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Abstract

The process of integrating observations into a numerical model of an evolving dynamical

system, known as data assimilation, has become an essential tool in computational science.

These methods, however, are computationally expensive as they typically involve large

matrix multiplication and inversion. Furthermore, it is challenging to incorporate a constraint

into the procedure, such as requiring a positive state vector. Here we introduce an entirely

new approach to data assimilation, one that satisfies an information measure and uses the

unnormalized Kullback-Leibler divergence, rather than the standard choice of Euclidean dis-

tance. Two sequential data assimilation algorithms are presented within this framework and

are demonstrated numerically. These new methods are solved iteratively and do not require

an adjoint. We find them to be computationally more efficient than Optimal Interpolation (3D-

Var solution) and the Kalman filter whilst maintaining similar accuracy. Furthermore, these

Kullback-Leibler data assimilation (KL-DA) methods naturally embed constraints, unlike Kal-

man filter approaches. They are ideally suited to systems that require positive valued solu-

tions as the KL-DA guarantees this without need of transformations, projections, or any

additional steps. This Kullback-Leibler framework presents an interesting new direction of

development in data assimilation theory. The new techniques introduced here could be

developed further and may hold potential for applications in the many disciplines that utilize

data assimilation, especially where there is a need to evolve variables of large-scale sys-

tems that must obey physical constraints.

Introduction

Data assimilation is the process by which we merge two types of information about a dynamic

system, a numerical model of the underlying processes and observations of the evolving sys-

tem. The resulting analysis should ideally be optimal in the sense of utilizing associated error

and representativeness of the model and observations. The data assimilation procedure can be

used to improve initial conditions, boundary conditions and/or parameter values of the

numerical model, resulting in better estimates of the state of the system and improving predic-

ability. Data assimilation is most prominently used in the atmospheric and oceanographic sci-

ences where it is essential for modern numerical weather prediction [1]. In addition to being
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extensively used throughout the geosciences [2] it is increasingly being found a useful compu-

tational tool in a wide array of other disciplines, including medicine [3], epidemiology [4],

ecology [5], and neurobiology [6].

In recent years there has been a renewed interest in the mathematical foundations of data

assimilation (e.g., [7, 8]). One of the research developments being pursued is the consideration

of different metrics for the model–observation differences and regularizer that are minimized

in data assimilation algorithms. The standard data assimilation approach involves minimizing

an objective function of weighted L2-norms, otherwise known as Tikhonov regularization.

However, minimization involving a L1-norm for the regularization (or background) term has

also been used and this is found to be particularly useful for tracking sharp fronts and disconti-

nuities (e.g., [9, 10]). Rao et al. [11] found L1-norm data assimilation to be beneficial when

dealing with outlier observations, but had the drawback that solutions lacked smoothness near

the mean, this desirable property was retained by using the Huber-norm, a hybrid that utilizes

L1 in the presence of outliers and L2 close to the mean. An alternative approach to data assimi-

lation, explored by Feyeux et al. [12], utilizes optimal transport theory and within this context

the Wasserstein distance (minimizing kinetic energy) replaces the L2 distance. Feyeux et al.

[12] demonstrated how this approach holds potential for addressing position errors, see also Li

et al. [13]. In this paper we introduce another alternative approach to data assimilation, one

which explores an information perspective and uses the Kullback-Leibler divergence.

The Kullback-Leibler divergence (KL) between two probability distributions, P and Q, orig-

inally proposed by Kullback and Leibler [14], is defined as the expectation of the logarithmic

difference between the probabilities P and Q, where the expectation is taken using P,

KL ðP;QÞ ¼ E ln
P
Q

� �� �

: ð1Þ

For two probability densities P and Q of a continuous random variable x we have

KL ðP;QÞ ¼
Z 1

� 1

PðxÞln
PðxÞ
QðxÞ

� �� �

dx ð2Þ

and for two probability distributions of a discrete random variable

KL ðP;QÞ ¼
X

x2X

PðxÞln
PðxÞ
QðxÞ

: ð3Þ

Sometimes referred to as the cross-entropy distance or relative entropy, the Kullback-Lei-

bler divergence can be thought of as measuring the discrepancy between probability distribu-

tions, in this case the divergence of P from Q. From a Bayesian perspective it is a measure of

information gained when an a priori probability distribution, Q, is updated to the posterior

probability distribution, P. The Kullback-Leibler divergence is not strictly a true metric, and is

not symmetric, hence in general KL(P, Q) 6¼ KL(Q, P). This is because it is an expected value

(Eq 1) and therefore it can differ depending on which distribution you take the expectation

with respect to. Therefore, the Kullback-Leibler divergence is not a measure of distance in the

usual sense but rather can be thought of as a directed, or orientated, distance; although a sym-

metric KL-functional, known as the Jensen-Shannon divergence (JSD), can be constructed as

JSD ðP;QÞ ¼
1

2
KL ðP;MÞ þ

1

2
KL ðQ;MÞ; ð4Þ

where M ¼ 1

2
ðP þ QÞ.
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A broader class of f-divergence was introduced by Csiszár (see, for example, [15]):

Df ðP;QÞ ¼
Xn

i¼1

qif
pi

qi

� �

; ð5Þ

where f is a convex function on (0,1) with f(1) = 0, P = (p1, . . ., pn)> and Q = (q1, . . ., qn)>.

