Autoregressive mixed effects models and
an application to annual income of cancer

SUrvivors
by
Lisa McQuarrie

B.Sc., University of Victoria, 2019

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Lisa McQuarrie 2021
SIMON FRASER UNIVERSITY
Spring 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration

Name:
Degree:

Title:

Committee:

of Committee

Lisa McQuarrie
Master of Science (Statistics)

Autoregressive mixed effects models and an
application to annual income of cancer survivors

Chair: Richard Lockhart
Professor
Statistics and Actuarial Science

Rachel Altman
Supervisor
Associate Professor, Statistics and Actuarial Science

Stuart Peacock
Committee Member
Professor, Faculty of Health Sciences

Joan Hu

Examiner
Professor, Statistics and Actuarial Science

ii



Abstract

Longitudinal observations of income are often strongly autocorrelated, even after adjusting
for independent variables. We explore two common longitudinal models that allow for resid-
ual autocorrelation: 1. the autoregressive error model (a linear mixed effects model with an
AR(1) covariance structure), and 2. the autoregressive response model (a linear mixed ef-
fects model that includes the first lag of the response variable as an independent variable).
We explore the theoretical properties of these models and illustrate the behaviour of pa-
rameter estimates using a simulation study. Additionally, we apply the models to a data set
containing repeated (annual) observations of income and sociodemographic variables on a
sample of breast cancer survivors. Our preliminary results suggest that the autoregressive
response model may severely overestimate the magnitude of the effect of cancer. Our find-
ings will guide future, comprehensive study of the short- and long-term effects of a breast

cancer diagnosis on a survivor’s annual net income.

Keywords: Longitudinal data, mixed models, autoregressive models, breast cancer, annual

net income
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Chapter 1

Introduction

In this project, we discuss the application of longitudinal mixed effects models to incomes
of breast cancer survivors. Using yearly observations of annual income, both pre- and post-
diagnosis, on a sample of breast cancer survivors, we characterize and estimate the effect of

a cancer diagnosis on a survivor’s income.

1.1 Background

In Canada, cancer is expected to impact one out of every two people, and, in particular,
one in four cancer cases in women will be breast cancer (Brenner et al., 2020). Thanks
to improved screening procedures, diagnostic tests, and treatments, the mortality rate for
female breast cancer has declined significantly in the last 35 years (Brenner et al., 2020), and
now female breast cancer has a 5-year survival rate of 88% (Canadian Cancer Society, 2020).
Consequently, the number of breast cancer survivors living for extended periods of time past
their diagnosis and initial treatment has grown, and, as such, focus has expanded to caring
for all aspects of survivors’ health, including mental and physical health and quality of life.
In this project, “survivor” refers to any person diagnosed with cancer, regardless of how

long they live after diagnosis.

An essential contributor to quality of life, both for those with and without long-term health
problems, is often employment. The effect of financial stress and hardship on quality of
life has been extensively documented; individuals with insufficient income for food, medical
care, and other necessities have lower quality of life, in general (Park and Look, 2018;
Fitch and Longo, 2018; Jones et al., 2020; Kale and Carroll, 2016). However, employment
provides more than just income. To many, the workplace is a venue that provides social
stimulation and interaction, which has been shown to improve mental health in general,

and in particular the mental health of cancer survivors (Rasmussen and Elverdam, 2008).



The routine, mental stimulation, and familiarity of work and the workplace can provide
a sense of normalcy and purpose that also contribute to cancer survivors’ quality of life
(Duijts et al., 2017; Lundh et al., 2013; Rasmussen and Elverdam, 2008).

Continuing or returning to work after a cancer diagnosis and treatment can be a vital step in
recovery. However, depending on the type and severity of the cancer or the type of work (e.g.,
manual labour versus office job), there can be many barriers in maintaining or returning to
employment after cancer treatment. Cancer survivors may experience significant long-term
health problems, such as chronic lymphedema, fatigue, and cognitive impairment, all of
which can affect their ability to participate in the labour force (Ahles et al., 2002; Erickson
et al., 2001; Ganz et al., 1998; Ganz, 1999; Ganz et al., 2002). In addition to the physical
effects of treatment, cancer survivors often struggle with their mental health (Hewitt et al.,
2003), which can influence their decision to return to work (Islam et al., 2014). Lastly, lack
of support from employers and colleagues has been shown to have a significant negative
impact on the success of a cancer survivor’s return to work (Islam et al., 2014; Tamminga
et al., 2012).

Female breast cancer survivors warrant in-depth study due to the large and growing popula-
tion of such individuals who are pre-retirement age. Most cancers affect an older population;
for example, the median age at diagnosis of survivors of prostate and lung cancers, two of
the other most prevalent cancer types, are 66 and 70, respectively (National Cancer Insti-
tute, 2015). However, the median age at diagnosis for the female breast cancer survivor is 61
(National Cancer Institute, 2015). Many female breast cancer survivors are pre-retirement
age when diagnosed, which, when combined with the high survival rate, indicates that
many women diagnosed with breast cancer may be able and willing to return to employ-
ment post-treatment. Additionally, female cancer survivors have been found to have longer
return-to-work times (van Muijen et al., 2013), higher likelihood of job loss, and lower like-
lihood of re-employment than male cancer survivors (Park et al., 2008). For these reasons,
we focus our study on female breast cancer survivors. Henceforth, all references to breast

cancer will refer to female breast cancers.

The literature on the impact of cancer on economic outcomes, such as income or employment
status, is inconclusive. Different studies have reported negative (Hewitt et al., 2003; Yabroff
et al., 2004; Drolet et al., 2005a,b; Chirikos et al., 2002a; Bradley et al., 2002a,b; Grunfeld
et al., 2004; Maunsell et al., 1999, 2004; Syse et al., 2008; Lauzier et al., 2008; Chirikos et al.,
2002b), neutral (Hensley et al., 2005; Peuckmann et al., 2009; Gudbergsson et al., 2009;
Hakanen and Lindbohm, 2008), and positive (Bradley et al., 2002a,b; Chirikos et al., 2002a;
Satariano and DeLorenze, 1996) consequences of cancer on various economic outcomes.
However, our review of the existing literature on this subject identified five commonly

occurring weaknesses:



1. Subjects are often recruited through advertisements or cancer support groups and

centres, which can result in selection bias.

2. The sample sizes are generally small, which limits the ability to identify important

effects.

3. The majority of studies use self-reported income data, which is systematically under-

reported and prone to recall bias (Fukuoka et al., 2007).

4. Few studies are conducted in Canada, and, due to differing health care systems (pri-
vate versus public), results from studies in other countries may not be applicable to
Canadian cancer survivors. For example, in the USA, the health insurance system is
strongly tied to the workplace; therefore, survivors may be incentivised to return to

work to have access to health insurance.

5. Similar studies have presented almost exclusively cross-sectional analyses of determi-
nants of income of cancer survivors; longitudinal analysis of changes in income over

time is usually not considered.

Economics researchers have found a strong autocorrelation structure in annual incomes.
Specifically, income in year ¢ is highly positively correlated with income in year ¢+ ¢ when /¢
is small and decreases toward zero as ¢ grows (Blundell, 2014; Baker, 1997; Parsons, 1978).
Research also suggests that this autocorrelation structure persists even after adjusting for
common socio-demographic variables, such as education, gender, and race (Parsons, 1978;
Blundell, 2014). Consequently, models with a marginal covariance matrix that allows for
changing covariance with increasing lag are often used to model income (Berry et al., 1988;
Browning and Ejrnees, 2013; Zhang and Zhou, 2019; Lillard and Willis, 1978). We consider
two of the most common such models, the autoregressive response (ARR) and autoregres-
sive error (ARE) models. The ARR model is specified in terms of lagged outcomes and
independent errors, while the ARE model is specified in terms of first-order autoregres-
sive (AR(1)) errors. Both models include a random, subject-specific intercept to allow for

unexplained heterogeneity in income across subjects.

These models are frequently used to model income in the longitudinal setting. For example,
the ARR model is used to model income and related economic outcomes in numerous
papers (e.g., Zhang and Zhou (2019); Cai et al. (2014); Bond (2002)). Additionally, the
ARR model is taught in several popular econometrics textbooks (e.g., Hsiao (2014); Baltagi
(2008); Greene (2003); Wooldridge (2002)), and a statistics textbook (Funatogawa and
Funatogawa, 2019). The ARE model is also frequently used to describe income (e.g., Berry
et al. (1988); Browning and Ejrnaes (2013)).



1.2 Motivation and objectives

The primary objective of this research is to describe breast cancer survivors’ income over
time, with special focus on the short- and long-term effects of breast cancer diagnosis. Our
analysis, described in Chapter 4, of a large, longitudinal administrative data set addresses

each of the weaknesses that we identified in our literature review in Section 1.1.

As income is directly related to quality of life, determining how a woman’s breast cancer
diagnosis impacts her income is of interest. Longitudinal models are used to capture changes
in the income of breast cancer survivors over time and to characterize the autocorrelation

structure of yearly income observations.

We investigate the ARR and ARE models because they are commonly used to model longitu-
dinal income trends. In addition, we use a linear mixed effects model with a woman-specific
intercept to inform our choice of mean, variance, and correlation structures in the ARR and
ARE models.

The remainder of this report is organized as follows. We review the data set in Chapter 2
and introduce the methods used in the analysis in Chapter 3. We describe the analysis in
Chapter 4 and conduct a simulation study to further explore the models and their prop-
erties in Chapter 5. We conclude with a discussion and suggestions for future work in
Chapter 6.



Chapter 2

Description of data set

For this project, we use national administrative data files from Statistics Canada that consist
of a linkage of the Canadian Cancer Registry (CCR) with the T1 Family File (T1FF).
Access to the data files, which are not publicly available, was provided by Statistics Canada
through their Research Data Centres. Due to the highly confidential nature of the data,
we are limited in the descriptions and results we can provide by strict guidelines meant to
prevent a breach of confidentiality. As a consequence, we are unable to present some of our

results publicly.

The CCR data file contains diagnosis and treatment information about all patients diag-
nosed with cancer in Canada between the years 1992 and 2015. The T1FF data files contain
variables related to the income of individuals and their families for all individuals who filed

a tax return in Canada between 1992 and 2015.

In the CCR, primary tumours are classified using the International Classification of Diseases
for Oncology (ICD-O) codes, which allows us to identify breast tumours. Sex, diagnosis date,
and birth date are also supplied in the CCR. Our inclusion criteria are: female breast cancer
survivor, diagnosed in Canada between January 1st, 1992, and December 31st, 2015, and
between 18 and 60 years of age at diagnosis. As mentioned earlier, a key reason for focusing
on breast cancer survivors is that they are often of pre-retirement age when diagnosed.
Retired workers frequently have a fixed income from a pension plan, which would not vary
due to a cancer diagnosis. We include only observations recorded on patients when they are
between the ages of 18 and 60 to avoid having to incorporate the effect of retirement in the

model.

From the T1FF data files, we extract our response variable, annual after-tax net income,
defined as the total income received by the filer less all tax deductions. We use after-tax

income (as opposed to other definitions of income, such as income generated by employment)



as the response variable because after-tax income represents the consumption and saving
opportunity of the individual. Therefore, after-tax income best represents the ability of the
individual to support herself. Incomes are observed both pre- and post-diagnosis. In general,
an individual’s record ends either in 2015 or when she is lost to follow-up, whichever occurs

first. An implication is that we do not consider the loss of income due to death.

