Earth mainly in water form, but it should be transferred 

into pure hydrogen in order to be properly used. FCs are primarily classified into low-

temperature PEMFC (𝑇 <  120 ℃) and high-temperature SOFC (𝑇 ≥ 800℃).  Although 

PEMFCs are very useful and more widely used in comparison with SOFCs, high-

temperature SOFCs offer several advantages over PEMFCs. SOFCs use less expensive 

catalysts than other types of fuel cells which makes their employment reasonably 

affordable [5]. Additionally, because of the high operating temperature, the energy in the 

exhaust is considered “high-quality” energy that can be utilized as a heat source in other 

energy provision devices such as aircraft, vehicles, steam turbines, stationary gas 

turbines, Stirling engines, industrial power supplies, and combined heat and power (CHP) 

systems [6]–[15]. Utilization of the co-generation-based SOFCs will enhance the system's 

overall electrical efficiency by decreasing their heat-to-power ratio since the great part of 

heat loss can be recovered through operation in the hybrid mode [16].  

There are different cell configurations for SOFCs and the most widely used ones 

include planar and tubular SOFCs. Tubular SOFCs can be used in series and parallel but 

they suffer from very long current paths that increases the electrical losses. The focus of 
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the current study will be on planar SOFCs. A single cell of a planar SOFC consists three 

main electrodes called anode (fuel), cathode (oxidizer) and the electrolyte (see Figure 

3-1). One of these components should be way thicker to provide mechanical support for 

the cell while the two others should be as thin as possible to maintain electrical 

transportation losses to a lowest level; planar SOFCs are categorized into anode-

supported, cathode-supported, and electrolyte-supported SOFCs based on choice of the 

thicker component. Since hydrogen transport is much faster than oxygen transport and 

electrical losses of the electrolyte is considerably high, the best choice for planar SOFCs 

is the anode-supported configuration. 

SOFCs are not without shortcomings. The transient operation of SOFCs might 

significantly deteriorate the cell performance [17]. This is particularly relevant  during the 

start-up and shut-down when the large changes in temperature can lead to tremendous 

thermal stresses and ultimately internal fracture and failure due to the thermal expansion 

mismatch between the cell components [18], [19]. Thermal stress has been widely studied 

by the literature, and different methods were introduced to reduce the temperature 

gradient within the cell during the design stages [19]–[22]. More importantly, fuel starvation 

would occur during the operation if the fuel is consumed at a faster rate than it is fed to 

the cell [23]. Fatal cell failure due to starvation has been observed in both macro levels 

and microstructure of the cell [24]. Development of a fast and precise method for promptly 

identifying the fuel starvation, which is one of the main goals of the current study, extends 

the SOFCs lifetime, while also increasing their reliability for operating along with other 

power generation systems.  

Significant progress has been made in the experimental, analytical, and numerical 

modeling of SOFCs. The accuracy of these models relies on understanding the multi-

physiochemical phenomena that take place within the cell. This is an onerous task since 

mass, species, momentum, charge, and energy transfer, as well as the electrochemical 

equations, must be simultaneously solved in the solid interconnects, fluid zone, and the 

porous electrodes [25]. Physical experimental setups, on the other hand, are expensive 

and time-consuming. Furthermore, not all fluid characteristics such as temperature, 

pressure, velocity, and species distributions are applicably measurable through the cell 

using experimental techniques. Therefore, developing a fast and precise numerical model 

is necessary for studying SOFCs in order to overcome the computational burdens and to 

achieve accurate results validated by experiments. Furthermore, modeling can provide us 
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with information about distribution of different parameters that are not measurable by 

experiments, e.g., fuel or oxidant distribution in the catalyst layer. 

 The development of a numerical model for an SOFC unit requires broad 

knowledge about different components including the microstructural properties of the 

porous electrodes. However, the processes included in electrode sintering would provide 

an overly complicated porous micro-morphology (e.g. dual-scale and functionally graded 

electrodes [26]–[30]), and there is a notable discrepancy in the observed microstructural 

properties among different fabrication processes [31]. More importantly, newly discovered 

catalysts and novel electrode materials are being presented through the literature [32]–

[36], necessitating the utilization of a fast and reliable method for evaluating the 

corresponding porous properties. 

Considerably heavy computations are required by the numerical full-physics 3D 

models [37]. As a result, they would be tedious and impractical to be used in applications 

such as online control of the cell which requires fast evaluations of the outputs or when 

implementation in optimization or inverse algorithms with a large number of simulations is 

required [38]. Two major methods exist for decreasing the overall computation time: 

reducing the dimension or reducing the physics of the problem. Each of the mentioned 

approaches owns its own positives and negatives. Hence, one may integrate reduced 

dimension and reduced physics methods in order to achieve novel, effective, and efficient 

solutions. Such a model can be utilized not only for cell performance analysis but also for 

parameter estimation and diagnostic tools development for control proposes. In this thesis, 

a novel pseudo-2D numerical model is developed and validated against the experimental 

and numerical works in the literature (chapter 3). Thereafter, the model is utilized to find 

the multi-physiochemical properties of the cell and (chapter 4) and to generate a huge 

dataset for designing a virtual hydrogen sensor for fuel starvation detection (chapter 5).  

1.2. Objectives and Research Roadmap 

The primary goal of this research is developing a fast and computationally-efficient 

approach for finding the reactants concentration distribution, current density distribution, 

operating temperature, and polarization curve of a single cell of a high-temperature anode-

supported solid oxide fuel cell. The simplified model then will be used for estimating the 

multi-physiochemical parameters of the electrodes through an inverse approach. Finally, 
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the model will be employed to generate a huge data set for training a classifier with the 

objective of detecting both incidence and extent of fuel starvation on the anode side. The 

following steps should be taken in order to achieve the required results: 

 

- Developing the 3D model of a single cell using ANSYS Fluent SOFC add-on 

module (see Figure 3-4) 

- Validating the 3D results with the available data in the literature (see Figure 

3-7) 

- Developing the pseudo-2D model of a single cell (see Figure 3-1) 

- Comparing the pseudo-2D results with those given by the 3D simulations (see 

Figure 3-10) 

- Conducting a sensitivity analysis on the polarization curve of the cell 

- Defining the inverse problem for estimating the unknown parameters 

- Conducting the optimization and inverse analysis 

- Figuring out if the defined inverse problem can be successfully used for finding 

unknown parameters. 

- Running the simulations using the pseudo-2D numerical model to generate the 

data required for machine learning. 

- Capturing the fuel starvation on the anode side for each data point by using 

the pseudo-2D model, while generating the data; each data point will be 

labeled as either starved (1) or normal (0). 

- Conducting data pre-processing followed by randomly splitting the data into 

the training set and the test set.  

- Training different classifiers and comparing the results. 

- Training an artificial neural network working as a regressor for finding the 

percentage of the anode active area suffering from starvation. 

- Figuring out if the pair of classifier-regressor can be successfully used for 

capturing the fuel starvation for situations not present in the training set. 
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1.3. Scholarly Contributions 

1.3.1. Directly Related Contributions 
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of hydrogen-fueled solid oxide fuel cells”, International Journal of Hydrogen 
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single cell of a high temperature solid oxide fuel cell to be used for online 
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- Ghorbani, B., Akhavan-Behabadi, M., Ebrahimi, S., Vijayaraghavan, K., 
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and Systems, 8(2), 169-178.  
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Chapter 2.  
 
Literature Review 

This chapter aims to provide a review of the literature relevant to the objectives 

discussed in section 1.2. This chapter aims to highlight both the key results and the 

shortcoming of past literature to motivate the need for this thesis. This chapter has been 

arranged as follows: the review surveys on SOFCs modeling are presented in section 2.1; 

a review of the two most common software-based SOFC models as well as related 

developed simplified models through sections 2.2 and 2.3, respectively; literature on 

optimizing the inverse problem (“inverse techniques”) for parameter estimation in SOFCs 

are presented in section 2.4; a review of utilization of machine learning algorithms for 

SOFCs will be presented after a brief introduction to the fuel starvation and the way this 

phenomenon might affect the SOFC performance in section 2.5. 

2.1. Summary of Previous Review Studies on SOFCs 

Numerical modeling of SOFCs is utilized for design optimization as well as the 

development of control strategies. Therefore, there is extensive research on different 

aspects of SOFC modeling. Researchers have mentioned different SOFC materials [39], 

operating principles and thermodynamics of electrodes and electrolyte materials [40], and 

SOFC degradation phenomena [41], as well as modeling [42], control, and diagnosis of 

SFOCs [37]. Table 2-1 summarizes the review studies on SOFC components and 

materials while Table 2-2 mentions review studies on simplified models for control and 

diagnosis of SOFCs operating under both steady-state and transient conditions.   
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Table 2-1. Review studies on SOFC components and materials 

Reference Summary 

Badwal  

and  

Foger 

(1994) 

[40] 

Research Overview: 

 Operating principles and thermodynamics of SOFCs 

 Electrodes and electrolyte materials 

 Fabrication methods 

Conclusions: 

 Change of morphology of the cathode layer with time and 

decrease in cathode active area during operation limit the life 

of SOFCs and need to be minimized 

Jiang  

and  

Chan  

(2004) 

[43] 

Research Overview: 

 Development of Ni/Yttria-stabilized zirconia (YSZ) cermet 

anodes (detailed) 

 Modified Ni/YSZ cermet anodes (detailed) 

 Microstructure optimization of materials 

 Alternative and conductive oxide anodes 

 Anode supported substrate materials 

Conclusions: 

 The electrochemical performance of Ni/YSZ anodes might be 

improved by substituting YSZ with mixed ionic and electronic 

conductors. 

 Anode-supported cells possess higher normalized power 

density 

Laosiripojana 

et al  

(2009) 

[39] 

Research Overview: 

 A brief review of cell materials 

Conclusions: 

 YSZ, porous Ni/YSZ cermet, and perovskite-based LaMnO3 

are the most common materials used for electrolyte, anode, 

and cathode, respectively. 

Molenda et al. 

(2017) 

[44] 

Research Overview: 

 Novel electrolyte/electrode materials 

 Novel fabrication techniques 

 Metal supported SOFCs 

 Metallic interconnects for SOFCs 

Conclusions: 

 Increasing the cell efficiency and lowering the manufacturing 

costs of individual cells/stacks are reported as the focus of the 

ongoing researches on SOFCs. 
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Table 2-2. Review studies on simplified models for control and diagnosis 
under both steady-state and transient conditions 

Reference Summary 

Bavarian et al 

(2010) 

[42] 

Research Overview: 

 3D, 2D, 1D, and 0D modeling of SOFC 

 Dynamic and steady-state behavior of SOFC 

 Multi-time-scale modeling of SOFC 

 Control objectives, control strategies, actuators, and sensors  

Conclusions: 

 The slowest and the fastest response in an SOFC correspond 

to thermal and electronic processes, respectively. 

 A perfect model is the one including only necessary details 

rather than taking into account all complexities. 

Wang et al  

(2011) 

[37] 

Research Overview: 

 3D, 2D, 1D, and 0D models for control and diagnosis (detailed) 

Conclusions: 

 0D and 1D models show the greatest potential to be used for 

real-time simulations. 

 The flexibility of grey-box models makes it possible to obtain the 

rules describing the cell behavior. 

 Black-box models based on artificial intelligence are suitable 

enough for non-linear dynamic modeling. 

Barelli et al  

(2013) 

[41] 

Research Overview: 

 SOFC degradation phenomena (detailed) 

 Fault detection technologies  

Conclusions: 

 Identification of specific parameters that can be potentially 

implemented in diagnostic systems for the detection of failures 

such as anode re-oxidation caused by fuel starvation is 

applicable 

2.2. Software-based Modeling of SOFCs 

Initial CFD modeling employed a “do-it-yourself” approach [45]. However this was 

quickly supplanted by studies employing commercial CFD software packages [46], [47] 

consisting of finite volume method (FVM) and finite element method (FEM). The fluid 

transport is usually modeled by the ANSYS Fluent/CFX using finite volume method (FVM), 

while the mechanical stress-strain analysis is conducted through ANSYS using finite 
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element method (FEM) techniques (see Table 2-3). One should note that a very specific 

step-by-step approach needs to be employed to ensure that the software-based 

simulations converge. In addition, boundary conditions, solution methods, material 

properties, thermo-physical properties, electrochemical parameters, meshing, solution 

controls, and appropriate solver settings need to be carefully tuned. In this thesis, ANSYS 

Fluent SOFC add-on Module is used to validate the proposed pseudo-2D model. Hence, 

details on instructions needed to setup SOFC-CFD simulation is presented in section 3.2 

(in Chapter 3). 

Table 2-3. Utilization of Software-based SOFC models in the literature 
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 Air/Fuel flow rates [21], [56]–[58] 

Current density distribution [21], [56], [59]–[66] 

Temperature distribution [21], [57], [60], [61], [65], [67], [68] 

Different cross section geometries [55], [59], [61], [69] 

Different flow patterns [21], [54], [56], [61], [70] 

Thermal boundary conditions [56], [58], [63], [65] 

Hydrogen distribution [21], [56], [57], [59]–[61], [65], [67], [69]–[71] 
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Carbon deposition [72], [73] 

Steam/carbon ratio [73]–[77] 

Steam reforming on the anode side [69], [72], [74]–[81] 

Fuel composition [58], [73] 

Nickel oxidation [73], [82] 

Radiation heat transfer effects [58], [68], [79], [82]  

Imposed thermal stresses [59], [63] 

FEM simulations 

Curvature/Camber analysis [83], [84] 

Creep behavior [85], [86] 

Different seal designs [85], [87]–[90] 

Torsion tests [91] 

Crack initiation tests [92] 

Compressive stress tests [86], [93], [94] 

Cathode contact sintering [72], [94] 

Simultaneous CFD 
and FEM analysis 

Stack-level thermal stress [78], [90], [95]–[100] 
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2.3. Simplified Models 

Researchers have been working to improve the convergence speed and to reduce 

the computation time by simplifying full physics 3D SOFC models [38]. Some researchers 

have reduced the dimensions of the problem by simplifying the 3D models into 2D models 

[101]–[103], 1D models [104]–[106], or 0D models [107], while others have assumed that 

the electrochemical reaction at the triple-phase boundary of the electrolyte shows itself as 

a voltage jump at the electrode-electrolyte interface [20], [21], [101], [102], [105], [108]–

[111]. Although faster, the solution to the model with the reduced dimensions is less 

accurate than the 3D case. Simplifying the physics of the problem by making some 

assumptions, although being faster than 3D models, still suffers from some computational 

burdens and cannot be used for applications such as online control and diagnosis. 