Following Csiszar [15] the KL-divergence for arbitrary P;Q 2 Rn
þ

can be considered the f-

divergence with

f(t) = t ln(t) − t + 1, that is

KL ðP;QÞ ¼
Xn

i¼1

piln
pi

qi

� �

þ qi � pi: ð6Þ

This is sometimes referred to as the generalized KL-divergence or the unnormalized KL-diver-

gence; noting that if P and Q are probability distributions then
Pn

i¼1
pi ¼

Pn
i¼1

qi ¼ 1 and the

linear terms fall away giving the (normalized) KL-divergence (Eq 3). The Bregman divergences

[16] are another important class of divergences between non-negative vectors, defined in

terms of a strictly convex function, of which the generalized KL-divergence (Eq 6) is also a spe-

cial case. Eq (6) is the definition that will be used throughout this paper, and is consistent with

use by others, such as those within the signal processing and optimization community (e.g.,

[17, 18]). Note that the two fundamental properties remain intact; namely,

(i). non-negativity: KL(P, Q)� 0 with equality if and only if P = Q, and

(ii). asymmetry: KL(P, Q) 6¼ KL(Q, P).

At its essence KL(P, Q) is a coding penalty associated with selecting Q to approximate P.

This KL-divergence also satisfies the homogeneity property of a distance:

KL ðaP; aQÞ ¼ aP ln
aP
aQ
þ aQ � aP;

¼ aKL ðP;QÞ; for some a 2 Rþ:

It is informative to contrast the KL-divergence (Eq (6)) with the Euclidean distance, d, in a

simple case: d(1001, 1000) = d(2, 1) = 1 whereas KL(1001, 1000) = 0.005 and KL(2, 1) = 0.3863.

The discrepancy in KL values actually has greater similarity to that of the relative Euclidian dis-

tance (1/1001� 0.001 and 1/2 = 0.5). In this sense the Euclidian distance can be loosely

thought of in terms of an absolute difference and the KL-divergence in terms of a relative

difference.

The KL-divergence, as an information measure rather than a distance measure, will lead to

an interesting new approach to data assimilation. Furthermore, the naturally embedded posi-

tivity constraint will prove useful to many problems applicable to data assimilation. Con-

straints are often required, or are desirable, to enforce non-negatively of certain physical

quantities; such as length, volume and mass, variables such as precipitation and humidity, and

concentrations of tracers. However, Kalman filter type approaches do not naturally handle

such constraints. Quick-fix approaches such as simply setting negative values to zero are not

optimal. Whereas the more involved approach of Gaussian anamorphosis (e.g. [19, 20]),

whereby a nonlinear change of variables, such as a log transform, is introduced during the

analysis step, are not ideal and may not be suitable for certain applications (e.g. [21]). More

sophisticated constrained Kalman filtering data assimilation methods such as [22, 23] incorpo-

rate an optimization step that involves a projection into the constrained region. In contrast,

our proposed KL-divergence filtering method will guarantee a positive state vector by
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construction; without need for any projection, transformations, ad-hoc adjustments, or any

additional steps.

Methods

In this section we review the traditional formulation of the data assimilation problem and out-

line sequential solution approaches. We then extend this formulation to describe a new data

assimilation approach that utilizes Kullback-Leibler divergence.

The data assimilation problem

Suppose at some time tk we have partial observations, yk, and a background estimate, xbk , of

some true state, xtk. The best estimate of that state, utilizing both background and observations,

is given by the minimum, with respect to x, of an objective function, known as the 3D-Var cost

function,

JðxÞ ¼
1

2
jjHkx � ykjj

2

R� 1
k
þ

1

2
jjx � xbkjj

2

B� 1
k
: ð7Þ

Here jj � jj
2

A ¼ h�; �iA is a squared L2-norm weighted by a covariance matrix A, with the

weighted inner product defined as ha, biA = a> Ab. The observations contain serially uncorre-

lated Gaussian errors, μk and are related to the state by an observation operator Hk, such that

yk ¼ Hkxtk þ mk with EðmkÞ ¼ 0 and Eðmkm
>
k Þ ¼ Rk. The background estimate also contains

serially uncorrelated Gaussian errors, such that Eðxtk � xbkÞ ¼ 0 and

Eððxtk � xbkÞðx
t
k � xbkÞ

>
Þ ¼ Bk. The minimum of the cost function (Eq 7) is a standard result

given as:

xk ¼ xbk þ BkH>k ðHkBkH>k þ RkÞ
� 1
ðyk � HkxbkÞ: ð8Þ

From a Bayesian perspective xk is the expectation of the state of the system conditioned on the

data, xbk and yk (see, for example, [7]). In the case of non-Gaussian errors this will still be the

best linear unbiased estimator.