Our main interest is in estimating the effect of cancer. However, the effect of cancer could
manifest in many different ways. For instance, cancer could cause a change in income, on
average, only in the year of diagnosis. Or, cancer could cause a change in income that
lasts for many years post-diagnosis. Therefore, based on recommendations by our collab-
orators at the Canadian Centre for Applied Research in Cancer Control (ARCC), we de-
fine three indicator variables to allow for different possible manifestations of the effect of
cancer: cancerImmediate, cancerShort, and cancerLong. We describe these variables be-

low.

The variable cancerImmediate represents the immediate cancer effect that occurs in the
year of diagnosis and the year after diagnosis; it is an indicator variable that takes the value
1 in these two years and 0 in all other years. Our rationale for this choice is as follows. We
have data only on annual income, i.e., the income received in a calendar year. Therefore,
we cannot investigate the effect of cancer in the 12 months following a cancer diagnosis; for
example, if a woman is diagnosed in June 2010, we cannot identify the effect of the diagnosis
on her income from June 2010 to June 2011. We may reasonably expect to find an effect of
cancer on a woman'’s income in the year of diagnosis if she is diagnosed early in the year,
but, if she is diagnosed, for example, in December 2010, then cancer would likely have a
stronger effect on her income in 2011. We therefore define the immediate cancer effect as
the effect in the year of diagnosis and the following year so that, at a minimum, we are

capturing the effect of cancer in the first 12 months post-diagnosis for all survivors.

We define the short-term cancer effect, cancerShort, as the effect of cancer from the year
of diagnosis to 5 years post-diagnosis, and we capture this effect using an indicator variable
that takes the value 1 from the year of diagnosis to 5 years post-diagnosis and 0 in all other

years.

The long-term cancer effect, represented by cancerLong, is defined as the effect of cancer in
the year of diagnosis and all following years and is captured by an indicator variable taking
the value of 1 in the year of diagnosis and all following years and 0 in the years before
diagnosis. All three cancer indicator variables are derived from data provided in the CCR

about diagnosis date.



In addition to cancerImmediate, cancerShort, and cancerLong, we include the explana-
tory variables yearsSincel8, birthYear, selfEmploy, and spouseStatus in our models.

We define these variables next.

The variable yearsSince18 is defined as age (in years) less 18 and is used to capture the
effect of age on income. Justification for using years since 18 rather than age is provided in
Chapter 3. This variable is derived from data on birth date provided in the CCR.

The variable birthYear is defined as the year of birth, and we use this variable to capture
the cohort effect of birth year. This variable originates in the CCR. In the longitudinal
context, birthYear and yearsSincel8 are not correlated since, for each woman, birthYear
is constant and yearsSince18 is time varying. Therefore, both variables can be included

as explanatory variables in a model without introducing multicollinearity issues.

The variable selfEmploy is 1 if the woman receives some income from self-employment at

a given time point and 0 otherwise. It originates in the T1FF.

The variable spouseStatus is 1 if the woman has a spouse at a given time point and 0
otherwise. This variable is derived from data about family composition provided in the
T1FF.

Although not used as a explanatory variable, we also use the variable years since diagnosis
in descriptions of the data. This variable is defined as the year of the observation less the
year of diagnosis, so that it takes negative integer values in the years prior to diagnosis, 0

in the year of diagnosis, and positive integer values after diagnosis.

All residents of Canada must file a tax return if they have an income source. Additionally,
medical practitioners are required to submit their patients’ information for recording in the
CCR. As a result, only a small proportion, < 5%, of the total observations contained missing
values for one or more of the variables considered in the analysis. Because this proportion
is small, we chose to remove rows with missing values. After removing missing values, the
number of women observed at one or more time points is 14,565 and the total number of
observations is 243,475.

2.1 Descriptive statistics and data visualizations

The bar chart in Figure 2.1 shows the distribution of number of observations on each woman.
Of all the women in the sample, 23% were observed in all 24 years. The median number of

observations on a woman is 18.
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Figure 2.1: Bar chart of number of observations per woman.
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Figure 2.2: Bar chart of number of observations by year since diagnosis.

The distribution of number of observations by years since diagnosis is shown in Figure 2.2.

Fewer records are observed on women post-diagnosis compared to pre-diagnosis.

The proportion of women who had a spouse in one or more years is 88%, and the proportion
of women who received self-employment income in one or more years is 32%. The average
year of birth in the sample is 1954. The average and median ages at diagnosis in the sample
are 49 and 50, respectively. Since the sample includes only women diagnosed before the age
of 60, the average and median ages at diagnosis in the sample are much younger than in

the general population of breast cancer survivors.

Figure 2.3 is a plot showing the sample mean and standard deviation (SD) of income®2®

025 ig provided in Chapter 4.

at each age. The justification for the transformation income
Only observations from years prior to a woman’s diagnosis were used to create this plot,
i.e., cancer effects are not confounding the trend with age. This plot clearly shows that

025 and age is not linear; in particular, income®2>

the relationship between average income
grows rapidly between the ages of 18 and 25, then tapers off, and then decreases gradually

between the ages of 50 and 60 (perhaps women who are planning for early retirement begin
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Figure 2.3: Sample mean income®2’ by age (years).

to reduce their employment income after the age of 50). Also, as the scale on the right

0.25

shows, the sample standard deviation of income”*° increases from ages 18 to 60.

2.1.1 Negative income observations

Some women in the sample have negative values of after-tax income. Negative after-tax
income values can occur when a person’s tax deductible expense claims (including, for
example, medical expenses, pension plan contributions, and education costs) are greater
than their income in that year. Additionally, self-employed individuals may report a negative

after-tax income value if they do not make a profit in that year.

In total, 2,055 observations (0.844% of total observations) of after-tax income are negative,

and 1,065 women (7.31% of sample) had one or more negative observations.

In each year relative to the year of diagnosis, the proportion of income observations that are
negative is shown in Figure 2.4. Observations from the years —22 to —15 and 15 to 23 were
binned together due to confidentiality concerns about the low counts in those years. The pro-

portion of negative income values increases noticeably after diagnosis, and remains elevated

10
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Figure 2.4: Proportion of total observations that are negative by years since diagnosis.

in all years post-diagnosis. In other words, a cancer diagnosis may increase the probability

that a woman will file a tax return with a negative value of after-tax income.

We handle the negative observations by setting all negative values of after-tax income to 0.
One advantage of this choice is that we can apply our chosen transformation, income®2?,
to all observations. A disadvantage is that we create a point mass at 0 in the distribution

of income??>. We discuss the implications of our choice further in Section 6.1.

11



Chapter 3

Methods

As described in Section 1.1, this project explores two models, the ARR and ARE models.
We also consider the linear mixed effects (LME) model—a special case of both models—as

a benchmark.

Before specifying the models, we define some notation that will be used throughout the
following sections. Let Yj; be a transformation of annual after-tax income for subject @
at time t; justification for using a transformation of income as the response variable is
given in Chapter 4, and henceforth we use the term “transformed income” to refer to our
response variable. We define time as the number of years since subject i was age 18 (i.e.,
t = 0 corresponds to age 18, the typical age at which individuals begin filing tax returns).
Consequently, t € {0,1,2,...}. Our chosen definition of time has important implications in
the case of the ARR model, as we discuss in Section 3.3.1. Let Y; = (Yio, Yi1,...,Yir;) be
the vector of observations on subject ¢, ¢ = 1,2,..., N. Let x;#+ be a vector of explanatory
variables (with 1 as the first element to allow for an intercept) for subject i at time ¢,
i=1,2,... N,t=0,1,...,T;.

We now describe the three models and their interpretations in detail. We follow with a

discussion of estimation of the model parameters.

3.1 Linear mixed effects model

The LME model has a random intercept and independent errors. While we do not expect
this model to be realistic, we use it as a basis for comparison with the ARR and ARE
models, especially when choosing the components of these more complex models. Our LME

model is defined as

12



Yit = xj00 + u; + 0t
= o + ajbirthYear; + cgyearsSincel8,; + a;;yearsSincelS?t—i—
ayyearsSince 18?t + a5yearsSince18§t + agcancerImmediate;;+
arcancerShort;; + agcancerlLong;, + agspouseStatus;, + ajpselfEmploy,, +
aji1yearsSincel8;; X cancerLong,, + ajospouseStatus;, X cancerLong;,+

aq3selfEmploy,;, X cancerLong;, + u; + 0 (3.1)

fori=1,2,...,N, t=0,1,...,T;. Additionally, we assume that the u;’s are independent
and identically distributed (IID) N (0, 02) random variables, the ;s are IID N (0, 0?), and
the u;’s are independent of the d;;’s. Justification for including the higher order yearsSince18

terms and interaction terms is provided in Chapter 4.

Under this model, Y; has a multivariate normal distribution with the following proper-

ties:

E(Yy) = X;ta
Var(Yy) = UZ + 02

The interpretation of the regression coefficients in the LME model is straightforward. For
example, if two women are identical except that one was born one year later than the other,
then «y is their expected difference in transformed income at a given age—regardless of

whether we have conditioned on u;.

However, interpretation of the effect of cancer requires more care, as we use three indicator
variables and several interaction effects to capture different aspects of this effect. Rather
than interpreting the effects of cancerImmediate, cancerShort, and cancerLong individu-
ally, we define the “total cancer effect” as the expected difference between the transformed
income of a woman at a given post-diagnosis year and her transformed income had she never
been diagnosed with cancer. To be clear, this notion of total effect is unrelated to that of
total effect in causal analysis. The size of the total cancer effect depends on the number of
years since diagnosis. Table 3.1 shows these effect sizes. Here, the value of yearsSincel8

in the year of diagnosis is represented by tg4.
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Years since Total cancer
diagnosis effect

ag + a7 + ag + aity

ag+ar+ag+aq1(tg+ 1)

a7 + ag + oz11(td + 2)

a7+ ag + aii(tq+ 3)

a7 +ag+ a1 (tg +4)

a7+ ag + aii(tg +5)

ag + aq1(tqa + 6)

ST W N~ O

Table 3.1: Total cancer effect by years since diagnosis under the LME model. The value of
yearsSincel8 in the year of diagnosis is represented by tg4.

Under the LME model, the variance of the responses is constant, and the covariance struc-
ture does not depend on £ or t, i.e., the correlation between observations on the same subject

at any two time points is constant.

We expect that the correlation between income observations on the same subject should, in
fact, decrease as the time between the observations increases; therefore, we do not expect
the LME model to be realistic. However, as we will show, the LME model is nested within
both the ARE and ARR models, and, consequently, we can use the LME to guide our choice
of simpler features of the autoregressive models (e.g., the mean structure) before making

decisions about more complex features (e.g., the variance and covariance structures).

3.2 Autoregressive error model

The ARE model is a linear mixed effects model with AR(1) errors. For i = 1,..., N, the

model is defined as

YVZ‘t:thQ—FUZ‘—FGit, t=0,1,...,T; (36)

€it = V€it—1 +5it7 t=12,...,T; (37)
o2

€io ~ N (0, 1_772)7 (3.8)

where u; and d;; are as defined in Section 3.1. We constrain 7 to lie in (—1,1). All other

variables are as previously defined.

We make the assumption that €;o ~ N(0, %) so that the time series {e; }12, is stationary.

In particular, the distribution of €; is the same for all ¢ and, consequently, Var(Y;) is

14



constant for all ¢. This restriction can be relaxed; however, exploration of that extension is

beyond the scope of this project.

Under this model, Y; has a multivariate normal distribution with the following proper-

ties:

E(Yi) = Xy (3.9)
2 o
V&I‘(Y:L‘t) =0y + 1_772 (310)
A
Cov(Yit, Yigse) = 02 + e 0%, L#0 (3.11)
Cov(Yit,Yjuqe) =0, i # . (3.12)

If v = 0, then this model reduces to the LME model.