The least complicated methods are black box or 0D models which are based on 

either empirical correlations found by the experimental techniques [112] or treating the 

fuel cell as a component of a system [113]. 1D models are suitable for both planar [114] 

and tubular [115]–[117] configurations, taking into account the changes in the flow field 

only in the direction of the channels. One may note that the employment of 0D and 1D 

models ignores special variations in one or more direction. The closest results to the 3D 

cases are found by 2D models with the symmetric boundary condition at the cell axis while 

studying the performance of tubular SOFCs [118].  

There are a couple of studies in the literature that reduced the number of 

dimensions while simplify the physics of the problem (as has been done in this thesis); the 

models built using such an approach are recognized as multi-dimensional models [118]. 

A novel algorithm for mapping the data from the triangular mesh on the surface of a tube 

to a 1D axial band in ANSYS Fluent was introduced for the first time by Goldin et al. [72]. 

The coupling algorithm was then utilized by Kattke et al. [119] for the stack modeling and 

thermal management of SOFCs. The idea was that all the electrochemical equations can 

be solved within 1D tubes while the 3D flow field outside of the tubes is modeled without 

simplifying assumptions. Followed by their previous work and using the proposed coupling 

algorithm [119], Kattke and Braum [82] identified the tubular SOFCs operating strategies, 

considering effects of system design parameters, thermal interactions between the 

different components, and interactions between the stack and environment. The studies 

mentioned thus far, however, were restricted to tubular SOFCs and require a significant 
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amount of computation because of the 3D effects. In this study, a pseudo-2D model is 

developed with a 1D mesh in the direction of the cell channels that takes into account the 

change of parameters in the axial direction as well as the energy equation, while not 

ignoring the change in species concentrations in the direction perpendicular to the channel 

length. The method is developed to increase the computation efficiency while keeping the 

accuracy in an acceptable range.  

2.4. Parameter Estimation Using Inverse Approaches for 
SOFCs 

Since there are several uncertain parameters in the SOFCs, there has been a 

concerted endeavor to characterize SOFCs and to expand the scope of parameter 

estimation. At the macro-level, scientists have investigated the cell dynamic response 

[120]–[123], stack configurations [124]–[126], fuel/air flow rate [21], [57], [58], cell 

geometry [50]–[52], [55], and AC impedance diagnosis techniques [127]–[129]. On the 

micro-level perspective, researchers have studied SOFC micro-catalytic reaction 

mechanisms [130]–[133] and cell materials [134]–[136] and attempted to optimize the 

microstructure of the electrodes [137]–[139]. One may find even more complicated models 

that use different tools such as spherical particle random packing system and percolation 

theory to directly determine electrodes’ fundamental properties such as pore size, particle 

diameter, porosity, and tortuosity [140]–[144]. The focus of the so-called “direct/forward” 

techniques is on either investigating the cell performance when system geometry and cell 

properties are known or developing empirical relations for evaluating the cell properties 

using experimental micro-modeling analysis. On the other hand, one may analyze the cell 

response and pose a so-called “inverse” problem to iteratively determine single or multiple 

properties. Convergence to a unique solution when using an inverse method is much more 

complicated in comparison with the direct counterpart (i.e. the forward methods) since 

inverse problems are mathematically ill-posed [145], [146]. Also, the inverse analysis is 

potentially time-consuming because multiple forward simulations or experiments are 

required to formulate the inverse solution [147], [148]. In order to overcome existing 

computational burdens, optimization techniques can be employed by the inverse 

techniques [149]–[151].  

There are a few studies in the literature employing inverse analysis for determining 

the SOFC electrode properties, the cell operating conditions, or the optimized system 



13 

geometry. Sarmah et al. [152] utilized a differential evolution-based inverse algorithm to 

estimate operating parameters of a hybrid SOFC/GT/ST power plant. Shi and Xue [153] 

used particle swarm optimization technique to estimate anodic and cathodic reference 

exchange current densities in a button-cell SOFC. Gogoi and Das [154] evaluated current 

density, pressure, and fuel flow rate of an internal reforming SOFC using the inverse 

simplex search method. For the inverse analysis to work, a fitness function must be 

employed as the difference between “a selected system output obtained by random values 

of the unknown variables” and “the corresponding required values”. Various fitness 

functions are introduced by different studies, depending on the forward model capabilities. 

Looking at few existing studies, it is concluded that there are no works in the literature 

including a systematic approach for the evaluation of the electrode properties and 

anodic/cathodic exchange current density of planar SOFCs. In this study, we are going to 

find the mentioned properties by only using the cell performance data without knowing the 

electrodes morphology.  

2.5. Machine Learning Algorithms for Degradation 
Modeling of SOFCs 

2.5.1. Motivation for Using Machine Learning 

A typical SOFC is made of solid yttria-stabilized zirconia (YSZ) electrolyte 

sandwiched between two porous electrodes. The electrochemical performance of the cell 

is significantly influenced by the microstructure morphology of the electrodes [24]. To 

reach the commercialization stages, SOFCs are required to demonstrate 40000 hours of 

safe operation which necessitates the utilization of approaches for avoiding cell 

degradation [155], [156]. The real operation of SOFCs might significantly deteriorate the 

cell performance [17], and this has prevented wide scale adoption of SOFCs [157]. For 

example, temperature changes that occur during the start-up and shut-down coupled with 

the thermal expansion mismatch between the cell components result in tremendous 

thermal stresses and ultimately internal fracture leading to failure [18], [19], [158]. Thermal 

stress arising from mismatched coefficients of thermal expansion has been widely studied 

[90], [159], and different designs and methods have been proposed in the literature to 

reduce the temperature gradient within the cell [19]–[22], [160]. More importantly, fuel 

starvation would occur during the transient operation if the fuel is consumed at a faster 

rate than it is fed to the cell [23]. This results in Ni oxidation on the anode side and cell 
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destruction [24], [161]. Fatal cell failure due to starvation and the ensuing Ni oxidation 

[162] has been observed in both macro levels and microstructure of the cell [163], [164]. 

Ni oxidation is exceptionally detrimental, especially at higher current densities where fuel 

starvation is more likely to happen [165]. Figure 2-1 shows the progress of Ni-Oxidation 

near the cell outlet. Performance of all SOFC systems can deteriorate as a direct result of 

fuel starvation [166] regardless of the specific SOFC configuration [167]. It is 

fundamentally burdensome to assess internal characteristics of SOFCs [168]. Hence, 

development of a fast and precise method for promptly identifying the fuel starvation 

during the operation extends the SOFCs lifetime, while also increasing their reliability for 

operating along with other power generation systems [169]. It may be noted that SOFCs 

use excess air for controlling their temperature, and oxygen starvation is typically not a 

concern [170]. 

 

Figure 2-1. Progress of Ni-Oxidation (seen in yellow) near the outlet due to fuel 
starvation (used with permission) [171] 

There have been several past attempts to prevent fuel starvation. Finding the 

hydrogen concentration along the anode channels is a determining factor for detecting 

local fuel starvation and subsequently avoid destructive Ni oxidation of the anode [172]. 

Once Ni particles are oxidized to NiO they go through more than 50 percent increase in 

volume, and this will result in mechanical failure of the thin electrolyte especially for the 

case of anode-supported SOFCs. A complete review on detrimental mechanisms resulted 

by Ni oxidation is provided by Faes et al. [173]. Many researchers have modified the inlet 

fuel manifolds to ensure that an equal amount of hydrogen is fed to all cells [48]–[53]. 

These studies rely on computational fluid dynamics (CFD) to find the hydrogen mole 

fraction along the cell. A similar CFD simulation could be employed in this work to model 

fuel starvation. However, CFD simulations are not suitable for online control or diagnosis 
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since they require a significant amount of time to converge to the solution. On the other 

hand, finding hydrogen distribution and predicting local fuel starvation is a very difficult 

task during experimental investigations because of the technical barriers [172]. 

Fortunately, artificial intelligence-based black-box models are reported to be extremely 

useful for modeling non-linear systems [174]. Artificial neural networks (ANNs) are 

particularly valuable for extracting black-box models from  large datasets, thanks to their 

ability to provide a very fast response once the network is trained [175]. ANNs are shown 

to have a great potential for monitoring and controlling purposes [176]. ANNs are capable 

of modeling different manufacturing processes to reduce development costs [177]. ANNs 

have been even used in earlier literature to study proton exchange membrane fuel cells 

(PEMFCs) [178]–[180], direct methanol fuel cells (DMFCs) [181]–[185], molten carbonate 

fuel cells (MCFCs) [186]–[190], phosphoric acid fuel cells (PAFCs) [191], and fuel cell-

based combined heat and power (CHP) systems [192]. The following sub-section reviews 

the application of ANN for SOFC modeling. In addition to ANN, some other classification 

methods including K-nearest neighbor (KNN) are employed and compared in this thesis. 

It may be noted that while KNN method is a popular machine learning technique that has 

been used to classify systems, there is no earlier literature on the application of KNN to 

SOFCs.  

2.5.2. Implementation of ANN for Studying SOFCs 

An ANN consists of an input layer of neurons that is connected to an output layer 

either directly or through single/multiple hidden layers. ANNs provide us with rapid 

calculating models by learning from the data obtained by either experiments or simulations 

[193]. Marra et al. [194] used an ANN with only one hidden layer containing five neurons 

to predict the operating voltage of a disk-shaped methane-fueled electrolyte-supported 

SOFC stack as a function of average current density, anode mass flow rate, cathode mass 

flow rate, anode inlet temperature, and time. The training data was experimentally 

generated by running a stack at constant load for 1000+ hours allowing for stack 

degradation effects to be indirectly considered. Milewski et al. [195], [196] developed a 

single layer ANN with one to three inputs and two to five neurons to determine whether 

the influences of different parameters on the cell voltage can be successfully modeled 

using a neural network. Their model deviated from the experimental data for low hydrogen 

content and low anode porosity. Razbani and Assadi [197] trained an ANN consisting of 
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one hidden layer with eleven neurons using their previous experimental data [198]. The 

ANN had current, flow rate, and air temperature as input parameters, and the voltage and 

temperature at five different locations as the output. The ANN model was constrained by 

the experimental data only available at open circuit condition (no load). The authors have 

themselves recommended several improvements to their work such as using more data 

points, choosing a better test set, increasing the range of input parameters, decreasing 

the number of neurons in the hidden layer, and representing only temperature at the output 

layer [197]. Notwithstanding the drawbacks associated with their model, Razbani and 

Assadi [197] introduced the concept of “estimating the temperature profile within the stack 

using an ANN” which is a valuable outcome. 

Tafazoli et al. [199] developed and optimized a neural network for finding the triple-

phase boundary density, particle contact surface density, and gas diffusion factors as a 

function of backbone porosity, backbone axial and transversal grow rates, and particle 

loading. Their ANN was successfully used to investigate the effects of backbone geometric 

anisotropy on the performance of infiltrated SOFC electrodes. Two hidden layers, each 

containing one to thirty nodes, were used to optimize the neural network. It may be noted 

that, this approach would have required training 900 neural networks to determine the one 

with the best performance; this was likely only possible in Tafazoli et al. [199] due to the 

very small training and test sets. Fuad and Hussain [200] compared the performance of 

artificial neural network, support vector machine, fuzzy inference system, and genetic 

programing in estimating the SOFC outlet temperature and the operating voltage as a 

function of air temperature, air flow rate, fuel utilization, and load current. 1000 input 

datapoints obtained by a previously validated numerical method were used for training 

each regressor, and it was shown that the artificial neural network possesses the best 

performance.  

ANNs have also been utilized by researchers for optimization purposes. 

Bozorgmehri and Hamedi [201] trained an ANN  model of a SOFC using 632 experimental 

data points. The ANN had only one hidden layer with four neurons and a hyperbolic 

tangent sigmoid transfer function. Current density, temperature, electrolyte thickness, 

anode thickness, anode porosity, and cathode thickness were chosen as input variables 

of the ANN with the cell voltage as the output. The accuracy of the test set was shown to 

be more than 99 percent. After training the ANN, the genetic algorithm was used, with the 

network inputs as the design variables, to maximize the power output. Nassef et al. [202] 
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applied the radial movement optimizer (RMO) to an ANN model to find a set of input 

parameters that maximizes the power output. The optimized set of design variables found 

by RMO was compared with the ones previously obtained by the Genetic Algorithm and 

experimental setups, and it was shown that the proposed optimizer outperforms the other 

methods by a small margin. The model was trained using 538 data points with current 

density, temperature, electrolyte thickness, anode thickness, anode porosity, and cathode 

thickness as input variables of the ANN and the cell voltage as the output. The accuracy 

of the test-set calculated using mean squared error (MSE) was found to be 0.9975, which 

is unacceptably higher than the accuracy of the training-set. More recently, Le et al. [203] 

developed an ANN with one hidden layer with five neurons to evaluate the cell voltage of 

a single-chamber SOFC as a function of operating temperature, current, and sintering 

temperature. While they reported an accuracy of 0.999 for the test-set, the paper was 

missing details regarding the training data such as the number of data points. Wu et al. 

[204] trained a radial basis function (RBF) neural network using a genetic algorithm in 

MATLAB. Only two input variables, the current and temperature, were used to evaluate 

the cell voltage using two groups of V-I data at 800 °∁ and 1000 °∁. Tang and Huang [205] 

used a support vector regression machine (SVRM) to find the anode electrical conductivity 

of LSCM-xCu composite as a function of operating temperature and Cu content. The 

SVRM was shown to be capable of generalizing the results for the test set. However, a 

very small size of 32 and 4 were chosen for the training set and the test set, respectively. 

Chaichana et al. [206] estimated the current density of a direct internal reforming SOFC 

as a function of temperature, water mole fraction, hydrogen mole fraction, and cell voltage 

using a novel hybrid neural network with two hidden layers.  