The Kalman filter

In a sequentially updated system the background state is provided by the model forecast, xfk, at

time tk, and is then updated by the best estimate (Eq 8) to give the analysis state, xak, at time tk.
This analysis state is then evolved forward in time by a numerical model of the evolving sys-

tem, Mk,k+1, to give the forecast state xfkþ1
, at time tk+1. In a similar manner the background

errors are also evolved in time and updated to give a covariance forecast error, Pf
kþ1

, and a

covariance analysis error, Pa
kþ1

, at time tk+1. For a linear system, with matrices Mk−1,k and Hk,

this process gives rise to the well-known Kalman Filter:

forecast

( xfk ¼ Mk� 1;k xak� 1
;

Pf
k ¼ Mk� 1;kPa

k� 1
M>

k� 1;k þ Qk;
ð9Þ

analysis

( xak ¼ xfk þ Kkðyk � HkxfkÞ;

Pa
k ¼ ðI � KkHkÞPf

k;
ð10Þ
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where

Kk ¼ Pf
kH
>
k ðHkPf

kH
>
k þ RkÞ

� 1 ð11Þ

is referred to as the Kalman gain matrix and Qk denotes the covariance of the model error

(assumed normally distributed, unbiased and serially uncorrelated).

Kalman filter approximations

It is computationally expensive to propagate the error covariance matrix forward in time (Eq

9), prohibitively so for large systems. Furthermore, computing the full Kalman gain matrix (Eq

11), at each step, is typically impractical as it involves multiplying and inverting large matrices

(which may be ill conditioned). As such, an approximation often used is to fix the error covari-

ance matrix, that is, let Pk = P0 for all tk. This implementation method is often referred to as

Optimal Interpolation (OI). To aid the inversion step the matrix is typically modified to have a

simplified structure. For a non-linear model and/or observation operator a linearization about

the background state is required in order to propagate covariances and this formulation is

known as the extended Kalman filter (EKF). The ensemble Kalman filter (EnKF) is a popular

implementation approach as it does not require a linear approximation, but instead involves

propagating an ensemble of analysis vectors and then updating the ensemble using the obser-

vations, where the state vector is the ensemble mean and the state error covariance matrix is

constructed by the ensemble covariance matrix (see, for example, [24]).

Kullback-Leibler regularization

The use of Kullback-Leibler minimization for static inverse problems has previously been

established. For example, Resmerita and Anderssen [25] have highlighted the choice of KL-

divergence as both residue minimizer and regularizer in a two-term cost function for solving

ill-posed linear inverse problems. We now describe two iterative methods for minimizing

functionals involving additive KL-divergence terms.

Expectation maximization (EM). The expectation maximization (EM) algorithm [17]

was originally used by Byrne [26] to determine the solution to the following regularization

problem:

For x 2 RN
þ

and 0� α� 1 minimise

JðxÞ ¼ aKL ðd;TxÞ þ ð1 � aÞKL ðq; xÞ; ð12Þ

to solve a possibly inconsistent linear system Tx = d, where T 2 RM×N and d 2 RM
, and where

q 2 RN
is an a priori estimate of x.

The solution, equivalent to maximizing Burg entropy, is derived from alternating minimi-

zation of related KL distances between convex sets [26]. Following Qranfal and Byrne [27] the

iterative solution can be described in a single step:

x‘þ1
j ¼ ax‘j

XM

i¼1

Tijdi

ðTx‘Þi
þ ð1 � aÞqj; ð13Þ

where for some initial start vector x0 > 0, ℓ is iterated until convergence, provided that

PM

i¼1

Tij ¼ 1 for each j.

The simultaneous multiplicative algebraic reconstruction technique (SMART). The

simultaneous multiplicative algebraic reconstruction technique (SMART) was introduced by

Bryne [17, 26] as a means of solving the following problem:
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For x> 0 and 0� α� 1 minimise

JðxÞ ¼ aKL ðTx; dÞ þ ð1 � aÞKL ðx; qÞ; ð14Þ

to approximate the solution to the linear system of equations Tx = d with q an a priori estimate

of x. Recall that the KL-divergence is not symmetric, hence Eq (14) is formally a different prob-

lem from that of Eq (12).

The solution to Eq (14), equivalent to maximizing Shannon entropy, was determined by

Byrne [26] using a two-step alternating projections algorithm, which can be expressed in a

convex combination compact form [28]:

x‘þ1

j ¼ ðqjÞ
1� a x‘j

YM

i¼1

di

ðTx‘Þi

� �Tij
" #a

; ð15Þ

where ℓ is iterated until convergence, starting from an initial guess x0 > 0.