The regression coefficients in the ARE model have the same interpretation as in the LME
model; in particular, they represent both the marginal and conditional (on w;) effects of
the explanatory variables. The total cancer effect can also be interpreted as for the LME

model.

The variance of the response is constant over time and is a monotonic, increasing function
of 7. The covariance structure of the response varies depending on the parameter v and
the lag ¢, but does not depend on ¢. If v > 0, then the covariance decreases monotonically
with increasing lag, and, if v < 0, then the covariance is not monotonic with lag. Since the
covariance does not depend on ¢, any two time points separated by the same lag will have

the same covariance.

3.3 Autoregressive response model

In the literature, the ARR model is typically specified in a conditional form. For example,
in our context, the mean transformed income of woman ¢ at time ¢ would be specified given
her transformed income at earlier times as well as a vector of explanatory variables, X;;
(which includes 1 as the first element). On this conditional level, lagged response variables
are effectively treated as additional explanatory variables. In our setting, we use a lag of
1 so that a woman’s mean transformed income at age t is specified as a function of her
transformed income at age ¢ — 1. We also include a random, woman-specific intercept.
Formally, the conditional form of the ARR model is
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Yie = pYis—1 + iétﬂ + u; + it (3.13)

for t > 1. The random variables u; are IID N(0,02) and §; are IID N(0,02). The &;’s are

assumed to be independent of the u;’s. The parameter p is constrained to lie in the interval
(—1,1).

The specific form of the ARR model that we use in this project is

Yit = pYii—1 + Bo + BibirthYear;; 4+ BoyearsSincel8;, + B3cancerImmediate;;+
BscancerShort; + fscancerLong;, + fgspouseStatus;, + frselfEmploy,,+
PBsyearsSincel8;, X cancerLong,, + [f9spouseStatus, x cancerLong;+

BioselfEmploy,, x cancerLong;, + u; + dit, (3.14)

for ¢t > 1. Justification for using only a linear yearsSince18 term and for the interaction

terms is provided in Section 4.3.
If p =0, then the model reduces to the LME model.

The distribution of the first time point, Yjo, must also be specified. Many different models
can be assumed for the structure of Yjg, and we must consider how the initial time point
was chosen when selecting a model. In our case, we deliberately selected the age at which
many people begin to earn a substantial income (age 18) as time point 0. Consequently, we
follow Funatogawa and Funatogawa (2019) and assume that Yo = X},8 + u; + di0, where
dio ~ N(0, %) A thorough discussion of different choices for the model for Y;y can be
found in Anderson and Hsiao (1982), and justification for our definition of the initial time

point can be found in Section 3.3.1.

By applying (3.13) recursively, we can show that Y;; = Y%_, pk(ig,t_kﬂ + u; + 0it—k)-
Therefore, the distribution of Y; is multivariate normal. The marginal expectation of Yj;

is

t
E(Yx) =Y p'%}, ;8 (3.15)
k=0

for t > 0.
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To determine the marginal variance-covariance structure, we first need to determine Cov (Y, u;).
For t = 0, Cov(Yig, u;) = 02. For t > 1,

Cov(Yit, u;) = Cov(pYi—1 + Xjt B + ;i + Oy, u;)
= pCov(Y; -1, u;) + Var(u;)
= p2COV( it—2,u;) + pVar(u;) + Var(u;)

-1
= p'Cov(Yio, ui) + Y p"Var(u;)
k=0

t—1
=aa(p' + > ")
k=0
1— pt+1
2
= - . 1

Next, the marginal variance of the response can be derived as

Var(Yio) = Var(igoﬂ + U; + 510)

2

_p2

Var(Y;1) = Var(pYio + X 8 + u; + §i1)

2
g
:pz (Ui T >+g + o2 + 2pCov(Yio, u;)

Var(Yi2) = Var(pYi1 + X098 + wi + 0i2)
= p*Var(Yi1) + o + 0 + 2pCov(Y;1, u;)

o2
=pt (UZ 2 + (p* 4+ 1) (02 + %) + 2p3Cov(Yig, u;) 4+ 2pCov(Yi1, u;)

t—1
Var(Yy) :P2t< 3 2) +Zp2k o + o2 —I—QZP%HCOV( 41—k Ui)
k=0
Y t—1
:P2t< p2> Tz 2 (on+0)+2> p* M Cov(Y 1k, u)
k=0
— 2t (024 + —p* + o) 42 22 2%k+1 17pt_k (3.17)
=p o, p2 ,02 0' o Ou P 1_ ’ :
k=0

for t > 1.
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Lastly, we derive the marginal covariance, Cov(Yj, Y 14¢). Because the d;;’s are independent,
Cov(Yit,Yj+¢) = 0 when i # j. On the other hand, when i = j, for £ = 1,2,... and
t>0,

Cov(Yit, Yis1) = Cov(Yit, pYir + ié,mﬁ + u; + 6 441)
= pVar(Y;) + Cov(Yis, u;)

Cov(Yit, Yityo) = Cov(Yis, pYipi1 + Xi 08 + i + dip10)
= pCov(Yit, Yit+1) + Cov(Yit, u;)
= p*Var(Yy;) + pCov(Yis, u;) + Cov(Yig, u;)

/—1

Cov(Yir, Yipye) = p'Var(Yi) + > p*Cov(Yir, us)
k=0

1— V4

= peVar(Yit) + ( 1 P

> Cov(Yit, u;). (3.18)

{+1

Therefore, if ¢ = 0, Cov(Yi, Yi¢) = 25202 + o o2, and, if t > 1,

1—p 1—p?
¢l 2t [ 2 o’ 1—p" 5 o N
Cov(¥a, Yirse) = o' |7 (02 + =2 ) + 222 (02 1 02) 4202 3 gt (L2
1—p 1—p P 1—0p

1— l 1— t+1
+<1_pp>a§ (1_’)[)) (3.19)

To summarize, Y; is multivariate normal distributed with mean, variance, and covariance
structures given by (3.15), (3.17), and (3.19), respectively. We will refer to this formulation
of the model as the marginal form of the ARR model.

3.3.1 ARR model visualizations

Unlike in the case of the LME and ARE models, the mean and variance-covariance structures
of the ARR model are complex and difficult to interpret. Therefore, in this section, we
illustrate these structures using simulated data. Specifically, we simulate transformed income
from a sample of women, half of which are breast cancer survivors and half of which are
controls. All women are assigned the same year of birth (1954), and the survivors are
assigned the same age at diagnosis (49). These values are based on the average birth year
and age at diagnosis in the data set described in Chapter 2. Specifying the same birth year
and year of diagnosis for all women—and considering controls as well as survivors—allow

the clear illustration of the cancer effect.
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Transformed income is simulated from an ARR model for the sample of women for all
years between the ages 18 and 60. This model contains an intercept, a birth year effect
(birthYear), a linear effect of time (yearsSincel8), and a cancer effect (for survivors
only) that begins at diagnosis and is constant in the years following. The values for the
regression coefficients are informed by our data set (a detailed analysis of which is presented
in Section 4.3) and are listed in Table 3.2. We use four different values of p (0.1, 0.3, 0.7, and
0.9) to illustrate how the mean and variance of transformed income change with p. These
values were chosen to span a realistic range for p; negative values of p are theoretically
possible but, in practice, have not been reported in the literature. The value of p = 0.7
is close to the estimated value we report in Section 4.3 and can be considered the most

realistic for the context of this project.

Variable I6]
Intercept -58.572
birthYear 0.032
yearsSincel8 0.030
Cancer —0.350

Table 3.2: Regression coefficients used in the simulation of income data from an ARR model.

Figure 3.1 shows the average transformed income for ages 18 through 60, with transformed
incomes simulated from the ARR model with various values of p, as described. All param-
eters other than p are held constant among the four plots. The year of the cancer diagnosis
is marked by a vertical black line. Larger values of p lead to a larger yearly increase in

transformed income (the scales on the vertical axes of the four graphs are different).

These four plots illustrate several properties of the ARR model that were introduced in
Section 3.3. First, as we will demonstrate theoretically in Example 2 of Section 3.3.2, the
overall trend of the mean transformed income involves a steep increase at small . The rate
of yearly change of mean transformed income then decreases, approaching a constant as ¢
increases. The rate of convergence to this constant depends on the value of p. This feature of
the transformed incomes can be explained by the fact that, as ¢t increases, the coefficient of
the time trend approaches an asymptote, so the rate of change in mean transformed income

is approximately linear for large .

We can clearly see that, although the conditional form of the ARR model (see (3.13)) could
appear, at first glance, to imply a linear relationship between mean transformed income

and time, this relationship is, in fact, non-linear, particularly for small ¢ or large p.

The effect of cancer is visible in Figure 3.1 as the vertical distance between the control
and survivor trends. As shown in (3.15) and explored more thoroughly in Section 3.3.2, the

effect of cancer is a function of both p and t. However, due to the differing scales of the four
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Figure 3.1: Sample mean transformed income by age for various values of p. The relative
magnitudes of the sample SDs of transformed income for each age/group are reflected in
the size of the points. The vertical black lines represent the year of cancer diagnosis.
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plots, this feature is difficult to see. To show more clearly that the cancer effect is changing
over time, Figure 3.2 is the same as the plot of p = 0.7 from Figure 3.1, but focuses on
ages 47 (2 years prior to diagnosis) to 60. We can see that the effect of cancer increases as
t increases, and, at age 60, the effect magnitude is larger than in the year of diagnosis. In
the years just after the year of diagnosis, the effect magnitude clearly changes each year.
In later years, the effect magnitude approaches an asymptote and changes very little with

t; so, for example, the effect size at age 59 appears to be the same as the effect size at age
60.

p=0.7
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Figure 3.2: Sample mean transformed income by age for p = 0.7, focused on the years
surrounding diagnosis. The vertical black line represents the year of cancer diagnosis.

Figure 3.1 also illustrates that the SD of transformed income increases with both time and
p (02 and o2 are held constant in all four plots). Additionally, larger values of p cause the
SD to increase more over time; for example, when p = 0.1 the SD of transformed income
grows from 1.99 at age 18 to 2.06 at age 60, but when p = 0.9, the SD grows from 1.99 to
8.16.

Figure 3.1 illustrates the important point that, for the ARR model to capture the trend in
real income data with respect to age (see Figure 2.3), time 0 needs to correspond to the

age at which the rate of change in income is greatest, i.e., age 18. In many applications,
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(e.g., Bond (2002), Cai et al. (2014), and Zhang and Zhou (2019)) time 0 is defined as the
first observed time point, which may occur at different ages for different subjects. If we had
followed these authors and chosen to define ¢ = 0 as the first observed time point (which,
in our application, tends to occur at ages much greater than 18), then we would have been
assuming severe curvature in transformed income observations over ages when the trend is,

in fact, approximately linear.

We also simulated data for multiple values of o2 (which governs the among-individual
variation in income) and o2 (which governs the within-individual variation in income). The
income trends (not shown) behaved as expected; larger values of both parameters lead to

greater SD of income.

3.3.2 Interpretation of some features of the ARR model

In this section, we consider several perspectives on the interpretation of the ARR model
(3.14). We first discuss the effects of the explanatory variables (both time invariant and
time varying) on the mean response. We then describe the marginal variance-covariance

structure.

The regression coefficients in the ARR model have different interpretations on the marginal

and conditional levels. Consider a time-invariant, continuous variable, for example

birthYear, which has the coeflicient ;. Then, when we condition on the previous year’s

income, (1 has the usual interpretation as the expected change in transformed income that

occurs when birthYear is increased by one unit and all other variables, including the trans-

formed income in the preceding year, remain unchanged. However, in the marginal model,
_ 1ptt?

the coefficient of birthYear is ¢(t) = = B1. Thus, the effect of birthYear varies over

time as a function of p, and the conditional and marginal effects on mean transformed in-

come, E(Y};), coincide only when ¢ = 0. The coefficient ¢(¢) becomes more interpretable for

large t¢. Specifically, as t — oo, then ¢(t) converges to ¢ = 511%p.