It is also possible to train the ANN or other regressors/classifiers using the data 

generated by numerical simulations. One of the earliest ANN models of SOFCs was 

developed by Arriagada et al. [207]. It was shown that the data obtained by a validated 

numerical model can be successfully used for training a neural network and ultimately 

predicting the system performance [207]. Zamaniyan et al. [208] trained an ANN using the 

data obtained by a numerical scheme to study the performance of a generic industrial 

hydrogen plant. They found the optimum number of neurons in the hidden layer by 

minimizing the MSE and using the elbow method. Ogaji et al. [209] modeled fuel cell 

performance using three different four-layer neural networks with two hidden layers. 

Temperature, voltage, power output, and efficiency were estimated as a function of 
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operating pressure, current density, fuel/air utilization factors, and fuel/air temperature. All 

the data used for training the network was obtained by numerical modeling. In a very 

recent work published by Yan et al. [210], an ANN was trained to predict the cathodic 

overpotential and degradation rate of SOFC electrodes as a function of microstructure of 

the cell including particle size, particle size distribution (PSD), and pore content. 770 

different data points were numerically generated using the discrete element method 

(DEM). Multi-objective genetic algorithm was then applied to the ANN model to minimize 

the cathodic overpotential and the electrolyte degradation rate.  

2.6. Extending the state of the art 

To the best of the author’s knowledge, there is no past literature on the diagnosis 

of the extent of fuel starvation in SOFCs by applying machine learning algorithms. 

Furthermore, there is a gap in the literature on estimating the morphological properties of 

the electrodes in planar SOFCs using an inverse analysis applied to the polarization curve. 

Working in these areas, however, needs accurate and fast computational models. In this 

research, a numerical model is developed and validated against other numerical and 

experimental studies. Thereafter, the model is utilized for estimating the morphological 

properties of the SOFC electrodes using an inverse analysis. Additionally, this study 

evaluates multiple machine learning techniques for their ability to predict the incidence 

and the extent of hydrogen starvation. Technically, it is also impossible to find out local 

hydrogen distribution and by virtue the extent of starvation within the cell using 

experimental techniques. In this study, a model previously validated by Ghorbani et al. 

[65], [211], [212] is used to generate the dataset required for the machine learning 

algorithms. In SOFCs, we control and vary the cell voltage, the inlet temperature, cathode 

pressure, the hydrogen and oxygen mole fractions and the anode and cathode molar flow 

rates for each individual fuel cell. We would also need to consider the variations in the cell 

active surface area, anode effective porosity, and cathode effective porosity (both can be 

estimated by the inverse analysis of a given experimental polarization curve) during 

manufacturing [211]. Since it is desirable to have a single model that could be used for 

any combination of the above parameters, the training data needs to be appropriately 

generated by varying all of them. The authors choose to generate a dataset consisting of 

480,000 data points (refer section 5.1 for details). The generation of such huge amount of 

data is made possible by the computationally-efficient numerical model. The generated 
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data is then utilized to train different classifiers including Logistic Regression, K-Nearest 

Neighbors, Naïve Bayes, and ANN to label the cell as either “normal” or “starved”. When 

a cell is labeled as “starved”, another artificial neural network is used (this time for 

regression) to predict what percentage of the cell active area is starved. The current work 

also expands past approaches by studying the effect of varying the number of neurons in 

each of two hidden layers. It should be noted that setting the number of neurons in hidden 

layers to values considerably higher than the number of inputs is not recommended (as a 

rule of thumb) because of the possibility of overfitting the model to the data [213]–[215]. 

The proposed model acts as a virtual hydrogen sensor placed within a single cell of a 

hydrogen-fueled SOFC. Different algorithms for the classification problem are applied and 

the best algorithm with optimized parameters for both classification and regression 

problems are reported in the end.  
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Chapter 3.  
 
SOFC Model Development 

In this chapter, the steady-state performance of a single cell of an anode-supported 

high-temperature SOFC is studied by using a novel and computationally efficient pseudo-

2D approach and the results are validated against a full physics 3D model developed in 

ANSYS Fluent. In the end, both models are validated against the experimental and 

numerical data available in the literature. In the following sections, steady-state governing 

equations are presented for the pseudo-2D model followed by a brief explanation of the 

3D model and validation of the results against the literature. Furthermore, the pseudo-2D 

model was used in this work to conduct the parameter estimation using the inverse 

approach and also to generate data for developing the virtual hydrogen sensor using a 

novel classifier-regressor pair. All the above-mentioned tasks will be formulated in this 

chapter. 

3.1. Pseudo-2D Model 

The pseudo-2D model for studying the SOFC operation is provided in this section. 

The main purpose of developing such a model is to find the reactants concentrations along 

the air/fuel channels as well as the SOFC polarization curve and cell temperature. The 

schematic of the model is illustrated in Figure 3-1. The method is called pseudo-2D 

because the effect of reactants transport through the porous GDL in the direction 

perpendicular to the channels is taken into account while using a 1D mesh in the axial 

direction, i.e. the numerical domain is segmented into elements of different size along the 

channel with the transport equations being solved analytically in the normal direction. 

According to Figure 3-1, the very thin TPB layers and electrolyte are lumped into a surface 

called the electrolyte surface. Fuel and air streams diffuse through the GDL until they 

reach the electrolyte surface where the following electrochemical reactions occur at the 

anode and the cathode sides, respectively: 

H2 + O2− ↔ H2O + 2e− Eq. (1.1) 
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1

2
O2 + 2e− ↔ O2− 

Eq. (1.2) 

And the overall reaction will be: 

H2 +
1

2
O2 ↔ H2O 

Eq. (2) 

With the number of electrons transferred per mole of fuel 𝑛 = 2. The electrochemical 

model developed in this work is based on the computation of the local thermodynamically 

reversible potential known as Nernst potential at the operating temperature 𝑇 [216]: 

VNernst =
−ΔG0

nF
−

RgT

nF
ln [∏(pi/𝑝𝑟𝑒𝑓)

vi

i

] Eq. (3) 

Where, 𝑝𝑖 is the reactants partial pressure, 𝑅𝑔 represents the universal gas constant, and 

𝐹 is the Faradays constant, and reference pressure is equal to 1 atm. Δ𝐺0 is the Gibbs 

free energy corresponding to the maximum reversible cell voltage that is achievable for 

the cell. Many studies have used constant values for the Gibbs free energy of the reaction. 

However, it is shown that this value is a function of temperature [217]. The following 

function which is used by ANSYS Fluent libraries [218] is utilized for computing Δ𝐺0 in this 

thesis with the constants presented in Table 3-1: 

ΔG0 = −a − bT − cT2 − dT3 + eTln(T) (
J

K. mol H2
)  Eq. (4) 

 

Table 3-1. Constants for calculation of Gibbs free energy [218] 

Parameter Value 

a 1.192684 E05 

b 15.950548 

c 9.909308 E-04 

d 9.198735 E-08 

e 5.786936 
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Figure 3-1. Schematic of the pseudo-2D model 

The open-circuit voltage, i.e. the electric potential when no current is drawn from 

the system, is not practically equal to the Nernst voltage because of the cross-over of the 

charges through the membrane. This is especially the case for low and moderate 

temperature fuel cells. However, for SOFCs the cross-over is negligible which equalizes 

the open-circuit voltage and Nernst potential. However, after connecting the fuel cell to an 

external load the current flows through the cell which results in different modes of voltage 

loss within the system. As a result, the operating voltage drops to lower values according 

to the following formula: 

Vcell = VNernst − (ηact + ηohm + ηconc) Eq. (5) 

The 𝜂 parameters appeared in the Eq. (5) are called cell polarization or cell overpotentials. 

It should be noted that the open circuit voltage (OCV) which is defined as the actual cell 

voltage at no load condition is assumed to be the same as the Nernst voltage. If there is 

electrons cross-over along the electrolyte, a small reduction from the Nernst voltage 

should be considered when using Eq. (5). There are three main sources of voltage loss 

inside an SOFC: activation polarization, ohmic polarization, and concentration 

polarization.  

The activation polarization is the result of the inevitable irreversibilities in the 

electrochemical reactions. When current is drawn from the system, the cathode potential 

reduces to help the reduction reaction occur, while the anode potential increases to 

facilitate the oxidation reaction. This phenomenon results in a general decrease in the 
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operating voltage which is the difference between the electrodes potentials.  The activation 

polarization can be computed using the following equation which is the implicit form of 

Butler-Volmer equation [216]: 

i = i0 [exp (β
nF

RgT
ηact) − exp (−(1 − β)

nF

RgT
ηact)] Eq. (6) 

𝑖0 is called the exchange current density which denotes the value of current exchange at 

equilibrium. Note that the 𝑛, which is a non-integer parameter, in the Butler-Volmer 

equation is different from the n that appears in the Nernst equation, and corresponds to 

the number of electrons transferred in the elementary reaction. Parameters 𝛽𝑛 and 

(1 − 𝛽)𝑛, sometimes shown with 𝛼𝑎 and 𝛼𝑐, are called the anodic and cathodic charge 

transfer coefficients. Charge transfer coefficients indicate what percentage of the 

activation potential goes toward the oxidation and reduction reactions at each electrode. 

In case of having equal anodic and cathodic charge transfer coefficients at the electrode 

surface, which is an acceptable assumption for high-temperature SOFCs, the Butler-

Volmer equation can be re-written into its explicit form and the activation polarization at 

each electrode can be directly calculated: 

ηact =
RgT

αF
Sinh−1 (

i

2i0
) Eq. (7) 

Eq. (7) is used for finding the activation polarization on both electrodes. It should be noted 

that different values of 𝛼 and 𝑖0 are used for anode/cathode. Exchange current density for 

the electrodes is found using the following set of equations: 

i0,c = γc (
pO2

pO2,ref
)

0.25

exp (−
Eact,c

RgT
) Eq. (8) 

i0,a = γa (
pH2

pH2,ref
) (

pH2O

pH2O,ref
) exp (−

Eact,a

RgT
) 

Eq. (9) 

 

The ohmic polarization is another mode of voltage loss for SOFCs and accounts for the 

majority of the losses inside the cell. The current requires a voltage gradient to pass 
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through the cell by means of conduction, so part of the cell voltage goes towards driving 

the electrons and ions through the cell. The charges also encounter electric/ionic 

resistance through their path. Different parts of the SOFC possess different electronic 

conductivity. The electrolyte, however, is ionic conductive. The ohmic polarization is found 

using the ohm law: 

ηohm = RohmiA Eq. (10) 

 

The ohmic resistance of the planar cell is calculated using the following equation: 

Rohm =
ta

σaA
+

te

σeA
+

tc

σcA
 Eq. (11) 

Where, 

σa =
9.5 × 107

T
exp (−

1150

T
) Eq. (12) 

σc =
4.2 × 107

T
exp (−

1200

T
) 

Eq. (13) 

σe = 33.4 × 103 exp (−
10300

T
) 

Eq. (14) 

It is assumed that the electronic resistivity of the current collectors and the contact 

resistance between the correct collectors and the electrodes are negligible.  

The concentration of species in the vicinity of the electrolyte is different from the 

corresponding values at the gas channels (bulk concentration) because of the diffusion 

limitations inside the porous electrodes and this results in a further decrease in the cell 

voltage known as concentration loss. As mentioned earlier, the Nernst voltage is 

calculated based on the reactants partial pressure inside the channels. However, the real 

value of the maximum available voltage must be calculated using the concentrations at 

the reaction zones. Writing down the Nernst equation based on the partial pressures at 

the electrolyte surface and subtracting the result by the original version of the Nernst 

equation gives the concentration polarization of the cell: 
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ηconc = −
RgT

nF
ln (

pH2

∗ pH2O
0

pH2

0 pH2O
∗ ) −

RgT

nF
ln (

pO2

∗

pO2

0 )

0.5

 Eq. (15) 

The superscript “*” denotes the partial pressure at the reaction zone while the superscript 

“0” corresponds to the partial pressure at the channel. In order to find a relation between 

the bulk and reaction molar fractions, the one-dimensional Fick’s 1st law of diffusion is 

utilized: 

Ṅi = −Di

dci

dy
+ Xi ∑ Ṅj

j

 Eq. (16) 

Where, 𝐷𝑖 is the diffusion coefficient of the species 𝑖, 𝑋𝑖 denotes the mole fraction, 𝑁̇𝑖 is 

the molar rate, and 𝑦 is the direction perpendicular to the electrolyte surface. For the 

hydrogen: 

ṄH2
= −

PDH2

eff

RgT

d(XH2
)

dy
 Eq. (17) 

Note that 𝑁̇𝐻2
= −𝑁̇𝐻2𝑂 =

𝑖𝐴

2𝐹
, so ∑ 𝑁̇𝑗𝑗 = 0. Integration along the total anode GDL length 

yields: 

XH2

∗ = XH2

0 −
IRgTta

2FPDH2

eff
 Eq. (18) 

The water mole fraction can be found using the same procedure taken for hydrogen. 

XH2O
∗ = XH2O

0 +
IRgTta

2FPDH2O
eff

 Eq. (19) 

For the oxygen, the general form of the equation would be different as ∑ 𝑁̇𝑗𝑗 = 𝑁̇𝑂2
=

𝑖𝐴

4𝐹
.  

ṄO2
= −

PDO2

eff

RgT

d(XO2
)

dy
+ XO2

ṄO2
 Eq. (20) 

Integration along the total cathode GDL length yields: 
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XO2

∗ = 1 + (XO2

0 − 1) exp (
IRgTtc

4FPDO2

eff
) Eq. (21) 

The effective diffusion coefficient in the porous media, neglecting the Knudsen diffusion, 

is found using the following formula proposed by Hirschfelder, Bird, and Spotz [219], [220]: 

Dij
eff =

10−7T1.75 (
1

Mi
+

1
Mj

)
0.5

P [(Σνi)
1
3 + (Σνj)

1
3]

2

ϕ

τ
  Eq. (22) 

Where, 𝑀𝑖 and 𝑀𝑗 are the molecular weight of each species, P is the pressure of the 

mixture in [atm], 𝜙 and 𝜏 correspond to the electrode porosity and tortuosity, respectively, 

and Σ𝜈𝑖 and Σ𝜈𝑗 represent diffusion volume. The diffusion coefficient in Eq. (22) represents 

the bulk diffusion coefficient. However, if the pore size of the porous GDLs is relatively 

small, another mode of diffusion called Knudsen diffusion will be activated in addition to 

bulk diffusion. In this thesis, it is assumed that Knudsen diffusion effects are negligible 

because of large pore size and since the concentration of species found by the pseudo-

2D model was the same as those obtained by ANSYS 3D simulations (in which Knudsen 

diffusion was considered), this was a reliable assumption.  