Kullback-Leibler based data assimilation

The cost functions of Eqs (12) and (14) can be reformulated to solve a data assimilation prob-

lem analogous to Eq (7). In this context the linear system Tx = d can be used to represent how

the observations y are related to the state vector x through the observation operator H, namely

Hx = y, and the a priori estimate q is given by the model forecast xf. For example, taking the

case from Eq (12), we can derive a weighted Kullback-Leibler objective function, using our

data assimilation notation, as follows:

JðxÞ ¼ KL R� 1
k
ðyk;HkxÞ þ KL ðPfkÞ� 1ðxfk; xÞ: ð16Þ

The covariance matrices, Rk and Pf
k, and their inverses, are symmetric positive definite and by

the Cholesky decomposition may be expressed in the form:

R� 1

k ¼ U>k Uk; ð17Þ

ðPf
kÞ
� 1
¼ V>k Vk; ð18Þ

where U and V are upper triangular matrices with positive diagonal entries. Just as,

jjHkx � ykjj
2

R� 1
k
¼ jjUkðHkx � ykÞjj

2
, for example, so to for weighted KL-divergence, hence

JðxÞ ¼ KL ðUkyk;UkHkxÞ þ KL ðVkxfk;VkxÞ: ð19Þ

The KL-divergence must be between two positive quantities (see Eq 6); therefore, we are

restricted in that we require positive entries for Uk yk, Uk Hk x, Vkxfk, and Vk x. Suppose we

have a positive system, such that yk, Hk, and xfk each have positive entries. This would be the

case for a wide range of applied science applications, and if not a general system can always be

converted to a positive system after applying some transformations (see, for example, [28]).

However, even with the supposed positive system, Uk and Vk may still have negative off-diago-

nal entries. For this derivation we will therefore restrict ourselves to white noise for the obser-

vation error and the forecast error, such that

Rk ¼ ðsoÞ
2

kI; ð20Þ

Pf
k ¼ ðs

f
kÞ

2I: ð21Þ
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This is the usual structure for the observation error (Eq 20) as observations are typically local

in space and considered independent; however, for the forecast error (Eq 21) this form does

present some restrictions as it limits our ability to spread information from an observed part

of the system to an unobserved part. We will circumvent this to some extent by interpolating

observations to all grid points and assimilating these interpolated values, with reduced weight

the further they are from the measurement location. This localization procedure enables the

smooth spatial spread of information from the measurement point to nearby locations, with-

out the need for off-diagonal terms in the covariance matrix.

Proceeding with (20) and (21) we have Uk ¼
1

ðsoÞk
I and Vk ¼

1

ðsf Þk
I, with (σo)k, (σf)k> 0 for

all k, and after some algebraic adjustments we can derive

ĴðxÞ ¼
sf
k

sf
k þ ðsoÞk

KL ðyk;HkxÞ þ
ðsoÞk

sf
k þ ðsoÞk

KL ðxfk; xÞ: ð22Þ

We now have a weighted KL objective function that matches the form of Eq (12) and the mini-

mum can be found using the iterative method of Eq (13). This can be solved sequentially as a

filtering algorithm by evolving the model state and updating the forecast based on the observa-

tions. We have therefore outlined an EM data assimilation filter that can be compared to tradi-

tional 3D-Var/OI. Namely,

xfk ¼ Mk� 1;k xak� 1

ðxakÞ
‘þ1

j ¼ akðxakÞ
‘

j

XM

i¼1

ðHkÞijðykÞi
ðHkðxakÞ

‘
Þi
þ ð1 � akÞðx

f
kÞj

ð23Þ

for j = 1, . . ., N and ℓ is iterated until convergence, and where ak ¼
sfk

sfkþðsoÞk
.

A similar procedure can be followed to produce a SMART data assimilation filter

xfkþ1
¼ Mk� 1;k xak� 1

ðxakÞ
‘þ1

j ¼ ðxfkÞ
1� ak
j ðxakÞ

‘

j

YM

i¼1

ðykÞi
ðHkðxakÞ

‘
Þi

 !ðHkÞij
2

4

3

5

ak
ð24Þ

for j = 1, . . ., N and ℓ is iterated until convergence, and where ak ¼
sfk

sfkþðsoÞk
.

Hence, we have now developed two new data assimilation methods that minimize Kull-

back-Leibler divergence. What we have proposed is an entirely new perspective to the tradi-

tional data assimilation scheme, one that involves an information measure for the closeness of

fit between model and data. Furthermore, these KL data assimilation algorithms guarantee

positivity for the solution without the need for projections or transformations and they do not

require an adjoint code or the storage, multiplication or inversion of covariance matrices.