Figure 3.3 shows how ¢(t) changes as a function of time for years 0 to 10 for various values
of p and 1 = 0.5. For all values of p, $(0) = 31. When p is positive, the magnitude of ¢(t)
increases monotonically to its limit, ¢, where |¢p| > |81|. When p is negative, |¢p| < |B1],
i.e., the magnitude of ¢(¢) when t is large is assumed to be less than its magnitude at the
initial time point. However, the decrease in the magnitude of ¢(t) is not monotonic. To
provide a specific example, suppose 51 = 0.5 and p = 0.7. Then the effect of birthYear on
mean transformed income is 0.5 when ¢ = 0 but is approximately 1.63 at ¢ = 10. However,
if 51 = 0.5 and p = —0.7, then the effect of birthYear at ¢t = 0 is 0.5 and at t = 10 is
approximately 0.3.
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form of the ARR model versus time for various p and §; = 0.5. Time is a discrete variable;
however, curves are shown on the plot to emphasize the trends.
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In the case of a time-varying variable, on the conditional level, its effect can be interpreted
in the same way as the effect of a time-invariant variable. But the interpretation is more
complicated on the marginal level since it depends on previous values of the variable and
the particular way in which the variable changes over time. To illustrate, we provide inter-

pretations of three effects of interest in our context.
Effect of selfEmploy

Consider the variable selfEmploy, represented by x;7, which can be 0 or 1 at any time point.
In (3.14), this variable has coefficient f7. Suppose we have two subjects, ¢ and j, identical
up to and including time ¢ except for their values of selfEmploy at time t (x47 = 1, but
zjir = 0). In other words, xio7 = jor,...,Zit—1,7 = Tji—1,7, but x7 = xj7 + 1. Under
these conditions, E(Y;) = E(Yj;) + B7. We can then interpret 87 as the mean difference
in transformed income in year t of a subject who is self-employed relative to a subject
who is not, assuming that, prior to time ¢, the two subjects have the same value of all

variables.
Effect of yearsSincel8

Now consider the variable yearsSince18, which is represented by x;+2 and has coefficient (3s.
This variable differs from selfEmploy in that it changes systematically with time. Consider
a woman, ¢, whose values of all variables except yearsSincel8 are constant from time 0
to time ¢. Using the notation introduced in Section 3.3, the change in mean transformed

income between t and ¢ + 1 for woman ¢ is

t+1 t

E(Yit1) — E(Yi) = Z PR i1 1B — Z "% 1B
k=0 k=0

t
1= k
=p"%08 + Z P B2 %t 1—k2 — Tit—k2)
k=0

t

= p'%08 + Z pFBa(1)
k=0

B 1— t+1

= p % + 7pp

s

This yearly change in mean transformed income is a function of ¢ and p, and results in the
the curvature illustrated in Figure 3.1. However, as t — 00, E(Y; 1+1) —E(Yit) — ﬁﬁ% ie.,

the rate of change is approximately constant for large t.

Total cancer effect
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Total cancer effect
Years since

diagnosis Conditional Marginal
0 B3 + B4+ B5 + Psta B3 + B4+ B5 + Bsta
(p+1)(B3 + Ba+ B5)+
1 B3+ Ba+ Bs + Be(ta+1) | Bs((ta+ 1)+ pta)
(p+p°)Bs+ (L + p+ p*)(Ba + fB5)
2 B+ Bs + Bs(ta + 2) +Bs((ta + 2) + p(ta + 1) + p*ta)

(p* + p°) B3+

(L+p+p*+p*)(Ba + B5)+

3 Ba+ Bs + Bs(tq + 3) Ba((ta + 3) + p(ta +2) + p*(ta + 1) + p°ty)
(0® + p*)Bs+

(L+p+p*+ 0>+ p)(Ba+ B5)+
Bs((ta+4) + p(ta + 3) + p*(ta + 2)+

4 Ba + B5 + Bs(tq +4) P (ta + 1) + pity)

(0" + p°) B3+

(L+p+p*+ >+ p* +0°)(Bs+ B5)+
Bs((ta+5) + p(ta+4) + p*(ta + 3)+

5 B4+ Bs + Bs(tg +5) p3(ta+2) + ptltyg + 1) + p°ty)

(p° + p%)Bs+

(p+ P>+ p° +p* + p° + p%)Bat
(L+p+p*+ 0>+ p* + p° + %) s+
Bs((ta+6) + p(ta +5) + p2(ta + 4)+

6 B5 + Bs(ta + 6) PP(ta +3) + p*(ta +2) + p°(ta + 1) + pta)

Table 3.3: Conditional and marginal total cancer effects under the ARR model. The value
of yearsSincel8 in the year of diagnosis is represented by t4.

As mentioned in Section 3.1, the total cancer effect is multifaceted. Interpretation of this
effect is even more complicated in the ARR setting due to the differences between the
conditional and marginal forms of the model. Consider the ARR model in (3.14). The
marginal total cancer effect at a given age (measured in years since 18) can be interpreted
as the mean difference between the transformed incomes of two women, identical across
all explanatory variables except for cancer status. The conditional total cancer effect has
the same interpretation except that the two women’s incomes in the year prior to their
current age are also assumed to be identical. Table 3.3 gives the conditional and marginal
effects for each year post-diagnosis, where t; represents the value of yearsSince18 in the
year of diagnosis. Clearly, the marginal total effect of cancer is a complicated function
of time (measured in years since diagnosis) that also depends strongly on p and age at

diagnosis.
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Variance-Covariance structure

In the marginal ARR model, the variance of the response varies over time according to a
relationship determined by p, as shown in (3.17). Our preliminary work suggests that, if
p > 0, then the variance increases monotonically over time, but, if p < 0, the variance does
not change monotonically over time. The change in Var(Y;;) over time seems to be greater
for values of p of larger magnitude. Likewise, Cov(Yj, Y; ;4+¢) depends on both t and ¢. Our
initial explorations suggest that, if p > 0, Cov(Yj, Y; ++¢) monotonically increases with ¢ and
decreases with £. But, if p < 0, then Cov(Yj, Y; 14¢) is not monotonic in ¢ or £. Cov (Y, Y; 14¢)
seems to increase monotonically with p when p > 0 and decrease monotonically with p when

p < 0. We leave a formal proof of these properties to future work.

If p > 0, as is found in practice in studies of income, then the general increasing/decreasing
trends in the variance and covariance functions assumed by the ARR model may be rea-
sonable. However, the reasonableness of the specific forms of the variance and covariance
of Y}, particularly their relationship with p, would be difficult to determine in a given

setting.

3.4 Model comparison

In Section 3.1, we introduced three models: the LME, ARE, and ARR models. The LME
model, which assumes that, given the woman-specific random effects, incomes are inde-
pendent, provides a baseline for comparison to the ARE and ARR models. In contrast,
the ARE and ARR models allow for annual income to be autocorrelated over time, even
when conditioning on the random effect. But these models differ in how they incorporate

autocorrelation.

The LME and ARE models have a marginal form that resembles their conditional form. The
effects of the explanatory variables are assumed to be constant over time, and the variance
and covariance of the transformed incomes are not functions of ¢. Interpreting these models

is thus straightforward.

On the other hand, the ARR model has an unusual marginal form that reveals numerous
strong underlying assumptions that may be difficult to justify in practice. In particular, the
mean, variance, and covariance are assumed to be functions of p and ¢. The effects of all
explanatory variables are functions of p and ¢, which makes interpretation difficult. We must
consider whether these assumptions are realistic. In the case of transformed income and the
data in Chapter 2, we did observe curvature in the mean at early ages, and carefully chose
a definition of time so that the ARR model could match the curvature. We also observed

that the variance of income increases over time. However, we question the reasonableness of
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the assumption that the effects of all explanatory variables (not just yearsSince18) would

change as a function of time and p.

If the ARR model is to be used, given that the marginal and conditional effects differ in their
interpretation, careful consideration of which effect is of interest is required. In our case, we
would like to capture the cumulative effect of a cancer diagnosis at a time ¢. The conditional
effect is the effect of cancer at time ¢, given the previous year’s income; if cancer had an
effect on income at time ¢t — 1, then that effect is not captured in the conditional effect.
Therefore, the marginal effect is of greater interest in our setting. However, in the literature,
focus tends to rest almost exclusively on the conditional form, while the marginal form and
its interpretation are ignored, for example, Greene (2003), Baltagi (2008), and Wooldridge
(2002). The conditional effect of the variable of interest is often presented in a way that
could imply that it is a marginal effect, i.e., the estimated coefficient is often described
as the variable’s estimated effect without specifying that it is conditional on the previous
observation (see, for example, Karaivanov et al. (2020) and Zhang and Zhou (2019)). We
believe that the marginal model is integral to the interpretation of this model and that it

should be considered whenever the ARR model is applied.

3.5 Estimation

We use the method of restricted maximum likelihood (REML) to estimate the parameters
of the ARE and LME models and the method of maximum likelihood (ML) to estimate
the parameters of the ARR model. In this section, we describe the implementation of these

methods and the properties of the resulting parameter estimates.

3.5.1 Estimation of LME and ARE models

REML is used to estimate the parameters of both the LME and ARE models. REML esti-
mates are obtained using the nlme: :1lme function in R, which implements the Expectation-
Maximization (EM) algorithm as described in Laird and Ware (1982). The REML estimates
of the regression coefficients, &, are consistent and asymptotically efficient (Verbeke and
Molenberghs, 2000). Complete data is not required; if either x;; or Yj; has a missing value,

then R, by default, removes the entire record for woman i at time ¢.

3.5.2 Estimation of ARR model

In the economics literature, generalized method of moments (GMM) estimation is com-
monly used for fitting the autoregressive response model (for example, Bond (2002)). GMM
estimation produces consistent estimates. However, the efficiency of the GMM estimators

depends on the number of moment conditions used (Hsiao, 2014). We prefer the ML es-
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timation procedure, which generates consistent and (presumably) more efficient estimates
(Hsiao, 2014).

For efficient computation of the ML estimates, rewriting the marginal form of the model in
matrix form is convenient. Suppose woman ¢ is observed at time points 0,...,7;. Let the
number of observations on woman i be n; = T; + 1. As per Funatogawa and Funatogawa
(2019), let B; = (I,, — pF;)~!, where I,,, is the n; x n; identity matrix and F; is the n; x n;

matrix

0 0
1 0
F, =
0 ... 1 0

Define X; as the n; X p matrix containing the observations of the explanatory variables and

z; as an n;-dimensional vector of ones. Then

Y, = B(XiB + zu; +8;). (3.20)

Letting §; ~ MV N(0,0%I,,), Y; has a multivariate normal distribution with mean

E(Y;) = B:X:8 (3.21)
and variance-covariance matrix
¥, = Var(Y;) = Bi(02zlz; + 0°I,,)B.. (3.22)

Equations (3.21) and (3.22) are equivalent to (3.15), (3.17), and (3.19). We emphasize that
3.; depends on i only through its dimensions (n; X n;), i.e., it does not depend on the

explanatory variables.

Let Y = (Y1,Y2,...,Yn) be the vector of all responses. From (3.21) and (3.22), the

log-likelihood can be determined:

N
Z {nllog (27) + log(|=i]) + (Y; — B X;8)' 3,1 (Y; — Biiiﬂ)} :
=1

[\.')M—A

UB,p,os, 0?[Y) =
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Due to the autoregressive response term in the conditional model, the mean of Yj; is a
function of X;g,...,X;, i.e., to calculate the likelihood, complete data on the explanatory
variables is required at all time points. However, calculating the likelihood does not require
complete data on Y;; if Yj; is missing, then the likelihood based on the observed responses
can be calculated by deleting the row corresponding to time ¢ in B;X; and the row and

column corresponding to time ¢ in 3J;.