 Solid oxide fuel cells operate at elevated temperatures and the operating 

temperature highly affects the rest of the parameters within the cell. Therefore, solving the 

energy equation can help increase the accuracy of the method to a great extent. However, 

there are many studies in the literature in which the temperature is assumed to be an input 

parameter. In this research, the main assumption is that the operating temperature and 

the cell temperature are the same while being different from the inlet temperature; the 

validity of this assumption is further discussed in the next section. The energy equation is 

used for a lumped control volume (see Figure 3-2) over the entire cell: 
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Figure 3-2. Control volume used for solving the energy equation in a single cell 

∑ ṅh̅

inlet

= ∑ ṅh̅

outlet

+ VcellI Eq. (23) 

Where, 𝑛̇ is the molar flow rate and ℎ̅ represents the enthalpy of the species. Summations 

presented in Eq. (23) are calculated as follows: 

∑ ṅh̅

inlet

= ṅin,a(XH2,inh̅(Tin)H2,in + XH2O,inh̅(Tin)H2O,in)

+ ṅin,c(XO2,inh̅(Tin)O2,in + XN2,inh̅(Tin)N2,in) 

Eq. (24) 

∑ ṅh̅

outlet

= (ṅin,aXH2,in −
I

2F
) h̅(T)H2

+ (ṅin,aXH2O,in +
I

2F
) h̅(T)H2O

+ (ṅin,cXO2,in −
I

4F
) h̅(T)O2

+ ṅin,cXN2,inh̅(T)N2
 

Eq. (25) 

All species behave like ideal gas at the elevated operating temperatures. Therefore, the 

enthalpy values are calculated by linear functions with constants 𝑎𝑖 and 𝑏𝑖 (see Table 3-2) 

obtained by fitting to the experimental data [221]. The real data, as well as the linear 

regression, is presented in appendix A.2. 
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ℎ̅(𝑇)𝑖 = 𝑎𝑖𝑇 + 𝑏𝑖 Eq. (26) 

Table 3-2. The enthalpy constants (valid for 𝟕𝟎𝟎 °𝑲 ≤ 𝑻 ≤ 𝟐𝟎𝟎𝟎°𝑲) 

species ai (J/mol. K) bi (J/mol) 

H2 31.683 -10953 

H2O 45.202 -260759 

O2 35.984 -13175 

N2 34.104 -12514 

 

Finally, the relation between temperature, voltage, and current, is found by simplifying the 

Eq. (26) and solving for T (see appendix A.2 for the proof): 

T = f(inlet conditions, ai
′s, bi′s, I, Vcell) Eq. (27) 

 The coupled governing equations mentioned in this section are highly non-linear 

and an iterative algorithm is required to find the solution to the proposed simplified 

mathematical model. The algorithm provided in Figure 3-3 is used in the current study in 

order to find the species mole fraction, the current density distribution, and the temperature 

at different values of the operating voltage. 
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Figure 3-3. The algorithm employed by the pseudo-2D approach for finding the 
cell temperature, the cell’s current, and the reactants’ 
concentrations as a function of cell voltage 
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3.2. 3D Model 

A three-dimensional full-physics model is also developed in this research to 

evaluate the performance of the pseudo-2D approach. The 3D model is built in ANSYS 

Fluent and the simulations are done by the “SOFC With Unresolved Electrolyte” add-on 

module of the ANSYS Fluent. The module is only available in 3D and an extra license is 

required for utilization of the module. There are user-defined functions inside the libraries 

of the module for taking into account the electrochemical effects. The module is called 

SOFC with unresolved electrolyte because all of the electrochemical reactions and their 

effects on the domain are lumped into a voltage jump at the electrolyte surface. Also, half 

of the heat generated by the electrochemical reaction is dissipated into the neighbor cell 

on the anode side, while the other half is released into the cathode side. A generic view 

of the 3D model is represented in Figure 3-4.  

 

Figure 3-4. A generic view of the 3D model built in ANSYS Fluent 

Appropriate boundary conditions should be set in order to solve the coupled partial 

differential equations through the domain. The momentum, thermal, species, and potential 

boundary conditions used for each surface shown in Figure 3-5 are provided in Table 3-4. 

Also, there are different solid, fluid, and porous zones inside the cell as shown in Figure 

3-4, and each part should be clearly defined by the user according to what mentioned in 

Table 3-3. 
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Table 3-3. Different zone types corresponding to the areas shown in Figure 3-4 

Zone name Zone Type Porous? 

I. Anode CC Solid - 

II. Cathode CC Solid - 

III. Anode GDL Fluid Yes 

IV. Cathode GDL Fluid Yes 

V. Anode gas channel Fluid No 

VI. Cathode gas channel Fluid No 
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Figure 3-5. Schematic of the boundaries of the 3D cell 

 

Table 3-4. Momentum, thermal, species, and electric potential boundary conditions for the boundaries shown 
in Figure 3-5 
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Solution control parameters can greatly affect the performance of the solver and 

unfortunately, the software default settings are not sufficient for the solution to converge, 

because the solver shows an extremely sensitive behavior with the changes in the species 

concentration. Appropriate under-relaxation factors should be used along with the 

adjustment of the multi-grid settings. The “BCGSTAB” can be used to stabilize the solution 

in case of fluctuating residuals. The solution control settings are not provided by the 

software user guide and the values used in this study (see Table 3-5) had to be found 

using trial and error. 

The governing equations that are used by the software for finding the solution are 

all mentioned through the software user manual in detail [218]. In addition to software user 

manual, useful explanations on each governing equation is provided by Stam [222]. It is 

worth mentioning that going over the information presented in the user manual is not 

enough for finding the solution because of the complexity of the physics of the problem. 

Therefore, an interactive procedure was found by trial and error after many failures in the 

convergence of the solution. The sequential procedure taken for using the module is 

mentioned in Figure 3-6. 

Table 3-5. Under-relaxation factors and solver settings for the ANSYS Fluent 

Under-relaxation factors Cycle types 

Pressure 0.30 Pressure V-cycle 

Density 0.40 X- Momentum Flexible 

Body forces 0.40 Y- Momentum Flexible 

Momentum 0.60 Z- Momentum Flexible 

ℎ2𝑂 0.99 ℎ2𝑂 V-cycle 

𝑂2 0.99 𝑂2 V-cycle 

ℎ2 0.99 ℎ2 V-cycle 

Energy 1.00 Energy F-cycle 

Electric potential 1.00 Electric potential F-cycle 

  Maximum number of cycles 50 
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Figure 3-6. The step by step procedure required for finding the solution with the 
3D model 

3.3. Material Selection 

The next step is selecting the appropriate materials for the electrodes and the 

electrolyte. The electrochemical reactions occur at the anode side where the oxygen ions 

coming from the cathode side react with the hydrogen molecules at the vicinity of the 

electrolyte. Therefore, the anode material should possess high electrical and ionic 

conductivity, high catalytic activity for fuel oxidation, mechanical stability to overcome the 

thermal stress, acceptable porosity to allow for the transport of hydrogen and water 

through the gas diffusion layer, and corrosion resistance to fuel impurities. Zirconia has a 

monoclinic structure at room temperature which morphs into tetragonal and cubic 

structures at high temperatures where it shows the highest conductivity. However, zirconia 

cannot tolerate the transition between the different crystal structures during the start-up 

and cool down phases. Stabilizing the structure of the zirconia with appropriate amounts 

of yttria results in oxygen ions vacancies that help migration of the ions from one site to 

another site with diffusion and random thermal motion at high temperatures. Finally, Ni 

should be added to the yttria-stabilized zirconia (YSZ) as a catalyst to increase the 

electrochemical activity of the electrode. Therefore, a cermet of Ni supported on YSZ is 

used for the anode material [223]. The main challenge in using such material on the anode 

side is oxidation of the Ni particles that occur when there is not enough fuel present at the 
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reaction sites. Also, thermal expansion of Ni is greater than YSZ which might result in 

developing cracks inside the material in case of high-temperature gradients. Poisoning of 

the cell with fuel impurities such as sulfur, silica, phosphorus, and carbon (in case of 

hydrocarbon fuels) is also another problem that should be solved by processing the fuel. 

YSZ is used as the electrolyte material because of the ability to conduct oxygen ions at 

high temperatures, impermeability to reactants cross-over, and chemical stability. YSZ 

shows a mixed conductivity of the electrons and ions measured by the transference 

number. However, the transference number is mostly close to unity which is an indicator 

of ionic conductivity rather than the electronic conductivity [224]–[227]. Finally, Strontium-

doped Lanthanum Manganite (LSM) is used on the cathode side for promoting the oxygen 

ions formation while maintaining high mechanical and chemical stability at the elevated 

temperatures [228], [229]. 

3.4. Validation of the Mathematical Model 

For examining the validity of the study, the 3D model is built in ANSYS Fluent to 

compare the polarization curve for the same cell studied by Sembler and Kumar [56], [67] 

and Wei et al. [230] operating with the identical inlet conditions and electrochemical 

parameters. The geometrical dimensions of the cell are presented in Table 3-6 while the 

inlet conditions are mentioned in Table 3-7.  

Table 3-6. Geometry of the cell 

Parameter Value Units 

Channel height 1 mm 

Channel width  1.5 mm 

Channel length 50 mm 

CC height above the channels 1 mm 

Ribs thickness on each side 0.25 mm 

Anode thickness 1.8 mm 

Cathode thickness 30 μm 

Electrolyte thickness (virtual) 20 μm 
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Table 3-7. The inlet boundary conditions used for the validation of the study 
[56], [67], [230] 

Anode mass flow rate 4.48 e-07 kg/s 

Cathode mass flow rate 2.17 e-05 kg/s 

Anode inlet temperature 1123 K 

Cathode inlet temperature 1123 K 

Anode flow composition 97% 𝐻2, 3% 𝑂2 %mole 

Cathode flow composition Dry Air − 

Cell pressure 1 Atm 

 

Thermophysical and electrochemical properties used by [56], [67], [230] are 

presented in Table 3-8. The same values for the electrochemical properties were used for 

the purpose of validation. 

  The 3D CFD simulation done in the ANSYS Fluent is based on the finite volume 

method. Therefore, the utilization of the proper mesh is of great importance. Although 

using a denser mesh would typically lead to more accurate results, especially for the 

steady-state cases, it can lead to very long computation times even using multiple 

computer processors. The same mesh density proposed by Sembler and Kumar [67], i.e. 

𝑑𝑧 = 0.5 𝑚𝑚, 𝑑𝑦 = 0.1𝑚𝑚, 𝑑𝑥 = 0.1𝑚𝑚, is used in this section to run the 3D simulations 

except for 𝑑𝑦. It should be noted that a very smaller value for 𝑑𝑦 is used for the GDL 

section as the GDL is very thin itself and a finer mesh is required to capture the changes 

through the gas diffusion layer. After building the geometry, applying the mesh, defining 

the proper materials, and setting up the boundary conditions and solver settings, the 

simulations were run according to the algorithm provided in Figure 3-6 for the different 

values of total current. The polarization curved obtained by the 3D model and the models 

by [56], [67], [230] are illustrated in Figure 3-7. The results show good agreement between 

the models. The largest error was found to be six percent (0.47 V against 0.44 V) for the 

case with 1 𝑎𝑚𝑝/𝑐𝑚2current density. It is worth mentioning that using more polarization 

curves from different studies for validating the results would be a more solid approach. 

However, we only included two works in this thesis since details regarding all 

morphological and electrochemical properties were not included for a single planar cell in 

the literature. It is recommended that electrodes GDL properties, the activation energy of 

the electrochemical reactions, pre-exponential factors in evaluating the exchange current 

density, charge transfer coefficients in the Butler-Volmer equation, and cell geometrical 

dimensions are described when reporting results for SOFC simulations. The average 
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temperature distribution along the cell for the 3D case is shown in Figure 3-8. According 

to Figure 3-8, the temperature distribution is almost uniform through the cell and the outlet 

temperature will be assumed the same as the average cell temperature for the simplified 

model. It should be noted that these high operating temperatures (in comparison with the 

inlet temperature) are not suitable from the standpoint of thermomechanical stability. The 

reason behind this temperature rise is the low air flow rate on the cathode side. In future 

chapters, a higher cathode flow rate is set so that the results are more realistic. However, 

the low air flow rate reported in Table 3-7 is used in this chapter to stay consistent with 

the literature data that this work is going to be validated against.  

Table 3-8. Thermophysical and electrochemical properties used for running 
the validation simulations [56], [67], [230] 

Cathode GDL (LSM) Porosity 0.375  

 Tortuosity 3  

 Exchange current density 800 Amp/m2 

 Specific heat 450 J/kgK 

 Thermal conductivity 11 W/mK 

 Electron conductivity 7937 1/Ωm 

 Density 5620 kg/m3 

 Cathodic transfer coefficient 0.7  

 Anodic transfer coefficient 0.7  

    

Anode GDL (NiO+YSZ) Porosity 0.24  

 Tortuosity 3  

 Exchange current density 200000 Amp/m2 

 Specific heat 450 J/kgK 

 Thermal conductivity 10 W/mK 

 Electron conductivity 333330 1/Ωm 

 Density 6500 kg/m3 

 Cathodic transfer coefficient 0.7  

 Anodic transfer coefficient 0.7  

    

Electrolyte (YSZ)    

 Specific heat  450 J/kgK 

 Thermal conductivity  2 W/mK 

 Density 5480 kg/m3 

 Resistivity 0.1  
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Figure 3-7. Comparing the polarization curve of the 3D model with those 
obtained by [56], [67], [230]  

 

 

Figure 3-8. The average temperature distribution along the cell found by the 3D 
simulation in ANSYS Fluent 
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After conducting the simulations for the 3D model and comparing the results with 

the available data in the literature, the pseudo-2D model was used according to the same 

parameters and assumptions made by the 3D studies. A constant set of exchange current 

density on the anode and cathode sides, as well as the same electrochemical parameters 

used by the 3D models, were employed for comparing the results. The polarization curves 

obtained by both full-physics and simplified models are depicted in Figure 3-9. 