Numerical experiments

We examine the performance of the EM and SMART data assimilation filters with respect to

Optimal Interpolation (OI) and the Kalman filter (KF), including the extended Kalman filter

(EKF) and the ensemble Kalman filter (EnKF) for a non-linear application. To demonstrate

and compare these algorithms we perform so-called ‘twin experiments’ whereby noisy pseudo-

observations, yk ¼ Hkxtk þ mk, are taken from a truth run xtkþ1
¼ Mk;kþ1xtk þ �k. The initial

model state is offset from the truth, d ¼ xt
0
� xa

0
, the model is evolved forward in time,
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xfkþ1
¼ Mk;kþ1xak, and the observations are assimilated in an attempt to recover the truth run.

The error statistics are such that

EðmkÞ ¼ 0 Eðmkm
>

k Þ ¼ R ¼ s2

oI; ð25Þ

Eð�kÞ ¼ 0 Eð�k�>k Þ ¼ Q ¼ s2

mI; ð26Þ

EðdÞ ¼ 0 VarðdÞ ¼ s2

b Eðdd>Þ ¼ Pa
0
: ð27Þ

We will demonstrate the KL-minimizing data assimilation methods (EM filter and SMART fil-

ter) using three different numerical experiments.

Experiment 1

We first consider a two-dimensional linear dynamics problem taken from [8]

x1

x2

" #

kþ1

¼
0 1

� 1 0

" # x1

x2

" #

k

ð28Þ

in which the state vector is rotated 90˚ in a clockwise direction at each step. To perform these

simulations in the positive quadrant we rotate about the point 200 200 �
>

�
. We first translate

the state vector so that the point of translation is moved to the origin, then we rotate the relo-

cated state vector about the origin (Eq 28), finally we undo the translation step to return the

state vector to its new rotated location. Within our twin-experiment the background guess fol-

lows these deterministic dynamics; however, the truth solution involves the addition of ran-

dom noise to Eq 28, producing stochastic dynamics as the noise causes a random shift of the

origin (see Fig 1). The experiments are performed with an initial condition offset from

200 200 �
>

�
, where the offset is taken from the normal distribution with mean 0 and vari-

ance s2
b ¼ 10. The random model error (that produces the stochastic dynamics) is normally

Fig 1. Experiment 1. The modelled phase plane of the background solution (a) and the truth solution (b). The initial conditions are given by the red

dot and the solution points are in blue.

https://doi.org/10.1371/journal.pone.0256584.g001
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distribution with mean zero and variance s2
m ¼ 1. Observations are generated from the truth

run at each step from the x1 variable only and include a normally distributed random measure-

ment error of mean zero and variance s2
o ¼ 1.

Experiment 2

This one-dimensional non-linear dynamics problem involves a sine map

xkþ1 ¼
5

2
sinðxkÞ ð29Þ

and produces deterministic behaviour converging to a period-2 solution; however, the addi-

tion of noise creates stochastic dynamics producing considerably different bistable behaviour

between two separate period-2 solutions [8]. We start with a mean initial condition of 10. To

run this experiment with positive values we subtract 10 from the solution before applying the

forward model (Eq 29) and then add 10 after the sine map has been applied (see Fig 2). The

stochastic behaviour of the truth run is generated with the addition of normally distributed

model errors of mean 0 and variance s2
m ¼ 0:09. The model forecast has an initial condition

error that is taken from the normal distribution with mean 0 and variance s2
b ¼ 0:9. Observa-

tions are acquired from the truth run at each step and measurement error is added that is nor-

mally distributed with mean 0 and variance s2
o ¼ 1.

Experiment 3

In this example we have a spatio-temporal model, a partial differential equation with a single

spatial variable, χ, namely the one-dimensional linear advection equation,

@w

@t
þ v

@w

@x
¼ 0: ð30Þ

Fig 2. Experiment 2. The modelled background solution (a) and the truth solution (b).

https://doi.org/10.1371/journal.pone.0256584.g002
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Here the state vector is the 1-D concentration χ = χ(x, t) which is advected with constant fluid

velocity v. This model (Eq 30) has an analytical solution, which we will use in this study,

wðx; tÞ ¼ wðx � vt; 0Þ: ð31Þ

We take v = 1 m s−1, discretize with spacing 1 m and use a timestep of 1 s. For the baseline

experiments we have 400 spatial gridpoints and evolve over 600 timesteps. We apply periodic

boundary conditions. The state vector, χ, is initialized as a pseudo-random wave (Fig 5(a)).