2

2 and o? have restricted ranges. Rather than using a constrained

The parameters p, o
optimization method to maximize (3.23), we reparameterize the model so that all parameters

have a range of R. The following transformations were used:

1
I—p

Ay = logo?

A = logo?

We then maximize the likelihood numerically to find B , 05, 5\u, and \. For this purpose, we
use the optim function in R and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, a

quasi-Newton method.

An alternative to direct optimization is an iterative procedure. Define ¥ = (p*, Ay, \).
Because a closed-form solution for B exists if 1 is treated as fixed, we can assume a value
for @, compute a closed form estimate of 8 based on the assumed value of 1, and then
maximize the likelihood with respect to v given our current estimate of 8. We can then

repeat these steps, updating our estimate of ¢ and 8 at each iteration.

Specifically, using the subscript (k) to denote the values of the parameters at iteration k,

our iterative estimation algorithm is as follows:
L. Select initial values, 9(q).

2. At iteration k, use ¥ = 1) and solve for B as

N -1 N
By = Z(Bi(k)xi)/xf(i)(Bi(k)Xz’) Z(Bi(k)xi)/z;(;)Yi' (3.24)

3. Use a numerical optimization procedure to minimize —£(B ), Y(x+1)|'Y) with respect

to P (41), treating By, as fixed.
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4. Repeat Steps 2 and 3 until [€(B 11y, Y1) Y) — Bk, Y)[Y)| < v, where v is a

pre-specified tolerance level.

We wrote our own code to implement this algorithm. The optim function with the BFGS

method is used in Step 3.

In our experience, when the number of observations per subject is small and the sample size
is large, the iterative procedure has a shorter computation time. However, when the number
of observations per subject is large, the direct optimization approach is faster. Ultimately,
we used direct optimization for the analysis in Section 4.3 due to the large number of

observations per subject in that setting.

After the ML estimates of the parameters, B and 12;, are obtained (by either procedure),
the Hessian, H, of the log-likelihood can be determined. Let V = —H~!. Then the diagonal
elements of v/V provide standard errors for ,3 and 1[3 The delta method can be used to find

standard errors of p, 62, and &2.

We use the following relationships in the derivation of the standard errors of p,52, and

5%
B e’ —1
p ep* + 1
op 2eP”
dp*  (L+er)?
Ug = M
ooy —
oy,
o = et
99 _ »
oA

Let the matrix of derivatives of ¥ be

dp dp Jp
8p; 6)\5 8)\2
_ | 9o do. do.
V=54 o
9o do%  Oo?
op* Oy oA

Define @ = VY| —_ and let Vi, be the 3 x 3 submatrix of V' containing only the elements
of V' corresponding to the estimated variances and covariances of p, S\U, and . Applying the

— —
delta method, the estimated variance-covariance matrix of (p, 52, 52) is VJ = vy Vyvy,
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where

26‘3* 0

_ (1+ef™)2
VY = 0 M0
0 0 e

The diagonal elements of V;; are the estimated variances of p, 62, and 62.

The estimate of a marginal effect of a explanatory variable and of its SD can be similarly
computed. For example, consider a time-invariant variable such as birthYear with coeffi-

cient 81 in the conditional model. At time ¢, the coefficient of birthYear in the marginal

model is -
P 1
B 1 _pt+1 - 1 - (Zp*-‘rl)
g_ 61 - p*—l 61
= ()
el +1

Let Vj; be the 2 x 2 dimensional submatrix of V' that contains only the elements of V' cor-

responding to the variances of Bl and p and their covariance. Define %\g = Vg|( Br.p)=(B1.p)"

Again applying the delta method, the estimated variance of g is %/Vg%, where

99

vy =W

op*

31



Chapter 4

Application to breast cancer
survivor data

In this section, we apply the models described in Chapter 3 to the data described in Chap-
ter 2.

0-25 rather than income. A well-known charac-

First, we discuss our choice to model income
teristic of income is that its distribution tends to be heavily right-skewed, and our sample is
no exception. Since the models we use to analyze the income trends assume normality of the
response, we opted to apply a transformation. Initially, we planned to use the natural log
transformation, as is common in econometrics. However, after conducting initial analyses
using this transformation, we observed that it did not completely remove the skewness in
income. We proceeded to search for a different transformation and found that income®2?

has an approximately normal distribution.

4.1 Linear mixed effects model

Although we do not expect the LME model to be realistic, it provides a simple way of

determining some key features that a more realistic model should possess.

One important use of the LME model in this setting is as an aid in determining the mean
structure, particularly the trend in transformed income over age. As shown in Figure 2.3,
this trend is non-linear, particularly at younger ages. By considering plots of the residuals
from various LME models, we determined that the trend of transformed income over age
can be reasonably captured by including linear, quadratic, cubic, and quartic effects of age

in the mean structure.
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We can also use the LME model to visualize the effect of a cancer diagnosis. The effect of
cancer is not visible in a plot of mean transformed income over age because the women are
diagnosed at different ages, i.e., the effect of cancer does not begin at one particular point on
the horizontal axis. As an alternative, we fit a LME model with all variables except the can-
cer effects and plot the residuals versus the number of years since diagnosis. Specifically, this
model includes the following variables: yearsSince18, yearsSince182, yearsSince18? and
yearsSince18%, birthYear, spouseStatus, and selfEmploy. The residuals are calculated
as

eit = Yie — (%36 + @),
where the 1;’s are the best linear unbiased predictions of the u;’s (Pinheiro et al.).

This plot appears in Figure 4.1. Due to reasons of confidentiality, we cannot show a plot of
the individual residuals from this model. Figure 4.1 thus shows summary statistics of the
residuals in each year since diagnosis. The vertical lines travel from the 90th percentile to the
3rd quartile and from the 1st quartile to the 10th percentile. The triangular and circular
points represent the sample medians and means, respectively. Due to the low number of
women observed 21 through 23 years post-diagnosis, the residuals from these years had to
be combined (as labelled on the plot).

The sample mean and recorded percentiles of the residuals decrease noticeably at the year
of diagnosis and remain lowered for approximately 5 years post-diagnosis. This effect of
cancer, while visible, is small compared to the total variation in the residuals, which is large

(despite having adjusted for several explanatory variables).

To incorporate the effect of cancer in the model, we add the cancerImmediate, cancerShort,
and cancerLong variables to the mean structure. We also include the interactions
yearsSincel8xcancerLong, spouseStatusxcancerLong, and selfEmployXxcancerLong
(this LME model is given in (3.1)). The interaction yearsSince18x cancerLong is included
to allow the rate of change of transformed income to be different before and after a cancer
diagnosis. The spouseStatusxcancerLong and selfEmployxcancerLong interactions are
included to allow women with spouses or women who receive income from self-employment,
respectively, to experience a different change in mean income post-diagnosis. We refer to
the LME model with this mean structure as fully adjusted. The estimates of the parameters

of this model are shown in Table A.1 of Appendix A.

To evaluate the mean structure of the fully adjusted LME model, we plot the residuals
against year since diagnosis and against birthYear (not shown). These plots showed no
apparent trends and the residuals are approximately symmetric about 0. We find no evidence

against the final chosen mean structure.
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Figure 4.1: Residuals from the LME model without cancer effects. The vertical lines travel
from the 90th percentile to the 3rd quartile and from the 1st quartile to the 10th percentile.
The triangular and circular points represent the sample medians and means, respectively.
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Estimated

Autocorrelation
1.000

0.383

0.184

0.076

0.007

—0.044

—0.077

—0.099

—0.113

—0.122

—0.127

—0.131

—0.140

—0.144

u
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Table 4.1: Average estimated ACF of residuals from fully adjusted LME model.

Finally, we can use the LME model to assess the autocorrelation in incomes observed on a
given woman. Specifically, if the residuals of the fully adjusted model are autocorrelated,
then the variance-covariance structure of the ARE or ARR models may be better suited to
the data. The autocorrelation function (ACF) is commonly used in time series analysis and
characterizes the correlation between the residuals for each lag. We estimate the ACF for
the residuals of each woman individually, then average these estimates over all women. In
this way, we can informally assess the correlation structure of the error term in the LME
model and determine whether assuming §;; are IID for all ¢ is appropriate. The estimated
ACF, shown in Table 4.1, suggests moderate autocorrelation in the residuals at lag 1 and
(possibly) low autocorrelation at lag 2. The negative estimated autocorrelations at higher
lags are unexpected and are presumably statistically insignificant. These findings suggest
that the ARE or ARR model, which allow the covariance to vary with lag, may provide a
better fit to the data.

To summarize, as we found no evidence that the mean structure of the LME model is
misspecified, we expect that the estimators of the regression coefficients are consistent (Liang
and Zeger, 1986). In contrast, Table 4.1 indicates that the LME model does not properly
account for the autocorrelation in the repeated observations on each woman. Since the
variance-covariance structure of this model is likely misspecified, the standard errors of
the parameter estimates (shown in Table A.1) are likely not consistent (Liang and Zeger,
1986). Therefore, we use the LME model only as a guide for choosing the mean and variance-

covariance structures of the ARE and ARR models, not as a basis for formal inference.
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Variable Estimate | Standard error
Intercept —179.592 5.639
birthYear 0.095 0.003
yearsSincel8 0.479 0.028
yearsSince18? —0.019 0.002
yearsSince183 0.000 0.000
yearsSince18* —0.000 0.000
cancerImmediate —0.148 0.019
cancerShort —0.087 0.023
cancerLong 0.138 0.088
yearsSincel8xcancerLong —0.005 0.002
spouseStatus —0.466 0.020
spouseStatusxcancerLong —0.191 0.028
selfEmploy 0.352 0.024
selfEmployx cancerLong 0.191 0.034

Table 4.2: Estimated regression coefficients and standard errors from the fully adjusted

ARE model.

4.2 Autoregressive error model

In this section, we discuss the results of fitting the ARE model with fully adjusted mean
structure (described in Section 4.1). Parameter estimates and standard errors are shown in
Table 4.2.

4.2.1 Cancer effect

The estimate of the yearsSince18x cancerLong interaction effect indicates that the growth
rate of a woman’s income after being diagnosed with cancer is lower than before being
diagnosed. However, as explained in Section 3.1, we cannot easily interpret the immediate,
short-term, and long-term cancer effects individually. We therefore consider their combined
effect over the years post-diagnosis. Table 4.3 shows, for a woman who does not have a
spouse and is not self-employed, the estimated expected difference in her mean transformed
income if she was diagnosed with breast cancer at the average age of 49 years compared to
her mean transformed income if she had never been diagnosed with cancer. Table 3.1 shows

how the values in Table 4.3 are calculated.

A cancer diagnosis is associated with a decrease in transformed income that is estimated
to be largest in the year following the diagnosis. The total effect of cancer is significant
up to 5 years post-diagnosis, after which the effect of cancer is not significant. In the year
of diagnosis, the estimated difference between the mean transformed income of a woman
diagnosed with cancer at age 49 with no spouse and no self-employment income, and the

same woman had she never been diagnosed with cancer, is —0.252.
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Years since | Estimated total | Standard
diagnosis cancer effect error

0 —0.252 0.0274

1 —0.257 0.0275

2 —0.114 0.0323

3 —0.119 0.0326

4 —0.124 0.0331

5 —0.129 0.0338

6 —0.047 0.0408

7 —0.052 0.0416

8 —0.057 0.0424

9 —0.062 0.0434

10 —0.067 0.0445

Table 4.3: Total estimated effect of cancer based on the ARE model for a woman who is
diagnosed at age 49, does not have a spouse, and is not self-employed.