Furthermore, the hydrogen and oxygen mole fractions for the counter-flow case obtained 

by both 3D and pseudo-2D cases are shown in Figure 3-10, and the results are in good 

agreement. In our limited testing, the simulations for the pseudo-2D case were found to 

be 105 times faster than 3D simulations for co-flow condition and 103 times faster than 3D 

simulations for the counter-flow case (using 4 cores of “Intel(R) Xeon(R) CPU E5-2630 v3 

@ 2.40 GHz”). The pseudo-2D simulation is also expected to be significantly faster to 

execute on other systems. 

 

Figure 3-9. The polarization curve for both 3D and pseudo-2D simulations 
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(a) 

 

 
 

(b) 

 

Figure 3-10. (a) Hydrogen, and (b) Oxygen concentration for the counter-flow 
configuration along the cell obtained by both pseudo-2D and 3D 
simulations for I=1.0 A 
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Chapter 4.  
 
Parameter Estimation Using Inverse analysis 

The materials properties for the anode and cathode are presented in Table 4-1. 

This study can be extended to SOFCs using other electrodes. A full discussion on SOFC 

material is beyond the scope of this section and the readers are referred to other studies 

in the literature [223]–[228], [231]. The cell inlet boundary conditions are provided in Table 

3-7. It should be noted that porosity, tortuosity, and exchange current densities are 

uncertain for the inverse problem. The “true” properties of the GDL used for forward 

simulations and the realistic range of the unknown parameters determined from the 

literature [13], [232]–[242] are summarized in Table 4-1. This chapter includes the inverse 

problem formulation followed by the sensitivity analysis of the polarization curve to the 

unknown parameters and the optimum estimation results. 

Table 4-1. Electrodes materials and properties for the base case 

a. Cathode GDL (LSM) [228], [231]–[243] 

Properties Base-case (“true”) values Expected range 

Porosity 0.375 [0.15-0.5] 
Tortuosity 3 [2-6] 
Exchange current density 1000 Amp/m2 [600-5000] Amp/m2 
Cathodic transfer coefficient 0.5 (no variation 

assumed) 
 

b. Anode GDL (NiO+YSZ) [223], [232]–[243] 

Properties Base-case (“true”) values Expected range 

Porosity 0.24 [0.15-0.5] 
Tortuosity 3 [2-6] 
Exchange current density 7460 Amp/m2 [600-14000] Amp/m2 
Anodic transfer coefficient 0.5 (no variation assumed) 

4.1. Inverse Problem Formulation 

The SOFC is simulated using the pseudo-2D model for the co-flow condition with 

the fuel and oxidant flowing in the same direction. Figure 4-1a shows the polarization curve 

for the co-flow case, while Figure 4-1b and c show the reactant concentration along the 

dimensionless channel length (with fuel inlet plane corresponding to ‘0’). Figure 4-1 shows 

that hydrogen and oxygen concentration decrease along the channel as the result of 
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electrochemical reactions. As expected, the amount of hydrogen at the anode outlet 

decreases by increasing the current density (decreasing the voltage). Since the cell is 

supplied with excess oxygen, the drop in oxygen concentration is very small.  

 

a. Polarization curve 

 

 

 
 

 

 
 

b. Hydrogen concentration c. Oxygen concentration 

Figure 4-1. Base case simulation using the pseudo-2D code [65]. 

The primary objective of this work is to develop a systematic tool for parameter 

estimation using an appropriate optimization technique, through an inverse approach. It 

would be difficult to accurately evaluate the performance of the inverse methodology by 

applying the inverse method to a polarization curve given by experiments, since the exact 

value of the unknown parameters (effective porosity and exchange current density) may 
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not be known. Hence, a theoretical polarization curve is generated for the parameter set 

given in Table 4-1. This theoretical polarization curve is presented in Figure 4-1a. For the 

inverse problem, the anode and cathode exchange current densities (𝐽0,𝑎, and 𝐽0,𝑐) 

appearing in the Butler-Volmer equation for evaluating the activation overpotential, and 

the effective porosities (i.e porosity divided by tortuosity) at the anode and cathode (𝜙𝑎, 

𝜙𝑐) are assumed to be the uncertain parameters. For each iteration using the unknown 

parameter set, we then define the following fitness function. 

fitness = √
1

N
∑ (

Iiter,j − Itarget,j

Itarget,j
× 100)

2N

j=1

 Eq. (28) 

Where 

Itarget,j, j = 1 to N are the target “actual” currents at N predetermined voltages (Figure 

4-1a).  

Iiter,j, j = 1 to N are load currents for a given parameter set at “N” different voltages. 

The fitness function defined in the current study considers all points on the polarization 

curve except the point corresponding to the open circuit voltage (where one cannot divide 

by zero). The exchange current densities (and subsequently activation overpotentials) are 

easier to discern at lower current densities. Table 4-2 summarizes the other fitness 

functions used in the literature for SOFCs. Sarmah et al. [244] estimated the operating 

parameters of a hybrid SOFC/GT/ST power plant corresponding to the total energy and 

exergy efficiencies (second law efficiency). In their algorithm, energy and exergy 

efficiencies of the power plant are first found using random initial values of unknown 

parameters, followed by evaluation of the fitness function and finally finding values for the 

unknown parameters for the next iteration. So, one can interpret the work done by Sarmah 

et al. [244] as a problem of finding the operating parameters of the power plant according 

to the target efficiencies. In another work, Gogoi and Das [154] used power output as the 

only target value for the fitness function they defined to evaluate current density, pressure, 

and fuel flow rate of an internal reforming SOFC. On the other hand, Shi and Xue [153] 

calculated the sum of the differences between the calculated power and the desired power 

for all of the points on the polarization curve to evaluate the electrochemical properties of 
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a button-cell SOFC. Utilizing the whole polarization curve for evaluating parameters is a 

more concrete way of tackling the estimation problem because it provides information 

about different data points. However, using just one operating point might yield 

counterintuitive results as the behavior of the cell changes at different values of current.  

Table 4-2. Fitness functions previously used for the inverse analysis of SOFCs 
in the literature 

Study Fitness function used 

Sarmah et al. 
[244] f = [(

Ẇnet,num − Ẇnet,exp

Ẇnet,num

)

2

+ (
ηI,num − ηI,exp

ηI,num
)

2

 

+ (
ηII,num − ηII,exp

ηII,exp
)

2

+ (
İnum − İexp

İnum

)

2

]

 

Where, 

𝑊̇𝑛𝑒𝑡 represents the power plant net power output 

𝜂𝐼 corresponds to the power plant net energy efficiency 

𝜂𝐼𝐼 is the power plant net exergy efficiency 

𝐼 ̇refers to the power plant irreversibility 

Gogoi and Das 
[154] 

f = (Pout − P)2 

Where, 

P is the power output at a given operating point on the polarization 
curve 

Shi and Xue 
[153] 

f = M1 − M2 × ∑(iVcell,num − iVcell,exp)
2
 

Where, 

𝑀1 and 𝑀2 are random positive numbers  

 

The algorithm used for finding the unknown parameters using the inverse approach is 

presented in Figure 4-2, where ℙ is the set of unknown parameters (design variables) of 

the inverse problem. There exist four loops distinguished by the dashed lines. The most 

inner loop is only utilized for the counter-flow configuration. The total value of current for 

each cell voltage is found through the second loop. SOFC polarization curve is obtained 

by the third loop, and the outermost loop is designed to estimate the unknown parameters 

using the inverse approach. A brief summary of the methodology presented is presented 

below: 

1. An arbitrary value is assumed for the initial state of design variables presented by 

the vector ‘𝑋’. 

2. The forward solver is called to find current density corresponding to each value of 

cell voltage. 
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3. The value of the fitness function is found. 

4. The next state ‘𝑋𝑛𝑒𝑤’ must be determined by an optimization technique. In this 

thesis, the pattern search optimization method was used because there were 

several local minima. 

5. Steps 2 to 4 should be taken again and again until the convergence criterion is 

satisfied. 

 

Figure 4-2. The algorithm used for finding the unknown parameters using the 
inverse approach 

4.2. The Sensitivity of the Polarization Curve with Respect 
to Individual Unknown Parameters 

It may be noted that the unknown parameters also indirectly affect the cell temperature 

and therefore all the losses within the cell because of the coupling of energy equation with 

electrochemistry. Further details regarding both voltage-current relations and energy 

 ℙ 
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equation are provided in section 3.1. In order to determine the sensitivity, we plot both the 

fitness function (defined in Equation 28) and the total error in evaluating the polarization 

curve defined as 𝜀 = ∑ (𝐼𝑖𝑡𝑒𝑟,𝑗 − 𝐼𝑡𝑎𝑟𝑔𝑒𝑡,𝑗)𝑁
𝑗=1 , for each parameter. Figure 4-3shows the 

sensitivity of the cell response with respect to the anode effective porosity 𝜙𝑎 and the 

cathode effective porosity 𝜙𝑐. It may be noted that we use the effective porosity rather 

than finding the porosity and tortuosity separately. Effects of the anodic and cathodic 

exchange current densities on the polarization curve are presented in Figure 4-4. By 

examining the results, the following conclusions are drawn:  

- Although some of the graphs illustrated in Figure 4-3 and Figure 4-4 showed minor 

oscillatory behavior in some cases, there is one and only one local and absolute 

minimum for the fitness function defined in Equation 28. The minimum, therefore, 

can be captured if an appropriate optimization algorithm is utilized. 

- Comparing the fitness function values and total errors, different representation of 

the error in calculating the difference between the obtained polarization curve and 

the required one would result in different behavior.  

- Oscillations are either smoothed or completely removed when using the defined 

fitness function. 

- Looking at the vertical axis of the diagrams, the defined fitness function is easier 

to describe quantitatively as it comes in terms of percentage deviation from the 

base case. 

- Although concentration losses are more severe on the cathode side, as the 

hydrogen diffusion coefficient on the anode side is noticeably larger than the 

cathodic oxygen diffusion coefficient, changing the anode effective porosity affects 

the polarization curve more than the amount that changing the cathode effective 

porosity does. Generally, cathode effective porosity did not show significant effects 

on system performance. This might be a result of using a very thick anode in 

comparison with the thin cathode GDL. 

- Comparing the error resulted from changing the anodic and cathodic exchange 

current density values, the polarization curve showed a very sensitive behavior 

with respect to the exchange current density at the cathode. Also, activation losses 

are more significant on the cathode side. This trend is opposite to what observed 

for the effects of electrodes porosities. In reality, the exchange current density is 

considerably larger on the anode side [245]. The higher the exchange current 
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density is, the lower the activation overpotential will be. Therefore, the activation 

overpotential on the cathode side is greater than the anode side which results in 

cathodic exchange current density affecting the V-I curve more severely than the 

anodic exchange current density does.  

- The fitness value is less than 10 for all cases except when cathodic exchange 

current density deviates from its base case value.  

- According to Figure 4-4, further increasing anodic and cathodic exchange current 

density values does not have considerable effects on the polarization curve. This 

indicates that the optimization problem would not be sensitive to the upper limit of 

the design variables, especially for the cathode and anode exchange current 

densities. The phenomenon is a result of high operating temperatures, and the 

dependence would be stronger at lower operating temperatures of intermediate- 

temperature SOFCs.  
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(a) The sensitivity of fitness function to 𝜙𝑎 (b) The sensitivity of total error values 

  

(c) The sensitivity of fitness function (d) The sensitivity of total error values 

Figure 4-3. Sensitivity of system response to anode and cathode effective 
porosity 𝝓𝒂,𝝓𝒄 (𝝓𝒂

𝒕𝒓𝒖𝒆 = 𝟎. 𝟎𝟖, 𝝓𝒄
𝒕𝒓𝒖𝒆 = 𝟎. 𝟏𝟐𝟓) 
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(a) The sensitivity of fitness function (b) The sensitivity of total error values 

 
 

 
 

(c) The sensitivity of fitness function (d) The sensitivity of total error values 

Figure 4-4. Sensitivity of system response to anode and cathode exchange 

current density, 𝑱𝟎,𝒂 , 𝑱𝟎,𝒄 (𝑱𝟎,𝒂
𝒕𝒓𝒖𝒆 = 𝟕𝟒𝟔𝟎, 𝑱𝟎,𝒄

𝒕𝒓𝒖𝒆 = 𝟏𝟎𝟎𝟎) 

4.3. Optimal Parameter Estimation Results 

This section presents the implementation of the optimization technique to the inverse 

problem. It may be noted that the target polarization curve can be generated by other 

numerical or experimental approaches. Anodic and cathodic exchange current densities 

and anode and cathode effective porosities were chosen as the four parameters to be 

estimated through the inverse analysis. The pattern search method [246] was utilized as 

the optimization technique for estimating the parameters in this thesis. Genetic Algorithm 
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and Simulated Annealing algorithms were also utilized but they either failed to obtain the 

results or showed slow convergence. The effective porosities were chosen because they 

take into account the effects of porosity, tortuosity, and the pore diameter at the same 

time. Steps 1 to 5 presented in section 4.1 were utilized according to the algorithm shown 

in Figure 4-2 in order to find unknown parameters, both separately and simultaneously. 