This smooth periodic initial state is sampled from a normal distribution with mean 0, variance

s2
b ¼ 5, and a decorrelation length of 20. The solution consists of a superposition of sinusoids

with different wavelengths, where the shorter waves are penalized, and where each wave has a

random phase [24]. The background state at initialization is offset from the truth by drawing

another sample from the distribution and adding this to the true state. Observations are taken

from the truth run and used in the assimilation (see Fig 5(b), 5(c)). Every 12 timesteps 20

observations are taken from the 400 possible spatial locations which are randomly sampled

from a uniform distribution without replacement. Observation error is added to each observa-

tion, where the noise is normally distributed with mean zero and variance s2
o ¼ 0:05.

Results and discussion

For the experiments conducted in this work we found that the two KL-minimizing data assim-

ilation methods provided near-identical solutions, we will therefore only present the results

from the EM filter which we will henceforth refer to as the Kullback-Leibler data assimilation

(KL-DA) solution. To give a sense of how differences might arise consider Eq 1, when mini-

mizing KL(P, Q) we want P’ Q or P� Q, now suppose Q has two peaks then P might match

one peak (P’ Q) and miss the other (P� Q), we might think of this as “mode-seeking”,

whereas for minimizing KL(Q, P) we want P’ Q or Q� P, hence P might allocate mass

between the two peaks of Q, thus “mean-seeking” (see [29]). Different applications might then

give rise to different solutions from the EM filter and the SMART filter, although this is not

something we have explored in this study.

In experiment 1 we show that the KL-DA method is effective and accurately tracks the

unobserved variable (Fig 3(a)). The KL-DA results are shown to be equivalent to the OI solu-

tion, with the Kalman filter solution being superior to both (Fig 3(b)). This is to be expected as

the full Kalman filter is updating the error covariances through the simulation, unlike the static

covariance of the OI and KL-DA systems.

For the 1-D nonlinear problem, experiment 2, we again find that the solution of the KL-DA

method is identical to that of the OI (Fig 4(a)). We find that the KL-DA (and OI) is more accu-

rate than the extended Kalman filter, which produces a higher frequency of larger errors, as

shown in the probability histrogram of the errors (Fig 4(b)). This problem is not well suited

for the extended Kalman filter because of destablization intervals [8]. The ensemble Kalman

filter (EnKF) solution is found to have a slightly narrower range of error values than the

KL-DA and OI (Fig 4(b)), but this comes from considerably greater computational cost (here

we used 100 ensemble members to characterize the evolving error statistics).

In experiment 3 we have background error with a decorrelation length scale and so the

error covariance matrix, Pf, contains important off-diagonal structure (unlike in experiments

1 and 2). As the KL-DA method uses diagonal covariance matrices we employ a local assimila-

tion approach, as detailed in our earlier derivation. The observations are linearly interpolated

and assimilated at each grid point. The uncertainty assigned to these interpolated observations

is increased exponentially the further they are from the actual observation location, such that

beyond a certain distance the uncertainty is so great that the interpolated observation will have
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no bearing on the analysis. This is an effective way of spatially spreading the observation infor-

mation to locations nearby the measurement points (see Fig 5(b) and 5(c)). It is also different

from that of OI (and Kalman filter) which use the Pf matrix in the Kalman gain to spread infor-

mation; hence, the KL-DA and OI solutions are no longer alike as was the case for the previous

Fig 3. Experiment 1 results. The modelled solution (a) and running average root mean square error (b).

https://doi.org/10.1371/journal.pone.0256584.g003

Fig 4. Experiment 2 results. The modelled data assimilation solutions (a) and the log-scale histogram of the errors (b).

https://doi.org/10.1371/journal.pone.0256584.g004
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experiments. We find that the KL-DA solution converges toward the truth much faster than

both OI and the Kalman filter (Fig 6). As expected errors are reduced much more slowly in the

OI than the Kalman filter as the error covariance is not evolved or updated (Fig 6). Note that

as each individual simulation will be different, because of random errors and the random

selection of observation locations, we have presented our results (in Fig 6 and Table 1) as aver-

ages calculated from multiple realizations (repeat simulations).

The KL-minimizing data assimilation methods are found to be substantially faster than the

Kalman filter and faster than OI for large systems (see Table 1). The algorithms have not neces-

sarily been coded for optimal efficiency; nonetheless, these timing comparisons provide fur-

ther evidence of the computational advantages of the KL data assimilation approach, especially

for large systems. The efficiency of the EM and SMART filters partly derives from its avoidance

of matrix algebra. In contrast the Kalman filter approaches depend critically on the Kalman

gain matrix (Eq 11), determining this requires computing the inverse of the matrix (HPf H>

+ R). Even if Pf is fixed, as is the case for OI, the H matrix (observation operator) will be

Fig 5. Experiment 3. The state vector solution from the truth run (blue), the no assimilation run (black), and the Kullback-Leibler data assimilation

solution (red). Shown at (a) the initial condition (t = 0), (b) the time of first observations (t = 12), and (c) the time of second observations (t = 24). The

observations (green circles) are taken at random locations and include random measurement error. The arrow indicates the direction of the advected

flow.