4.2.2 Other parameter estimates

Birth year has a positive effect on transformed income, meaning that women born later have
higher incomes at a given age, on average. (This effect is sometimes called a cohort effect.)
Transformed income is estimated to increase by 0.095 units when birth year is increased by

1 year, on average.

The cubic and quartic yearsSincel18 terms have non-zero and significant coefficients; how-
ever, we are restricted in the precision of the estimates that we present and are allowed to
express the coefficients to only 3 decimal places. Therefore, these estimated effects appear to
be 0. Due to the scale of the yearsSince18 variable, yearsSince18® and yearsSince18* are
very large; more than 3 decimal places are required to quantify the effects of these variables
precisely. All we can say, then, about the trend in transformed income over yearsSincel8
is that the linear and cubic terms are positive and the quadratic and quartic terms are

negative.

Having a spouse is associated with a decrease in a woman’s transformed income, on average,
and women with spouses experience a larger decrease in mean transformed income after a
cancer diagnosis. If we compare two women, identical except that woman 7 has a spouse
and woman j does not, then, prior to diagnosis, the mean transformed income of woman i is
estimated to be 0.466 units less than the transformed income of woman j. After diagnosis,

that difference increases to 0.657 units.

Receiving income from self-employment is associated with an increase in mean transformed
income, and women with self-employment income experience a smaller change in mean

transformed income after a cancer diagnosis. Specifically, if we assume woman ¢ and woman
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j differ only by their value of selfEmploy, where woman ¢ receives self-employment income
and woman j does not, then, prior to diagnosis, the transformed income of woman i is
estimated to be 0.352 units greater than the transformed income of woman j, on average.

After diagnosis, that difference increases to 0.543 units.

The estimate of the variance of the random effect, o2, is 5.847, and the estimate of the error
variance, 02, is 6.345. The autoregressive parameter, v, is estimated at 0.667. The estimates
of the variance parameters are consistent with our previous observation that the variance
of the responses is high, both among and within individuals. The estimate of v is positive,

consistent with the lag-1 sample autocorrelation reported in Table 4.1.

4.2.3 Diagnostics

The LME model is nested within the ARE model. Therefore, we can formally compare the
two models using a likelihood ratio test. This test requires ML, not REML, estimates, so
we refit the models using ML. The test statistic is 96,693 and is (approximately) a random
draw from a X%1) distribution if v = 0. The p-value is approximately 0, so we can conclude
that the ARE model, which allows for autocorrelation via an AR(1) structure for the error

terms, provides a significantly better fit to the data than does the LME model.

We examine several diagnostic plots based on the fully adjusted ARE model (not shown).
The plot of the observed versus fitted values suggests that the model describes moderate
incomes well. However, fitted values associated with observed values of zero are non-zero and
often very large. This discrepancy is unsurprising given that we created a point mass at 0 by
converting negative incomes to 0. The left tail of the resulting distribution of transformed
income is thus not well described by a normal distribution. Similarly, for large observed
values, the fitted values tend to underestimate the actual values. Overall, the plot suggests

a lack of fit only in the case of extreme observed values.

We also plot the fitted values versus residuals based on the fully adjusted ARE model, where
the residuals are calculated as in Section 4.1. This plot again indicates that points with an
observed value of 0 are not handled well by the model. However, ignoring these points, the

plot does not indicate lack of fit.

The plots of the residuals versus birthYear and the residuals versus yearsSince18 do not
reveal any obvious patterns; the points are approximately symmetric about 0 and have

approximately constant vertical spread.

Based on these plots, we conclude that overall the fit of the ARE model is not problematic,
but that more careful handling of the negative incomes would presumably lead to a model

with improved fit.
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4.3 Autoregressive response model

We now fit the ARR model (3.14) to the data. The explanatory variables included in this
model are birthYear, yearsSincel8, cancerImmediate, cancerShort, cancerLong,
spouseStatus, and selfEmploy and the interaction terms yearsSincel8XxcancerLong,
spouseStatusXxcancerLong, and selfEmploy X cancerLong. Because the autoregressive re-
sponse term in the ARR model introduces curvature into the mean structure of the model (as

shown in Section 3.3.1), we opted to exclude higher order functions of yearsSince18.

The coding of the algorithm to estimate the parameters of the ARR model (see Section 3.5.2)
requires that all women be observed at two or more time points. Therefore, women observed
at only one time point are removed from the sample; 243,335 total observations on 14,425

women remain.

4.3.1 Missing data

Before fitting the model, we must first manage some missing data issues that, due to the
autoregressive response term in this model, are a problem with this model but not with
the LME or ARE models. Since time is defined as the number of years since age 18 and we
do not observe the women in the sample prior to 1992, the observations from ¢ = 0 until
the first observed time point are unavailable. Additionally, some women have records with
intermittent missingness, i.e., they did not file a tax return in one or more of the years
between their first and last observations. The absence of a tax return may be informative
(e.g., the woman may not have earned any income that year) or uninformative (e.g., the
woman was living out of country that year). Differentiating between these two causes of
intermittent missingness is impossible given the information we have available. We assume
that values missing before the first observed time point are missing completely at random

and that intermittent missing values are missing at random.

For the ARR model, as shown in Section 3.5.2, values of the explanatory variables at all
time points between ¢t = 0 and the last observation are necessary to calculate the likeli-
hood. The variables yearsSincel8, birthYear, cancerImmediate, cancerShort, and
cancerLong are known for all time points. However, some values of spouseStatus and
selfEmploy may be unknown. We use a simplistic imputation approach to fill in these val-
ues and acknowledge that a more sophisticated handling of the missing values could lead
to improved parameter estimates. Specifically, for the years from age 18 to the first obser-
vation, if spouseStatus = 1 at the first observation, then we impute the value of 1 for all
years in which the woman is older than 24 (the median age of first marriage for Canadian
women according to Statistics Canada) and impute a value of 0 for the years between ages
18 and 24. If spouseStatus = 0 at the first observation, we impute a value of 0 for all ear-

lier years. If selfEmploy = 1 at the first observation, then we impute the value of 1 at all
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Estimate | Standard error
Intercept —58.636 3.402
birthYear 0.032 8.866 x 1077
yearsSincel8 0.030 5.542 x 1077
cancerImmediate —0.304 2.394 x 1074
cancerShort 0.008 2.339 x 1074
cancerLong 0.448 2.161 x 1073
yearsSincel8XxcancerLong —0.016 1.376 x 1076
spouseStatus —0.327 1.499 x 1074
spouseStatusxcancerLong —0.083 3.206 x 1074
selfEmploy 0.105 2.602 x 10~*
selfEmployXxcancerLong 0.115 6.011 x 10~4
o2 0.592 4.62 x 1074
o? 3.427 8.82 x 107°
p 0.684 5.31 x 107°

Table 4.4: Parameter estimates and standard errors for the ARR model.

earlier years; otherwise we impute the value 0 for all earlier years. For imputing intermittent

missing values, we use last value carried forward.

The total number of imputed values for years prior to the first observation is 303,680, and

the total number of imputed intermittent missing values is 9,365.

4.3.2 Parameter estimates

We maximize the log-likelihood (3.23) based on the imputed data set. Starting values are
required for the parameters; these values are chosen based on the estimates of the parameters
of the ARE model. The estimated effects of the explanatory variables in the conditional form

A

of the ARR model (8) are shown in Table 4.4.

Cancer effect

The estimated rate of change of transformed income is greater before a cancer diagnosis
than afterwards. However, as discussed in Section 3.3.2, we cannot easily interpret the cancer
indicators individually. The estimated total cancer effect, made up of the estimates of the
effects of the three cancer indicators and the interactions, is shown in Table 4.7 from the
year of diagnosis until 10 years post-diagnosis. Table 3.3 shows how to calculate these values.
The total cancer effect can be calculated on the conditional and marginal levels, where the
conditional cancer effect is conditional on the previous year’s income. The marginal total
cancer effect can be interpreted as the mean difference in transformed income between a
woman who was diagnosed with cancer and the same woman had she never been diagnosed.

The estimated effect sizes in Table 4.5 are calculated for a woman who was diagnosed at the
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Estimated total cancer effect
Years since

diagnosis | Conditional SE | Marginal SE
0 —0.344 | 0.0193 —0.344 | 0.0193

1 —0.360 | 0.0193 —0.595 | 0.0325

2 —0.072 | 0.0189 —0.479 | 0.0378

3 —0.088 | 0.0189 —0.415 | 0.0438

4 —0.104 | 0.0191 —0.388 | 0.0486

5 —0.120 | 0.0193 —0.387 | 0.0523

6 —0.144 | 0.0211 —0.408 | 0.0534

7 —0.160 | 0.0212 —0.439 | 0.0563

8 —0.176 | 0.0214 —0.476 | 0.0593

9 —0.192 | 0.0217 —0.518 | 0.0619

10 —0.208 | 0.0220 —0.562 | 0.0641

Table 4.5: Marginal and conditional estimated total effect of cancer based on the ARR model
for a woman who is diagnosed at age 49, does not have a spouse, and is not self-employed.

average age of 49, who does not have a spouse, and who does not receive self-employment

income.

Cancer has a negative effect on transformed income, on average, and the magnitudes of both
the conditional and marginal effects are largest one year after diagnosis. In that year, the
difference between the mean transformed income of a woman who was diagnosed at age 49,
who does not have a spouse, and who does not receive self-employment income, compared to
the mean transformed income of the same woman if she had never been diagnosed, is —0.595
units. Both the marginal and conditional total cancer effects are significantly negative in

all years post-diagnosis.

To illustrate the effect of cancer on the income scale, we compare the predicted income for
an average woman who is diagnosed with cancer (i.e., a woman who has a birth year of
1954 and who was diagnosed at age 49) and who does not have a spouse or self-employment
income to the predicted income of the same woman had she not been diagnosed. Specifically,
using the estimated parameters from Table 4.4, we can calculate the predicted transformed
income of a woman for any year post-diagnosis and her predicted transformed income in
the same year had she never been diagnosed. We can then raise these values to the fourth

power to obtain predictions on the scale of dollars.

For the average woman, the total effect of cancer translates to a predicted loss of $4,536
in the year of diagnosis, compared to the same woman had she not been diagnosed with

cancer. At 10 years post-diagnosis, the predicted difference increases to $8,741.
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Years since

diagnosis | Diagnosed | Not diagnosed | Difference
0 46,821 51,357 —4,536

1 44,862 52,665 —7,803

2 47,522 53,998 —6,476

3 49,594 55,356 —5,762

4 51,240 56,739 —5,499

5 52,584 58,148 —5,564

6 53,602 59,583 —5,981

7 54,507 61,045 —6,538

8 55,334 62,533 —7,199

9 56,109 64,048 —17,939

10 56,850 65,591 —8,741

Table 4.6: Predicted income (dollars) of a woman who was diagnosed versus a woman who
was not diagnosed. Values are for a woman born in 1954, diagnosed at age 49, with no
spouse or self-employment income.

Other parameter estimates

The cohort effect of year of birth is positive, i.e., women born in later years have greater
income, on average. If we compare a woman, 4, to a woman, j, who was born 1 year later,
then, conditional on their previous year’s incomes, the mean transformed income of woman
j is estimated to be 0.032 units greater than that of woman i when they are the same age.
Or, if we do not condition on their previous year’s incomes, the mean transformed income
of woman j is estimated to be, for example, 0.032 units greater than woman ¢ at age 18 and

0.101 units greater than woman 4 at age 60.