The convergence histories, i.e. the fitness function values, are represented through Figure 

4-5 and Figure 4-6 with the corresponding minimum function values and the estimated 

parameters reported in Table 4-3. The results in Figure 4-5 (Table 4-3a) show that the 

inverse approach can be successfully used to find the unknown parameters separately 

with no error, and in less than 20 iterations regardless of the initial guess for the design 

variables. In the next stage, the number of design variables was increased to two. From 

the sensitivity analysis, it was found that cathodic exchange current density has the largest 

effect on the polarization curve while the cathode effective porosity showed the smallest 

effect. Therefore, the inverse analysis was applied to two cases shown in the first and 

second sets of rows in Table 4-3b. As depicted in Figure 4-6 and Table 4-3, when 𝐽0,𝑐  and 

𝜙𝑎 are the design variables, parameters can be estimated successfully, and the error is 

bounded within 7 percent. However, estimating 𝐽0,𝑎 instead of 𝜙𝑎 along with the 𝐽0,𝑐 

resulted in 26 percent error in the value obtained for 𝐽0,𝑎. Note that cathode porosity was 

not added to the design variables during this stage as it did not show significant effects on 

the polarization curve through the sensitivity analysis. During the next stage, 𝐽0,𝑎, 𝐽0,𝑐, 𝜙𝑎 

were chosen for the design variables and the solution to the inverse problem successfully 

yielded the real values of design variables. Finally, all the unknown variables were 

estimated simultaneously. In this case, the solution again converged to the values fairly 

close to the real ones. However, the same problem mentioned for  𝐽0,𝑎 when the number 

of design variables was equal to 2 still exists for the case of 3 design variables; the effect 

is more sensible for 𝐽0,𝑎 and 𝜙𝑐 in the case of 4 design variables if the initial guess is far 

away from the solution. This shows that the inverse approach can be effectively applied 

to the simplified pseudo-2D model to estimate the electrodes microstructural properties 

with either no error, in the case of single parameter estimation or within an acceptable 

error band, for the case of multi-parameter estimation. In conclusion, the inverse method 

might not provide exact values of the parameters only when design variables do not have 

a significant effect on the polarization curve (this case is more dominant), or when the 

initial guess is far away from the real values. 
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(a) Anode exchange current density, J0,a (b) Cathode exchange current density, J0,c 

  

    
(c) Anode effective porosity ϕa (d) cathode effective porosity ϕc 

Figure 4-5. Convergence history for the inverse single parameter estimation for 
different initial estimates 
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(a) (b) 

  

 

  
(c) (d) 

Figure 4-6. Convergence history of the inverse estimation of: (a) 𝑱𝟎,𝒄and 𝝓𝒂; (b) 

𝑱𝟎,𝒄and 𝑱𝟎,𝒂; (c) 𝑱𝟎,𝒄,  𝑱𝟎,𝒂 , and 𝝓𝒂; (d) 𝑱𝟎,𝒄,  𝑱𝟎,𝒂 , 𝝓𝒂, and 𝝓𝒄 for three 

different cases with different initial conditions 
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Table 4-3. Summary of results obtained by the inverse analysis for single parameter and multi-parameter estimation of 
the design variables 

a. Single parameter variation 

Parameter(s) 
to be estimated 

 Initial Guess Estimates (percentage estimation error) Best fitness 
function value  J0,a J0,c ϕa ϕc J0,a (J0,a

true: 7460) J0,c (J0,c
true: 1000) ϕa (ϕa

true: 0.08) ϕc (ϕc
true: 0.125) 

Anodic 
exchange 
current density 
( J0,a) 

1. 1500 − − − 7460 (0%) − − − 1.167e-13 

2. 3500 − − − 7460 (0%) − − − 1.167e-13 

3. 7500 − − − 7460 (0%) − − − 1.167e-13 

4. 13500 − − − 7460 (0%) − − − 1.167e-13 

Cathodic 
exchange 
current density 
(J0,c) 

1. − 2000 − − − 1000 (0%) − − 1.167e-13 

2. − 3000 − − − 1000 (0%) − − 1.167e-13 

3. − 4000 − − − 1000 (0%) − − 1.167e-13 

4. − 5000 − − − 1000 (0%) − − 1.167e-13 

Anode effective 

porosity (ϕa) 

1. − − 0.1 − − − 0.08 (0%) − 9.807e-05 

2. − − 0.2 − − − 0.08 (0%) − 1.088e-04 

3. − − 0.3 − − − 0.08 (0%) − 3.767e-05 

Cathode 
effective 
porosity (ϕc)  

1. − − − 0.1 − − − 0.125 (0%) 1.714e-04 

2. − − − 0.2 − − − 0.125 (0%) 1.407e-04 

3. − − − 0.3 − − − 0.125 (0%) 2.023e-04 
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b. Multiple parameter variation 

Parameter(s) to 
be estimated 

 Initial Guess Estimates (percentage estimation error) Best fitness 
function 
value 

 J0,a J0,c ϕa ϕc J0,a 

(J0,a
true: 7460) 

J0,c 

(J0,c
true: 1000) 

ϕa 

(ϕa
true: 0.08) 

ϕc 

(ϕc
true: 0.125) 

J0,a and  J0,c 

1. 10000 2000 − − 7626 (2.22%) 991 (-0.9%) − − 6.365e-02 

2. 12000 1500 − − 7645 (2.48%) 988 (-1.2%) − − 1.271e-01 

3. 12000 3500 − − 9450 (26.7%) 945 (-5.5%) − − 3.203e-01 

J0,c and ϕa 

1. − 1500 0.1 − − 950 (-5.00%) 0.0846 (5.75%) − 2.707e-01 

2. − 2500 0.1 − − 950 (-5.00%) 0.0846 (5.75%) − 2.707e-01 

3. − 3500 0.1 − − 948 (-5.20%) 0.0852 (6.50%) − 2.742e-01 

4. − 3500 0.2 − − 938 (-6.20%) 0.0792 (-1.00%) − 4.267e-01 

J0,a,  J0,c and 

 ϕa 

1. 12000 1500 0.2 − 7544 (1.13%) 996 (-0.40%) 0.0802 (0.25%) − 1.664e-02 

2. 12000 2500 0.1 − 7648 (2.52%) 990 (-1.00%) 0.0805 (0.62%) − 3.989e-02 

3. 10000 3500 0.1 − 7694 (3.14%) 990 (-1.00%) 0.0803 (3.75%) − 4.048e-02 

J0,a,  J0,c. ϕa 

and ϕc 

1. 10000 1500 0.1 0.1 7702 (3.24%) 990 (-1.00%) 0.0803 (3.75%) 0.1248 (-0.16%) 3.225e-02 

2. 10000 2500 0.1 0.1 7831 (4.97%) 964 (-3.60%) 0.0836 (4.50%) 0.1654 (32.3%) 3.453e-01 

3. 12000 1500 0.1 0.1 7859 (5.35%) 977 (-2.30%) 0.0841 (5.12%) 0.1043 (-16.6%) 4.030e-01 
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It was shown that the solution to the inverse problem might yield incorrect values 

for 𝐽0,𝑎when the number of design variables is more than one or when there is a large error 

in the initial guess. In order to further examine how significant effects of deviation in the 

obtained value for 𝐽0,𝑎 from the practical value are, single parameter estimation was 

performed for different values of 𝐽0,𝑎. In this case, the only design variable 𝐽0,𝑐, which was 

shown to have the highest effect on the polarization curve, was estimated through the 

inverse analysis at different values of 𝐽0,𝑎. The percentage error in the obtained 𝐽0,𝑐 as a 

function of the percentage deviation from the real 𝐽0,𝑎 is depicted in Figure 4-7. As 

illustrated in Figure 4-7, a large deviation in 𝐽0,𝑎 results in limited error in the obtained value 

for 𝐽0,𝑐. This phenomenon is in accordance with the results of the sensitivity analysis 

conducted on the effects of  𝐽0,𝑎 on the polarization curve.  

 

Figure 4-7. The percentage error in the obtained 𝑱𝟎,𝒄 as a function of the 

percentage deviation from the real 𝑱𝟎,𝒂 
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) 
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Chapter 5.  
 
Virtual Hydrogen Sensor Development Formulation 

5.1. Data Generation 

The pseudo-2D model developed and validated in chapter 3 was implemented as 

a C++-MEX file in MATLAB for generating the data. The schematic of the high-

temperature planar SOFC operating in co-flow configuration used in the study is depicted 

in Figure 3-4. The geometrical and electrochemical parameters of the SOFC are reported 

in Table 3-6 and Table 3-8, respectively. One may note that the pseudo-2D model is 

capable of solving the energy equation and finding the operating temperature of the cell 

(which is different from the inlet temperature). Solving the energy equation helps one 

obtain more accurate results for species concentration as temperature highly affects the 

diffusion of species in the porous electrodes. The activation energy on the cathode and 

anode sides are set identical to those used by Costamagna et al. [247]. The concentration 

of the reactants at the reaction sites was plotted as a function of the non-dimensional 

channel length in Figure 4-1. It is seen that the hydrogen and oxygen concentrations 

calculated with the pseudo-2D model match well with the ones obtained by the accurate 

3D model [65].  

As discussed earlier, nine parameters consisting of the cell voltage, cell active 

surface area, anode effective porosity, cathode effective porosity, inlet temperature, 

operating pressure at the cathode side, hydrogen mole fraction at the anode inlet, oxygen 

mole fraction at the cathode inlet, and the anodic total molar flow rate were chosen as 

input parameters of both regression and classification problems, while the percentage of 

the cell suffering from starvation will be the output. The range and values of input variables 

which would result in 480,000 data points are provided in Table 5-1. 
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Table 5-1. Range of different features used for generating the data set 

Parameters Range of values Units 

Voltage (V) [0.1,1.1] with 0.1 increments V 

Active area (Aact) 0.5, 1.0, 1.5, and 2.0 cm2 

Anode flow rate (Nȧ) [20,100] with 20 increments sccm 

Inlet oxygen concentration (XO2,i) 0.21 and 1.00 − 

Inlet hydrogen concentration 
(𝑋𝐻2,𝑖) 

0.6, 0.8, 0.9, and 0.97 − 

Inlet temperature (Ti) 700, 750, 800, 825, 850, 875, and 900 °C 

Anode effective porosity (ϕeff,a) [0.1,0.2] with 0.05 increments − 

Cathode effective porosity (ϕeff,c) [0.1,0.2] with 0.05 increments − 

Cathode pressure (Pc) 1, 3, 5, and 10 atm 

Anode pressure (Pa) 1 (fixed) atm 

Cathode molar flow rate (Nc
̇ ) 400 (fixed) sccm 

5.2. Data Preprocessing 

Poor data preprocessing can have a detrimental impact on performance of 

machine learning algorithms [248]. Machine learning algorithms might exhibit poor 

performance if the features do not look alike in terms of their magnitude, range and 

distribution of values [248]. Indeed, it is known that if the variance of one of the features 

is orders of magnitude larger than the others, there is the possibility that the objective 

function is dominated by that feature. Consequently, the estimator (classifier or regressor) 

cannot learn from all features properly. Examining Table 5-1, we notice that there is a 

large variation in the numerical values of the input variables by as much as 4 orders of 

magnitude. Therefore, it is imperative that one preprocesses the data. There are two 

approaches to reducing the scale of the data range. One may map the data to a 0-1 range 

by subtracting the minimum from each value and dividing the result by the data range. An 

alternative approach is known as z-score normalization or standardization which is the 

preferred method in data science as it reshapes the input distribution to a zero-mean 

Gaussian (normal) distribution with unit variance [248]. Mathematically, 𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =

𝑥𝑟𝑎𝑤−𝑥̅

𝜎
, where 𝑥̅ and 𝜎 represent mean and standard deviation of the set, respectively 

[248]. This work has adopted the z-score normalization. An example of the raw (first row) 

and standardized (second row) data for a random point in the dataset is shown in Table 

5-2. Note that the units are the same as those provided in Table 5-1. For the classification 

problem, all data points are being used to train the estimator. The output will be “zero” if 
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the cell operates in normal condition, while the starved cell is labeled as “one”. On the 

other hand, only data points corresponding to the starved cells are used to train the 

regressor. The output of the regressor will be a number between 0 and 1 that indicates 

the percentage of the cell which is starved at a given set of features. It should be noted 

that in the absence of the classifier, the regressor would receive a lot of data with no 

starvation for which the extent of starvation is zero. This would bias the regressor towards 

zero starvation, potentially reducing its accuracy. The data pre-processing and data 

training were performed using Sklearn, Keras v2.3.1, Numpy v1.18.1, and Pandas v1.0.1 

packages in Python v3.7.6. 

Table 5-2. An example of the raw and standardized data for a random point in 
the dataset 

 Aact V Pc Nȧ XO2,i XH2,i Ti ϕeff,a ϕeff,c 

Raw: 1.5 0.4 5 40 0.21 0.6 850 0.1 0.2 

Std: 0.448442 -0.72467 0.074205 -0.70583 -0.99898 -1.5623 0.54804 -1.2261 1.2262 

5.3. Data Classification Task: Starved vs. Normal Operation 

A classifier aims to classify (or label) the data into discrete bins. Classifier are 

trained with a pre-labeled data set of the form 𝐷 = (𝑥1, 𝑦1), ⋯ , (𝑥𝑖, 𝑦𝑖), ⋯ , (𝑥𝑛 , 𝑦𝑛), where 

𝑥𝑖’s are m-dimensional vectors; 𝑦𝑖 ’s are labels corresponding to 𝑥𝑖’s (with the current study 

using two labels, ‘1’ for starved and ‘0’ for normal); m represents the number of inputs 

(𝑚 = 9 in the current study); and n is the number of data points (𝑛 = 480,000 in the current 

study) [249]. The relationship between x and y is not always a functional relationship and 

is described by the probability distribution 𝑃(𝑥, 𝑦). Considering each datapoint belonging 

to the dataset D as an independent sample from P, the optimum class membership will be 

found [250]. After standardizing the data, the 480,000 data points randomly divided into 

training set (consisting of 70% of the data) and test set (consisting of 30% of the data). 

Logistic Regression, K-Nearest Neighbors, Naïve Bayes, and ANN classifiers were 

trained, and the results are compared in section 5.5. Support Vector Machine (SVM), was 

not employed by the current study due to the huge dataset being used. While a full thesis 

on the difference between these methods is beyond the scope of this work, we will 

nonetheless highlight the key features very briefly here. 

The k-nearest neighbor algorithm is a widely-used method for classification 

problems. The algorithm finds k data points nearest to the test data point, and calculates 
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the posterior probability 𝑃(𝑦|𝑥) as the fraction of these neighbors that belong to class ’1’ 

[251]–[253]. The Naïve Bayes algorithm, also known as independence Bayes or simple 

Bayes, is a probabilistic classifier which is based on Bayes’ theorem and maximum 

likelihood [254], [255]. One problem with the Naïve Bayes algorithm is making 

unrealistically strong independence assumptions between the features. The oversimplified 

nature of Naïve Bayes makes it less accurate than other classification algorithms [256]. 