https://doi.org/10.1371/journal.pone.0256584.g005
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different due to the changing measurement locations in experiment 3. Thus requiring a new

inverse to be computed at each assimilation time. The challenges of matrix multiplication,

matrix storage, and computing matrix inverses increase substantially with the size of the sys-

tem and may become intractable for some very large applications. For example, as we increase

Fig 6. Experiment 3 error. The error, jjwt � wjj
2

2
, growth over time using the Kalman filter (purple), the Kullback-Leibler data assimilation (red), and

the OI (black dashes) solutions. The error curves are determined based on the mean of 100 simulations.

https://doi.org/10.1371/journal.pone.0256584.g006

Table 1. The average time to complete the simulation and the average error jjwt � wjj
2

2
at the end of the simulation t = 600 depending on the size of the domain and

the number of observations assimilated every 12 timesteps. These averages are mean values taken over 30 simulations using experiment 3.

Grid size No. Obs. KF KL-DA OI

Time (s) Error Time (s) Error Time (s) Error

200 10 3.70 4.65 1.04 6.83 0.52 16.73

400 20 9.70 5.49 2.14 5.29 1.38 17.55

800 40 48.60 3.82 7.80 4.86 6.94 8.58

1600 80 324.1 5.46 20.54 6.10 20.92 12.08

3200 160 2396 7.65 66.30 8.22 80.14 16.47

https://doi.org/10.1371/journal.pone.0256584.t001
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the number of grid points in our study we find the time needed to complete the simulations

dramatically increases for the Kalman filter (see Table 1). As is well known evolving and updat-

ing the error covariance in the Kalman filter requires significant additional computational

resources over that of OI. Although in practice the EnKF proves effective as it does not propa-

gate a covariance matrix, but instead makes an ensemble forecast. For high dimensional appli-

cations the EnKF can be implemented by assimilating single observations serially (e.g. [30]) or

by performing the analysis step in a local region (e.g. [31]). Regardless, any ensemble forecast

will be more expensive than the single forecast of the KL-DA method; nonetheless it could be

worth pursuing some of the benefits of the EnKF by developing an ensemble approach to the

KL-DA method.

With regards to accuracy, we find that the final solutions of the KF are much closer to the

truth than the OI solutions, but only slightly better than the KL-DA method (see Table 1). For

example, for the largest system tested the relative percentage error at the end of the simulation

for KF was 3.06%, for KL-DA was 3.29% and for OI was 6.59%. Whereas, the KL-minimizing

filter is substantially quicker than the Kalman filter and is found to be also faster than the OI

(direct solve 3D-Var) for sufficiently large systems (see Table 1). For example, in the largest

problem tested the KL-DA simulation was 36 times faster to complete than the KF and 1.2

times faster than the OI. Therefore, the larger the system the more advantageous the KL data

assimilation approaches become. These comparisons provide a baseline for assessing the KL-

method and give an indication of their potential.

For all experiments performed in this study only a couple of iterations of the SMART and

EM filters are needed for convergence |xℓ − xℓ−1|< 10−9. We should emphasis that the OI solu-

tion involves computing the direct and exact solution (Eq 8), but that iterative 3D-Var meth-

ods can also be employed to find the cost function minimum (e.g., [32]); however, such

numerical minimization algorithms require evaluating both the cost function as well as its gra-

dient. As such we expect the computational advances of the KL-DA approach to remain

against the iterative minimization algorithms of 3D-Var.

A shortcoming of the KL data assimilation set-up described is the assumed diagonal struc-

ture of the covariance matrix. Realistic multivariable data assimilation applications typically

require at least tri-diagonal structure in order to adjust correlated variables. Future work will

explore adaptions to the current KL-minimizing filters in order to address this limitation and

increase their utility. For example, an ensemble KL-DA approach could be developed that

allows for both covariance updating and the direct adjustment of unobserved, but correlated,

variables.

Many applications in the applied sciences require constraints on state variables; for

instance, negative quantities are not physically possible for sea-ice concentration or ice sheet

thickness, to give a couple of examples. Nonetheless, even with positive observations and a

positive forecast vector, the data assimilation update (Eq 10) can result in physically unsound

negative values occurring in the analysis state. Despite a positive system the innovation vector

y −Hxf could be negative or the Kalman gain (Eq 11) could contain negative values because of

the matrix inverse. Often, in such cases any negative values in the analysis state vector are sim-

ply set to zero in a post-processing step necessary to maintain consistency with the physical

model (see, for example, [33, 34]). However, this decision is rather ad-hoc and is no longer the

optimal solution provided by the data assimilation algorithm. Another frequently used

approach is that of Gaussian anamorphosis and involves a change of variables for the state vec-

tor and the observations, the nonlinear transformation is applied before the update step and

then the inverse is used to return back to physical space for the forecast (e.g. [19]). The applica-