We can interpret the effect of yearsSince18 as described in Section 3.3.2. For example,
the estimated change in mean transformed income from age 49 to 50 for a woman who was
born in 1954, was not diagnosed with cancer, and neither has a spouse nor is self-employed

in any year from ages 18 to 50, is 0.0950.

For spouseStatus and selfEmploy, we can interpret the parameter estimates as explained
in Section 3.3.2. First, consider two women who, in all years prior to time ¢ (where ¢ is prior
to diagnosis), had the same value of all variables, but in year ¢ differ only in that woman
1 has a spouse and woman j does not. Then the estimated mean difference in transformed
income in year ¢t of woman ¢ compared to woman j is —0.327. Similarly, if the two women
differ in year ¢ only in that woman ¢ has self-employment income and woman j does not,
then the estimated mean difference in transformed income in year ¢ of woman i compared

to woman 7 is 0.105.
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Not only do women with spouses have lower values of mean transformed income pre-
diagnosis, but they also experience stronger negative effects of a cancer diagnosis. If, at
some post-diagnosis time ¢, we compare two women who were diagnosed with cancer in
the same year, have the same values of all variables in all years prior to ¢, and at time ¢
differ only in that woman i has a spouse and woman j does not, then the estimated mean

difference in transformed income of woman i compared to woman j is —0.083.

In contrast, women with self-employment income experience smaller negative effects of a
cancer diagnosis. Again, we can compare two women at some post-diagnosis time ¢ who
were diagnosed with cancer in the same year, have the same values of all variables in all
years prior to time ¢, and at time ¢ differ only in that woman 7 has self-employment income
and woman j does not. The estimated mean difference in transformed income of woman 4

compared to woman j is 0.115.

2

2 is estimated at 0.592 and the error variance, o2, is

The variance of the random effect, o
estimated at 3.427. The autoregressive parameter, p, is estimated at 0.684. The estimate of
o2 is consistent with our expectations, as we have observed that the within-subject variance

is large. However, the variance of the random effect is surprisingly low.

4.3.3 Diagnostics

If p = 0 and the same linear predictor is used in the LME model and conditional form
of the ARR model, then the LME model is nested within the ARR model. However, our
versions of these two models used different mean structures (the LME model had higher
order yearsSincel8 terms), so we cannot compare them using a likelihood ratio test. To
enable some sort of comparison of the models, we refit the LME model (by ML) with
the same explanatory variables as in the ARR model. The likelihood ratio test statistic is
103, 628 and is approximately a random draw from a X%l) distribution if p = 0. The p-value
is approximately 0, so we can conclude that the ARR model provides a significantly better
fit to the data than the LME model (with this simplified mean structure, at least).

To investigate the fit of the ARR model, we calculate the residuals conditional on Y;;_;

and wu; (which we will call the conditional residuals) as
eit = Yit = (PYiz-1+ Xieh + ), (4.1)

where 1; is the value of u; predicted using an empirical Bayes method (Verbeke and Molen-
berghs, 2000).
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Table 4.7: Average estimated ACF of conditional residuals from the ARR model.

The errors in the conditional form of the ARR model in (3.13) are uncorrelated and have
constant variance. Therefore, the conditional residuals should be approximately uncorre-

lated and have approximately constant variance if the fit of the model is reasonable.

First, we informally evaluate if the conditional residuals are uncorrelated. The estimated
ACF of the conditional residuals is calculated as described in Section 4.1 and is shown
in Table 4.7. The estimated autocorrelation is negligible at all lags, indicating that the

residuals are indeed close to uncorrelated.

A plot of the conditional residuals versus fitted values (not shown) indicates, as was the
case with the ARE model, that the points with an observed value of 0 are not handled
well by the model. The residuals tend to be more positive at small fitted values and more
negative at large fitted values, indicating lack of fit at the extremes. Plots of the conditional
residuals versus the explanatory variables (not shown) did not reveal other problems with
the model fit.

We can calculate marginal residuals using the marginal expectation of the responses as

A A

e; =Y, — B;X;3,

where e; = (eijp, €1, ..., e;7;) is vector of residuals at each time point, and the remaining

notation is the same as in Section 3.5.2.

The marginal residuals are difficult to interpret due to the complicated properties of the

marginal model; for example, we do not expect them to have constant variance over time
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or to be uncorrelated. However, the plot of the marginal residuals versus the fitted values
(not shown) could potentially reveal problems with the assumed marginal mean structure.
In our case, the residuals were slightly positive, on average, but did not otherwise reveal

any patterns.

Overall, we did not find clear statistical evidence of lack of fit of the ARR model except at

the extremes of the range of incomes.

4.4 Summary of application

Using diagnostic plots based on the LME and ARE models, we did not find strong evidence
that the ARE model is misspecified. Likewise, we found little evidence of misspecification
of the ARR model. The ARE and ARR models are not nested; we cannot formally compare
them with a likelihood ratio test. Therefore, we have no statistical evidence with which
to distinguish between the fit of the ARE and ARR models. However, we prefer the ARE
model for its simplicity and interpretability and believe that inference based on the ARE
model is more reliable than that based on the ARR model.

The ARR and ARE models describe the nature of the cancer effect very differently. The total
cancer effect estimates based on the ARE model shown in Table 4.3 and the marginal total
cancer effect estimates from the ARR model shown in Table 4.5 are estimates of the same
quantity (the total difference between mean income of a woman who is diagnosed with cancer
and that had she not been diagnosed). However, the estimates differ greatly. For instance,
in the year of diagnosis, a 95% confidence interval based on the ARE estimate for the total
cancer effect is (—0.306, —0.198) and based on the marginal estimate from the ARR model
is (—0.382,—0.306). These confidence intervals do not overlap; therefore, the estimated
effect sizes are significantly different. By 10 years post-diagnosis, this difference has grown
dramatically: a 95% confidence interval based on the ARE model is (—0.154,0.0202) and
from the ARR model is (—0.688, —0.436). Notably, based on the ARE model, the total
cancer effect is insignificant 5 years post-diagnosis, but, based on the ARR model, the

cancer effect is still significant 10 years post-diagnosis.

Clearly, the two models suggest very different impacts of a cancer diagnosis. As discussed in
Section 3.3.2, the ARR model assumes that the effects of all explanatory variables vary over
time and depend on p. This assumption is likely unreasonable, and the dramatic difference
between the total cancer effect estimates from the ARE and ARR models could suggest
that this assumption is not met in the case of the cancer effect. Moreover, results from
previous studies on the effect of cancer on income align with the results from the ARE
model, i.e., they suggest that the effect of cancer decreases over time (Syse et al., 2008;
Jeon, 2017).
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We would have liked to present predicted income values from the ARE model as we did for
the ARR model in Table 4.6. However, because we are not allowed to express the estimated
regression coefficients to more than 3 decimal places, we lack the precision in the coefficients
of the cubic and quartic yearsSince18 terms necessary to generate reasonable predicted
values for the ARE and LME models. As we have already expressed, we have reservations
about the accuracy of the estimates based on the marginal ARR model and the same

reservations apply to the predicted incomes in Table 4.6.
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Chapter 5

Simulation study

The purpose of this simulation study is to investigate the performance of the three models
when they are fit to data generated from an ARE model. LME, ARE, and ARR models
are all fit to these simulated data, and the performance of the estimator of the effect of
cancer in each model is judged. We chose to use the ARE model as the true model in this
simulation because, of the three models we are studying, it seems to be the most justifiable
in this context, according to the analysis in Chapter 4. We expect the ARE estimator to
perform the best since it is based on the true model; we use it as a “control” against which

we can compare the other estimators.

The simulated values of transformed income are generated from a simplified version of our
ARE model with only yearsSince18, cancerLong, and birthYear as explanatory variables.
We fix birth year at 1954 and age of diagnosis at 49. Setting the year of birth and age of
diagnosis of all women to the same values allows for easier comparison between the ARR

estimator and the other estimators.

The parameter values used in the simulation are shown in Table 5.1. Two different values
2

202, and the number of women, N, were

for each of the coefficient of cancerLong, o
considered. The larger magnitude value of the cancer effect was chosen to be similar to the
total cancer effect estimated in Section 4.2, and the smaller magnitude value was chosen
to assess performance when the effect size is smaller than what is observed in Section 4.2.
The values of the variance parameters were chosen so that the larger values approximately
match the large variance of the data from Chapter 4, and the smaller values were chosen to
assess whether performance improves when the responses have lower variance. Lastly, the
values of N were chosen to assess performance on a very small and a moderate size sample.
A run is defined as a unique combination of the values of these parameters; we therefore

consider 16 runs in total. The values of the other parameters (the intercept, yearsSince18
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Parameter Value(s)
Intercept -179.592
Coeflicient of birthYear 0.095
Coefficient of yearsSincel18 | 0.479
Coeflicient of cancerLong —0.35, —0.1
v 0.65

o2 1, 6.25

o? 1, 6.25

N 50, 1000

Table 5.1: Parameter values chosen for the simulation.

effect, birthYear effect, and 7) remain constant across all runs; they were chosen to reflect
the parameter estimates from Section 4.2. We simulate 100 data sets (replicates) for each

run.

When estimating the parameters of the ARR model using the method of direct optimization
(see Section 3.5.2), starting values are required. For the coefficients and variance parameters,
starting values were randomly selected from an interval around the true values. For the
autoregressive parameter, p, which has no corresponding true value, the starting value was

randomly selected from an interval around ~.

For the LME and ARE models, the estimated coefficient of the cancer term can be in-
terpreted as both the conditional and marginal effects of cancer. For the ARR model, the
conditional and marginal estimates are different. In particular, the estimated marginal effect
of cancerLong at time ¢ is calculated as % 3 , where [ is the conditional effect and %4
is the time of diagnosis. The marginal estimate is a function of the number of years since
diagnosis; in the following discussion, the marginal estimate refers to the estimate at one

year post-diagnosis, i.e., for t — ty; = 1.

We investigate three properties of the four estimators (ARE, LME, ARR conditional, and
ARR marginal): bias, accuracy of the standard errors, and the coverage probability of a

95% confidence interval for the effect.

We first present results on the bias of the estimated effects. Figure 5.1 shows the estimated
bias of each estimator. The estimated bias for each run is calculated as the average of the
estimated effects from the 100 replicates less the true value of the cancer effect. The error
bars indicate the 95% Wald confidence interval for bias, where the standard error of the

estimated bias is defined as the sample standard deviation of the 100 bias estimates.

Figure 5.1 shows that the LME and ARE estimators are approximately unbiased across
the 16 runs; the 95% confidence intervals for bias of both the ARE and LME estimators
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Figure 5.1: Estimated bias of estimators of the cancer effect. Error bars indicate the 95%
Wald confidence interval for bias.
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Figure 5.2: Model-based standard errors vs. empirical standard errors of the effect estimators
for all runs.

include 0 in all runs. In contrast, the ARR marginal and conditional estimators have very
large estimated bias across all runs and most of the associated confidence intervals exclude
0.

Next, we assess the accuracy of the standard errors associated with the estimators. Figure 5.2
is a plot of the average model-based standard error vs. the empirical standard error for each
run and estimator. The former is the average of the standard errors associated with the 100
replicates. The latter is the sample SD of the 100 effect estimates. The empirical standard
error approximates the true SD of the estimator. If the model-based standard errors are

accurate, we would expect them to lie close to the y = x line.