However, Naïve Bayes is an extremely powerful classifier when there is only small training 

data available. The Logistic Regression, on the other hand, uses a posterior probability of 

the form [257]  

 P(1|x, α) =
1

1 + e−(αx)
 (3) 

 

Where 𝛼 is a column vector with m elements. The parameters 𝛼 are found such 

that they maximize the likelihood ∏ 𝑃(𝑦𝑖|𝑥𝑖, 𝛼)𝑛
𝑖=1 . The function presented in equation (3) 

is also called the sigmoid function with the output varying between 0 and 1. The data point 

𝑥𝑖 will be labeled as 1 if the calculated posterior probability shown in equation (3) is ≥0.5, 

else its labeled 0 [257]. An ANN is an extension to the Logistic Regression model 

consisting of multiple layers of “neurons”. Each ANN consists of input neurons that receive 

the components of 𝑥 as input. The weighted sum of neurons in the input layer is fed to the 

neurons in the hidden layer. If there are multiple hidden layers, the weighted sum of 

outputs of neurons in each hidden layer is fed to the neurons in the next hidden layer, and 

the weighted sum of outputs of the neurons in the last hidden layer is fed to the output 

layer. An ANN with just one output layer (no hidden layers) operating with sigmoid function 

acts exactly the same as Logistic Regression. An ANN is trained by selecting the various 

weights in a process called back-propagation to minimize output prediction error [258]. 

Schematic of the ANN employed by the current study is depicted in Figure 5-1. Note that 

the number of nodes in the first and second hidden layers changed between 2 and 9 in 

the current study. Figure 5-1 represents the case with 8 neurons in both hidden layers. 

The case with more than two hidden layers was not considered for avoiding complexity, 

overfitting, and very long training times. There is an activation function acting at all hidden 

layers, as well as the output layer, to find the output signal of each neuron. The Rectified 

Linear Unit function, defined as 𝑅𝑒𝐿𝑈 = max(0, 𝑥), was employed for the neurons in the 

hidden layer while the sigmoid function was used at the output neuron. Using Rectified 
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Linear Unit function is beneficial in the sense that it does not activate all the neurons at 

the same time, which is more computationally efficient. During training an ANN, all of the 

weights are randomly initialized. Thereafter, the output signal is evaluated for each 

datapoint in the training set. After finding the output for 𝑁𝑒 data points, where 𝑁𝑒 is called 

number of epochs, the error is found by the binary cross-entropy function [259]. The 

calculated error (loss) is then used to update the weights of the network through back-

propagation. The trained neural network is finally applied to the test set in order to find the 

accuracy of the network. 

Accuracy of a classifier is defined as the ratio of the number of correct estimations 

to the total number of data points in the test set. Many researchers have used accuracy 

as a metric for validating their classification models. However, the accuracy of the model 

does not necessarily guarantee the effective performance, especially when classes are 

skew. For our performance metric, we first calculate the binary confusion matrix ([260]–

[262]) shown in Table 5-3. Here, the “true class” refers to the true state operation of the 

fuel cell, while the inferred class refers to the predicted state operation of the fuel cell. TP 

(true positive) refers to a starved data point correctly classified as starved, while TN (true 

negative) refers to the normal data point being correctly classified as normal. On the other 

hand, if an observation is falsely classified into a negative or positive class, it is marked 

as FN (false negative) and FP (false positive), respectively. Using the confusion matrix, 

“Recall” (also known as sensitivity, hit rate, or true positive rate) is calculated as: 

 Recall = True Positive Rate (TPR) =
TP

TP + FN
 (2) 

 

while precision or positive predictive value is defined as: 

 Precision = Positive Predictive Value (PPV) =
TP

TP + FP
 (3) 

 

While it would be desirable to maximize both metrics, it is widely understood that 

there is a trade-off between maximizing recall and maximizing precision [260]–[262]. In 

order to combine the effects of these two factors, F1 score is evaluated as the Harmonic 

mean of TPR and PPV as follows: 
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 F1 score =
2. TPR. PPV

TPR + PPV
=

2. TP

2. TP + FP + FN
 (4) 

 

Validation of the trained classifier can be done once all the performance indicators 

are calculated. It should be noted that the validation metric is only calculated for the test 

set, and none of the observations from the training set were used for finding the 

performance indicators.  

 

Figure 5-1. The neural network used for the classification 

 

Table 5-3. Confusion matrix for the classification problem 

 
Inferred Class 

Starved (1) Normal (0) 

T
ru

e 
C
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ss

 

Starved (1) True Positive (TP) False Negative (FN) 

Normal (0) False Positive (FP) True Negative (TN) 
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5.4. Data Regression Task: Percentage of the Cell Starved 

In this section, an ANN was employed to find the percentage of the cell which is 

starved. For improved clarification, we will use a subscript ‘r’ to denote the ANN used for 

regression (i.e. ANNr). The ANNr employed for the regression task is almost the same as 

the one presented in Figure 5-1. Rather than using the entire dataset, the ANNr was only 

trained and validated on the starved data. The classifiers were used to figure out if the cell 

operates in normal or starved condition. If the cell is marked as “starved” by the classifier, 

the ANNr will be used to evaluate the percentage of the cell suffering from hydrogen 

starvation, as shown in Figure 5-2. 

 

Figure 5-2. Schematic of the virtual hydrogen sensor proposed in this study 

Since “the percentage of the cell active surface area being starved” is a continuous 

variable, a linear activation function is used at the output layer instead of the sigmoid 

function that was utilized for the binary classification problem. The input data (x values) 

used for training the regressor is the same as what was used for classification. The 

process of training will be continued until the desired accuracy is achieved. The mean 

squared error (MSE) presented in equation 5 was used as the loss/cost function for the 

regressor that needed to be minimized.  

 MSE =
1

N
∑(y − ŷ)2

N

i=1

 (5) 

Where 𝑦 is the vector of observed values and 𝑦̂ represents the estimated values. The 

process of training the neural network is done by calculating and minimizing the MSE. The 

mean absolute error (MAE) defined in equation 6, was evaluated for the test set for the 

purpose of validation.  
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 MAE =
1

N
∑|y − ŷ|

N

i=1

 (6) 

The regression task was firstly done using the whole data set, i.e. including both 

starved and normal observations. The trained regressor had very high MSE and MAE, 

indicating extremely low accuracy. It was determined that the presence of several 

datapoints with no starvation heavily biased the training. Technically, the regressor is 

being used to yield a number between zero and one as the ratio of the cell being starved. 

Therefore, all the cells operating in normal condition with y values equal to zero will 

dominate the weights of the network. In order to solve this issue, the regressor was again 

trained, but this time using the starved data. Taking the mentioned approach is practical 

in the sense that the classifier can be used to determine if the cell is starved or not. Once 

the cell performance is found to deviate from the normal condition, the regressor is used 

to estimate the ratio of the cell active area prone to hydrogen starvation. Control strategies 

can then be employed according to the requirements in terms of minimum starvation ratio 

being allowed during the operation. Convergence history of the regression problem for the 

neural network with 8 neurons in both hidden layers based on the test set MSE is shown 

in Figure 5-3. The convergence plots for the classification problem were omitted for 

brevity. According to Figure 5-3, the solution has almost converged after 150 epochs 

where MSE stayed constant at 4.8×10-3.  
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Figure 5-3. Convergence history of the test set for the regression problem 
based on MSE  

5.5. Data Classification and Regression Results 

5.5.1. Classification Results 

In this section, the performance of the classifiers is presented. For the classification 

problem, Naïve Bayes algorithm gave the least accurate results. The confusion matrix 

obtained by the Naïve Bayes algorithm is shown in Table 5-4: 

Table 5-4. Confusion matrix obtained by the Naïve Bayes algorithm 

Confusion Matrix for Naïve 
Bayes Method 

Inferred Class 

Starved (1) Normal (0) 

T
ru

e 
C

la
ss

 

Starved (1) 25739  3790 

Normal (0) 4683 62556 

 

According to Table 5-4, precision, recall, and F1-Score of the Naïve Bayes are found to 

be 0.846, 0.872, and 0.859, respectively. On the other hand, classification performance 

indicators of both Logistic Regression and KNN are compared in Figure 5-4. Performance 

indicators for Naïve Bayes are not mentioned in Figure 5-4 due to low accuracy. As shown 
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in Figure 5-4, the optimum value of 𝑘 = 21 results in the best performance for the KNN 

method. One should also note that KNN outperforms both Naïve Bayes and Logistic 

Regression methods for any value of k. Furthermore, KNN with appropriately tuned k value 

yielded considerably higher performance indicators in comparison with both Naïve Bayes 

and Logistic Regression algorithms. Finally, neural networks with various numbers of 

neurons in the first and second hidden layers were trained in order to find the optimum 

number of neurons in each layer. The F1-Scores of the neural networks are shown in 

Figure 5-5.  

 

Figure 5-4. Comparison of performance indicators for the KNN with Logistic 
Regression methods 
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Figure 5-5. The F1-Score corresponding to the ANN for different number of 
neurons in each hidden layer 

According to Figure 5-5, at least 8 and 6 neurons in the first and second hidden layers, 

respectively, are required to ensure an F1-Score above 0.97 for the classification problem 

using the ANN. It is also worth mentioning that the KNN can compete with ANN in terms 

of classifying the cell performance into “normal” or “starved”. However, ANN slightly 

outperformed the KNN when using the appropriate structure for the neural network by one 

percent. According to the information presented through Table 5-4, Figure 5-4, and Figure 

5-5 it is evident that both KNN and ANN can be successfully utilized for identifying the 

starvation. However, KNN needs longer training time as the Euclidean distance of each 

point with all other points in the data set should be found at each iteration. Naïve Bayes 

and Logistic Regression can be used for classification as well, but only when an F1-Score 

above 0.9 is not required. Optimum results for each classifier are provided in Table 5-5. 

Table 5-5. Comparison of performance indicators for different classifiers in 
detecting incidence of fuel starvation 

Classifier Best Precision Best Recall Best F1 score 

Naïve Bayes 0.846 0.872 0.859 

Logistic Regression 0.885 0.881 0.883 

KNN 0.980 0.966 0.973 

ANN 0.985 0.971 0.979 
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5.5.2. Regression Results 

Next, we will examine the results for the regressor to predict the extent of starvation. Figure 

5-6 plots the accuracy of the ANNr for different number of neurons in the first and second 

hidden layers (as measured by MAE). The results indicate that the number of neurons in 

both hidden layers should be above 6 to ensure accuracy (based on the MAE) above 95 

percent. Comparing the ANNs trained for the classification and regression problems, one 

can conclude that the F1 score of the classification problem is not always an increasing 

function of the number of neurons in the second hidden layer, while this is the case for the 

accuracy of the regression problem (at least for small number of neurons in the second 

hidden layer). Therefore, the performance of the network depends on the number of 

neurons in the second layer for the case of regression while the classification can be still 

done without using the second hidden layer. According to the results, the classifier is able 

to accurately detect the starvation. Since Ni oxidation is highly correlated with hydrogen 

starvation [24], [161], by virtue of the high accuracy of more than 97 percent, the trained 

model can predict the SOFC region prone to Ni oxidation. Therefore, the pair of classifier-

regressor introduced in this work successfully acts as a virtual hydrogen sensor for online 

tracking of the hydrogen concentration along the cell.  

 

 

Figure 5-6. The test set accuracy of the ANNr calculated based on the MAE 
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From Figure 5-6 it is seen that the optimal neural network consists of the configuration 

with eight neurons in the first hidden layer, and seven neurons in the second hidden layer. 

It may be noted that the output of each neuron, 𝑖, is calculated as 𝑦𝑖 = 𝒜(∑𝑊𝑖,𝑗𝑥𝑗 + 𝑏𝑖), 

where 𝒜 is the activation function, 𝑊𝑖,𝑗 refers to the weight that is multiplied by the 𝑖th 

neuron in that layer used to calculate the output of the 𝑗th neuron in the following layer, 

and 𝑏𝑖 is the bias. Table 5-6 shows the weighting matrices and bias for the different layers 

of the optimal neural network. Note that these matrices should be applied to the 

standardized and normalized input vector based on the data provided in Table 5-1. 

Table 5-6. Weight matrices of the optimum neural network with nine input 
neurons, eight neurons in the first hidden layer, and seven neurons 
in the second hidden layer. HAa corresponds to the Ath neuron in 
the ath hidden layer. 

 Matrix of weights connecting the input layer to the first hidden layer 

Layer 1  H11 H21 H31 H41 H51 H61 H71 H81 

Bias (1) 0.0220 0.3821 0.1986 0.3311 0.4446 0.2543 0.6349 -0.2734 

Inputs          

Aact 0.1534 0.0162 -0.3190 0.0895 0.1321 0.1512 0.0021 -0.0271 

V -0.4184 -0.0306 -0.3962 -0.1160 -0.1869 -0.4082 -0.0797 -0.1203 

Pc -0.0268 -0.1901 0.1540 -0.0094 0.0056 -0.0419 0.1651 -0.3947 

Nȧ -0.0968 0.4264 0.0457 -0.2468 -0.1673 -0.1197 0.1855 0.0531 

XO2,i -0.6201 -0.0096 0.0819 -0.3391 0.2427 0.7564 0.0222 0.0257 

XH2,i 0.0061 0.0656 -0.0008 -0.0163 0.0146 0.0081 0.0372 -0.0135 

Tin 0.0573 -0.0939 0.0590 0.1465 0.1853 0.0619 0.0617 -0.0014 

ϕeff,a 0.0451 0.0201 -0.0765 0.0136 0.0047 0.0609 -0.1057 -0.0724 

ϕeff,c 0.0000 0.0002 -0.0029 -0.0011 0.0004 -0.0012 -0.0019 -0.0037 

 

 Matrix of weights connecting the first hidden layer to the second hidden layer 

 Layer 2  H12 H22 H32 H42 H52 H62 H72 

Bias (1) 0.140878 0.137754 -0.07366 -0.01432 0.136232 0.428837 -0.46937 

Layer 1         

H11 0.246711 0.308855 -0.37222 -0.05076 0.29747 -0.36572 0.253609 

H21 0.307311 0.257533 0.010117 -0.04704 0.274051 -0.07993 0.002275 

H31 -0.02209 0.006349 0.205899 -0.0583 0.00226 0.432076 0.035871 

H41 0.238801 0.228487 -0.03497 -0.01565 0.216718 -0.13937 0.070381 

H51 0.324863 0.31422 -0.0465 0.005582 0.283322 -0.11904 0.015197 

H61 0.267497 0.279421 -0.35156 -0.05443 0.347365 -0.36821 0.264745 

H71 0.16913 0.106282 0.57131 -0.0048 0.112995 -0.39812 0.406462 

H81 0.105326 0.108682 -0.50069 0.019647 0.186085 -0.14848 -0.05092 
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 Matrix of weights connecting the second hidden layer to the output layer (first column 
represents the bias weight) 

 Bias (1) H12 H22 H32 H42 H52 H62 H72 

Output 0.106408 0.259376 0.274962 -0.99903 -0.03094 0.273015 -1.15387 -0.92201 

5.5.3. Effect of Misclassified Data Input 

The F1-score for the most accurate classifier was 0.98 (refer from Figure 5-5). It stands to 

reason that some normal data points (nearly 2 percent) may be misclassified by the 

classifier and passed on to the ANNr. Since the ANNr was not trained with these “normal” 

data points, it is important to analyze the ANNr performance for these possible error-inputs. 