tion of anamorphosis functions for these transformations may not be straightforward and the

choice can strongly influence performance (e.g. [20]), although the logarithm is a popular
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function choice. Despite these approaches giving non-negative analyses they are not necessar-

ily optimal and do not generally conserve mass (e.g. [21]). To counteract such shortcomings

more elaborate techniques have been developed that involve solving an optimization problem

subject to convex constraints at the analysis step, see for example [21–23]. In contrast, the data

assimilation methods we have formulated here are guaranteed to produce analysis states with

positive values because they are based on KL-divergence and hence are ideally suited for any

applications requiring such physical constraints. No adjustments, transformations, or projec-

tions are required and the constraint is naturally embedded in the KL-minimizing filtering

algorithms. For example, in our twin experiment 3 problem if we produce the initial pseudo-

random wave around the zero line and then offset by the minimum observation (to achieve a

positive system) and run the data assimilation experiments with reduced observation error

(e.g., s2
o ¼ 0:01) then the Kalman filter solution produces multiple (undesired) negative values.

However, when using the KL-minimizing filters there are no occurrences of negative values

and positivity is naturally enforced. Future work will build on this potential by exploring more

realistic applications that require positivity and directly comparing the outcomes of KL-DA to

Gaussian anamorphosis and other competing approaches.

The Kullback-Leibler divergence has previously been used within the standard data assimi-

lation methods. For example, Mansouri et al. [35] minimize KL divergence to generate the

optimal importance proposal distribution within a particle filter. This KL ‘measure’ is also

used for model selection via Akaike information criterion, see for example, Burnham and

Anderson [36]. In particular, Lang et al. [37] used such a method within an ensemble Kalman

filter for parameterization estimation. The Kullback-Leibler divergence has recently been used

to incorporate inequality constraints for an ensemble Kalman filter [23]. Their methodology

involves first solving the unconstrained ensemble Kalman filter and then projecting these

results into the constrained region. In the projection step they seek a distribution in the con-

strained region that is similar and close to that of the unconstrained region and to determine

this they solve a convex optimization problem using the KL-divergence. In contrast our

approach can be considered favourable in that we guarantee our solution, by construction and

without projection, to belong to the desired constrained region, namely the positive octant for

this study. We have originally demonstrated that data assimilation methods can be developed

that seek to minimize the Kullback-Leibler divergence, between model forecast and observa-

tions as well as between the forecast and the control state, within a two-term weighted cost

function. We have shown that these new approaches are computationally efficient and are ide-

ally suited for situations where physical constraints on the state vector are necessary. Such sce-

narios commonly arise within many state and parameter estimation problems across

numerous disciplines.

Conclusion

We have derived two new data assimilation algorithms that minimize Kullback-Leibler diver-

gence, rather than the L2-norm of standard data assimilation methods. This foundational

information-based perspective provides a new way to conceptualize the data assimilation

problem. The unnormalized Kullback-Leibler divergence is a measure of the discrepancy

between two positive vectors, and is a natural way to characterize the differences between the

model prediction and the data. Because this ‘measure’ is not symmetric we have developed two

independent filtering schemes, namely the simultaneous multiplicative algebraic reconstruc-

tion technique (SMART) filter and the expectation maximization (EM) filter. These proposed

KL data assimilation schemes have been implemented numerically and the results compared

to Kalman filter approaches. The two algorithms (EM filter and SMART filter) are shown to

PLOS ONE Kullback-Leibler data assimilation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256584 August 26, 2021 15 / 18

https://doi.org/10.1371/journal.pone.0256584


provide near-identical solutions with accuracy matching the 3D-Var solution using the Opti-

mal Interpolation (OI) method with the same information inputs. We have highlighted several

advantages of the KL-based data assimilation methods and indicated the future potential of

this approach. The KL methods are computationally much faster than the Kalman filter as they

are iterative schemes that have no need for matrix storage, matrix multiplication or computing

a matrix inverse. For larger systems the KL-based data assimilation approach is shown to have

substantial computational advantages over the Kalman filter and 3D-Var/OI. Furthermore,

the KL data assimilation methods are ideal for applications that require state variables (or

parameters) to obey certain constraints, such as physical limitations on their values. The KL-

divergence applies to positive vectors only and so naturally embeds a constraint without any

need for additional steps, such as transformations or projections, unlike the Kalman filter

schemes. We have outlined important theoretical and conceptual details and highlighted how

this promising new approach can be further improved by focusing on adapting the methods so

that error covariance can be evolved and more complicated covariance structure can be incor-

porated. The KL-DA framework developed in this paper will be used as a foundation for future

work demonstrating the methods in more sophisticated applications. In summary, the pro-

posed Kullback-Leibler minimizing filtering methods provide a new data assimilation frame-

work that might hold potential for applications involving time-varying variables of large-scale

systems and where physical constraints and limited computational resources present

challenges.
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