Figure 5.2 shows that, as expected, the standard errors of the ARE estimators are very
accurate. The standard errors of the ARR conditional estimators are close to accurate;
however, the standard errors of the ARR marginal estimators tend to underestimate the
true SDs, especially larger SDs. Similarly, the standard errors of the LME estimators tend
to underestimate the true SDs and become less accurate as the true SD increases. Unsur-

prisingly, the negative bias of the standard errors of the marginal ARR and LME estimators
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Figure 5.3: Estimated coverage probabilities of confidence intervals for the cancer effect.
Error bars represent the 95% Agresti-Coull confidence interval for coverage probability.

is more pronounced when the error variance is large and the sample size is small (see points

on the right that lie far below the y = z line).

Lastly, we inspect the coverage probability of 95% confidence intervals for the cancer effect.
For each replicate, the 95% Wald confidence interval is calculated. The coverage probability
is estimated as the proportion of the 100 replicates from a run that contain the true effect
size within the confidence interval. Figure 5.3 shows the estimated coverage probability for
each estimator and each run, along with the 95% Agresti-Coull confidence interval for the
coverage probability. Note that, for runs 9-16, the coverage probabilities based on the ARR
marginal and conditional estimators are the same, so only the former are visible on the

plot.

As anticipated, the nominal coverage probability of 0.95 is within all confidence intervals
based on the ARE estimator. The coverage probability of confidence intervals based on the
LME estimator is smaller than 0.95 for all runs, which is due to inaccurate standard errors,

not bias (as per our discussion above).
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The coverage probabilities of confidence intervals based on either the conditional or marginal
ARR estimators are very low. This result is due to bias in both the effect estimators and
their standard errors. In runs 9-16, the coverage probability is 0. Perhaps surprisingly, the
coverage probabilities are slightly better in runs 1-8, where the sample size is 50, than in
runs 9-16, where the sample size is 1000. If we were fitting the correct model, we would
expect improved performance with increased sample size. However, under this misspecified
model, the bias of the effect estimates remains high, even for larger NV, while the standard
error decreases. As a consequence, the confidence intervals are shorter and less likely to

include the true effect.

To summarize, as expected, the performance of the ARE estimator, which is based on the
true model, is excellent. Likewise, because the LME model has the same mean structure
as the true model (but has a simpler variance-covariance structure), the LME estimator
appears to be unbiased but its standard error is biased low, resulting in reduced coverage
probability of confidence intervals for the cancer effect. In contrast, the ARR model has
different mean and variance-covariance structures from the true model. The estimator based
on this model is biased and its standard error is biased low, leading to very poor coverage

probabilities of confidence intervals for the cancer effect.
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Chapter 6

Conclusions

In this project, we explored the theoretical properties of three models, the LME, ARE, and
ARR models, and the (RE)ML estimators of their parameters. We considered the condi-
tional and marginal forms of the models, both of which are important for understanding
and interpreting the models. We showed that the marginal form of the ARR model has
a marginal mean structure that is non-linear in time. Moreover, this model is based on
strong assumptions about the relationship between the mean response and the explanatory
variables, namely, that the effects of these variables change over time and are a function
of p and t. This feature of the ARR model leads to difficulty in interpreting the model

parameters and in handling missing values of explanatory variables.

We also applied these models in an analysis of the income trends of breast cancer survivors.
The simplest model, the LME model, provides insight into the mean and autocorrelation
structure of the income observations. The ARE model appears to provide a reasonable fit
to the data and is simple to interpret. On the other hand, while our diagnostics did not
indicate severe lack of fit of the ARR model, the marginal mean structure of this model
seems unrealistic, and the estimates of the cancer effects based on this model are thus

questionable.

Using the ARE model, we detected a significant and negative effect of cancer that is largest
in the year of diagnosis and the year following. The rate of growth of income was found
to be lower post-diagnosis compared to pre-diagnosis, on average. Additionally, women
with spouses tend to experience a greater negative effect of cancer, while women with self-

employment income tend to experience a smaller negative effect of cancer.

Lastly, we investigated the performance of the three models in a simulation study where
the true model was an ARE model with a linear age term. Under the settings considered,

the ARE estimator of the effect of cancer on income performed very well. However, the
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ARR estimator performed very poorly, raising questions about the performance of this
estimator under model misspecification, particularly when the true mean trend over time

is linear.

6.1 Future work

Many facets of this work are left unexplored, particularly regarding issues identified in the
analysis in Chapter 4, that, due to time constraints and delays in data access, we were

unable to address fully.

To describe different aspects of the effect of cancer, we used multiple indicator variables and
interaction terms. While feasible, this approach led to difficulties in interpreting the cancer
effect—even in the LME and ARE models. In the future, we would consider alternative
definitions of the cancer effect; one possibility is to include only cancerLong but allow its
coefficient to be time varying (e.g., Hastie and Tibshirani (1993)). With this approach,
the differences in the effect of cancer in each year post-diagnosis could be handled in a
more flexible way. Likewise, varying-coefficient models could provide a simpler and more
accurate characterization of the age trend (which we presently capture using a fourth-order

polynomial).

We were able to include the effects of spousal status and self-employment status in our
models. Other explanatory variables, such as geographic location, children indicator, and
employment sector, are also of interest for the future. In particular, we would like to de-
termine if cancer has a disparate effect in groups defined by these variables. Including a
children indicator could pose challenges; in our models, including the indicators for spouse,
self-employment, and children together resulted in a multicollinearity issue. We are unsure
as to the cause of this issue. Initially, we thought the cause could be a strong association
between the spouse and children indicators; however, these two variables are not strongly
associated and can be included in a model together without incident. This issue requires
further investigation, and, for this analysis, we chose to include only the indicators for
spouse status and self-employment in the model as those variables are of greater interest.
However, in the future, we plan to investigate the multicollinearity issue further and develop

a solution that allows all three effects to be estimated.

One of the most substantial issues we encountered in the application was the management
of negative observed values of after-tax income. A number of women in the sample had a
negative value of after-tax income in one or more years; since our chosen transformation
can be applied only to non-negative incomes, we converted all negative incomes to 0. We
acknowledge that this choice (in particular, ignoring the magnitude of the negative obser-

vations) may bias the estimate of the cancer effect. Moreover, our approach caused a point
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mass at 0 in the distribution of transformed income that violates the normality assumption
and negatively affects the fit of the models. To improve the handling of the 0 values, one
possible solution is a mixture model that assigns a probability, p, to 0 and the probability

1 — p to some positive, continuous distribution.

Alternatively, we could use employment income or gross income, rather than after-tax in-
come, as the response variable, since negative values of these types of income cannot oc-

cur.

In general, more work is needed to understand the information that the negative income
values provide about the effect of a cancer diagnosis. For example, negative values could
arise if medical expenditures (resulting from a cancer diagnosis) claimed on a tax return are
greater than income earned. This aspect of the effect of cancer would not be fully captured
in our analysis. One option is to use a bivariate longitudinal model to describe how a cancer

diagnosis affects medical expenditures and employment income simultaneously.

An alternative approach to the mixed effects models studied in this project is the modelling
of the marginal effect of cancer and other explanatory variables directly. Given the com-
plexity of the distribution of incomes (particularly when negative incomes are included),
the method of generalized estimating equations (GEEs) (Liang and Zeger, 1986) could be
desirable. With this approach, we would need to specify the marginal mean, variance, and
covariance structure of income, but not its distribution. In addition to avoiding the speci-
fication of a distribution for income, GEEs have two advantages in this context. First, the
simple form of the marginal mean structure (which is not conditional on random effects) is
appealing when population-level effects, such as the effect of cancer, are of interest. Second,
by using raw income as the response variable, the regression coeflicients can be directly
interpreted in terms of expected change in income (not transformed income). However,
since the model is not fully specified, likelihood-based procedures, for example the likeli-
hood ratio test, cannot be used. Additionally, GEEs require a stricter assumption about
the missing data mechanism compared to likelihood-based estimation methods (Verbeke
and Molenberghs, 2000). Nonetheless, this method, which allows modelling income with-
out a transformation and assumption of normality, may provide a solution to several of
the issues we encountered in this project. If a full model (and ensuing likelihood methods)
are deemed necessary, Heagerty and Zeger (2000) presents a general marginal modelling

approach.

Household income is the income generated by a family unit. The effect of cancer on house-
hold income is also of interest and may differ from the effect on individual income if, for

example, the spouse of a breast cancer survivor increases their employment income to com-
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pensate for the survivor’s decrease in income. A bivariate longitudinal model of the couple’s

individual incomes could be used to characterize such an effect.

The ARR model required complete data on the explanatory variables from age 18 until the
last observation. We used a naive single imputation method to fill in any missing values, but,
if we were to use this model in the future, we would explore different methods of creating

complete data.

We observed in Chapter 2 that the SD of transformed income increases with age. One
extension of the ARE model allows the model for the errors to be non-stationary, in which
case, the variance of the response is time varying. Although we did not see strong evidence
of changing variance in the residual plots, we would like to apply this model to the breast

cancer data set to see if the model fit is improved.

The simulation study we conducted in Chapter 5 is limited in scope; we chose a simple mean
structure that is linear in age and used a limited selection of parameter values. As shown in
Chapter 2, the trend in transformed income over age from a real sample displays curvature.
As shown in Section 3.3.1, the trend implied by the ARR model has curvature at small ¢
(even when the model contains only a linear age term). Therefore, the ARR model would
presumably perform better in situations more similar to that described in Chapter 4, where
the true model contains curvature. Nevertheless, our simulation study raises questions about
the performance of the ARR estimator of the cancer effect when the true model is not an
ARR model. Further work is needed to identify scenarios where this model performs well
and where it does not. Based on the results of our preliminary study, we would strongly
caution against the application of the ARR model to data sets where the mean structure

does not contain curvature in the time trend.

Further, more detailed study is required to confirm our results. However, our preliminary
findings indicate that the income of breast cancer survivors decreases significantly immedi-
ately following diagnosis and that the growth in income of breast cancer survivors is slower
after diagnosis. These results suggest that planning for the needs of breast cancer survivors

should consider not only their health but also their financial well-being.

In the near future, we expect data on both breast cancer survivors and controls, as well
as additional important explanatory variables, to become available. Our work provides a
solid basis for a comprehensive study of the effect of cancer on the income of breast cancer

survivors.
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Appendix A

Variable Estimate | Standard error
Intercept —204.572 5.200
birthYear 0.108 0.003
yearsSincel8 0.549 0.018
yearsSince18? —0.024 0.001
yearsSince183 0.001 0.000
yearsSince18* —0.000 0.000
cancerImmediate —0.068 0.019
cancerShort —0.115 0.020
cancerLong —0.113 0.078
yearsSincel8xcancerLong —0.001 0.002
spouseStatus —0.756 0.019
spouseStatusxcancerLong —0.217 0.024
selfEmploy —0.024 0.024
selfEmployxcancerLong 0.248 0.033

Table A.1: Estimated regression coefficients and standard errors from the fully adjusted
LME model. The standard errors are likely inconsistent, as we suspect the variance-
covariance structure of the LME model is misspecified.

Parameter | Estimate
o2 7.295
o? 4.937

Table A.2: Variance parameter estimates from the fully adjusted LME model. We expect
these estimates to be biased due to misspecification of the variance-covariance structure in
the LME model.
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Years since | Estimated total | Standard
diagnosis cancer effect error

0 —0.327 0.0253

1 —0.328 0.0255

2 —0.261 0.0260

3 —0.262 0.0264

4 —0.263 0.0270

5 —0.264 0.0278

6 —0.150 0.0318

7 —0.151 0.0325

8 —0.152 0.0333

9 —0.153 0.0342

10 —0.154 0.0352

Table A.3: Total estimated effect of cancer based on the LME model for a woman who is
diagnosed at age 49, does not have a spouse, and is not self-employed. The standard errors
are likely inconsistent, as we suspect the variance-covariance structure of the LME model
is misspecified.
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