To this end, Figure 5-7 plots the output of ANNr to all the normal data (i.e. all data with 

true class being normal, not just the misclassified data). It is seen from this figure that 

ANNr will give negative values for the ratio of the cell active area being starved for a normal 

operating point (the maximum value reported in Figure 5-7 is less than 0.001). Therefore, 

if the regressor gives a negative number as the output, it will be an indication of that point 

being a normal operating point which is labeled by the classifier as starved by mistake. 

 

Figure 5-7. Regression results for “normal” operating points 
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5.5.4. Validation of the Virtual Sensor 

The optimal trained neural networks were employed to find the ratio between the starved 

area and the total active area in a virtual experiment. The virtual experiment was 

performed at anode flow rate of  𝑁̇𝑎 = 30 𝑠𝑐𝑐𝑚,  cathode pressure of 𝑃𝑐 = 1 𝑎𝑡𝑚, and cell 

temperature of  𝑇 = 860 ℃, with active area of 0.5 𝑐𝑚2 and effective porosity of 0.12. While 

using pure oxygen as the oxidizer, hydrogen mole fraction at the anode inlet was set to 

0.85. The voltage was gradually increased and the extent of hydrogen starvation (ratio of 

starved area to total active area) was compared and plotted in Figure 5-8. It is seen from 

Figure 5-8 that at very high values of cell voltage (resulting from the no load condition), no 

hydrogen starvation was noticed by either the real model or the virtual sensor. Reducing 

the cell voltage (increasing the load) firstly results in part of the cell being starved around 

V=0.56 [V]. Further decreasing the voltage increases the starved area until at V=0 [V] 

(limiting current) nearly the whole length of the cell suffers from hydrogen starvation. One 

may note that other input parameters were kept constant at values not used for training 

the neural networks to further examine the robustness of the method. Comparing the data 

obtained by regressor/classifier pair with the values obtained by the model, it is evident 

that the virtual sensor can be effectively utilized for predicting both the incidence and the 

extent of hydrogen starvation in SOFCs. One may note that voltage was changed in 0.02 

[V] increments to obtain the data in Figure 5-8, while the network was trained using the 

data generated with voltage values changing in 0.1 [V] increments. However, the results 

are still very close, and this further demonstrates the robustness of the developed virtual 

sensor.  
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Figure 5-8. Validation of ANNr based virtual hydrogen sensor.  

Although the classifier-regressor pair in this thesis is accurate and robust in terms of 

following the data behavior, it is worth mentioning that the pair is trained using the data 

generated by the model and the model is accurate when starvation has not happened to 

a very high extent for some quite long time. Operating in the starved region for a long time 

will result in irreversible processes that might cause even cell voltage reversal before 

complete mechanical failure of the electrolyte occurs. In that case, the model used for 

generating the data should be able to follow the starvation voltage-wise which was not the 

case for the current work since voltage was an input of the model.  
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Chapter 6.  
 
Conclusion 

In this study, a single cell of a planar SOFC was firstly simulated in 3D using the 

commercial SOFC module of ANSYS Fluent and the results were validated against the 

experimental investigations in the literature. Besides, a step-by-step procedure for using 

SOFC module was presented, providing readers with a deep insight into the software. All 

material properties, geometry modeling, meshing size, flow zone types, and solver 

settings were precisely discussed. After doing the simulations in 3D, it was shown that 3D 

model introduced here is capable of solving mass, momentum, energy, electric potential, 

and species equations properly. Furthermore, it was indicated that temperature gradients 

along the cell are so small that one can ignore them without any loss of precision, 

assuming that cell temperature is constant along the cell. Thereafter, the simplified quasi-

2D method was developed for modeling a single cell of the SOFC. Notwithstanding the 

numerous assumptions made in the pseudo-2D case, the solution for quasi-2D code 

converged to the same solution given by the 3D model in a very faster fashion. 

Furthermore, maximum error observed in the model was bounded within less than 6 

percent which was the case for intermediate values of current density. Therefore, the 

pseudo-2D code can be efficiently used as an alternate method for finding the polarization 

curve of the cell. A pattern search based inverse algorithm was the applied to the 

polarization curve given by the simplified pseudo-2D model to estimate electrodes micro-

structural properties. An inverse algorithm with the appropriate objective function was 

introduced followed by a sensitivity analysis conducted to study the effects of the design 

variables on the cell polarization curve. Anodic and cathodic exchange current densities, 

as well as the anode and cathode porosities, were successfully estimated by the inverse 

approach in the way that minimizes the difference between the actual polarization curve 

and the one corresponding to each set of unknown design variables. One may note that 

the exact same procedure can be applied to a stack model rather than a single cell as long 

as a fast and reliable SOFC stack solver is available for conducting the direct simulation. 

The following conclusions were drawn based on the results: 

 The cell polarization curve was greatly sensitive to the cathodic exchange current 

density and anode effective porosity, while it was insignificantly affected by the 
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anodic exchange current density. Also, the effect of cathode porosity was found to 

be minimal. 

 Using the introduced representation of the error was found to be a suitable 

approach for defining the fitness function when the cell polarization curve is used 

for the inverse parameter estimation. Generally, oscillations were either smoothed 

or completely removed when using the proposed fitness function. 

 The pattern search method was effectively incorporated into the inverse analysis 

to capture an accurate set of unknown design variables, whereas the genetic 

algorithm and the simulated annealing optimization techniques failed to do so. 

 In the case of optimization with more than two design variables and a significantly 

inaccurate initial guess, deviation from the real values might be observed for the 

parameters to which the polarization curve is not considerably sensitive. 

 It was shown that the optimization problem is not sensitive to the upper limit of the 

design variables for the case of exchange current densities.  

 Different values of the initial guesses for the optimization problem should be used 

in order to correctly describe the effectiveness of the inverse method in estimating 

the unknown parameters. 

In addition to finding the polarization curve, the pseudo-2D model was capable of 

finding the hydrogen concentration distribution along the channels of SOFC. Thanks to 

the very fast and accurate performance of the pseudo-2D model, a huge data set of 

480,000 data points was generated. Nine features including the cell voltage, the cell active 

surface area, anode effective porosity, cathode effective porosity, inlet temperature, 

operating pressure at the cathode side, hydrogen mole fraction at the anode inlet, oxygen 

mole fraction at the cathode inlet, and the anodic total molar flow rate were chosen to 

change for each data point. The goal of the study was to see if machine learning can be 

used to first detect, and then estimate the portion of the cell suffering from starvation using 

ANN. The dependent variable will be binary for the classification problem while it will be a 

number between zero and one for the regression case. Different classifiers including 

Naïve Bayes, Logistic Regression, KNN, and ANN were used for the classification while 

the ANN was utilized for regression. The following conclusions are made: 

 In order to achieve high accuracy, the regressor should be trained using only the 

starved data. The classifier, however, should be fed by the whole data set. 
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 The ANN and KNN outperform Naïve Bayes and Logistic Regression methods for 

the classification problem. 

 Tuning the parameter k in the KNN algorithm highly increases the F1-Score of the 

classifier. 

 Tuning the number of neurons in hidden layers of the ANN increases the F1-Score 

of the classifier. 

 The KNN, although simple, competes with ANN in terms of performance and 

accuracy. 

 ANN with one hidden layer can be used for the classification problem, while two 

hidden layers should be utilized for the regression. 

 The pair of classifier-regressor introduced in this work successfully acts as a virtual 

hydrogen sensor for online tracking of the hydrogen concentration along the cell.  
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Chapter 7.  
 
Recommendations for future works 

7.1. Developing the pseudo-2D model for a button-cell 
SOFC 

The model developed in this work corresponds to an anode-supported planar cell. 

Developing the same model for button-cell configuration will be beneficial in the sense that 

it would be easier and more practical to build an experimental setup for a button-cell 

SOFC. The model can then be validated against the experimental results and be used by 

the inverse algorithm to estimate porosity of GDL materials. The challenge for applying 

the psedo-2D model to a button-cell would be the addition of incoming species as we 

move radially outward through the nodes.  

7.2. Extending the pseudo-2D model for studying the stack 
dynamic operation 

The model presented in this thesis corresponds to steady state performance of a 

single cell. It would be useful to develop the same model for dynamic operations so that it 

can be used for online control purposes since time derivative of the state (control) 

variables is required for designing a control. In order to achieve this goal, a good point to 

start from will be comparing the time constants of voltage, current, temperature, and 

species concentrations dynamic response. It is mentioned in the literature that the 

temperature time constant is larger than the others, and at least the energy equation must 

be solved for the dynamic mode even if a lumped temperature is assumed for the cell. 

Once the dynamic response of the system is modelled for a single cell, the results will be 

extendable for stack operation. 

7.3. Developing a virtual oxygen sensor for predicting 
oxygen starvation in PEMFCs 

Oxygen starvation on the cathode side of PEMFCs is an issue that have attracted 

researchers’ attention recently. Using the same procedure employed in this thesis, the 
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same pair of classifier-regressor can be trained based on either simulation or experimental 

data for a PEMFC. Since oxygen starvation results in hydrogen pumping and cathodic 

hydrogen emissions in PEMFCs, developing such a virtual sensor will be beneficial in 

terms of safety concerns prevent excessive hydrogen emissions at the cathode side. 
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Appendix A. 
 
Equations Used for Finding the Enthalpy of Species 

The curves used for finding the enthalpy of the species as a function of temperature at the 

atmospheric pressure, found by using the data provided in tables of [221], are shown 

through figures A.1 to A.4. Note that only the data for temperatures between 700 °𝐾 and 

2000 °𝐾 is used. 

 

Figure A.1. Enthalpy of Oxygen in 𝐤𝐉/𝐤𝐦𝐨𝐥 as a function of temperature in °𝑲 
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Figure A.2. Enthalpy of water vapor in 𝐤𝐉/𝐤𝐦𝐨𝐥 as a function of temperature in 

°𝑲 

 

 

Figure A.3. Enthalpy of nitrogen in 𝐤𝐉/𝐤𝐦𝐨𝐥 as a function of temperature in °𝑲 
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Figure A.4. Enthalpy of hydrogen in 𝐤𝐉/𝐤𝐦𝐨𝐥 as a function of temperature in °𝑲 
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Appendix B. 
 
Solution to the Steady State Energy Equation of 
SOFCs 

In this section, the proof for the Eq. (27) is provided. The energy equation is used 

for a lumped control volume over the entire cell as follows: 

∑ ṅh̅

inlet

= ∑ ṅh̅

outlet

+ VcellI Eq. (B.1) 

Where, ṅ is the molar flow rate and h̅ represents the enthalpy of the species. Sums 

presented in Eq. (A.1) are calculated as follows: 

∑ ṅh̅

inlet

= ṅin,a(XH2,inh̅(Tin)H2,in + XH2O,inh̅(Tin)H2O,in)

+ ṅin,c(XO2,inh̅(Tin)O2,in + XN2,inh̅(Tin)N2,in) = Ḣin 

Eq. (B.2) 

∑ ṅh̅

outlet

= (ṅin,aXH2,in −
I

2F
) h̅(T)H2

+ (ṅin,aXH2O,in +
I

2F
) h̅(T)H2O

+ (ṅin,cXO2,in +
I

4F
) h̅(T)O2

+ ṅin,cXN2,inh̅(T)N2
 

Eq. (B.3) 

 

Using the ai and bi values mentioned in Table 3-2 for the enthalpy of the 

reactants and factoring out the unknown terms, i.e. temperature and current, yields: 

Ḣin = T(aH2
ṅin,aXH2,in + aH2Oṅin,aXH2O,in + aO2

ṅin,cXO2,in + aN2
ṅin,cXN2,in)

− (bH2
ṅin,aXH2,in + bH2Oṅin,aXH2O,in + bO2

ṅin,cXO2,in

+ bN2
ṅin,cXN2,in) + IT (

aH2O − aH2

2F
−

aO2

4F
)

+ I (
bH2O − bH2

2F
−

bO2

4F
) + IV 

Eq. (B.4) 
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Defining: 

θ1 = bH2
ṅin,aXH2,in + bH2Oṅin,aXH2O,in + bO2

ṅin,cXO2,in + bN2
ṅin,cXN2,in 

θ2 =
aH2O − aH2

2F
−

aO2

4F
 

θ3 = aH2
ṅin,aXH2,in + aH2Oṅin,aXH2O,in + aO2

ṅin,cXO2,in + aN2
ṅin,cXN2,in 

θ4 =
bH2O − bH2

2F
−

bO2

4F
 

and solving for T gives the Eq. (A.5) that can be used for evaluating the steady-state 

temperature of the cell as a function of current, voltage, and inlet conditions. 

T =
Ḣin − θ1 − (θ4 + Vcell)I

θ3 + θ2I
 Eq. (B.5) 

 

 


